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Abstract

Transcription factors (TFs) often trigger developmental decisions, yet, their transcripts are often only moderately regulated
and thus not easily detected by conventional statistics on expression data. Here we present a method that allows to
determine such genes based on trajectory analysis of time-resolved transcriptome data. As a proof of principle, we have
analysed apical stem cells of filamentous moss (P. patens) protonemata that develop from leaflets upon their detachment
from the plant. By our novel correlation analysis of the post detachment transcriptome kinetics we predict five out of 1,058
TFs to be involved in the signaling leading to the establishment of pluripotency. Among the predicted regulators is the
basic helix loop helix TF PpRSL1, which we show to be involved in the establishment of apical stem cells in P. patens. Our
methodology is expected to aid analysis of key players of developmental decisions in complex plant and animal systems.
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Introduction

Plant cells differentiate from stem cells into specialized tissue

cells and back to cope with varying environmental cues. The

juvenile form of the moss Physcomitrella patens are the filamentous

protonemata. Each filament extends by tip growth through

unequal division of the apical stem cell [1]. Upon detachment of

leaflets (phyllids) from the plant, individual leaflet cells undergo

transdifferentiation and eventually become an apical stem cell

[2,3], which in turn generates a new protonemal filament through

unequal division. While the coarse timeframe of P. patens leaflet cell

transdifferentiation has been studied, the dynamic interplay of

gene expression and transcription factor (TF) regulation during

this decision process remains poorly understood. One viable

approach to elucidate the sequential activation of signaling

processes involved in cell (de-)differentiation is the use of time-

resolved microarray data. Indeed, processes in animal cells that

evolve on time scales of hours to days, like differentiation, have

been shown to exhibit a strong correlation between transcriptome

kinetics, de novo protein synthesis and long-term cell behavior

[4,5,6]. This finding is possibly rooted in the fact that complex

regulatory networks are controlled by their slowest evolving

subsystems [4,7]. Here, we assumed the same to be true for plant

cell dynamics.

Although transcriptome actions are important, the transcrip-

tome response of a cell provides only an incomplete picture of

cellular events. Many fast processes are preferentially regulated on

the proteome level. Among those are protein modification or the

regulation of TF activity. Therefore, the actual mechanisms

leading to the observed transcriptome responses might remain

elusive if considering the strongest responding genes alone. This

behavior is probably rooted in the topology of the underlying gene

and protein regulatory networks. Comparing gene expression in

healthy versus diseased specimens, it was found that the change in

gene expression as well as expression variability correlates with

network connectivity, i.e. the number of interaction partners of the

encoded proteins [8,9]. Moreover, strongly differentially regulated,

yet weakly connected genes, show biological functions tightly

linked to the phenotype, whereas hub genes tend to have more

general functions. De-regulated effectors of diseases like cancer are

preferentially such (typically weakly regulated, but strongly

connected) network hubs [10].

To capture the coordinated response of a cell, the concept of

cellular attractors has been suggested. Similar to complex networks
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settling on a small number of stable configurations [11], it has

been suggested that complex gene regulatory networks possess a

finite number of stable expression profiles, called cell attractors.

They are thought to coordinate and guide cellular decisions, such

as differentiation. While the biological mechanisms that define

these attractors remain abstract, they aid in understanding global

transcriptome response patterns in animal cells enabling the

identification of genes putatively involved in cellular decisions,

irrespective of their differential expression strength [12]. In the

following we suggest to combine analysis of differentially regulated

genes with cell attractor reconstruction to identify weakly

regulated key players mediating the dynamic differentiation

process.

In this study, we apply these systems theoretic ideas for the first

time in plant cells to elucidate the formation of P. patens apical stem

cells upon leaflet detachment. Using time-resolved microarray

expression profiling, we identify key signaling components and

mechanisms of an important plant developmental process by

means of multidimensional scaling analysis of gene expression time

series data in combination with a correlation-based analysis of

global transcriptome-response behavior. The approach singles out

genes with weak to moderate differential expression that control

the developmental progression and its underlying transcriptional

control. In this way, we predict and experimentally verify TFs

critically involved in (or excluded from) the cellular decision of P.

patens leaflet cells to undergo transdifferentiation into apical stem

cells. Validation of loss of function mutants demonstrates for two

examples that the prediction holds true.

