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Many methods for inferring genetic networks have been proposed, but the regulations

they infer often include false-positives. Several researchers have attempted to reduce

these erroneous regulations by proposing the use of a priori knowledge about the

properties of genetic networks such as their sparseness, scale-free structure, and so

on. This study focuses on another piece of a priori knowledge, namely, that biochemical

networks exhibit hierarchical structures. Based on this idea, we propose an inference

approach that uses the hierarchical structure in a target genetic network. To obtain

a reasonable hierarchical structure, the first step of the proposed approach is to infer

multiple genetic networks from the observed gene expression data. We take this step

using an existing method that combines a genetic network inference method with a

bootstrap method. The next step is to extract a hierarchical structure from the inferred

networks that is consistent with most of the networks. Third, we use the hierarchical

structure obtained to assign confidence values to all candidate regulations. Numerical

experiments are also performed to demonstrate the effectiveness of using the hierarchical

structure in the genetic network inference. The improvement accomplished by the use

of the hierarchical structure is small. However, the hierarchical structure could be used

to improve the performances of many existing inference methods.

Keywords: genetic network, hierarchical random graph, hierarchical structure, bootstrap method, simulated

annealing

1. INTRODUCTION

A genetic network is a functioning circuit in living cells at the gene level. From one viewpoint, a
genetic network can be seen as an abstract mapping of an actual biochemical network consisting of
genes, proteins, metabolites, and so on. The analysis of genetic networks is conceived as one of the
promising ways to understand biological systems. The mathematical modeling of genetic networks
has therefore become an important theme in systems biology.

Many studies have sought to develop computational methods for inferring genetic networks
from observed gene expression patterns (Larrañaga et al., 2006; Chou and Voit, 2009; Hecker
et al., 2009). Often, however, these methods infer false-positive regulations along with true-positive
regulations. These erroneous regulations must be decreased if we are to successfully analyze the
inferred genetic networks. One possible approach to remove these erroneous regulations from the
inferred genetic networks is to use a priori knowledge about the networks. Several researchers have
introduced a priori knowledge about the properties of genetic networks, such as their sparseness,
scale-free structure, and so on, into methods for inferring genetic networks (see, e.g., Kikuchi et al.,
2003; Daisuke and Horton, 2006).
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This study focuses on another type of a priori knowledge,
namely, that biochemical networks exhibit hierarchical structures
(Clauset et al., 2008). The hierarchical structure in a network
is a property having vertices that cluster together in groups,
which then join to form groups of groups, and so forth, from
the lowest levels of organization up to the level of the entire
network. If we know the hierarchical structure in the target
genetic network, we can improve a genetic network inferred by an
inference method. That is, we can conclude that the regulations
inferred by the method are unreasonable if they are inconsistent
with the hierarchical structure. The hierarchical structure in a
given network can be detected using a method based on the
hierarchical random graph model (Clauset et al., 2008). While
this detectionmethod assumes that the erroneous regulations in a
given network are infrequent, erroneous regulations actually tend
to be abundant in a network inferred by a method for inferring
genetic networks. Even if we simply used Clauset’s method for the
analysis of a genetic network, a reasonable hierarchical structure
would be difficult to obtain.

In order to detect a hierarchical structure correctly, this
study first infers multiple genetic networks from the observed
gene expression data using a genetic network inference method
in combination with a bootstrap method (Efron, 1979). We
then extract a hierarchical structure from the inferred genetic
networks that is consistent with most of the networks. As
some erroneous regulations seem to be rarely inferred by the
bootstrap method, we speculated that the proposed approach
could reduce the effect of these erroneous regulations on the
hierarchical structure detection. In this study, we extract a
hierarchical structure from multiple genetic networks using
the detection method proposed by Clauset et al. (2008) with
modifications and then use the hierarchical structure obtained
to assess the confidence values of the regulations. Through
numerical experiments, we then demonstrate the effectiveness
of the use of the hierarchical structure in the genetic network
inference.

