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Performing accurate movements requires preparation, execution, and monitoring mecha-
nisms. The first two are coded by the motor system, the latter by the sensory system. To
provide an adaptive neural basis to overt behaviors, motor and sensory information has to
be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor
loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration
affecting only a specific body part and characterized by sensory and motor deficits in the
absence of basic motor impairments. Despite the fundamental impact of sensory-motor
integration mechanisms on daily life, the general principles of healthy and pathological
anatomic–functional organization of sensory-motor integration remain to be clarified. Based
on the available data from experimental psychology, neurophysiology, and neuroimaging,
we propose a bio-computational model of sensory-motor integration: the Sensory-Motor
Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and
with the final target of implementing novel intervention protocols for motor rehabilitation,
our main goal is to provide the information necessary for further validating the SMILE
model. By translating neuroscientific hypotheses into empirical investigations and clinically
relevant questions, the prediction based on the SMILE model can be further extended to
other pathological conditions characterized by impaired sensory-motor integration.

Keywords: sensory motor integration, modeling, TMS, fMRI, inhibition, neural plasticity, movement disorders,

rehabilitation

INTRODUCTION
The ability to correctly perform movements in everyday life
is critical to adequately interact with the environment. Sev-
eral movement disorders manifest as remarkable deficiencies in
the ability to control voluntary actions and interact success-
fully with the surroundings. The onset of the disease may, in
fact, disrupt normal functioning of fundamental neural and
cognitive processes that permit efficient sampling of sensory
events from the environment in order to implement adequate
motor routines. Sensory-motor integration refers to this ability
to coherently organize bodily sensations and motor responses.
Despite its crucial role as a proficient interface with the envi-
ronment, current models of sensory-motor integration lack a
definitive overview on the reciprocal interplay between sensory
input and motor output. The opportunity to distinguish and
properly understand the relative weight of sensory and motor
processes is provided by mental imagery, a cognitive task that
activates sensory-motor representations without physical sen-
sory stimulation. This experimental approach is particularly
important for studying the physiology of pathological condi-
tions characterized by sensory-motor integration deficits but

Abbreviations: CSP, cortical silent period; FHD, focal hand dystonia; M1, pri-
mary motor cortex; S1, primary sensory cortex; SDT, spatial discrimination
threshold; SMILE, Sensory-Motor Integrative Loop for Enacting; TDT, temporal
discrimination threshold.

without impairments in basic motor functions, such as focal
dystonia.

Dystonia is a disabling movement disorder characterized
by involuntary muscle contractions frequently associated with
abnormal movements and/or postures (Fahn et al., 1998). It
is triggered or exaggerated by different voluntary movements,
and often spreads over neighboring or corresponding muscles
(Albanese et al., 2013). It is the third most common movement
disorder after essential tremor and Parkinson’s disease (Breake-
field et al., 2008). As a function of the distribution of the
symptoms, dystonias can be classified as generalized (affecting
almost the whole body) or local (affecting only some specific
body regions, e.g., focal dystonia). Very frequent focal dys-
tonias include spasms and abnormal postures of the eyelids
(blepharospasm), articulatory apparatus (oromandibular dysto-
nia or laryngeal dystonia), neck (cervical dystonia), or the hand
(e.g., writer’s cramp). Focal hand dystonia (FHD) is one of
the most common forms of focal primary dystonic disorders
(Tarsy and Simon, 2006; Jankovic, 2009). It can be very het-
erogeneous and can affect only very specific tasks by inducing
involuntary contractions – resulting in involuntary finger twist-
ing or stretching – only in particular conditions (e.g., only
while writing, typing, or playing musical instruments), but not
in other manual activities. Despite steadily developing clini-
cal procedures, little is known about its etiopathogenesis and
our understanding of its pathophysiology is still insufficient
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(Zoons et al., 2011). For these reasons the treatment is often
limited to only symptomatic therapy, such as focal applica-
tion of botulinum toxin (Hallett et al., 2009). Botulinum toxin
offers effective transient relief of symptoms. However, it requires
elaborate injection schemes, is extremely time-consuming, and
its efficacy drastically depends on the therapists’ experience.
In addition, only 50% of FHD patients remain on treatment
(Kruisdijk et al., 2007), and its long-term efficacy remains con-
troversial (Dashtipour and Pender, 2008). Alternative therapeutic
interventions such as non-invasive sensory-motor retraining can
produce sustained improvements of motor functions in FHD
(Byl et al., 2009). In particular, “sensory training” (Zeuner et al.,
2002) and “sensory-motor retuning” (Candia et al., 1999) are
therapeutic strategies focused on improving sensory-motor inte-
gration mechanisms. However, the underlying pathophysiolog-
ical mechanisms involved in treatment-related behavioral and
cortical changes remain to be clarified. Thus, before imple-
menting new intervention protocols it is necessary to validate a
model of sensory-motor integration, to investigate the pathology-
dependent cortical sensory-motor organization, and to unravel
the neurophysiological processes leading to treatment-induced
cortical changes.

Despite the fact that different types of dystonia have long
been considered as the result of impaired motor control,
the focus has progressively been switched to the integra-
tion between sensory input and motor output. Basic research
in neuroscience has produced converging evidence on the
tight relationship between movement generation and recali-
bration (see also Todorov, 2004). Clinical research has also
individuated the key role of sensory input (so-called alle-
viating maneuvers or sensory tricks) on ameliorating motor
behaviors in several movement disorders (see also Abbruzzese
and Berardelli, 2003). In the following sections we will
describe the reciprocal role of deficits in sensory processing
and abnormal motor control in different kinds of dystonia,
starting from the description of the most significant abnor-
malities both at the behavioral and the neural level. Based
on the reviewed data we will then propose and fully describe
a comprehensive model of sensory-motor integration here-
after termed “Sensory-Motor Integrative Loop for Enacting
(SMILE).” Accommodating the main three pathophysiologi-
cal mechanisms of FHD [loss of inhibition (Hallett, 2011),
aberrant neural plasticity (Quartarone and Pisani, 2011), and
defective learning-based sensory-motor integration (Byl, 2007)],
the SMILE model proposes plausible origin and feature of
FHD and can be extended to other sensory-motor impair-
ments.

SENSORY-MOTOR DEFICITS IN FOCAL DYSTONIA
BEHAVIORAL DATA
Behavioral data can be used to create general models, based on
which it is possible to generate procedural hypotheses on the
modules possibly involved in specific processes and their putative
reciprocal connections in theoretical frameworks. Testing these
hypotheses can contribute to individuate the origin of specific
impairments and to assess early markers of a given disorder (Scon-
trini et al., 2009). In the case of dystonia, two main behavioral

tasks have been largely used to conceive its pathophysiological
mechanisms: the spatial discrimination threshold (SDT) and the
temporal discrimination threshold (TDT).

