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The determination of expression quantitative trait loci (eQTL) epistasis – a form of functional
interaction between genetic loci that affect gene expression – is an important step toward
the thorough understanding of gene regulation. Since gene expression has emerged as
an “intermediate” molecular phenotype eQTL epistasis might help to explain the rela-
tionship between genotype and higher level organismal phenotypes such as diseases. A
characteristic feature of eQTL analysis is the big number of tests required to identify asso-
ciations between gene expression and genetic loci variability. This problem is aggravated,
when epistatic effects between eQTLs are analyzed. In this review, we discuss recent
algorithmic approaches for the detection of eQTL epistasis and highlight lessons that can
be learned from current methods.
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INTRODUCTION
Epistasis – a form of functional interaction between genes or
genetic loci – has emerged as an important factor for the under-
standing of genotype-phenotype relationships. However, the def-
inition of epistasis varies (Cordell, 2002). Following the work
of Bateson (1909), epistasis is often defined as the phenomenon
where the effect of a gene on a phenotype is modified by one or
several other genes. Currently, epistasis is mostly defined as a non-
independent effect of two or more loci on a trait. In the context of
quantitative phenotypes, the most commonly assumed model is
based on the work of Fisher (1918). Specifically, epistasis is defined
as a synergistic effect of alleles of two or more loci when con-
sidering their contribution to a quantitative phenotype. Usually
the independent effects are assumed to be additive however other
models are also used and are not always equivalent (Mani et al.,
2008). Alternatives to the Fisher model include non-parametric
model-free approaches such as Multifactor Dimensionality Reduc-
tion (MDR) or decision tree-based approaches which we briefly
describe below. Despite the common assumption that a pheno-
type is controlled by more than one locus where the effect of loci
on the phenotype is non-independent, both definitions are clearly
non-equivalent. In particular, Bateson’s definition is based on the
requirement that one gene is “acting” while the other gene “mod-
ifies,” implying asymmetric roles of two interacting loci. In turn,
such asymmetry between genes/loci is absent in Fisher’s definition.

Most phenotypes such as diseases are complex and controlled
by multiple loci. Therefore, epistasis needs to be accounted for in
genotype-phenotype association studies, potentially allowing an
explanation of phenotype variation that single loci associations
cannot capture (Zuk et al., 2012). For example, the dependence
of the effect of a mutation on the genetic background of an indi-
vidual is considered a form of epitasis (Lehner, 2011). In addition,
epistasis plays a prominent role in many evolutionary processes (de

Visser et al., 2011; Lehner, 2011). Furthermore, analysis of epista-
tic effects might provide functional information about individual
genes, uncover functional modules and their mutual interactions
(Kelley and Ideker, 2005; Boone et al., 2007; Hannum et al., 2009).

Epistasis might be a consequence of diverse molecular mecha-
nisms including a physical interaction between two genes/proteins
where a mutation in one interaction partner may be offset by the
other interaction partner. For example, two physically interacting
proteins encoded by sex-determining genes fem-3 and tra-2 in C.
elegans species only interact with the partners of the same species
due to rapid evolutionary compensation of underlying mutations
(Haag et al., 2002). However, such an interaction does not need
to be direct. A recent study by Heck et al. (2006) identified such
an indirect interaction between two DNA repair genes, MLH1 and
PMS1, from a genetic cross of two yeast strains. The resulting
progeny that inherited MLH1 and PMS1 from different parents
displayed a severe DNA repair defect that was absent in either
parent. On a protein complex level, a molecular contact between
mutated mitochondrial CYB and nuclear CYTI encoding compo-
nents of the human cytochrome bcl complex was found to likely
restore protein binding (Azevedo et al., 2009). Similarly, functional
redundancies may be the cause for epistasis. Gene duplications are
considered to be the driving force for such epistatic effects, where
intact duplicates participate in back-up circuits. In S. cerevisiae,
paralogs rescue the organism when their counterparts are mutated.
Such functional compensation is achieved through a transcrip-
tional reprograming mechanism where regulatory motifs of dupli-
cates overlap partially with their original counterparts (Kafri et al.,
2005; van Wageningen et al., 2010). Furthermore, epistatic effects
may represent dynamics of regulatory networks where cooperative
interactions and feedback loops contribute to non-linear cellular
responses (Lehner, 2011). Although many potential explanations
for the emergence of an epistatic effect may exist, the observation
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of an epistatic effect alone, however, does not suffice to identify a
specific underlying molecular mechanism.

Recently gene expression has emerged as a bridge for explaining
the relation between genotype and higher level phenotypes such
as diseases (Cookson et al., 2009; Schadt, 2009; Kang et al., 2012).
Sharing many computational and statistical challenges with GWAS
studies, genome-wide expression quantitative trait loci analysis
(eQTL) can be empowered by additional genome-wide datasets
such as interaction networks (Suthram et al., 2008; Schadt, 2009;
Kim et al., 2011). In addition, epistatic eQTL relations might help
to pinpoint complex regulatory relationships (Brem et al., 2005;
Becker et al., 2012) given that gene expression is often utilized to
understand regulatory networks.

Interactions underlying a gene expression phenotype are natu-
rally described by Fisher’s epistasis model (Figure 1). Specifically,
two loci l ′ and l ′′ in a haploid organism have an epistatic effect on
gene g, if the expression y of a gene is significantly better explained
by a widely used synergistic interaction model (Wade et al., 2001;
Cordell, 2002).

y = b0 + b1x ′ + b2x ′′ + ix ′x ′′ + ε

than the additive model

y = b0 + b1x ′ + b2x ′′ + ε.

where x ′ and x ′′ are the genotypes of loci l ′ and l ′′, ε is a noise
term and i is the interaction term that takes a positive value in the
presence of synergistic (or positive) interactions and a negative
value in case of antagonistic (negative) interactions.

In a diploid organism the model becomes more complicated
by accounting for homo- and heterozygosity and corresponding
dominance effects (Cordell, 2002). Consequently in this con-
text, epistasis can be further classified into subtypes such as
complementary, dominant, or recessive (Jana, 1971).