2. DETECTING HIERARCHICAL
STRUCTURES

2.1. Hierarchical Random Graph Model
Clauset et al. (2008) have proposed a method for detecting a
hierarchical structure in a given network. Their method describes
the given network as an undirected graph where the vertices
and edges represent genes and interactions between them,
respectively, in the genetic network inference. Note therefore
that, while the method for inferring genetic networks generally
treats a genetic network as a directed graph, the method for
detecting hierarchical structures must treat it as an undirected
graph.

The method proposed by Clauset et al. (2008) uses a
hierarchical random graph model H(D, θ) to represent a
hierarchical structure of a network consisting ofN vertices, where
D is a rooted binary tree having N leaf nodes and N − 1 internal
nodes, and θ = (θ1, θ2, · · · , θN−1) (see Figure 1). Each of the N
leaf nodes of D corresponds to each of the vertices of the given

network. The N − 1 internal nodes, which we represent here as
D1,D2, · · · ,DN−1, indicate the hierarchical relationship among
the vertices of the given network. Note that each pair of vertices in
the given network has a unique internal node in D as their lowest
common ancestor. The internal node Di has a parameter θi. The
parameter θi represents the probability that the given network has
an edge between vertices whereDi is the lowest common ancestor
inD. When the vertices u and v have the internal nodeDi as their
lowest common ancestor, therefore, it means that the network has
an edge between these vertices with the probability θi. The model
H(D, θ) has an ability to capture the hierarchical structure of the
given network. On the other hand, H(D, θ) is also conceived as
a generative model that allows us to generate artificial networks
with a specified hierarchical structure.

The method proposed by Clauset et al. (2008) tries to find D
and θ of H(D, θ), a model that serves well in representing the
hierarchical structure of the given single network. The method
proposed in this study, on the other hand, searches for them using
multiple genetic networks inferred by the bootstrap approach.

2.2. Problem Definition
The method proposed by Clauset et al. (2008) uses the maximum
likelihood estimation for the hierarchical structure detection.
Similarly, the method we propose here uses the maximum
likelihood estimation to extract a hierarchical structure from the
given networks. Here, therefore, we obtain the rooted binary
tree D and the parameter vector θ by maximizing a probability
that the given networks are generated from the model H(D, θ).
The detection of the hierarchical structure in this study is thus
defined as a maximization problem of the log-likelihood function
(Kimura and Okada-Hatakeyama, 2015)

log L(D, θ) =
Ng
∑

j=1

N−1
∑

i=1

[

E
j
i log θi + (LiRi − E

j
i) log(1− θi)

]

, (1)

where Ng is the number of the given networks, N is the number

of vertices contained in each network, and E
j
i is the number of

edges in the j-th network between vertices havingDi as the lowest
common ancestor in D. Li and Ri are the number of leaf nodes of
the left and right subtrees, respectively, rooted at Di.

From the optimality conditions on the maximization problem

of the function (Equation 1), i.e.,
∂ log L

∂θi
= 0, (i = 1, 2, · · · ,N −

1), we obtain

θi =
∑Ng

j=1 E
j
i

NgLiRi
, (i = 1, 2, · · · ,N − 1) (2)

The equations above indicate that the appropriate values for the
parameters θi’s are easily obtained for a given binary tree D. Our
method thus extracts the hierarchical structure only by searching
for the optimal D, as described below.

2.3. Optimization Algorithm
The method proposed by Clauset et al. (2008) extracts a
hierarchical structure from only a single network. The given data
are insufficient, so many hierarchical random graph models seem
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FIGURE 1 | (A) A network and (B) the corresponding hierarchical random graph model.

to match the given network well. Their method thus generates
multiple models using a Markov chain Monte Carlo method
(Chib and Greenberg, 1995), and then averages them to obtain
the hierarchical structure.

In our study, the use of multiple networks to detect the
hierarchical structure allows us to search for a single optimum
model using a simulated annealing (Kirkpatrick et al., 1983).
Our method thus optimizes the objective function (Equation 1)
according to the following procedure.