Spatial characteristics
The SDT is a tactile task used to establish the minimal dis-
tance between two stimuli that participants can reliably discern
as distinct events. Healthy subjects can detect changes in the
orientation of tiny parallel grooves as thin as 1 mm when pre-
sented on the tip of the finger (Craig and Kisner, 1998). As an
extension of the classical two-point discrimination task, the SDT
can be assessed via the so-called “Johnson–Van Boven–Philips”
domes. In this case, participants have to identify the orienta-
tion of a linear grating pressed on the skin. Starting from the
hypothesis that dystonias are associated with an aberrant organi-
zation of the sensory cortex, Bara-Jimenez et al. (2000a,b) used
this technique among others, to compare the abilities of blind-
folded FHD patients and healthy controls in localizing tactile
stimuli delivered either to a single phalanx or to each individ-
ual phalanx of the right (dystonic) hand. The authors observed
an impaired ability in FHD patients to discriminate grating ori-
entation and demonstrated that spatial sensitivity was impaired
in dystonic patients only when stimuli were delivered to different
regions on the same phalanx. Sanger et al. (2001) replicated these
results and additionally showed that SDT was also impaired in
the non-dominant, non-symptomatic hand. To explore whether
the impairments in SDT tasks are specific for FHD or are
also detectable also in other types of dystonias, Molloy et al.
(2003) conducted an experiment with domes applied bilater-
ally on the tip of the index fingers of patients suffering from
either generalized or focal dystonia. Their findings contrast with
the unspecific SDT impairment reported by Sanger et al. (2001).
Generalized dystonia patients displayed similar performance com-
pared to healthy subjects, while all focal dystonia patients showed
impaired SDT. Importantly, only FHD patients showed a signif-
icant threshold difference between dominant and non-dominant
hand.

In summary, the SDT has been largely used in populations
suffering from a variety of dystonic disorders showing that in
these conditions there are clear impairments not only in the motor
components but also in sensory processing of spatial information
coming from the affected body region. Beyond this first conclu-
sion, on the basis of the available data it could be suggested that
the disorganization due to FHD is not limited to a single body
part but rather extends at least to the contralateral hand. However,
it is still difficult to conclude whether the spatial discrimination
impairments are restricted to only the symptomatic limb or are
instead bilateral.

Temporal characteristics
Another frequently used task in dystonia-related research is the
TDT, which identifies the minimal time interval between two
stimuli that allows differentiating them as separate events. It typ-
ically involves unimodal electrical stimulation of the skin, but
can be coupled, paralleled, or even replaced by visual, kinematic,
or any other type of stimuli. On average, healthy subjects can
discriminate two electrical stimuli on the index finger provided
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they are separated by at least 30 ms (Lacruz et al., 1991). In
dystonic patients, a single or pair of non-noxious tactile stim-
uli applied to both index fingers elicit increased TDT (Tinazzi
et al., 1999), further augmenting as a function of the distance
between the stimulation sites (Tinazzi et al., 2002). Taking into
account the potential effects of sensory modality and multi-
sensory integration processing, Aglioti et al. (2003) extended
the paradigm to visual–tactile stimulation in an investigation
restricted to generalized dystonia patients. Using either electri-
cal tactile stimulation of the index finger and/or visual stimuli
with LEDs, they revealed increased TDT compared to healthy
controls in all conditions, though particularly marked in the cross-
modal situation. Additionally, they showed that temporal order
judgments (i.e., the explicit reporting of the temporal order of
several asynchronous stimuli) are also impaired in generalized
dystonia patients (Aglioti et al., 2003). When conducting a sim-
ilar experiment in FHD patients, the TDT for unimodal visual
stimuli resulted in similar performance between patients and con-
trols (Fiorio et al., 2003). Similar results have been obtained in
cervical dystonia (Tinazzi et al., 2004) and blepharospasm (Fiorio
et al., 2008) in contrast to corresponding non-dystonic patients
(i.e., cervical pain and hemifacial spasms, respectively), sug-
gesting that the impairment is selective for dystonic disorders.
In order to check the specificity on increased TDT, Scontrini
et al. (2009) stimulated either the hand, neck, or eyebrow in
82 focal dystonia patients including blepharospasm, FHD, cer-
vical, and laryngeal dystonia. They observed a general increase
of the discrimination threshold for all the investigated body
parts. This corresponds with a study in which abnormalities
in TDT during uni- and multi-modal visual–tactile process-
ing were shown to be linked to the non-fully penetrant gene
in both manifesting and non-manifesting carriers (Fiorio et al.,
2007a).

In summary, dystonic patients show evidence of abnormalities
not only in spatial discrimination, but also in temporal processing.
Temporal discrimination seems to be affected both at symptomatic
and non-symptomatic body regions. The reviewed data suggest
a critical difference in the mechanisms of FHD and generalized
dystonia. FHD patients’ impairment appears to be linked to tactile
processing and visual–tactile integration, whereas the generalized
dystonia patients exhibit more general impairments in integration
processing, including exclusively visual processing of stimuli near
the hands. Overall, most studies present a coherent picture of
the relationship between dystonia and TDTs, whose increase in
focal dystonia is specifically selective for sensory processing but
not isolated to the symptomatic limb.

Kinesthetic impairments in dystonia
It has been demonstrated that the movement induced by tonic
vibration of a tendon is impaired in generalized dystonia (Tempel
and Perlmutter, 1990). Grünewald et al. (1997) assessed the prop-
erties of this effect in focal dystonia. Participants were blindfolded
and asked to mimic the movements of one arm with the other
arm. The “master” arm was either moved passively by the exper-
imenter, or movement was induced by means of tonic vibrations
at the level of the biceps tendon. Focal dystonia patients could
accurately track passive movements. However, and unlike healthy

subjects, tracking during induced movements was impaired, even
if the vibration-induced flexion was normal (Grünewald et al.,
1997). With respect to other movement disorders, this impair-
ment is specific for focal dystonias (Rome and Grunewald, 1999),
regardless of the stimulated body segment (Yoneda et al., 2000).
The detection of postural changes is preserved in the passive con-
dition but not in the induced condition. These results suggest
a deficit in processing the sensory feedback of a muscular con-
traction (as in the induced condition), while the perception of
position per se (proprioception, as in the passive condition) would
remain intact (see also Frima et al., 2003, 2008). This interpreta-
tion is in line with recent clinical evidence showing the key role of
altered proprioceptive feedback in FHD (Konczak and Abbruzzese,
2013).

STRUCTURAL IMAGING
Few studies investigated the structural brain organization of FHD
and the available data are largely inconsistent. Some studies asso-
ciated FHD with anatomical abnormalities at the cortical level
(Garraux et al., 2004; Delmaire et al., 2007), some others to
sub-cortical irregularities (Draganski and Bhatia, 2010; Granert
et al., 2011b). In particular, part of the evidence from struc-
tural brain imaging on the pathophysiology of dystonia highlights
the role of aberrations in subcortical structures, including the
basal ganglia (Bhatia and Marsden, 1994; Krystkowiak et al., 1998;
Draganski et al., 2009; Beukers et al., 2011), mesencephalon
(Vidailhet et al., 1999), and the cerebellum–thalamus–cortex axis
(Argyelan et al., 2009). Conversely, other studies associated FHD
with structural anomalies in the sensory-motor (Garraux et al.,
2004; Delmaire et al., 2007) and the premotor cortex (Granert
et al., 2011a). Even the directionality of volumetric differences
between FHD patients and controls does not provide a straight-
forward method for individuating a precise neural substrate
responsible for – or at least associated with – the symptoms.
With respect to healthy controls, in FHD patients the gray
matter volume of a wide range of regions has been consid-
ered either increased or decreased. This network includes the
putamen [increased (Black et al., 1998; Bradley et al., 2009),
decreased (Obermann et al., 2007)], thalamus [increased (Ober-
mann et al., 2007), decreased (Delmaire et al., 2007)], cerebel-
lum [increased (Draganski et al., 2003), decreased (Delmaire
et al., 2007)], prefrontal cortex [increased (Egger et al., 2007),
decreased (Draganski et al., 2003)], and inferior parietal cor-
tex [increased (Etgen et al., 2006), decreased (Egger et al., 2007);
Table 1].