The development of methods for uncovering eQTL epistasis
has progressed and is accompanied by methods to uncover epis-
tasis in other settings such as case-control studies or organismal
level QTL analysis. In particular, Fisher’s model can be adapted to

FIGURE 1 | Schematic illustration of the one-locus, additive and
epistatic effects models in haploid organisms. Specifically, we represent
the combined genotype of the pair of loci on the x -axis, while the
expression level of the underlying gene is shown on the y -axis. (A) In the
one-locus model the genotype of one locus (here the first in the pair) drives
the given phenotype. (B) In the additive model both loci contribute to the
phenotype in an additive way. (C) When an epistatic interaction occurs, the
effect of the two loci on the trait is non-additive.

case-control studies by using log odd ratios instead of quantitative
traits. In general epistasis detection approaches can be catego-
rized as exhaustive, stochastic, and heuristic (Shang et al., 2011;
Van Steen, 2012) (Table 1). As for exhaustive strategies, TEAM
computes all two-locus interactions using contingency tables and
permutation tests (Zhang et al., 2010b). If two SNPs have the
same genotype values for many individuals, computational cost is
defrayed by sharing contingency tables. To maximize the sharing
of contingency tables TEAM utilizes a minimum spanning tree,
where a node is defined as a SNP, and an edge weight denotes
the number of samples with different genotypes between differ-
ent SNPs. To reduce the computational burden, some exhaustive
approaches rely on a two-step procedure of screening and testing.
For example, BOOST (Wan et al., 2010a) first examines all two-
locus interactions in a preliminary screening step where promising
SNP pairs are determined through a Kulback–Leibler divergence
screen. In a testing stage, likelihood ratio and χ2 tests are per-
formed to check if an interactive effect is significant. MDR aims to
reduce multi-locus information in a non-parametric and non-
model way (Ritchie et al., 2001). In a multistep process, a set
of genetic factors is first selected from all pools. Subsequently,
the ratio of the number of cases to the number of controls is
estimated in each multifactor, two-locus class. In a subsequent

Table 1 | Collection of exhaustive, stochastic and heuristic methods

for the detection of epistatic interactions in case/control studies or

organismal QTL level analysis.

EXHAUSTIVE STRATEGIES

TEAM Zhang et al. (2010b)

BOOST Wan et al. (2010a)

MDR Ritchie et al. (2001)

FastChi Zhang et al. (2009)

FastANOVA Zhang et al. (2008)

COE Zhang et al. (2010c)

Maximum entropy Hu et al. (2011), Miller et al. (2009)

Evaporative cooling McKinney et al. (2009), McKinney et al.

(2007)

STOCHASTIC STRATEGIES

BEAM Zhang and Liu (2007)

epiMODE Tang et al. (2009)

CART methods Breiman (2001), Chen et al. (2007), Jiang

et al. (2009), Wan et al. (2009), Yoshida and

Koike (2011)

SNPInterForest Yoshida and Koike (2011)

epiForest Jiang et al. (2009)

MegaSNPHunter Wan et al. (2009)

SNPHarvester Yang et al. (2009)

HEURISTIC STRATEGIES

SNPRuler Wan et al. (2010b)

AntEpiSeeker Wang et al. (2010)

InterSNP Herold et al. (2009)

GMM Isobe et al. (2007)

Adaptive Lasso Yang et al. (2010)

bNEAT Han and Chen (2011)

Model based clustering Wang et al. (2011a)
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step, each multifactor cell is labeled high/low risk if the ratio
exceeds/does not exceed a certain threshold. Pooling all high and
low risk cells transforms the previous multi-dimensional into a
one-dimensional model whose predictive power is finally tested
by cross-validation. FastChi (Zhang et al., 2009), Fast ANOVA
(Zhang et al., 2008), and COE (Zhang et al., 2010c) use upper
bounds to efficiently calculate corresponding test statistics, dras-
tically limiting the search space. Other models include methods
that are based on information theoretical considerations (Miller
et al., 2009; Hu et al., 2011) and statistical mechanics (McKinney
et al., 2007, 2009).

In a different group of approaches candidates for interactions
are determined through stochastic methods. For example, BEAM
uses a Bayesian framework to map epistatic effects (Zhang and
Liu, 2007), an approach that was generalized to epistatic mod-
ules in epiMODE (Tang et al., 2009). In contrast, approaches
that are based on classification and regression tree-based meth-
ods (CART) (Chen et al., 2007; Jiang et al., 2009; Wan et al.,
2009; Yoshida and Koike, 2011) stochastically sample the search
space and were used to select pairs of loci for a given trait. In
a case-control setting such approaches strive to classify the sam-
ples based on genotypic variations. For example, Random Forests
(Breiman, 2001) is an ensemble learning method where classi-
fication trees are constructed using different bootstrap samples.
Specifically, classification trees are constructed by splitting each
node, using the best among a subset of randomly chosen SNPs.
A classifier is built by aggregating the predictions of all trees
where non-sampled data are used for cross-validation sets. Chen
et al. (2007) used Random Forests to identify genes that were
significant for age-related macular degeneration. In such deci-
sion tree forests, SNPs that frequently co-occur in the same tree
branch have a propensity for epistasis. This observation was uti-
lized in SNP InterForest, a method applied to the rheumatoid
arthritis data from the Wellcome Trust Case Control Consor-
tium (WTCCC) to predict novel interactions (Yoshida and Koike,
2011). Another variant of this approach, epiForest added a slid-
ing window to select a small set of candidate SNPs that were
statistically tested for up to three-way interactions (Jiang et al.,
2009). In contrast, Mega SNP Hunter uses a tree-based method
to divide the whole genome into short subgenomes. While a tree
boosting classifier is built on each subgenome, the final classifier
consists of a collection of regression trees, where each node rep-
resents a SNP, and each path in the trees indicates possible SNP
interactions. Ranking all SNPs according to their importance for
a disease-control classification process, MegaSNPHunter deter-
mines significant interactions along paths in the corresponding
trees that involved such high ranked SNPs using H -statistics (Wan
et al., 2009).

A final group of methods uses heuristics to mitigate the bur-
den of computational cost. For example, SNP Ruler is based on
a predictive, non-model-fitting rule inference algorithm to find
disease-associated epistatic effects (Wan et al., 2010b). Specifi-
cally, a χ2 test is used to assess the quality of a rule. To find
epistatic interactions, SNP Ruler traverses a set of enumeration
tree sets where the nodes of a tree are the genotypes of SNPs,
and the path from root to leaf represents allele-specific epistatic
effects. To curb the massive burden of traversing a whole tree,

SNP Ruler proposes an upper bound of the χ2 test to prune the
search space. An tEpi Seeker models the search for epistatic interac-
tions as an ant colony optimization procedure (Wang et al., 2010)
where each locus is represented by a certain level of pheromones.
Assuming that ants communicate through a probability density
function of pheromone levels they leave a trace while bouncing
from loci, allowing the identification of candidate interactions.
Such pairs are tested for the presence of an interaction with a χ2

test. InterSNP implements a logistic regression framework as well
as log-linear models to allow joint analysis of SNP interactions
(Herold et al., 2009). Furthermore, other methods that use heuris-
tics include genotype matrix mapping (GMM) (Isobe et al., 2007)
as well as adaptive Lasso (Yang et al., 2010), Bayesian networks
(Jiang et al., 2010; Han and Chen, 2011), and model based cluster-
ing (Wang et al., 2011a) to select pairs of loci for each expression
trait.

Relative to the paucity of methods for the detection of epis-
tasis in case-control studies, genome-wide approaches that have
been applied to detect eQTL epistasis are less abundant. Inde-
pendently of the utilized mathematical or statistical models, a
characteristic feature of eQTL analysis is a massive multiple testing
problem that emerges from the large number of tests to identify
associations between gene expression and genetic loci variabil-
ity. Furthermore, a large number of eQTLs is often accompanied
by weak signals, significantly contributing to both statistical and
computational challenges for the detection of epistatic effects.
Building in part on the previously discussed methods, two major
strategies have emerged. Since testing all possible combinations is
statistically and computationally unrealistic, one strategy aims to
limit the search space by various filtering strategies. The second
group of approaches is specific for eQTL epistasis and leverages
modularity of molecular systems. Specifically, statistical power is
gained by aiming to identify loci that affect expression of gene
groups.