[Algorithm for maximizing the function (Equation 1)]

1. Randomly generate a rooted binary tree, BestTree, with N
leaf nodes, where N is the number of vertices contained
in each of the given networks. Note that each leaf node of
the tree corresponds to each vertex of the given networks.
Compute the objective value of BestTree using the function
(Equation 1). To compute this value for the function
(Equation 1), we must first give the parameters θi along
with a binary tree D. As mentioned in the section Problem
Definition, however, this study directly computes the values
for θi according to the Equation (2). Set T to Tstart .

2. Copy BestTree to CurrentTree.
3. Set Counter to 0.
4. Copy CurrentTree to TestTree.
5. Select an internal node of TestTree randomly. Then, modify

the structure of TestTree by applying ‘Exchange’ or ‘Rotate’
randomly to the selected node. “Exchange” and “Rotate” are
operators that alter the structure of the subtree rooted at the
selected node, as shown in Figure 2. After the modification,
compute the objective value of TestTree.

6. If the objective value of TestTree is better than that of
BestTree, copy TestTree to BestTree.

7. Copy TestTree to CurrentTree with a probability

min

{

1, exp

(

−
Objc − Objt

T

)}

,

where Objc and Objt are the objective values of CurrentTree
and TestTree, respectively.

8. Counter← Counter + 1.
9. Return to the step 4 if Counter < Nmax.
10. T ← γT.
11. Return to the step 2 if T > Tend. Otherwise, output BestTree

and stop.

Tstart , Tend, Nmax, and γ in the algorithm above are constant
parameters. For this study, we set their values to 1000, 0.1, 1000N,
and 0.99, respectively.

3. ASSIGNMENT OF CONFIDENCE VALUES
TO REGULATIONS

As mentioned previously, this study first infers Ng genetic
networks from the observed time-series of the gene expression
levels. Any inference method capable of producing multiple
genetic networks will serve this purpose. Here, however, we
decided to use a method proposed by Kimura et al. (2010) for
the generation of multiple genetic networks within a relatively
short computation time by combining the LPM-based inference
method (Kimura et al., 2009a) with the bootstrap method. We
refer to this inference method as the BS-LPM inference method.

While the BS-LPM inference method distinguishes the
regulation of the n-th gene from the m-th gene and vice versa,
the method for detecting hierarchical structures described in
the section Detecting Hierarchical Structures makes no such
distinction. Here, therefore, we take the following step to
transform the inferred genetic networks to the networks for
our method for detecting the hierarchical structure: when the
j-th genetic network inferred by the BS-LPM inference method
contains the regulation of the n-th gene from the m-th gene, the
regulation of the m-th gene from the n-th gene, or both, we add
an edge between the n-th and m-th vertices to the j-th network
for our detection method. The BS-LPM inference method is
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FIGURE 2 | The (A) “Exchange” and (B) “Rotate” operators applied to the internal node Ds. Squares represent internal nodes, and triangles represent leaf

nodes and/or subtrees.

also capable of inferring an auto-regulation/auto-degradation,
i.e., a regulation of a gene by itself. Here, however, we have to
remove auto-regulations/auto-degradations from the networks,
as our detection method cannot cope with them. Inferred
networks usually contain auto-regulations/auto-degradations,
because inference methods often infer the degradation of
transcripts of a gene as a regulation of the gene by itself. We
would not always need to search for regulations that usually exist.
As such, the inference of auto-regulations/auto-degradations is
not always essential for the inference of actual genetic networks.
In order to detect a hierarchical structure in our target network,
we next apply our detection method to the networks transformed
above.