In general, one of the main reasons of such inconsistencies
might be the use of different scanners, data recording sequences,
and analysis procedures. One possibility for overcoming this het-
erogeneity may be the use of quantitative methods that are more
conducive to comparisons across laboratories/scanners, such as
Voxel-Based Quantification (Draganski et al., 2011). This auto-
mated unbiased analysis technique overcomes previous limitations
including whole-brain multi-parameter mapping at high resolu-
tion, correction of radio-frequency inhomogeneities (Lutti et al.,
2010), and diffeomorphic registration (Ashburner, 2007). Previ-
ous work demonstrated parameter-specific distribution patterns
in healthy ageing and suggested a biophysical interpretation in
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Table 1 | Dystonia-related morphometric changes.

Region Increased volume Decreased volume

Prefrontal cortex Egger et al. (2007) Draganski et al. (2003)

Inferior parietal lobe Etgen et al. (2006) Egger et al. (2007)

Cerebellum Draganski et al. (2003) Delmaire et al. (2007)

Thalamus Obermann et al. (2007) Delmaire et al. (2007)

Putamen Bradley et al. (2009) Obermann et al. (2007)

Previous studies have reported conflicting results in volumetric properties of
cortical areas, basal ganglia, and cerebellar regions.

line with histological studies demonstrating age-dependent iron
accumulation and pathological rate of de-/re-myelination (Bart-
zokis et al., 2007a,b). Taking advantage of the use of voxel-based
quantification, future studies will be able to precisely identify
the anatomical neural correlates of FHD and other types of
dystonia.

FUNCTIONAL IMAGING
Using passive vibrotactile stimulation of single fingers, functional
neuroimaging studies have described the disorganization of the
somatosensory representations in dystonia. Nelson et al. (2009)
found that in FHD patients the representations in primary sen-
sory cortex (S1) relative to the fingers involved in writing are
overlapping and spatially less separated, while no difference is
observed for the other fingers with respect to healthy controls.
In addition to the decreased separation of the finger represen-
tations in S1, Butterworth et al. (2003) reported that in FHD
the order of the representations in S2 is inverted and activa-
tions are weaker with respect to healthy controls. However, taking
into consideration the extreme task-specificity of several kinds
of dystonias, it would be important to consider the fine-tuned
loop between specific movements and precise sensory feedback,
instead of pointing to the sensory deficits as the only origin
of dystonic disorders. Following this line, several neuroimaging
studies investigated the neural correlates of active movements
in FHD by asking patients to physically perform a movement
while functional magnetic resonance imaging (fMRI) data were
recorded. In order to test the hypothesis that a dysfunctional bal-
ance between neighboring finger representations could be one
origin of FHD, a recent study required FHD patients to con-
trol a cursor on a screen by regulating the force of a single
movement involving only one finger and a coupled movement
involving two fingers of the affected hand (Moore et al., 2012).
In FHD patients the coupled movements were associated with
decreased activity in bilateral S1, right parietal cortex and cerebel-
lum, and left putamen. Conversely, no differences were observed
for the single movement with respect to healthy controls. Based
on this data, it can be concluded that in FHD only the cou-
pled movements are specifically affected and it might be further
hypothesized that the pattern of cerebral activity would vary as
a function of movement difficulty. Accordingly, FHD patients
have been asked to use the affected hand to either write (complex
movement) or flex/extend the fingers (simple movement) while
fMRI data were recorded (Havrankova et al., 2012). Consistent

with Moore et al. (2012), Havrankova et al. showed the hypoac-
tivation of S1 and parietal cortex. However, no involvement
of cerebellum or basal ganglia was reported. Additional inves-
tigations on the potential influence of movement complexity
showed premotor hyperactivity and cerebellar hypoactivity asso-
ciated with unimanual and bimanual finger tapping in FHD
patients (Kadota et al., 2010). Hu et al. (2006) asked FHD patients
to perform progressively more complex kinds of writing while
being in the fMRI scanner and, with respect to healthy con-
trols, they found increased activation in motor cortex, basal
ganglia and cerebellum associated with complex writing (using
the pen) but no differences for simple writing (using the fin-
ger). This would support that movement complexity plays a
central role in the symptoms exhibition and the relative cerebral
activity.

Despite an initial general agreement, the level of inconsis-
tency in terms of affected key regions between different studies
increases as slightly different tasks are taken into account. Indeed
if FHD patients are asked to physically perform movements, neural
activity has been reported to be abnormal in a very heteroge-
neous network, including basal ganglia (Chase et al., 1988; Siebner
et al., 2003; Blood et al., 2004; Peller et al., 2006; Schneider et al.,
2010), thalamus (Preibisch et al., 2001; Hu et al., 2006), sensory-
motor cortex (Preibisch et al., 2001; Islam et al., 2009; Jankowski
et al., 2013), supplementary motor area (Oga et al., 2002; Hu
et al., 2006), prefrontal cortex (Playford et al., 1998; Pujol et al.,
2000; Preibisch et al., 2001; Dresel et al., 2006), and primary
motor cortex (M1; Ceballos-Baumann et al., 1995; Playford et al.,
1998; Ibanez et al., 1999; Pujol et al., 2000; Detante et al., 2004;
Dresel et al., 2006). However, there is strong evidence support-
ing the position that the sensory feedback during movement
execution is altered in FHD and other forms of focal dystonia
(see Defective Learning-based Sensory-Motor Integration). For
example, by asking patients to perform symptomatic and asymp-
tomatic movements while fMRI data were recorded, Simonyan
and Ludlow (2010) found abnormal activity not only in the
brain regions encoding the motor command but also in the net-
work processing the sensory feedback including S1, insula, basal
ganglia, and thalamus. Based on these data, the functional neu-
roimaging studies that investigated the features of sensory-motor
representations in focal dystonia by asking patients to physically
perform a movement might be affected by the confound due
to the altered sensory feedback associated with movement exe-
cution itself. One possible way to overcome this limitation is
to investigate the pattern of neural activity at rest. The com-
parison of the correlation between activity changes in different
brain areas during different tasks and rest brought to the sci-
entific community one of the most robust findings throughout
more than a decade of neuroimaging science: the implication of
the medial prefrontal cortex, inferior parietal cortex, and pre-
cuneus in a canonical network dubbed as the “default mode
network” (e.g., Raichle et al., 2001; Buckner et al., 2008; Gultepe
and He, 2013). Investigating the properties of the default mode
network in FHD patients, Mohammadi et al. (2012) found that
with respect to healthy controls, FHD patients show reduced con-
nectivity in postcentral regions and augmented connectivity in
basal ganglia. These data speak in favor of a disorganization at
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the level of the sensory-motor system, in particular the basal gan-
glia and the somatosensory cortex; both important for coding
the afferent sensory feedback. However, despite the undisputed
advances brought by the resting-state approach in circumvent-
ing potential confounds due to altered sensory feedback, it still
does not provide information on the origin of task-specificity,
one of the most peculiar aspects of FHD (see Mental Imagery
and Rotation as “Clean” Tools to Investigate Sensory-Motor
Mechanisms).