SELECTION BASED METHODS FOR DETECTING eQTL
EPISTASIS
As mentioned above, one of the main obstacles thwarting the effort
to detect epistatic effects between QTLs is the large number of loci,
which poses both statistical and computational constraints. Specif-
ically, if g is the number of genes and l is the number of genotyped
loci, then the number of possible tests is g × l2 [∼1015 for 500 K
human SNP array,∼1019using dbSNP (built 137), and ∼1010 for
yeast crosses; Brem et al., 2005]. Such enormous numbers can be
reduced by considering genes with expression variability above
some user defined threshold, using tag loci to represent a set
of markers that are in linkage disequilibrium or markers with a
minimum minor allele frequency. In yeast crosses such reduction
strategies resulted in ∼1,800 genes and ∼600 loci. Although com-
putationally enumerable, the number of resulting tests (∼108)
remains challenging from the perspective of multiple testing.
Therefore, exhaustive search by including all possible locus pairs is
only feasible in a small number of circumstances (Liu et al., 2011).
Therefore, many approaches work with a selected subset of loci
instead of testing all possible locus pairs. Boosting both computa-
tional efficiency and statistical power we refer to such approaches
as selection based methods.
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BIOLOGICAL RELEVANCE FILTERING
One way to reduce the number of tests in eQTL studies is filter-
ing loci based on prior knowledge. Rather than testing all possible
pairs (or larger groups) of loci for interactions, only loci that are
predetermined to be most relevant/promising based on biologi-
cal knowledge are selected. For example, Lappalainen et al. (2011)
focused on detecting epistasis between variants in coding region
and those in cis-regulatory regions to study effects of cis-regulatory
genetic variants on gene expression. Such a local strategy reduces
the number of tests dramatically, given that one locus has to be
placed in a given gene, while the other locus is located within
1 Mb vicinity. Simply assuming that each dbSNP is assigned to
exactly one such neighborhood, such a strategy reduces the num-
ber of tests by a factor of ∼108. The significant reduction of the
number of tested locus pairs, compared to a brute-force search,
allowed them to identify several hundred interactions between
cis-regulatory elements and corresponding coding regions using
eQTL data from the 1000 Genome Project. Analyzing the expres-
sion data from transformed lymphoblastoid cell lines of 57 CEU
and 56 YRI individuals and restricting attention to SNPs with
MAF > 5% and known ancestral state, they identified 433 eQTLs
in CEU and 446 in YRI with a false discovery rate (FDR) < 25%.
Their results suggested that regulatory and coding variants often
modify the functional impact of each other. In addition, eQTLs
explaining common disease GWAS signals showed an enrichment
of putative epistatic effects, suggesting that some disease associa-
tions might arise from interactions, increasing the penetrance of
rare coding variants.

In contrast, Becker et al. considered a human cis-trans epista-
tic map. For each transcript the authors considered related cis
loci and tested them for epistasis with all trans loci (Becker et al.,
2012). Using the same simplifying assumption as indicated above
the reduction factor of the number of tests is estimated to be
at least 104. They found that 15% of all transcripts are con-
trolled by significant cis-trans locus interactions. Interestingly, no
enrichment of genes has been found in close vicinity of trans-
SNPs, implying that gene-mediated trans-effects are not a major
source of epistasis. Furthermore, some of the genes putatively reg-
ulated by cis-trans interactions have been previously identified in
genome-wide association studies.

Given that one of the simplest explanation of epistasis is a phys-
ical or a functional interaction, genes that are known to interact
may be more likely to be involved in epistatic effects. Such an
assumption suggests a filtering method which focuses on pairs
of loci that correspond to interacting gene products (Pattin and
Moore, 2008). In case-control studies, Emily et al. (2009) used
the experimental knowledge on biological networks to narrow
the search for two-locus epistasis. Using such a network based
search strategy, four significant cases of epistasis between unlinked
loci were identified, that support susceptibility to Crohn’s disease,
bipolar disorder, hypertension, and rheumatoid arthritis.

In the context of eQTL epistasis, interaction based filtering
methods have been considered by Kapur et al. (2011) who com-
pared their power to the“Both Significant”and“Either Significant”
strategies (see below) in yeast and human. In case of interaction
based filtering, the authors selected pairs of loci that were close to a
pair of genes that encoded two interacting proteins in the STRING

database (Szklarczyk et al., 2011). Using the yeast (Brem et al.,
2005) and the human dataset (Stranger et al., 2007), they found
that the “Both Significant” strategy had the lowest FDR in the yeast
data set while the STRING strategy had the worst performance
given a predefined p-value cut-off. No significant performance
difference among the three strategies was found using the human
dataset, suggesting that the performance of a method indeed can
depend on the data set as suggested by the simulation study of
Evans et al. (2006).

Assuming that interacting proteins are a gateway to find epista-
tic interactions, we estimate that the number of tests are roughly
∼kg2 where k is the number of markers per gene. In yeast at most
one marker per gene exists after accounting for linkage disequi-
librium. Most human genes (∼77% or 13,083 genes) have fewer
than 10 SNPs (Lehne et al., 2011), suggesting a major numerical
advantage by reducing the number of tests by several orders of
magnitude in human.

DATA DRIVEN FILTERING
The second way of reducing the number of tests is by algorithmic
selection strategies. One strategy is to rely on loci with significant
marginal effects. The two most popular strategies are the“Both Sig-
nificant”and“Either Significant”strategy (Evans et al., 2006). Both
strategies start by applying one-locus scans to select a relatively
small set of loci that are significantly associated with a trait. After
selecting a subset of loci that meet a certain significance threshold,
the “Both Significant” strategy tests for interactions between all
possible pairs of loci in the selected subset. In turn, the “Either
Significant” strategy performs another one-locus genome scan
conditional on the initially found loci (Figure 2). In other words,
this strategy considers possible interactions between a locus in the
subset and all other, providing at least one locus with a marginal
effect. Similar to this two-step procedure that allows the identifica-
tion of epistatic interaction between a locus pair (one locus in one
step), higher-order interaction can be detected with three-step or
four-step genome scans (Stich et al., 2007; Pettersson et al., 2011).

As for examples, Marchini’s et al. (2005) work employed the
“Both Significant” strategy while Yang’s et al. (2007) approach
used the “Either Significant” strategy with different variations. In
the first step, a technique called marker pair selection was used
(Piepho and Gauch, 2001) to select a set of genomic intervals that
were each labeled by a pair of markers. Such intervals that were
defined by a subset of markers narrow the search space for QTL
detection. In the next step, the presence of an interaction effect
between two intervals was tested, and two interacting intervals
were added to a candidate interval set. Finally, a search for epis-
tasis between two loci located on intervals in the candidate set
was performed using regression models where all intervals in the
candidate set were used to model QTL effects outside the two loci
being tested.