The confidence values of regulations can be evaluated solely
based on the probabilities that the genetic networks inferred
by the BS-LPM inference method contain the regulations.
The hierarchical random graph model H(D, θ) in our method
provides the probabilities that the target network has interactions
between genes, which enable us to assign the confidence values to
regulations on that basis, as well. We therefore try to improve
the confidence values of regulations in this study by combining
the probabilities evaluated by the BS-LPM inference method with
those evaluated by H(D, θ). This study simply computes the
combined confidence value of the regulation of the n-th gene
from them-th gene, pn,m, by

pn,m = ηpBn,m + (1− η)pHn,m, (3)

where η (0 ≤ η ≤ 1) is a constant parameter, and pBn,m and pHn,m
are the probabilities assigned to the regulation of the n-th gene
from the m-th gene evaluated by the BS-LPM inference method
and H(D, θ), respectively. Note here that H(D, θ) disregards the

directions of regulations. While the values for pBn,m and pBm,n

are basically different from each other, therefore, pHn,m and pHm,n

always have the same value.
Note that the hierarchical random graph model H(D, θ) is

extracted from the networks inferred by the BS-LPM inference
method. Therefore, we should not depend too much on the
results obtained fromH(D, θ). In this study, thus, we mainly uses
the extracted hierarchical structure to rank the regulations that
are assigned the same probability value by the BS-LPM inference
method. For this purpose, this study sets the parameter η to
1− 1

Ng
.

4. NUMERICAL EXPERIMENTS

4.1. Analysis of DREAM3 Networks
From here, we will describe a series of experiments performed
with five artificial genetic networks to check whether or not the
use of the hierarchical structure is efficient for the inference of
genetic networks.

4.1.1. Experimental Setup

As target networks, we used a series of S-system models
(Voit, 2000) consisting of 100 genes (N = 100), with
topologies identical to those of the five networks provided
by the DREAM3 in silico network challenges, i.e., Ecoli1,
Ecoli2, Yeast1, Yeast2, and Yeast3 (http://dreamchallenges.org/)
(Figure 3). The DREAM3 networks have often been used to
check the performance of genetic network inference methods
(see e.g., Lim et al., 2013). The design of these networks is
based on actual biochemical networks and therefore reflects
the actual topological properties. Note here that our method
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FIGURE 3 | The network structures of (A) Ecoli1, (B) Ecoli2, (C) Yeast1, (D) Yeast2, and (E) Yeast3.

for detecting hierarchical structures only uses the topological
properties of genetic networks inferred by a genetic network
inference method. Although the target networks are artificial,
the experiments we describe here could confirm the effectiveness
of the use of the hierarchical structure for the genetic network
inference. DREAM3, on the other hand, describes these networks
using a model different from the S-system model (Prill et al.,
2010). While the model used in DREAM3 considers the
effect of the intrinsic noise, the S-system model disregards

it. The BS-LPM inference method used in this study also
disregards the intrinsic noise, so we used the S-system model
to describe the target networks. Note that the purpose of the
experiments here was not to assess the performance of the
inference method but to check the effectiveness of the use of
the hierarchical structure for the genetic network inference.
We could therefore demonstrate the effectiveness of the use
of the hierarchical structure even when using the S-system
model.
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The S-system model is a set of differential equations of the
form

dXn

dt
= αn

N
∏

m=1
X
gn,m
m − βn

N
∏

m=1
X
hn,m
m (n = 1, 2, · · · ,N), (4)

where Xn is the n-th state variable, N is the number of
components in the network, and αn (> 0), βn (> 0), gn,m, and
hn,m are model parameters. In the genetic network inference, Xn

is the expression level of the n-th gene and N is the number of
genes contained in the target network. As the parameters gn,m’s
and hn,m’s determine the topology of the network, we constructed
the target networks by changing their values. In instances where
the original DREAM3 network has the regulation of the n-th
gene from the m-th gene, we chose a value for gn,m randomly
from [−1,−0.5] ∪ [0.5, 1]. Otherwise, gn,m was set to 0.0. The
parameter hn,n was set to 1.0 in order to simulate the auto-
degradation, and the other hn,m’s (n 6= m) were set to 0.0. The
parameters αn and βn were all set to 1.0. We determined to
use this parameter setting based on the reference (Kimura et al.,
2009a). The numbers of regulations contained in Ecoli1, Ecoli2,
Yeast1, Yeast2, and Yeast3, excluding auto-degradations, were
125, 119, 166, 389, and 551, respectively. As the inference ability
of the proposed approach might depend on the values for the
model parameters, we changed the random parameter values in
every trial. Ten trials were performed on each of the five target
networks.