POTENTIAL MECHANISMS OF FHD
LOSS OF INHIBITION
For several decades, the excitatory/inhibitory regulations of the
central nervous system have been proposed as impaired in both
generalized dystonia and FHD (Tinazzi et al., 2009). Atypical
excitability and activity would result in the deterioration of the
communication pathways between the central nervous system
and the periphery. Nevertheless, testing this type of hypothe-
sis is particularly challenging using conventional neuroimaging
or behavioral techniques, due to the difficulty of distinguishing
between excitatory or inhibitory processes. In order to over-
come this limitation transcranial magnetic stimulation (TMS)
– a non-invasive technique allowing the excitation or inhibi-
tion of specific brain regions through magnetic pulses – has
been largely used to study the properties of given cortico-spinal
pathways (Miniussi and Thut, 2010) both in healthy and clin-
ical populations (Brodbeck et al., 2010; Rotenberg, 2010). The
features of the “motor-evoked potentials” (time-locked elec-
tromyographic activity resulting from a supra-threshold TMS
pulse over the motor cortex) and cortical silent period (CSP; the
interval of silent electromyographic activity following a supra-
threshold TMS pulse) can provide information regarding the
underlying state of the neural populations. The duration of
CSPs for TMS depends on the recording site, the intensity of
the TMS with respect to the motor threshold, and the onset
considered as the starting point (i.e., absolute versus relative
CSP). In general, the typical CSP oscillates within a range from
110–140 ms (Orth and Rothwell, 2004) to 160–170 ms (Aurora
et al., 1999; Priori et al., 1999). In FHD the (a)typical CSPs
are shortened (Kimberley et al., 2009), restricted to the symp-
tomatic hand (Chen et al., 1997), and task-specific (Tinazzi et al.,
2005b). For example, Tinazzi et al. (2005a) used CSP together
with a facilitation/rest electromyographic motor-evoked poten-
tials to demonstrate the task-specific motor impairment of FHD.
In this study, while TMS was delivered and motor-evoked poten-
tials were recorded, participants performed both pincer grip (a
finely tuned contraction of only the thumb and index finger)
and power grip (a co-contraction of all fingers). With respect
to healthy controls, FHD patients had different CSP and motor-
evoked potentials depending on the type of grip performed.
In particular, while pincer grip elicited shorter CSP and larger
motor-evoked potentials amplitude ratio, power grip remained
unchanged, supporting the specificity of excitatory/inhibitory
impairment mechanisms in FHD (see also Kimberley et al.,
2009).

In addition to CSP, other types of inhibition features are potent
markers of neural pathway mechanisms, and have been shown

to present abnormalities in all types of dystonia at the level of
both the central and the peripheral nervous system (Hallett, 2006;
Lin and Hallett, 2009). At the central level, intracortical surround
inhibition (the capacity of an excited neuron to reduce the activity
of the neighbors) is decreased in FHD (Ridding et al., 1995; Chen
et al., 1997; Espay et al., 2006; Lin and Hallett, 2009). At the periph-
eral level, reciprocal inhibition (the coordinated contraction and
relaxation of agonist and antagonist muscles, respectively) is
dramatically impaired in FHD patients (Nakashima et al., 1989;
Panizza et al., 1990).

Animal studies showed that aberrant intracortical surround
inhibition can lead to dystonic behaviors (Matsumura et al., 1991,
1992). In humans such loss of inhibition can be investigated
using TMS. For example, Sohn and Hallet (2004) set the TMS
as targeting the portion of M1 corresponding to the little fin-
ger, but triggered by the activity elicited by self-initiated flexion
of the index finger. Using this approach the authors investigated
surround inhibition in FHD patients by evaluating the little fin-
ger reactivity during volitional flexion of the index finger. Their
results showed that in FHD patients the motor-evoked potentials’
amplitude was increased.

In addition to intracortical surround inhibition, also inter-
hemispheric inhibition (the ability of a unilateral hemispheric
stimulation of the motor cortex to inhibit the contralateral
motor cortex given a short latency) is impaired in FHD (Sohn
and Hallet, 2004; Beck et al., 2009). Interhemispheric inhibi-
tion is usually investigated with dual-site TMS, where a con-
ditioning stimulus is applied in one hemisphere, and shortly
followed by a test stimulus in the corresponding sensory-motor
area of the contralateral hemisphere. In healthy controls the
conditioning stimulus has a suppression effect over the test
stimulus (Perez and Cohen, 2009). Analyzing the amplitude of
motor-evoked potentials of this test-pulse allows the investiga-
tion of the underlying modulation of interhemispheric inhi-
bition. Beck et al. (2009) showed that interhemispheric inhi-
bition is partially lost in patients with mirror dystonia (con-
sisting of dystonic behaviors in one hand when acting with
the other hand), while non-mirror dystonia patients exhibited
similar performance compared with healthy subjects. This dis-
covery suggests that interhemispheric inhibition is not deeply
involved in the basic pathophysiology of dystonia, but only in
its mirror aspect. In order to investigate the task-specificity
of inter-hemispheric inhibition in mirror dystonia, Sattler et al.
(2013) extended the previous study with a rest versus pen-
holding task. At rest, the inter-hemispheric inhibition levels
of all three groups (healthy subject, mirror and non-mirror
FHD) were similar, but mirror patients displayed a large bilat-
eral decrease in inter-hemispheric inhibition in the pen-holding
condition, inversely related to the severity and duration of
symptoms. Altogether, these two studies agree on the involve-
ment of impaired inter-hemispheric inhibition only in mirror
dystonia.

Some groups focused on psychogenic dystonia, a type of
dystonic disorder without a clear neurological basis and pos-
sibly associated with other psychological disorders. In this
vein, Espay et al. (2006) used TMS for investigating a broad
range of behavioral features in both psychogenic and organic
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(non-psychogenic) dystonia. These features included reciprocal
inhibition, CSPs, but also cutaneous silent period, as well as
short- and long-intracortical inhibition. All of these behavioral
markers were statistically different between healthy subjects and
dystonia patients. The only statistically relevant difference between
behavioral results in psychogenic and organic dystonia involved
reciprocal inhibition.

Altogether these data suggest that different types of dysto-
nia, whether primary or secondary to psychological disorders,
share basic mechanisms as well as widespread cortical and sub-
cortical abnormalities. However, the question whether these
excitatory/inhibitory regulation abnormalities common to several
types of dystonias are a cause or a consequence of the disorders
still needs to be resolved. Nonetheless, some studies have linked
dystonic symptoms to abnormal activity of numerous modules in
the basal ganglia–thalamocortical circuit (Vitek, 2002; Liu et al.,
2008). While synchronous neural activity is involved in the plan-
ning and execution of movement in healthy subjects, dysregulation
in the degree of synchronization might disrupt the proper func-
tion of the sensory-motor feedback system as a whole (Schnitzler
and Gross, 2005). In addition, despite the limited available data,
some individual case reports suggest the involvement of lesions in
the pallidal–thalamus complex (Krystkowiak et al., 1998; see also
Quartarone and Hallett, 2013). Accordingly, a single-subject study
indicated that in situ electrical stimulation (“deep brain stimula-
tion”) of the thalamus can ameliorate dystonic behaviors in FHD
(Fukaya et al., 2007). However, due to the limited amount of data,
it is difficult to clearly define the role of the pallidal–thalamus
complex.