However, the question remained which strategy works better
for a given scenario. Evans et al. (2006) approached the problem
by applying both strategies to detect epistasis on simulated data.
As expected, the ability to detect interactions by the “Both Sig-
nificant” strategy tends to decrease as the threshold for selecting
the first locus becomes more stringent. In contrast, the perfor-
mance of the “Either Significant” strategy was more dependent on
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FIGURE 2 | “Both significant” and “Either significant” strategies to
detect epistatic effects. First, loci with p-values that exceed a significance
threshold (dotted line) are selected. In the “Both Significant” strategy (left)
all pairs of significant eQTLs are tested for the presence of an epistatic
interaction in a second step. In turn, loci uncovered in the first step are
tested for epistasis with all other loci in the “Either Significant” strategy
(right).

the data simulation model, suggesting that its power might also
depend on the underlying real data. Similarly, Wei et al. used sim-
ulated (diploid) data to compare a 1D scan – a variant of “Either
Significant” strategy – and the full 2D scan. Evaluating their sim-
ulation results they found that the relative power of each method
depended on the type of epistasis (Wei et al., 2010).

As mentioned above, both strategies can be readily applied to
eQTL-based epistasis. However, the number of gene expression
traits in eQTL studies is significantly higher relative to the number
of phenotypes in classical QTL studies. Such numbers contribute
to a more severe multiple testing issue and prompt specialized
approaches targeting eQTL data. Although new approaches use
the“Both Significant”or“Either Significant”strategy, various tech-
niques are utilized to estimate FDR more accurately. Storey et
al. applied a variant of the “Either Significant” strategy to detect
epistasis in yeast eQTL data for 112 yeast F1 segregants (Brem
et al., 2005). Instead of selecting a set of loci for an expression
trait first, only the most significant locus for the trait was consid-
ered. Subsequently, a secondary locus was selected that provided
the largest improvement in statistical power, comparing a two-
locus interaction model to a one-locus model given the primary
locus. Considering 613 equally spaced loci and focusing on parts
of loci from different chromosomes they found that there were
3,540 traits significantly linked to a locus pair at a 5% FDR thresh-
old. Furthermore, they were able to show that epistatic effects
contributed to gene expression variation in at least 14% of all
expression traits (Storey et al., 2005).

The reduction in the number of considered loci-gene triplets
strongly depends on the significance cut-off used for the marginal
effect. Assuming that on average one association is selected per
gene in the first step, the Either Significant strategy would reduce
the number of considered triplets from g × l2 to g × l.

A variant of such a two-step approach was generalized to
more than two loci and applied to eQTL data by Zou and
Zeng (2009). Specifically, they applied sequential genome scans to
detect a set of loci for each expression trait. Each scan searched
for one locus, which was conditional on loci already identi-
fied in previous scans without considering interactions. Focusing
on a trait, they tested for interaction effects among all identi-
fied loci. Applied to yeast eQTL data (Brem et al., 2005) more
eQTLs were found compared to Storey et al.’s results. How-
ever, fewer interactions were finally detected with a similar FDR
threshold.

“Both Significant” and “Either Significant” strategy facilitate
the detection of interactions with one or both loci that have a
relatively significant marginal effect. To detect interactions where
both loci lack such an effect, a strategy is needed that allows the
simultaneous step-wise selection of two loci. A recently devel-
oped strategy, Symmetric Epistasis Estimation (SEE) is a two-step
method applicable to haploid cases. SEE utilizes general patterns
of expression and genotype that are expected to be enriched
with epistatic effects. Specifically, 16 possible combinations of
the genotypes of a pair of loci and expression state of a gene
after discretizing gene expression data into up and down states
were defined (Figure 3). The method tests if the expression for
locus genotype combination 11 can be inferred from the expres-
sion patterns in locus genotype 00/01/10, using either single locus
or independent effect regression models. In this way, among
these 16 patterns, eight were discarded as consistent with the
expectation. Repeating this argument after switching the roles
of 0/1 allows for additional filtering out of configurations E1
and E8 since expression pattern for 00 could be predicted from
01/10/11 using independent model despite the fact 00/01/10 are
not informative for the prediction of 11. Triplets passing the fil-
tering criterion for large enough set of progenies were determined
using a graph theoretical approach (Huang et al., 2012). Obvi-
ously, passing the filtering criterion does not imply interaction
and therefore selected triplets were further tested for epistasis
using Fisher’s model. Similarly, filtered triplets might contain
false negatives as binarization of gene expression hides more sub-
tle expression patterns. SEE was applied (without the 0/1 swap)
to 34 progeny crosses of P. falciparum (Gonzales et al., 2008),
identifying 3,796 epistatic triples (two loci and expression trait)
with FDR < 0.003. Compared to the “Either Significant” strategy,
this method allowed the detection of more interactions with a
smaller FDR. As expected, the overlap of interacting pairs that
were obtained with both methods was very small. Since the same
Fisher model was applied in each case the observed difference
was mostly a result of the difference in the filtering approach.
Indeed, triplets selected by the SEE approach typically didn’t
have significant marginal effects. Specifically, strong marginal
effect and strong symmetric pattern are hard to detect when
the number of progenies is small. In conclusion, SEE and the
“Either Significant” strategy explore different subspaces of the
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FIGURE 3 | Combinations of binary locus genotypes and binary
expression levels make up 16 different configurations. Binary numbers
on the left refer to the locus genotype while the colors of the squares
indicate gene expression levels (low/high). The method uses expression
pattern for loci 00/01/10 to predict expected expression level for pair 11
under single locus or non-interaction model. For example, configurations E4
and E5 correspond to “XOR” function where the expression patterns
depend on whether both loci are inherited from the same or from two
different parents.

epistasis landscape, indicating the importance to consider both
approaches.

GENE MODULE BASED METHODS
Molecular systems are increasingly recognized as being modu-
lar (Eisen et al., 1998; Stuart et al., 2003; Barabasi and Oltvai,
2004; Wagner et al., 2007). Such patterns imply that a locus or
a pair of interacting loci is likely to impose effects on a group
of genes than just a gene alone. Such a perspective is consis-
tent with the existence of eQTL “hot spots,” defined as loci that
affect a larger group of expression traits (Breitling et al., 2008).
Therefore, several methods focused on the epistatic effect on
a group of genes that respond in a consistent way to a geno-
typic variation rather than identifying epistatic effect of a pair
of loci on a gene’s expression. Such a module based approach
increases statistical power but requires a definition of a mod-
ule as well as its phenotype. In a naïve approach, genes with
similar expression profiles may be clustered where aggregated
expression profile of genes in such clusters may represent the
underlying phenotype. However, such an approach does not pro-
vide other obvious advantages than reducing the number of tests
for epistasis.