Results and Discussion

Time-resolved microarray data of detached leaflet
transdifferentiation

To study the time-resolved development of apical stem cells, we

detached leaflets of P. patens gametophores, isolated RNA 0–96 h

after detachment (a.d.), and subjected it to microarray analysis

[13]. Previous analyses of detached leaflets that transdifferentiate

into apical stem cells showed the importance of the P. patens

Figure 1. Transcriptome response of P. patens leaflets upon detachment. Heatmap of significantly responding genes from leaflet
detachment to eventual cell division and apical filamentous growth (0–96 h a.d.). The terms on the right denote the most significant GO biological
processes of the six largest clusters together with their respective p-value using conditional hypergeometric testing. The grey bar below depicts the
overall sequence of events as derived from the GO analysis. The micrographs show detached leaflets at time point 0 h and 72 h, respectively; black
arrows indicate filaments protruding from the leaflet.
doi:10.1371/journal.pone.0060494.g001
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ortholog of the polycomb group protein FERTILIZATION

INDEPENDENT ENDOSPERM (FIE) as a marker for newly

reprogrammed stem cells [2]. Its appearance 48 h after detach-

ment (a.d.) defines the time window of epigenetic reprogramming

between initial signaling and unequal division of the newly formed

apical stem cell. Here, we found that the majority of leaflets have

developed at least one apical stem cell at 72 h a.d. (Fig. 1), as

evidenced by the emergence of tip-growing filaments. Based on

this time scale for apical stem cell development, we collected leaflet

RNA at 0, 1, 2, 6, 12, 18, 24, 36, 48, 72 and 96 h a.d. Weakly

expressed genes and genes with low inter-array variability were

filtered out, leaving 17,158 out of 27,715 transcripts for

subsequent analysis. The 0 h time point was taken in duplicate

to assess reproducibility of the fold expression values of the

experiments, since each time point taken effectively represents an

independent biological sample. Comparing the fold change of the

whole transcriptome with respect to the two microarrays taken at

0 h one finds clearly reproducible results (Fig. S1). In the following

we averaged the expression values for each gene at 0 h to calculate

the respective fold change for all subsequent time points. The lack

of time point replicates, despite for 0 h, represents a potential

shortcoming of our design, since no classical statistical approaches

can be performed on the data and it might contain undetected

outlier samples. However, we believe that the design of the

timecourse experiment and the subsequent analysis approach

conducted here balances this potential weakness. Any putatively

failed experiment time point would show in having a dispropor-

tionally large number of outlier genes, which we did not find to be

the case. Moreover, our microarray data confirmed the activation

and time course of two previously reported markers for

transdifferentiation: the expression of CYCD;1 (Phypa_226408)

[3] and the FIE transcript, Phypa_61985 [2], being continuously

up-regulated over the whole time course, respectively transiently

up-regulated between 6–36 h a.d. (Fig. S2A). This demonstrates

that although a minority of leaflet cells is strongly expressing

CYCD;1 and FIE, the RNA derived from the mixed cell population

can be employed to detect expression profiles of such a subset.