ABNORMAL NEURAL PLASTICITY
Neural plasticity includes, but is not limited to, the ability of
the brain to re-organize its neural connections as a function
of both internal and external factors. Animal studies showed
that over-trained repetitive movements abnormally remodels
somatosensory cortical maps, leading to sensory de-differentiation
between the receptive fields of neighboring digits (Byl, 2007).
This de-differentiation parallels the development of dystonic-like
behaviors (Byl et al., 1996; Blake et al., 2002). In other words, after
a prolonged and intense stimulation, the neuron which previously
coded the sensory input relative to only one finger starts to respond
to sensory inputs delivered to more fingers (Byl et al., 1997).

Indeed, dystonia-related changes of receptive field features have
been reported in sub-cortical structures such as the globus pallidus
and thalamus (Lenz et al., 1998), key nodes in the generation of
sensory and/or motor representations. Such neuro-plastic changes
would be at the basis of aberrant pairing of tactile stimuli in
healthy subjects (Godde et al., 1996), and associated with exces-
sively repeated movements in FHD patients (Roze et al., 2009;
Altenmuller and Jabusch, 2010). Experimental evidence showed
that FHD is associated with finger de-differentiation in S1 and S2
(Butterworth et al., 2003; Nelson et al., 2009), basal ganglia (Roth-
well and Huang, 2003; Quartarone et al., 2008), and cerebellum
(Thompson and Steinmetz, 2009). Interestingly, non-manifesting
carriers of a gene supposed to be involved in developing dystonia
exhibit impairments in sequence learning but not in motor learn-
ing in general (Ghilardi et al., 2003). This supports the proposition

that dystonia is a complex disorder due to aberrant integration
mechanisms, biologically based on abnormal neuronal plasticity
as a predisposing endophenotypic trait (Quartarone and Pisani,
2011).

The so-called “paired-associative stimulation” approach can
be used to induce and identify the characteristics of neural
plasticity. During paired-associative stimulation a given sensory
stimulus is paired with TMS of a specific brain region, cre-
ating an artificial and relatively long-term association between
an external event and the TMS pulse (Rizzo et al., 2009). To
measure the excitability of the target region, evoked potentials
are often recorded before and after the pairing. The kind of
evoked potentials can vary according to the experimental pro-
tocol and the stimulated brain area: auditory (Schecklmann
et al., 2011), somatosensory (Litvak et al., 2007; Pellicciari et al.,
2009) or motor (Huber et al., 2008) evoked potentials. For
example, similarly to the sensitivity of long-term potentiation
(timing-dependent changes of synaptic efficacy) to specific asso-
ciative processes both in the human (Cooke and Bliss, 2006)
and other mammals’ brain (Bliss and Lomo, 1973), Litvak et al.
(2007) demonstrated that paired-associative stimulation per-
formed with TMS of S1 delivered near-synchronously to median
nerve stimulation induced changes in the somatosensory evoked
potentials correlated with behavioral changes in tactile discrimi-
nation abilities. Using median nerve stimulation and TMS over
S1 as paired-associative stimulation, Tamura et al. (2009) like-
wise showed that in FHD patients the waveform elicited by
TMS increased immediately after paired-associative stimulation,
suggesting an abnormally increased excitability of S1. Theta-
burst stimulation – a repetitive TMS protocol in which short
trains of high-frequency magnetic pulses are repetitively dis-
charged to modulate the short-term excitability level of a given
brain area (Cardenas-Morales et al., 2010) – can also be used
to induce plastic changes. Based on the emerging hypothe-
sis that a cerebellar dysfunction might be tightly linked to the
development of focal dystonia (Raike et al., 2012), Hubsch et al.
(2013) used theta-burst stimulation of the cerebellum to inves-
tigate how its excitability can influence neural plasticity of M1
induced by paired-associative stimulation in FHD patients. After
performing intermittent (excitatory) or continuous (inhibitory)
theta-burst stimulation of the cerebellum, the authors paired
the stimulation of M1 and of the median nerve both at 5Hz
for intervals of 2 minutes. Results showed a complete loss of
cerebellar influence on M1 plasticity, specifically for FHD. In
the same study, the authors also showed that FHD patients had
both lower performance in learning a new task and in “washing
out” a previously learned task in order to adapt to a modifi-
cation. These data suggest that the loss of cerebellar influence
on sensory-motor cortex might be linked to atypical neural
plasticity.

DEFECTIVE LEARNING-BASED SENSORY-MOTOR INTEGRATION
According to the defective sensory-motor learning hypothesis, the
different types of dystonia would be characterized by functional
alterations in the sensory-motor circuit supposed to integrate sen-
sory input and motor output (Breakefield et al., 2008). In this view
the dystonic behavior could be due to abnormal somatosensory
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feedback received by the motor system during the movement. In
this vein, it has been shown that over-practice can cause an over-
lap of the somatosensory receptive fields (Butterworth et al., 2003),
which could lead to altered sensory representations and therefore
to abnormal motor behaviors. In favor of this hypothesis, there
is evidence that somatosensory finger representations in FHD
patients are spatially closer (Bara-Jimenez et al., 1998), provid-
ing the biological justification to the notion that FHD develops in
conjunction with excessive sensory stimulation or over-repetition
of motor tasks (Quartarone et al., 2006).

The aberrant sensory input would be due to the disorganization
of S1 (Hinkley et al., 2009). The overlap of digit representations
in S1 would lead to excessive gain in the sensory-motor loop,
due to the incongruence between the somatosensory and motor
maps (Sanger and Merzenich, 2000). This incongruence would
lead to a saturation of motor commands resulting in the dys-
tonic movement of the affected hand or even in the muscular
over-contraction and consequent paralysis. In this way the altered
sensory representations would lead to abnormal motor behav-
ior, highlighting the importance of sensory-motor integration.
The critical role of the sensory feedback in modulating motor
responses (Abbruzzese and Berardelli, 2003) is demonstrated by
evidence showing how sensory discrimination is impaired in
patients suffering from writer’s cramp (Sanger et al., 2001) as
well as by the altered sensory-motor integration mechanisms in
patients presenting musician’s dystonia (Rosenkranz et al., 2000)
and writer’s cramp (Murase et al., 2000). In addition to experi-
mental data, the importance of sensory processing in a movement
disorder such as FHD is also demonstrated by the effectiveness
of sensory re-training procedures (Zeuner et al., 2002). Despite
short-term duration and reversibility, FHD patients can signifi-
cantly improve their spatial acuity by performing daily sessions
of Braille reading sessions for 8 weeks (Zeuner and Hallett,
2003).

However, the nature of the relationship between disorganized
somatosensory information and aberrant motor output is still
under debate. One possible explanation is that long-lasting non-
physiologic motor behavior can cause changes in somatosensory
representations. Alternatively, abnormal somatosensory repre-
sentations may lead to abnormal motor output explaining the
particular dystonic phenotype. Consequently, one of the main
focuses for future research will be to investigate movement mech-
anisms in FHD and other types of movement disorders, but ruling
out any confounding effect due to abnormal sensory feedback.