As an alternative, two recent methods focused on the simul-
taneous identification of interacting loci and regulated mod-
ules. The GenOmic Linkage to PHenotype (GOLPH), method
proposed by Litvin et al. (2009), can be considered a clever

“modularization” technique that combines a two-step approach
as described in the previous section with a decision tree strat-
egy (Figure 4A). In the first step, GOLPH identifies hotspots
i.e., loci that are associated with a group of genes. The hotspot
locus is considered to be the primary locus and subdivides the
population of genes into two allele-specific groups. For each of
these groups GOLPH tests the existence of a second regulatory
locus. Finally, the resulting decision tree is used to expand the
initial “hotspot” module to include other genes whose expres-
sion is consistent with the current module specific genes. A
pair of loci identified as regulators of a module can then be
tested for epistatic effects. While the method pinpointed some
epistatic modules, the majority of modules notably showed allele-
specific interactions where the secondary locus was modify-
ing the effect of the primary locus only for one of the two
alleles.

Complementing the primary-secondary locus approach,
Bayesian models were introduced for the detection of epistatic
modules (Zhang and Liu, 2007; Tang et al., 2009; Zhang et al.,
2010a). Specifically, Zhang et al. (2010a) proposed a Bayesian par-
tition method where a module and its regulating loci are identified
simultaneously without requiring the identification of a primary
locus (Figure 4B). In this method a component of a partition is
defined as a set of genes. Associated loci and components were
then identified using an MCMC approach. Finally, they used the
first principle component of gene expression traits of the mod-
ule as dependent variable to test for epistasis between loci for
each identified component with more than one locus. Interest-
ingly, the authors found that three out of nine modules with two
loci actually had an epistatic effect on the genes in the mod-
ule. In comparison, we found, similarly to the reduction based
methods, that none of the above three modules overlapped with
18 modules with epistatic effects that were identified by Litvin
et al. (2009). However, one of the three modules had a signifi-
cant overlap with an interaction hotspot discovered by Brem et al.
(2005).

OUTLOOK AND CONCLUSION
In recent years, several strategies have been developed to detect
pairs of loci that have epistatic effects on gene expression traits.
Overcoming loss of statistical power and computational cost of
exhaustive testing, these methods leverage data characteristics and
algorithmic strategies to identify interacting pairs with confidence.
However, each of these different strategies appear to bias the
results toward the detection of certain classes of interactions at
the expense of other classes. Therefore, delineating a comprehen-
sive landscape of epistasis will require the combination of several
prediction strategies.

The paucity of uncovered epistasis depends not only on
the method and the definition of epistasis, but also on the
dataset. For example, in our study (Huang et al., 2012) we
found that the same method, allowing us to identify abundant
presence of epistatic interactions in the population of proge-
nies in plasmodium reported much smaller number of interac-
tions in yeast. Such a difference might relate to the fact that the
parental strains of P. falciparum are under strong evolutionary
pressure to adapt independently to the host environment. Indeed,
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FIGURE 4 | Identification of co-expressed modules jointly regulated
by two or more loci. (A) The GOLPH algorithm starts with building a
decision tree to classify genes associated with a primary locus (orange
square) according to their expression. The primary focus is placed in the
root of this tree while branches correspond to the alleles. Other decision
nodes are selected from the remaining set of loci. Subsequently,

additional genes consistent with the decision tree model are included.
(B) Bayesian partition method simultaneously identifies co-expressed
modules and their regulating loci using a MCMC approach. Genes in
each module are represented by circles colored according to their gene
expression and loci are represented by squares where different colors
represent different loci.

the most frequent epistatic effects we identified were consis-
tent with configurations E4 and E5 in Figure 3. Note, that
in these configurations gene expression is similar if the two
loci are inherited from the same parent but changes when loci
were inherited from both parents. Such an inheritance pat-
tern can disrupt the interaction properties that evolved inde-
pendently in each parent. In contrast the standard laboratory
strain and a wild isolate from a California vineyard that were
used for obtaining progenies in yeast crosses (Brem et al.,
2002) represent progenies of two strains that adapted to some-
what different environmental circumstances, potentially impact-
ing different distribution of interaction types observed in these
crosses.

Finally, we note that the debate about the biological impor-
tance of statistical epistasis has been controversial. Skepticism
is fueled by the difficulty of linking such effects to biological
causes and lack of reproducibility in the context of disease-
control studies. As indicated in the introduction, the pres-
ence of epistasis does not imply a specific underlying molec-
ular mechanism, prompting the question whether it is reason-
able to strive to identify one. In the context of epidemiological
studies of disease risk it has been argued that making infer-
ences about biologic interactions from statistical interactions
is not straightforward and even sometimes inappropriate (e.g.,
Thompson, 1991; Greenland, 2009). In addition, Wang et al.
(2011b) questioned the importance of the interaction term and
argued that statistically modeled interaction and main effect
terms should not be separately interpreted to discover biological
interactions.

Do those concerns diminish in the context of eQTLs when
the trait in question is gene expression? While, admittedly, these

concerns in eQTL analysis remain open, new avenues of investi-
gation hopefully lead to a better understanding of related issues.
The fact that eQTL analysis involves simultaneous examination
of thousands of traits is not only a statistical obstacle but also
provides important benefits. First, it allows for meta-analysis,
uncovering properties of the previously mentioned cis-gene and
cis-trans pairs (Lappalainen et al., 2011; Becker et al., 2012). Since
gene expression is a molecular trait, eQTLs can further be nat-
urally combined with other molecular data such as physical or
functional interactions. Such auxiliary data supports increased
interpretability of the results, therefore providing a platform for
the generation of testable hypotheses. Finally, modularity of bio-
logical systems can be leveraged to reduce false positives and to
increase interpretability of the gene expression data by leverag-
ing functional associations of genes in a module. While these
considerations do not resolve the initial concerns, new high-
throughput functional measurements and the emergence of sys-
tems approaches open unique opportunities to gain a better
understanding of these issues (Phillips, 2008). Given the limita-
tions of individual methods, the delineation of a comprehensive
landscape of putative interactions will require a set of complemen-
tary methods. We believe that further development of biologically
motivated approaches to identify eQTL epistasis, such as meth-
ods that leverage modularity of biological systems and connect
eQTL analysis to particular organismal phenotype, will continue
to provide insights into the regulation on single gene and gene
modules.

ACKNOWLEDGMENTS
This work was supported by the Intramural Research Program of
the NLM/NIH.

www.frontiersin.org May 2013 | Volume 4 | Article 51 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Huang et al. eQTL epistasis

REFERENCES
Azevedo, L., Carneiro, J., van Asch,

B., Moleirinho, A., Pereira, F., and
Amorim, A. (2009). Epistatic inter-
actions modulate the evolution of
mammalian mitochondrial respira-
tory complex components. BMC
Genomics 10:266. doi:10.1186/1471-
2164-10-266

Barabasi, A. L., and Oltvai, Z. N. (2004).
Network biology: understanding the
cell’s functional organization. Nat.
Rev. Genet. 5, 101–113.

Bateson, W. (1909). Mendel’s Principles
of Heredity. Cambridge: Cambridge
University Press.