As the observed gene expression patterns, 100 sets of time-
series data, each covering 100 genes, were computed from the
differential Equations (4) on each of the target models. The sets
began from randomly generated initial values in [0.0, 2.0], and
11 observations with 0.4 time intervals between two adjacent
observations were assigned to each gene in each set. In a
practical application, these sets would be obtained by actual
biological experiments under different experimental conditions.
The measurement noise was simulated by adding 10% Gaussian
noise to the computed time-series data. By applying the BS-LPM
inference method (Kimura et al., 2010) to the generated gene
expression data, we inferred 100 networks (Ng = 100). We
used the recommended values for the parameters of the BS-LPM
inference method, namely, σ = 0.15, C1 = 200

N
√
K
, C2 = 0.4C1,

and δ = 0.05, where N is the number of genes contained in
the target network and K is the number of measurements. Thus,
N = 100 and K = 100× 11 = 1100 in these experiments.

In order to obtain a hierarchical random graph model
H(D, θ), we then applied the hierarchical structure detection
method described in the section Detecting Hierarchical
Structures to the Ng generated genetic networks. We then used
the hierarchical random graph model obtained to compute the
confidence values of the regulations, as described in the section
Assignment of Confidence Values to Regulations. The constant
parameter for computing the confidence values, η, was set to
1 − 1

Ng
= 0.99. As mentioned previously, we mainly uses the

extracted hierarchical structure to rank the regulations that are
assigned the same confidence value by the BS-LPM inference

method. This study therefore did not depend too much on the
hierarchical structure H(D, θ).

4.1.2. Results

As described previously, the proposed approach and the BS-
LPM inference method were both capable of assigning the
confidence values to all of the candidate regulations. In this study,
we checked the performance of these methods by constructing
a network of regulations whose confidence values exceeded a
threshold and then comparing it with the target network. We
checked the performance using the recall and the precision. The
recall and the precision are defined as

recall =
TP

TP + FN
, precision =

TP

TP + FP
,

where TP, FP, and FN are the numbers of true-positive,
false-positive, and false-negative regulations, respectively. Note
that we transformed the genetic networks inferred by the BS-
LPM inference method into undirected graphs for detecting
their hierarchical structure. When evaluating the performance,
however, we distinguished the regulation of the n-th gene from
the m-th gene and vice versa, i.e., we treated the networks
as directed graphs. We also disregarded auto-regulations/auto-
degradations in the evaluation.

Figure 4 shows samples of the recall-precision curves
obtained by the proposed approach and by the BS-LPM inference
method by changing the threshold for the confidence value. We
previously described how closely our method depends on the BS-
LPM inference method. As the figure shows, the performance
of our approach was therefore similar to that of the BS-LPM
inference method. Meanwhile, the figure also shows that the
use of the hierarchical structure improved the precision of our
approach. This higher precision is a preferable feature, since
biologists must experimentally validate the inferred regulations
in actual applications. The BS-LPM inference method required
about 4.12 h on a personal computer (Core i5-4670) to obtain
Ng (= 100) genetic networks from the given gene expression
patterns. The hierarchical structure detection method described
in the section Detecting Hierarchical Structures required about
2.91 h on the same computer to extract a hierarchical structure
from the generated genetic networks.