MENTAL IMAGERY AND ROTATION AS “CLEAN” TOOLS TO
INVESTIGATE SENSORY-MOTOR MECHANISMS
MENTAL MOTOR IMAGERY
To identify the origin of dystonic behaviors it is crucial to under-
stand the features of sensory-motor integration mechanisms
while avoiding any potential confound due to altered sensory
feedback. One possibility to achieve this goal is to use an inves-
tigation tool that does not require movement execution. This
would help differentiate the mechanisms related to altered sen-
sory feedback from those related to abnormal sensory-motor
representations. Mental imagery is a cognitive task with such
characteristics. In healthy subjects physical execution and mental

imagery of a movement – “motor imagery” – share similar tempo-
ral and kinematic properties (Sirigu et al., 1996). The association
between the properties of executed and imagined movements
is further demonstrated by clinical studies showing how physi-
cal impairments are reflected in mental imagery. For example,
if patients suffering from hemi-Parkinson’s disease are asked to
physically perform and mentally imagine specific manual move-
ments with the affected and the unaffected hand, the response
times of the imagery task will be proportional to the asymme-
tries in the physical task; that is longer latencies for the affected
than the unaffected hand (Dominey et al., 1995). Some data
described the effects of FHD on motor imagery of different move-
ments. In particular, in order to understand whether the physical
impairments due to FHD generally or specifically influence the
characteristics of mental imagery, patients suffering from writer’s
cramp were asked to physically perform and mentally imagine
finger tapping and writing (Tumas and Sakamoto, 2009). Sur-
prisingly, with respect to healthy controls, patients had longer
motor imagery latencies for both actions, suggesting that FHD
would lead to unspecific deficits in mental imagery of complex
movements.

In healthy controls, physical movement and motor imagery
engage partially overlapping brain networks (Grezes and Decety,
2001). In particular, physical practice modulates the imagery-
related brain activity in a specific network including the supple-
mentary motor area, basal ganglia, and cerebellum (Ionta et al.,
2010a). Several data support that also in clinical populations there
is an association between the performance in motor imagery and
the quantity or quality of neural activity. For example if Parkin-
son’s disease patients are asked to physically perform and mentally
imagine hand and wrist movements, they show longer laten-
cies and decreased activation patterns in fronto-parietal regions
(Samuel et al., 2001). In addition, if Parkinson’s patients with
freezing of gait perform motor imagery of walking, with respect to
healthy controls their response times are longer and brain activity
is decreased in the supplementary motor area and increased in the
mesencephalic locomotor region (Snijders et al., 2011).

Combined with the manipulation of cortico-spinal excitabil-
ity by means of TMS, motor imagery can be used to investigate
not only the properties of cortical representations but also the
characteristics of the communication between the central ner-
vous system and the periphery. In particular, in healthy subjects
top-down imagery-related mechanisms regulate the excitability of
the sensory-motor pathways (Fourkas et al., 2006). In Parkinson’s
patients the typical cortico-spinal excitability in response to the
imagination of a movement is drastically reduced with respect
to healthy controls (Tremblay et al., 2008). With regard to FHD
patients, Quartarone et al. (2005) delivered the TMS pulse while
participants were imagining index flexion. Similarly to the results
shown by Sohn and Hallet (2004) on movement execution,
during motor imagery the amplitude of motor-evoked poten-
tials of all recorded hand and forearm surround muscles was
increased in FHD patients, even for the arm not involved in
motor imagery (Quartarone et al., 2005). This highlights the
broad and less focused muscular activity in FHD patients com-
pared with healthy subjects, even in the case of simply imagined
movements.
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Despite the differences with respect to the typically hyperkinetic
dystonic disorders, a final example of the validity of implement-
ing motor imagery protocols to evaluate motor excitability in focal
dystonia, can be individuated in a study performed by Liepert et al.
(2011). In this study, single and double TMS pulses were delivered
while patients suffering from flaccid leg paresis due to psychogenic
dystonia imagined ankle flexion. The amplitude of motor-evoked
potentials resulting from the TMS pulse over the foot/leg motor
cortex decreased with respect to rest, while it increased in healthy
subjects (Liepert et al., 2011). This finding suggests an amplifica-
tion of motor-imagery-related cortical excitability. Interestingly,
during ankle movement observation on a video, motor-evoked
potentials modulation of both healthy controls and psychogenic
dystonia patients were similar (Liepert et al., 2011), emphasiz-
ing the difference between self-referred motor mechanisms and
other-oriented visually based processing.

Only few brain imaging studies investigated the neural circuits
recruited by motor imagery and their task-dependent activity in
FHD. Despite the clear difference between primary and secondary
dystonias, and as an additional example of the implementation
of motor imagery as an investigation tool in dystonia-related dis-
orders, Lehéricy et al. (2004) asked post-stroke secondary FHD
patients to execute and imagine simple wrist flexion/extension
while fMRI data were recorded. This study showed abnormal
activity in parietal and frontal regions in patients with respect
to controls during both motor imagery and execution. Similarly,
patients presenting FHD secondary to complex regional pain syn-
drome showed abnormalities in the activity of fronto-parietal
cortex during motor imagery of wrist flexion/extension (Gieteling
et al., 2008). However, since both these studies focused on sec-
ondary dystonia, the results will not be further discussed but they
can still be taken as demonstrations of the methodological reliabil-
ity of the combination between motor imagery and neuroimaging
for studying the neural correlates of dystonic behaviors.

At present the only available data on the neural correlates of
motor imagery in primary FHD have been recently reported in
two paired studies. In these studies FHD patients were asked
to perform motor imagery of grasping a pencil with the pur-
pose of either writing or sharpening it (Delnooz et al., 2012,
2013). In the first study the authors individuated the pattern of
local of brain activity analyzing the modulations of the hemody-
namic response, and showing that with respect to controls, FHD
patients had stronger activity in premotor areas during imagery
of grasping for writing but not during imagery of grasping for
sharpening (Delnooz et al., 2013). These data suggest that in
a region typically involved in balancing the motor output as a
function of the sensory feedback, some degrees of abnormalities
already exist at the level of movement planning or calibration.
In the second study the authors applied a functional connectivity
approach to the same dataset to further understand the interplay
between the previously individuated regions of interest (Delnooz
et al., 2012). This analysis showed that FHD patients had reduced
connectivity between the premotor cortex and the parietal cor-
tex with respect to controls (Delnooz et al., 2012). Taking into
account that in healthy controls the coupling between premotor
and parietal cortices is important for movement simulation and
calibration (de Lange et al., 2006) and that the parietal cortex is

an important hub for integrating information coming from dif-
ferent modalities (e.g., visual and motor; Fogassi and Luppino,
2005), the reduced functional connectivity between parietal and
premotor cortex could be associated with a decreased ability to
sample sensory feedback and integrate it with movement execu-
tion. However, these results should be considered with caution
in the absence of a quantitative measurement of the patients’
imagery.