Becker, J., Wendland, J. R., Haenisch,
B., Nothen, M. M., and Schumacher,
J. (2012). A systematic eQTL study
of cis-trans epistasis in 210 HapMap
individuals. Eur. J. Hum. Genet. 20,
97–101.

Boone, C., Bussey, H., and Andrews, B.
J. (2007). Exploring genetic interac-
tions and networks with yeast. Nat.
Rev. Genet. 8, 437–449.

Breiman, L. (2001). Random forests.
Mach. Learn. 45, 5–32.

Breitling, R., Li, Y., Tesson, B.
M., Fu, J., Wu, C., Wiltshire,
T., et al. (2008). Genetical
genomics: spotlight on QTL
hotspots. PLoS Genet. 4:e1000232.
doi:10.1371/journal.pgen.1000232

Brem, R. B., Storey, J. D., Whittle, J., and
Kruglyak, L. (2005). Genetic interac-
tions between polymorphisms that
affect gene expression in yeast.
Nature 436, 701–703.

Brem, R. B., Yvert, G., Clinton, R., and
Kruglyak, L. (2002). Genetic dissec-
tion of transcriptional regulation in
budding yeast. Science 296, 752–755.

Chen, X., Liu, C. T., Zhang, M., and
Zhang, H. (2007). A forest-based
approach to identifying gene and
gene gene interactions. Proc. Natl.
Acad. Sci. U.S.A. 104, 19199–19203.

Cookson, W., Liang, L., Abecasis, G.,
Moffatt, M., and Lathrop, M. (2009).
Mapping complex disease traits with
global gene expression. Nat. Rev.
Genet. 10, 184–194.

Cordell, H. J. (2002). Epistasis: what
it means, what it doesn’t mean,
and statistical methods to detect it
in humans. Hum. Mol. Genet. 11,
2463–2468.

de Visser, J. A., Cooper, T. F., and Elena,
S. F. (2011). The causes of epistasis.
Proc. Biol. Sci. 278, 3617–3624.

Eisen, M. B., Spellman, P. T., Brown, P.
O., and Botstein, D. (1998). Cluster
analysis and display of genome-wide
expression patterns. Proc. Natl. Acad.
Sci. U.S.A. 95, 14863–14868.

Emily, M., Mailund, T., Hein, J.,
Schauser, L., and Schierup, M. H.

(2009). Using biological networks
to search for interacting loci in
genome-wide association studies.
Eur. J. Hum. Genet. 17, 1231–1240.

Evans, D. M., Marchini, J., Morris, A. P.,
and Cardon, L. R. (2006). Two-stage
two-locus models in genome-wide
association. PLoS Genet. 2:e157.
doi:10.1371/journal.pgen.0020157

Fisher, R. A. (1918). The correlation
between relatives on the supposition
of mendelian inheritance. Trans R
Soc Edinb. 52, 399–433.

Gonzales, J. M., Patel, J. J., Ponmee,
N., Jiang, L., Tan, A., Maher,
S. P., et al. (2008). Regulatory
hotspots in the malaria parasite
genome dictate transcriptional
variation. PLoS Biol. 6:e238.
doi:10.1371/journal.pbio.0060238

Greenland, S. (2009). Interactions in
epidemiology: relevance, identifica-
tion, and estimation. Epidemiology
20, 14–17.

Haag, E. S., Wang, S., and Kim-
ble, J. (2002). Rapid coevolution
of the nematode sex-determining
genes fem-3 and tra-2. Curr. Biol. 12,
2035–2041.

Han, B., and Chen, X. W. (2011).
bNEAT: a Bayesian network method
for detecting epistatic interactions
in genome-wide association stud-
ies. BMC Genomics 12(Suppl. 2):S9.
doi:10.1186/1471-2164-12-S2-S9

Hannum, G., Srivas, R., Guenole, A., van
Attikum, H., Krogan, N. J., Karp, R.
M., et al. (2009). Genome-wide asso-
ciation data reveal a global map of
genetic interactions among protein
complexes. PLoS Genet. 5:e1000782.
doi:10.1371/journal.pgen.1000782

Heck, J. A., Argueso, J. L., Gemici, Z.,
Reeves, R. G., Bernard, A., Aquadro,
C. F., et al. (2006). Negative epista-
sis between natural variants of the
Saccharomyces cerevisiae MLH1 and
PMS1 genes results in a defect in
mismatch repair. Proc. Natl. Acad.
Sci. U.S.A. 103, 3256–3261.

Herold, C., Steffens, M., Brockschmidt,
F. F., Baur, M. P., and Becker, T.
(2009). INTERSNP: genome-wide
interaction analysis guided by a pri-
ori information. Bioinformatics 25,
3275–3281.

Hu, T., Sinnott-Armstrong, N. A.,
Kiralis, J. W., Andrew, A. S., Kara-
gas, M. R., and Moore, J. H. (2011).
Characterizing genetic interactions
in human disease association stud-
ies using statistical epistasis net-
works. BMC Bioinformatics 12:364.
doi:10.1186/1471-2105-12-364

Huang, Y., Siwo, G., Wuchty, S., Fer-
dig, M. T., and Przytycka, T. M.
(2012). Symmetric epistasis estima-
tion (SEE) and its application to

dissecting interaction map of Plas-
modium falciparum. Mol. Biosyst. 8,
1544–1552.

Isobe, S., Nakaya, A., and Tabata,
S. (2007). Genotype matrix map-
ping: searching for quantitative trait
loci interactions in genetic varia-
tion in complex traits. DNA Res. 14,
217–225.

Jana, S. (1971). Simulation of quanti-
tative characters from qualitatively
acting genes. Theor. Appl. Genet. 41,
216–226.

Jiang, R., Tang, W., Wu, X., and
Fu, W. (2009). A random forest
approach to the detection of epista-
tic interactions in case-control stud-
ies. BMC Bioinformatics 10(Suppl.
1):S65. doi:10.1186/1471-2105-10-
S1-S65

Jiang, X., Neapolitan, R. E., Barmada,
M. M., Visweswaran, S., and Cooper,
G. F. (2010). A fast algorithm for
learning epistatic genomic relation-
ships. AMIA Annu. Symp. Proc. 2010,
341–345.

Kafri, R., Bar-Even, A., and Pilpel, Y.
(2005). Transcription control repro-
gramming in genetic backup cir-
cuits. Nat. Genet. 37, 295–299.

Kang, H. P., Yang, X., Chen, R., Zhang,
B., Corona, E., Schadt, E. E., et
al. (2012). Integration of disease-
specific single nucleotide polymor-
phisms, expression quantitative trait
loci and coexpression networks
reveal novel candidate genes for
type 2 diabetes. Diabetologia. 55,
2205–2213.

Kapur, K., Schupbach, T., Xenarios,
I., Kutalik, Z., and Bergmann, S.
(2011). Comparison of strate-
gies to detect epistasis from
eQTL data. PLoS ONE 6:e28415.
doi:10.1371/journal.pone.0028415

Kelley, R., and Ideker, T. (2005). System-
atic interpretation of genetic inter-
actions using protein networks. Nat.
Biotechnol. 23, 561–566.