We quantified the performance of the proposed approach and
the BS-LPM inference method in this study using the area under
the recall-precision curve (AURPC). Table 1 lists the averaged
AURPCs of the two methods on the problems of Ecoli1, Ecoli2,
Yeast1, Yeast2, and Yeast3. Our approach outperformed the BS-
LPM inference method on most of the 5 × 10 = 50 trials with
respect to the AURPC, but its performance was still inferior in
seven of the trials. The inferior performance in those seven failed
trials was presumably due to a failure of our approach to detect
the hierarchical structures in the target networks. Four of the
failed trials were performed on the Ecoli2 problem and the other
three were performed on Yeast1, Yeast2, and Yeast3. As shown
in Figure 3B, a number of genes in Ecoli2 are regulated by only
single genes. Our approach failed to adequately analyze networks
with this property, as some regulations erroneously inferred by
the BS-LPM inference method easily caused the formation of
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FIGURE 4 | Samples of the recall-precision curves of the proposed approach and the BS-LPM inference method on the problems of (A) Ecoli1, (B)

Ecoli2, (C) Yeast1, (D) Yeast2, and (E) Yeast3. Solid and dotted lines represent the performance of the proposed approach and the BS-LPM inference method,

respectively.

erroneous gene clusters. Ecoli2 would model a network in which
some transcriptional factors regulate most of the other genes.
Note here that genes regulated by the same transcriptional factor
often show expression patterns similar to each other. Inference

methods generally perform poorly in discriminating genes of this
type. One solution for this problem is to use some clustering
technique to identify genes with similar expression patterns,
group them together, and then infer the regulations between the
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TABLE 1 | The performance of the proposed approach and the BS-LPM inference method evaluated with respect to the area under the recall-precision

curve (AURPC).

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD

Proposed approach 0.9042± 0.0402 0.9233± 0.0252 0.7140± 0.0515 0.4330± 0.0251 0.3563± 0.0386

BS-LPM inference method 0.8792± 0.0528 0.9154± 0.0207 0.6880± 0.0491 0.4151± 0.0207 0.3504± 0.0368

AVG and STD represent the averaged value of the AURPCs and its standard deviation, respectively.

TABLE 2 | The AURPCs of the proposed approach with different values for the parameter η.

Parameter Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

η AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD

1.000 0.8792± 0.0528 0.9154± 0.0207 0.6880± 0.0491 0.4151± 0.0207 0.3504± 0.0368

0.999 0.9043± 0.0402 0.9233± 0.0252 0.7140± 0.0515 0.4330± 0.0251 0.3563± 0.0386

0.995 0.9043± 0.0402 0.9233± 0.0252 0.7140± 0.0515 0.4330± 0.0251 0.3563± 0.0386

0.990 0.9042± 0.0402 0.9233± 0.0252 0.7140± 0.0515 0.4330± 0.0251 0.3563± 0.0386

0.950 0.8969± 0.0415 0.9159± 0.0272 0.6962± 0.0486 0.4269± 0.0249 0.3487± 0.0390

0.900 0.8898± 0.0430 0.9110± 0.0259 0.6832± 0.0459 0.4180± 0.0243 0.3412± 0.0390

Note that the proposed approach with η = 1.000 is equivalent to the BS-LPM inference method and the parameter η = 1− 1
Ng
= 0.990 is our recommended setting.

clusters (see e.g., Kimura et al., 2005). There would thus be no
need, in practical application, to detect hierarchical structures in
networks with topological properties similar to Ecoli2.

As described in the section Assignment of Confidence Values
to Regulations, this study uses the parameter η to combine the
results from the BS-LPM inference method and those from the
hierarchical random graph model. Therefore, we then checked
the effect of the parameter η on the performance of the proposed
approach. Table 2 shows the AURPCs of our approach with
different values for η. The experimental results indicate that,
although the use of the hierarchical structure has an ability to
improve the confidence values of regulations, we should not rely
too much on it.

The performance of the proposed approach might depend on
the number of the networks inferred by the BS-LPM inference
method, Ng . Therefore, we also checked our setting of the

parameter η, i.e., η = 1 − 1
Ng

, on the experiments with different

numbers of Ng . Figure 5 shows the AURPCs of the proposed
approach with Ng = 20, 50, 100, and 200 on the problems of
Yeast1. The figure indicates the reasonableness of our parameter
setting.