MENTAL ROTATION
A straightforward way to control for and quantitatively measure
motor imagery is provided by mental rotation, according to which
people mentally rotate visually presented stimuli while response
times and accuracy are measured. In healthy subjects the response
times required to mentally align a stimulus to the vertical are
a function of stimulus orientation (Shepard and Metzler, 1971;
Parsons, 1994; Coslett et al., 2010). Mental rotation of body parts
is specifically sensitive to bottom-up proprioceptive information
(Ionta et al., 2007; Ionta and Blanke, 2009) and stimulus-driven
strategies (Ionta et al., 2012) as well as to top-down cognitive
regulations (Ionta et al., 2010b). These contributions highlight
the twofold nature of sensory-motor processing (bottom-up and
top-down influences) and the reliability of mental rotation as an
investigation tool.

Based on this evidence, at least two motivations support the
implementation of mental rotation in effective experimental pro-
tocols. First, as a motor imagery task, mental rotation supplies
access to sensory-motor representations without any confound-
ing effect potentially due to sensory feedback during movement
execution. Second, providing quantitative measurements of the
subjects’ performance, it adds important information on an oth-
erwise purely introspective process. Thanks to these characteristics
it has been used in several clinical populations. In particular,
when asked to mentally rotate hands, patients suffering from cere-
bral palsy show the typical modulation of response times as a
function of the stimulus orientation, but doubling the latencies
with respect to healthy controls (Craje et al., 2010). This suggests
that the bodily properties are spatially preserved but temporally
impaired, probably because of the lack of use.

In addition, patients who lost their dominant limb due to
amputation, show longer latencies and lower accuracy in the
mental rotation of images depicting the amputated hand (Nico
et al., 2004), therefore presenting highly specific impairments. The
debate on the specificity of the effects has been further addressed
taking into account the mental rotation performance of patients
in which one or both hands never developed from birth, i.e., bilat-
eral or unilateral amelia (Funk and Brugger, 2008). As in cerebral
palsy, bilateral amelia results in a general slowing down, but does
not affect the general modulation of the response times as a func-
tion of the stimulus orientation. Similarly to amputees, unilateral
amelic patients’ performance is slower for the missing hand with
respect to the present hand.

In cervical dystonia – affecting the neck muscles and then
altering the vestibular input (Dauer et al., 1998; Karnath et al.,
2000) – mental rotation of any body part is impaired (Fiorio et al.,
2007b). Conversely, in FHD – affecting only one specific body
region – the mental rotation of only the affected hand is selectively
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impaired (Fiorio et al., 2006). In a later study Katschnig et al.
(2010) used mental rotation to investigate the differences between
mobile and fixed dystonia. While mobile dystonia is typically
characterized by involuntary task-specific muscle contractions
(Berardelli et al., 1998), fixed dystonia results in immobile and
persistent postures that do not regress even at rest (Schrag et al.,
2004). Showing that patients presenting mobile dystonia (less
debilitative) obtain shorter latencies with respect to fixed dys-
tonia patients (more debilitative), their data confirmed that the
severity of physical impairments is reflected in mental rotation
abilities (Katschnig et al., 2010). Based on these data it could be
concluded that, regardless of the general availability of sensory
feedback, the most crucial factor influencing mental rotation is
body asymmetry, suggesting that the sensory-motor system tends
to put more weight on the available information with a con-
sequent detriment for the representation of the affected body
part.

A way to test this possibility takes into account the mech-
anisms of postural and proprioceptive online recalibration. In
healthy subjects, congruent visuo-tactile stimulation promotes
self-attribution of a fake hand as explicitly measured by self-
reports (“rubber hand illusion”), but does not necessarily affect
proprioceptive hand recalibration as implicitly measured by
the “proprioceptive drift” procedure (Rohde et al., 2011). Pos-
sibly due to such implicit–explicit dissociation, in FHD the

illusory self-attribution is preserved but the proprioceptive drift
is impaired (Fiorio et al., 2011). However, it is not clear whether
the absence of proprioceptive drift in FHD is due to measurement
(in)sensitivity or to aberrant sensory-motor plasticity. The pos-
sibility to quantitatively measure the behavioral outcomes of the
plasticity of sensory-motor representations is provided by mental
rotation. Indeed, in healthy subjects the illusory self-attribution
due to the rubber hand illusion correlates with the performance
in such mental transformations, even in the absence of pro-
prioceptive drift (Ionta et al., 2013). Nevertheless, despite such
measurements might provide a less controversial measurement of
proprioceptive hand recalibration in FHD, no data are currently
available.

A THEORETICAL MODEL OF HEALTHY AND ABERRANT
SENSORY-MOTOR INTEGRATION
A major challenge in clinical neuroscience is building a model that
can explain the causal link between dysfunctional brain networks
and particular clinical phenotypes. The available computational
models of sensory-motor integration (Wolpert et al., 1995; Sanger
and Merzenich, 2000; Shadmehr and Krakauer, 2008) agree on the
presence of one or more nodes dedicated to the movement prepa-
ration phase. Building on previous computational models, we
put forward a biologically based model of sensory-motor integra-
tion defined as the Sensory-Motor Integrative Loop for Enacting

FIGURE 1 | Schematic representation of the SMILE model. The signal
sent by the motor command node (red arrows) comprises an efference
copy processed by the forward model and a motor outflow generating
a sensory feedback (blue arrows). Low-level nodes compare the actual

sensory feedback to an anticipated sensory prediction generated by a
feedback model and transmit information on the resulting sensory error
to high-level nodes in order to calibrate the subsequent motor
command.
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(SMILE). According to the SMILE model, a proper sensory-
motor integration implies the coordination of both high-level and
low-level nodes. First, the signals in the high-level preparation
nodes are triggered by the intention to move or as a reaction
to somatosensory information. These nodes encode the move-
ment preparation phase, and the signals are transmitted to the
node where they are converted into motor commands. This node
produces the motor outflow and volleys the information to the
periphery via the cortico-spinal tract. Simultaneously, the motor
command node generates an internal copy of the motor out-
flow (efference copy) to be further processed by a forward model
together with the information on the body state (current state)
coming from the high-level sensory encoding node. The role of
the forward model is twofold. On the one hand, based on the
efference copy it simulates the movement dynamics and predicts
the outcome of the motor command (motor prediction). On
the other hand, it combines the efference copy and the infor-
mation regarding the current state in order to enter an estimate
of the current state into a feedback model, which in turns cre-
ates an anticipation of the sensory consequences of the movement
(sensory prediction). When the movement starts, the difference
between the anticipated sensory prediction and the actual sen-
sory feedback (sensory inflow) is processed by low-level sensory
nodes and is eventually used to correct the current state (sen-
sory error). These sensory low-level nodes would project back
to the high-level nodes relative to movement preparation and
the sensory encoding. Both the sensory encoding and the move-
ment preparation nodes would in turn project to the motor
command node, regulating in this way the balance between the
sensory and the motor processes (calibration). Thus the for-
ward and the feedback models are interdependent. The feedback
model depends on the estimated current state, which in turn is
computed by the forward model taking into account the actual
current state. For this reason the relative weight of the estimated
and actual sensory effects changes across time. At beginning of
the movement the information of the estimated current state
is strongly reliable and then sensory-motor integration relies
on the forward and feedback models. Towards the end of the
movement, the estimated current state is much less reliable and
then sensory-motor integration has to rely on the sensory inflow
(Figure 1).