Kim, Y. A., Wuchty, S., and Przy-
tycka, T. M. (2011). Identify-
ing causal genes and dysregu-
lated pathways in complex diseases.
PLoS Comput. Biol. 7:e1001095.
doi:10.1371/journal.pcbi.1001095

Lappalainen, T., Montgomery, S. B.,
Nica, A. C., and Dermitzakis, E. T.
(2011). Epistatic selection between
coding and regulatory variation in
human evolution and disease. Am. J.
Hum. Genet. 89, 459–463.

Lehne, B., Lewis, C. M., and Schlitt,
T. (2011). From SNPs to genes:
disease association at the gene
level. PLoS ONE 6:e20133.
doi:10.1371/journal.pone.0020133

Lehner, B. (2011). Molecular mech-
anisms of epistasis within and

between genes. Trends Genet. 27,
323–331.

Litvin, O., Causton, H. C., Chen, B.
J., and Pe’er, D. (2009). Modular-
ity and interactions in the genetics
of gene expression. Proc. Natl. Acad.
Sci. U.S.A. 106, 6441–6446.

Liu,Y., Xu, H., Chen, S., Chen, X., Zhang,
Z., Zhu, Z., et al. (2011). Genome-
wide interaction-based association
analysis identified multiple new sus-
ceptibility loci for common dis-
eases. PLoS Genet. 7:e1001338.
doi:10.1371/journal.pgen.1001338

Mani, R., St Onge, R. P., Hartman, J.
L. IV., Giaever, G., and Roth, F. P.
(2008). Defining genetic interaction.
Proc. Natl. Acad. Sci. U.S.A. 105,
3461–3466.

Marchini, J., Donnelly, P., and Car-
don, L. R. (2005). Genome-wide
strategies for detecting multiple loci
that influence complex diseases. Nat.
Genet. 37, 413–417.

McKinney, B. A., Crowe, J. E., Guo, J.,
and Tian, D. (2009). Capturing the
spectrum of interaction effects in
genetic association studies by sim-
ulated evaporative cooling network
analysis. PLoS Genet. 5:e1000432.
doi:10.1371/journal.pgen.1000432

McKinney, B. A., Reif, D. M., White, B.
C., Crowe, J. E. Jr., and Moore, J. H.
(2007). Evaporative cooling feature
selection for genotypic data involv-
ing interactions. Bioinformatics 23,
2113–2120.

Miller, D. J., Zhang, Y., Yu, G., Liu,
Y., Chen, L., Langefeld, C. D., et
al. (2009). An algorithm for learn-
ing maximum entropy probability
models of disease risk that efficiently
searches and sparingly encodes mul-
tilocus genomic interactions. Bioin-
formatics 25, 2478–2485.

Pattin, K. A., and Moore, J. H. (2008).
Exploiting the proteome to improve
the genome-wide genetic analysis of
epistasis in common human dis-
eases. Hum. Genet. 124, 19–29.

Pettersson, M., Besnier, F., Siegel,
P. B., and Carlborg, O. (2011).
Replication and explorations of
high-order epistasis using a large
advanced intercross line pedi-
gree. PLoS Genet. 7:e1002180.
doi:10.1371/journal.pgen.1002180

Phillips, P. C. (2008). Epistasis – the
essential role of gene interactions
in the structure and evolution of
genetic systems. Nat. Rev. Genet. 9,
855–867.

Piepho, H. P., and Gauch, H. G.
Jr. (2001). Marker pair selection
for mapping quantitative trait loci.
Genetics 157, 433–444.

Ritchie, M. D., Hahn, L. W., Roodi,
N., Bailey, L. R., Dupont, W.

Frontiers in Genetics | Statistical Genetics and Methodology May 2013 | Volume 4 | Article 51 | 8

http://dx.doi.org/10.1186/1471-2164-10-266
http://dx.doi.org/10.1186/1471-2164-10-266
http://dx.doi.org/10.1371/journal.pgen.1000232
http://dx.doi.org/10.1371/journal.pgen.0020157
http://dx.doi.org/10.1371/journal.pbio.0060238
http://dx.doi.org/10.1186/1471-2164-12-S2-S9
http://dx.doi.org/10.1371/journal.pgen.1000782
http://dx.doi.org/10.1186/1471-2105-12-364
http://dx.doi.org/10.1186/1471-2105-10-S1-S65
http://dx.doi.org/10.1186/1471-2105-10-S1-S65
http://dx.doi.org/10.1371/journal.pone.0028415
http://dx.doi.org/10.1371/journal.pcbi.1001095
http://dx.doi.org/10.1371/journal.pone.0020133
http://dx.doi.org/10.1371/journal.pgen.1001338
http://dx.doi.org/10.1371/journal.pgen.1000432
http://dx.doi.org/10.1371/journal.pgen.1002180
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Huang et al. eQTL epistasis

D., Parl, F. F., et al. (2001).
Multifactor-dimensionality reduc-
tion reveals high-order interactions
among estrogen-metabolism genes
in sporadic breast cancer. Am. J.
Hum. Genet. 69, 138–147.

Schadt, E. E. (2009). Molecular net-
works as sensors and drivers of com-
mon human diseases. Nature 461,
218–223.

Shang, J., Zhang, J., Sun, Y., Liu, D.,
Ye, D., and Yin, Y. (2011). Perfor-
mance analysis of novel methods
for detecting epistasis. BMC Bioin-
formatics 12:475. doi:10.1186/1471-
2105-12-475

Stich, B., Yu, J., Melchinger, A. E.,
Piepho, H. P., Utz, H. F., Mau-
rer, H. P., et al. (2007). Power to
detect higher-order epistatic interac-
tions in a metabolic pathway using a
new mapping strategy. Genetics 176,
563–570.

Storey, J. D., Akey, J. M., and Kruglyak,
L. (2005). Multiple locus link-
age analysis of genomewide expres-
sion in yeast. PLoS Biol. 3:e267.
doi:10.1371/journal.pbio.0030267

Stranger, B. E., Nica, A. C., Forrest, M.
S., Dimas, A., Bird, C. P., Beazley, C.,
et al. (2007). Population genomics of
human gene expression. Nat. Genet.
39, 1217–1224.

Stuart, J. M., Segal, E., Koller, D.,
and Kim, S. K. (2003). A gene-
coexpression network for global dis-
covery of conserved genetic mod-
ules. Science 302, 249–255.

Suthram,S.,Beyer,A.,Karp,R. M.,Eldar,
Y., and Ideker, T. (2008). eQED:
an efficient method for interpret-
ing eQTL associations using protein
networks. Mol. Syst. Biol. 4, 162.

Szklarczyk, D., Franceschini, A., Kuhn,
M., Simonovic, M., Roth, A.,
Minguez, P., et al. (2011). The
STRING database in 2011: func-
tional interaction networks of pro-
teins, globally integrated and scored.
Nucleic Acids Res. 39, D561–D568.