As mentioned previously, our approach improves the
confidence values of regulations by combining the probabilities
evaluated by the BS-LPM inference method with those evaluated
by the hierarchical random graph model. Note that this study
obtains the hierarchical random graph model using the genetic
networks inferred by the BS-LPM inference method. Therefore,
the reasonableness of the extracted hierarchical structure
depends on the accuracy of the inferred genetic networks.
We investigated how the accuracy of the inferred genetic
networks affected the performance of the proposed approach
by performing experimental runs with variable amounts of
time-series data applied to the problems of Yeast1. Figure 6 plots

the averaged AURPC against the amount of time-series data.
The plot shows that the use of the hierarchical structure has no
negative effect on the inference ability, on average, even when the
inferred networks are inaccurate.

4.2. Analysis of an Actual Network
We next applied the proposed approach to an experiment using
actual data.

4.2.1. Experimental Setup

This experiment analyzed an ErbB-receptor-mediated regulatory
network of transcription factors in normal human epidermal
keratinocytes. The network consisted of 29 components, i.e.,
three receptors (EGFR, ErbB2, and ErbB3), seven signal
transducer proteins (ERK, PI3K, AKT, STAT3, PLCg, PKCd, and
c-SRC), the phosphorylated forms of the three receptors and the
seven signal transducer proteins, and seven transcription factors
(c-FOS, FRA1, FRA2, JUNB, c-JUN, JUND, and c-MYC). Time-
series data consisting of 14 measurements of the 29 components
were measured by Saeki et al. (2012). Lacking sufficient data,
we inferred the target network using the following a priori
knowledge: (i) none of the receptors or signaling proteins are
affected by other receptors or signaling proteins; (ii) none of
the transcription factors are affected by receptors, signaling
proteins, or phosphorylated forms of receptors; (iii) none
of the phosphorylated receptors or phosphorylated signaling
proteins are affected by other receptors, signaling proteins,
or transcription factors; (iv) every component of this system
regulates itself; (v) every protein regulates its own phosphorylated
form. We employed this knowledge according to the biological
knowledge that phosphorylated forms of signaling proteins
and receptors can form cascades to transduce extracellular
signals to transcription factors (Alberts et al., 2008). Based
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FIGURE 5 | The averaged AURPCs of the proposed approach (solid line) and the BS-LPM inference method (dotted line) plotted against the number of

the inferred networks, Ng.

FIGURE 6 | The averaged AURPCs of the proposed approach (solid line) and the BS-LPM inference method (dotted line) in the experiments where

different numbers of time-series sets were given.

on the knowledge (i), for example, we prohibited inferring
the regulation of EGFR from ErbB2. We used the technique
proposed by Kimura et al. (2009b) in order to introduce
the knowledge described above into the inference method. By

introducing this a priori knowledge, we reduced the degree-
of-freedom of the network model. The other experimental
conditions were the same as those in the section Analysis of
Dream3 Networks.
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4.2.2. Results

The network of the regulations with confidence values exceeding
0.25 is shown in Figure 8A. The network obtained contained 135
regulations, but 17 were regulations of the proteins from their
phosphorylated forms or vice versa, which probably made them
trivial. We still lack a detailed understanding of the regulatory
network used for this study, which consisted of proteins and
their phosphorylated forms. We therefore compared the inferred
network with a protein network consisting of the proteins
alone (Figure 7). We obtained this protein network from the
STRING database (http://string-db.org/) (Szklarczyk et al., 2015).
The comparison results indicate that 77 of the 135 inferred
regulations were reasonable, since the interactions between the
corresponding proteins have been reportedly confirmed.