Based on the available data, we propose that the SMILE model
can represent a way to biologically situate and experimentally
test previous computational models of sensory-motor integra-
tion in clinical phenomena such as dystonia. At the biological
level, according to the SMILE model the movement preparation
would be encoded by the premotor and supplementary motor
regions (Ionta et al., 2010a). These regions would work as the
movement preparation nodes and would exchange information
with M1, which would function as the motor command node.
When M1 sends the motor command to the periphery, it simulta-
neously generates an efference copy of the motor outflow which is
further processed by the forward model in order to create a motor
prediction probably encoded in the parietal cortex (Wolpert et al.,
1998). Simultaneously, the forward model contributes to predict
the sensory outcome of the movement itself (estimated current
state) by entering the information on the actual current state from

S1 in the feedback model encoded possibly by the cerebellum
(Blakemore et al., 2000). The difference between the anticipated
sensory prediction and actual sensory inflow is coded initially by
basal ganglia, thalamus, and cerebellum as low-level nodes. Then
the signals processed by these low-level nodes would be sent to
the primary sensory encoding node (S1), as well as back to the
premotor and supplementary motor areas. Working in coordina-
tion, these three nodes (S1, premotor, supplementary motor area)
would project back to M1, calibrating the subsequent motor out-
put. Thus, through the somatosensory feedback first processed by
cerebellum, basal ganglia, and thalamus and then modulated by
premotor, supplementary motor area, and S1, the motor execution
commands are calibrated in M1, and the loop is closed (Figure 2).

Taking into account the hypothesized mechanisms of FHD and
the possible structure described in the SMILE model, we propose
that FHD is the manifestation of a breakdown in the sensory-
motor loop as the result of a disorganization targeting S1 and
due to over-training-related abnormal neuroplasticity, impaired
cortico-subcortical dynamics, and local loss of inhibition. Based
on evidence that FHD patients exhibit impairments in temporal
and spatial discrimination, but not in overt motor behaviors other
than the task-specific ones, a first hypothesis is that the breakdown
of the sensory-motor integration happens in the high-level nodes,
specifically in S1. The breakdown would determine no equivalence

FIGURE 2 | Biological basis of the SMILE model. Healthy sensory-motor
integration leads to balanced motor command and sensory feedback. The
primary motor cortex generates a motor outflow and an efference copy. The
motor outflow triggers a sensory inflow, which is processed in low- and
high-level modules and contributes in fine-tuning the next motor command.
The efference copy is used to anticipate the kinesthetic (forward model)
and somatosensory (feedback model) consequences of the movement
itself. The difference between the real and expected sensory effects will
calibrate the next movement. Red arrows represent motor components.
Blue arrows represent sensory components. Legend: S1, primary sensory
cortex; M1, primary motor cortex; PM, premotor cortex; SMA,
supplementary motor area; Par, parietal cortex; Th, thalamus; BG, basal
ganglia; Cer, cerebellum; FW model, forward model; FB model, feedback
model; CALIB, calibration; Est. Current State, estimated current state.
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FIGURE 3 | Disorganization of the SMILE model in FHD. (A) According to a
first hypothetical disorganization, FHD could be the consequence of altered
calibration (CALIB) due to abnormal signal sent from S1 and M1, resulting in
an aberrant motor command. (B) A second hypothesis concerns the
possibility that the sensory information is distorted already in the low-level

nodes, resulting in an altered signal transmitted from the sensory processing
nodes to S1 and the movement preparation nodes (PM-SMA). The dashed
lines represent qualitative anomalies in signal processing. The size of the
arrows represents the quantitative features of the signal. The legend and
color code of Figure 1 applies to Figure 2.

between the signal sent from the periphery to S1, and the one sent
from S1 to M1 (calibration). When M1 sends the signal to the
periphery through the brainstem, the peripheral muscle activation
(through the cerebellum, basal ganglia, and thalamus) sends a
feedback signal to premotor, supplementary motor and primary
sensory regions, which in turn have back projections to equivalent
areas in M1. We hypothesize that if the gain of the signals sent
through this loop is >1, then M1 keeps increasing its firing until
maximal muscle contraction occurs, that is the typical cramp of
FHD (Figure 3A).

Taking into account the possibility that the deterioration of the
sensory information could happen in the low-level nodes and that
the whole thalamus-basal ganglia circuit preserves somatotopic
organization all along (Vitek, 2002), a second hypothesis is that S1
receives already “disordered” sensory errors from the sub-cortical
and cerebellar modules. This would imply that only a fraction
of the sensory feedback could be impaired, i.e., the component
for the hand, supporting that sub-cortical modules, and thus the
feedback from cerebellum–thalamus–basal ganglia complex to S1
(plus the signal from S1 to M1) is impaired and causes problems
downstream (Figure 3B)

The SMILE model explains (1) task-specific impairments in
terms of a breakdown in only some sub-components of the
sensory-motor loop, (2) increasing muscle contraction result-
ing in cramps as a function of the unbalance between sensory
input and motor output, and (3) spreading activity to agonist
muscles (due to overlapping cortical representations) as a func-
tion of extremely repetitive behaviors that would cause cortical
disorganization. Taking into consideration this tight association
between sensory input and motor output, it is clear how crucial

their dissociation is for better understanding the nature of their
integration, and therefore the implementation of mental rotation
as investigation tool in future experimental protocols.

CONCLUSION AND FUTURE PERSPECTIVES
Neuroimaging studies based on previous models showed the
involvement of both cortical and subcortical regions, suggest-
ing that dystonic deficits affect a broadly distributed network but
leaving unsolved the issue of which different nodes of this net-
work are specifically impaired. The inconsistencies in the available
results could be due to methodological differences in experimental
protocols, required tasks, scanning procedures, or the underesti-
mation of the distorted sensory feedback as a crucial confounding
factor that renders the investigation of sensory-motor processes
particularly difficult. Conversely, mental rotation of body parts
engages anatomically interconnected brain systems implicated in
the integration of sensory-motor information and has been imple-
mented with brain imaging for studying the properties of the
sensory-motor system in movement disorders such as Parkinson’s
disease. However, both neuroimaging and physiological data nec-
essary to identify the pathophysiological characteristics of FHD
are still lacking, and mental rotation is a good tool to acquire this
information. This important information on brain activity and
cortico-spinal communication relative to mental rotation of body
parts in FHD represents an unresolved gap that could and should
be filled. Finding the influence of FHD in modulating the activ-
ity of specific neural circuits, such as hyper-synchronous activity,
might help not only to better understand the pathophysiology of
FHD but also to develop ad-hoc interventions aiming at further
regulating those brain circuits.
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Rather than a conclusive definition of the pathophysiological
mechanisms of the different subtypes of dystonia, the advance
brought by the SMILE model is an understanding of the gen-
eral mechanisms of sensory-motor integration together with the
promotion of mental imagery as an experimental approach able
to overcome the previous methodological limitations. Such a
theoretical–experimental joint approach is essential to obtain the
new data required to precisely define the pathophysiology of the
different subtypes of dystonia. The lack of this combination is
probably one of the reasons why, despite the comprehension
of the importance of the sensory components, previous models
of movement disorders have pooled together different dystonic
symptomatologies (e.g., Patel et al., 2014).
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