Tang, W., Wu, X., Jiang, R., and Li, Y.
(2009). Epistatic module detection
for case-control studies: a Bayesian
model with a Gibbs sampling

strategy. PLoS Genet. 5:e1000464.
doi:10.1371/journal.pgen.1000464

Thompson, W. D. (1991). Effect modi-
fication and the limits of biological
inference from epidemiologic data.
J. Clin. Epidemiol. 44, 221–232.

Van Steen, K. (2012). Travelling the
world of gene–gene interactions.
Brief. Bioinformatics 13, 1–19.

van Wageningen, S., Kemmeren, P.,
Lijnzaad, P., Margaritis, T., Ben-
schop, J. J., de Castro, I. J., et al.
(2010). Functional overlap and reg-
ulatory links shape genetic interac-
tions between signaling pathways.
Cell 143, 991–1004.

Wade, M. J., Winther, R. G., Agrawal,
A. F., and Goodnight, C. J. (2001).
Alternative definitions of epista-
sis: dependence and interaction.
Trends Ecol. Evol. (Amst.) 16,
498–504.

Wagner, G. P., Pavlicev, M., and
Cheverud, J. M. (2007). The road
to modularity. Nat. Rev. Genet. 8,
921–931.

Wan, X., Yang, C., Yang, Q., Xue, H.,
Fan, X., Tang, N. L., et al. (2010a).
BOOST: a fast approach to detecting
gene-gene interactions in genome-
wide case-control studies. Am. J.
Hum. Genet. 87, 325–340.

Wan, X., Yang, C., Yang, Q., Xue, H.,
Tang, N. L., and Yu, W. (2010b).
Predictive rule inference for epista-
tic interaction detection in genome-
wide association studies. Bioinfor-
matics 26, 30–37.

Wan, X., Yang, C., Yang, Q., Xue,
H., Tang, N. L., and Yu, W.
(2009). MegaSNPHunter: a learning
approach to detect disease predis-
position SNPs and high level inter-
actions in genome wide association
study. BMC Bioinformatics 10:13.
doi:10.1186/1471-2105-10-13

Wang, P., Dawson, J. A., Keller, M. P.,
Yandell, B. S., Thornberry, N. A.,
Zhang, B. B., et al. (2011a). A model
selection approach for expression
quantitative trait loci (eQTL) map-
ping. Genetics 187, 611–621.

Wang, X., Elston, R. C., and Zhu, X.
(2011b). Statistical interaction in

human genetics: how should we
model it if we are looking for bio-
logical interaction? Nat. Rev. Genet.
12, 74.

Wang, Y., Liu, X., Robbins, K., and
Rekaya, R. (2010). AntEpiSeeker:
detecting epistatic interactions for
case-control studies using a two-
stage ant colony optimization algo-
rithm. BMC Res. Notes 3:117.
doi:10.1186/1756-0500-3-117

Wei, W. H., Knott, S., Haley, C. S.,
and de Koning, D. J. (2010). Con-
trolling false positives in the map-
ping of epistatic QTL. Heredity 104,
401–409.

Yang, C., He, Z., Wan, X., Yang,
Q., Xue, H., and Yu, W. (2009).
SNPHarvester: a filtering-based
approach for detecting epistatic
interactions in genome-wide asso-
ciation studies. Bioinformatics 25,
504–511.

Yang, C., Wan, X., Yang, Q., Xue,
H., and Yu, W. (2010). Identify-
ing main effects and epistatic inter-
actions from large-scale SNP data
via adaptive group Lasso. BMC
Bioinformatics 11(Suppl. 1):S18.
doi:10.1186/1471-2105-11-S1-S18

Yang, J., Zhu, J., and Williams, R. W.
(2007). Mapping the genetic archi-
tecture of complex traits in exper-
imental populations. Bioinformatics
23, 1527–1536.

Yoshida, M., and Koike, A. (2011).
SNPInterForest: a new method
for detecting epistatic interac-
tions. BMC Bioinformatics 12:469.
doi:10.1186/1471-2105-12-469

Zhang, W., Zhu, J., Schadt, E. E.,
and Liu, J. S. (2010a). A Bayesian
partition method for detecting
pleiotropic and epistatic eQTL mod-
ules. PLoS Comput. Biol. 6:e1000642.
doi:10.1371/journal.pcbi.1000642

Zhang, X., Huang, S., Zou, F., and
Wang, W. (2010b). TEAM: effi-
cient two-locus epistasis tests in
human genome-wide association
study. Bioinformatics 26, i217–227.

Zhang, X., Pan, F., Xie, Y., Zou, F., and
Wang, W. (2010c). COE: a general
approach for efficient genome-wide

two-locus epistasis test in disease
association study. J. Comput. Biol. 17,
401–415.

Zhang, X., Zou, F., and Wang,W. (2008).
FastANOVA: an Efficient Algorithm
for Genome-Wide Association Study,
KDD’08. Las Vegas: ACM.

Zhang, X., Zou, F., and Wang, W.
(2009). FastChi: an efficient algo-
rithm for analyzing gene-gene inter-
actions. Pac. Symp. Biocomput. 2009,
528–539.

Zhang, Y., and Liu, J. S. (2007). Bayesian
inference of epistatic interactions in
case-control studies. Nat. Genet. 39,
1167–1173.

Zou, W., and Zeng, Z. B. (2009).
Multiple interval mapping for gene
expression QTL analysis. Genetica
137, 125–134.

Zuk, O., Hechter, E., Sunyaev, S. R., and
Lander, E. S. (2012). The mystery
of missing heritability: genetic inter-
actions create phantom heritability.
Proc. Natl. Acad. Sci. U.S.A. 109,
1193–1198.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 06 June 2012; accepted: 19
March 2013; published online: 31 May
2013.
Citation: Huang Y, Wuchty S and
Przytycka TM (2013) eQTL epista-
sis – challenges and computational
approaches. Front. Genet. 4:51. doi:
10.3389/fgene.2013.00051
This article was submitted to Frontiers in
Statistical Genetics and Methodology, a
specialty of Frontiers in Genetics.
Copyright © 2013 Huang , Wuchty and
Przytycka. This is an open-access arti-
cle distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and subject to any copyright notices
concerning any third-party graphics etc.

www.frontiersin.org May 2013 | Volume 4 | Article 51 | 9

http://dx.doi.org/10.1186/1471-2105-12-475
http://dx.doi.org/10.1186/1471-2105-12-475
http://dx.doi.org/10.1371/journal.pbio.0030267
http://dx.doi.org/10.1371/journal.pgen.1000464
http://dx.doi.org/10.1186/1471-2105-10-13
http://dx.doi.org/10.1186/1756-0500-3-117
http://dx.doi.org/10.1186/1471-2105-11-S1-S18
http://dx.doi.org/10.1186/1471-2105-12-469
http://dx.doi.org/10.1371/journal.pcbi.1000642
http://dx.doi.org/10.3389/fgene.2013.00051
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

	eQTL epistasis – challenges and computational approaches
	Introduction
	Selection based methods for detecting eQTL epistasis
	Biological relevance filtering
	Data driven filtering

	Gene module based methods
	Outlook and conclusion
	Acknowledgments
	References