The proposed approach extracted a hierarchical structure of
the target network from the networks inferred by the BS-LPM
inference method. The extracted hierarchical structure is shown
in Figure 8B. As the figure indicates, the network contained three
clusters, i.e., clusters 1, 2, and 3. Clusters 1 and 2 contained the
transcription factors, the downstream components of the target
pathway. Cluster 3 mainly contained the upstream components.
The phosphorylated ERK and the phosphorylated STAT3’s,
none of which belonged to any cluster, were intermediate
components thought to regulate the transcription factors (Saeki
et al., 2012). Although imperfect, the hierarchical structure

obtained seemed to reflect the actual structure of the target
pathway. We thus think that the hierarchical random graph
model obtained can be used to assess the reliability of the
inferred network and/or to understand the structure of the target
network.

As mentioned before, our approach is highly dependent
on the BS-LPM inference method. The inferred network
was therefore almost the same as that obtained only from
the BS-LPM inference method. Our approach improves the
confidence values of the regulations using the hierarchical
random graph model obtained. We know, for example, that
the phosphorylated ERK and phosphorylated STAT3 regulate
each other (Gao and Horvath, 2008). In this experiment,
these regulations were inferred by both the proposed approach
and the BS-LPM inference method. The BS-LPM inference
method assigned a confidence value of 0.29 to the regulation
of the phosphorylated STAT3 by the phosphorylated ERK,
and assigned the same value to four other regulations.
Our approach, on the other hand, assigned a confidence
value of 0.2922 to the regulation of the phosphorylated
STAT3 by the phosphorylated ERK, a value superior the
confidence values assigned to the same four other regulations.
This feature of our approach could be useful for reducing
the efforts of biologists to experimentally validate inferred
regulations.

FIGURE 7 | The protein network obtained from the STRING database. Edges represent protein-protein interactions that have been reportedly confirmed by

biochemical experiments.
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FIGURE 8 | (A) The network of regulations with confidence values exceeding 0.25. Bold, solid, and dotted lines represent regulations with confidence values

exceeding 0.75, 0.5, and 0.25, respectively. (B) The hierarchical structure extracted from the inferred networks.

5. CONCLUSION

In this paper, we have proposed an approach for inferring a
more reasonable genetic network by utilizing the hierarchical
structures in genetic networks. The first step of this new approach
is to infer multiple genetic networks from the given gene
expression data. In this study, we took this step using the BS-LPM

inference method (Kimura et al., 2010). The next steps in our
approach are to extract the hierarchical structure in the target
network from the genetic networks generated in the first step,
and then to use the extracted hierarchical structure to compute
the confidence values of the regulations. Our experimental results
showed that the use of the hierarchical structure improves the
confidence values of the regulations. As mentioned in the section
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Assignment of Confidence Values to Regulations, however, this
study used the obtained hierarchical structure to rank the
regulations that are assigned the same probability by the BS-LPM
inference method. When there are no regulations that have the
same bootstrap probability, therefore, the use of the hierarchical
structure does not work. In our future work, thus, we must
improve this drawback.

The approach proposed in this study consists of a BS-
LPM inference method and a method for detecting hierarchical
structures. The BS-LPM inference method is a combination of
the LPM-based inference method (Kimura et al., 2009a) and
the bootstrap method. We have the freedom, however, to use
any inference method in place of the LPM-based inference
method. Meanwhile, several investigators have proposed other
inferencemethods that are capable of assigning confidence values
to regulations without the use of the bootstrap method (see e.g.,
Huynh-Thu et al., 2010). The use of the hierarchical structure
may also be effective in improving the performance of these
methods.

Several inference methods that utilize a priori knowledge
about the properties of genetic networks have been already
proposed (see e.g., Kikuchi et al., 2003; Daisuke and Horton,

2006). These methods use the a priori knowledge during the
genetic network inference. We could say, on the other hand,
that the proposed approach uses the a priori knowledge after
inferring genetic networks. Our experimental results proved
that, even after the genetic network inference, the use of the a
priori knowledge has an ability to improve the confidence values
of regulations. Thus, although the improvement done by the
proposed approach was very small, our framework might enable
us to use other types of a priori knowledge that are currently
difficult to utilize.
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