Circadian rhythms can play an influential role in gene

expression dynamics of plants [14,15,16,17]. Since we sampled

the leaflet response for several days we searched for an apparent

24 h oscillation underlying the global gene expression, to rule out

a significant influence of circadian rhythm on the transcriptome

response. As the data points are unevenly spaced, a Lomb-Scargle

periodogram was calculated for each gene. We tested and rejected

Figure 2. Spectral analysis of gene expression time series via Lomb-Scargle periodograms. A, Histogram of dominant oscillation periods
in the power spectral densities of the 1,500 most significantly regulated genes as evaluated from the MDS analysis. The dominant periods have been
determined from the peak in the Lomb-Scargle periodogram of each gene. B, Histogram of p-values denoting the statistical significance of the
dominant periods in the Lomb-Scargle periodograms for each gene. None of the genes has a peak significance p,0.05 (marked by the vertical red
line). The insert shows the histogram of the FDR-corrected p-values for the set of 1,500 genes. C, Example analysis for Phypa_196448, which has the
lowest p-value p = 0.074. Left: Phypa_196448 time series and corresponding fit using a 5th order polynomial regression model (red dashed line). Error
bars have been estimated from the variance of expression for the 0 h time point that was taken in duplicate. Middle: Normalized power spectral
density (PSD) of the Lomb-Scargle periodogram. The red dot marks the dominating frequency of the periodogram. Right: Significance of Lomb-
Scargle frequencies. The red dot marks the dominating frequency of the Lomb-Scargle periodogram.
doi:10.1371/journal.pone.0060494.g002
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Figure 3. Correlation analysis of whole transcriptome and ranked gene subsets. A, Whole transcriptome Pearson correlation (rv, black
curve) and mutual information (I, blue curve) for all measured time points with respect to 0 h. The dots and error bars denote the mean and standard

P. patens Stem Cell Development
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the null hypothesis that a gene is periodic by calculating how likely

an observed peak in the Lomb-Scargle periodogram occurs by

chance [18]. None of the genes were found to have a significant

period of 24 h (lowest p-value .0.07 and lowest FDR corrected q-

value .0.605, Fig. 2B). Hence, circadian rhythm does not seem to

have a dominant effect and the apparent gene regulation is mainly

due to the stress signaling and transdifferentiation processes

induced by leaflet detachment. We hypothesize that the detach-

ment resets the circadian clock and that periodicity will be

established only later, subsequent to the tissue regaining a normal

state. Besides the above mentioned analysis, this is also supported

by the fact that for several genes previously shown to exhibit

periodicity in P. patens [17,19,20,21,22] no circadian or diurnal

rhythm could be detected in our data, despite the fact that a long

day light regime was employed.

Gene Ontology bias analyses reveal the chain of events
To assess the biological significance of gene regulation from

detachment to eventual cell division and filamentous growth per

time point we performed conditional hypergeometric testing for

Gene Ontology (GO) bias [23]. Hierarchical clustering of the

expression kinetics shows a functional sequence of events for

transdifferentiation (Fig. 1). Analysis for the first 6 h a.d. finds

genes encoding for dehydrins, desiccation related proteins, late

embryogenesis abundant (LEA) proteins, catalases or early

response to dehydration (ERD) proteins as enriched (GO terms:

response to water, response to desiccation; Fig. S3). This reflects

the immediate stress response of the detached leaflets. Up to 24 h,

genes associated with energy metabolism and translation are up-

regulated, while photosynthesis is down-regulated. In this phase

the leaflet cells apparently process the physical wounding and

stress signals and make the decision towards pluripotency. At 36 h

a.d. regulation of DNA replication is enhanced, marking a turning

point by preparing for cell division. After 36 h, energy metabolism

is still predominant. Additionally, modification of cell walls starts

and photosynthesis restarts after 48 h, suggesting the execution of

cell division and formation of the apical stem cells (Fig. 1, S3).

Recently, transcriptome analysis of P. patens protoplast transdiffer-

entation into tip growing protonemata has been conducted [24].

While there is some resemblance in terms of GO bias at later

stages, no overlap of short term data is evident, probably due to

the severely different in vitro start conditions. While in our study

leaflets were detached from precultured gametophores, exerting

primarily wounding and drought stress, the protoplastation

(enzymatic removal of the cell wall under hypoosmotic conditions)

obviously represents quite a different stress scenario. Moreover,

the culture media and conditions are different, most notably with

regard to the presence of ammonium tartrate in the other study.

Wounding and osmotic/drought stress trigger the
reprogramming

While the importance of D-type cyclin and cyclin-dependent

kinase A activation for transdifferentiation has recently been

shown [3], the initial trigger for this process upon leaflet

detachment is largely unknown. As our functional analysis

predicted an involvement of osmotic/drought stress, we checked

whether this is an obligatory signal towards pluripotency

establishment. We compared detached leaflets in liquid mineral

medium (representing a hypo-osmotic condition) and under iso-

osmotic conditions. Under hypo-osmotic conditions, 81% of

leaflets (n = 26) had formed filaments 120 h a.d., while under

iso-osmotic conditions not a single leaflet (n = 25) did. Gameto-

phores grown under standard conditions over several weeks did

not exhibit formation of filaments from leaflets. In contrast, when

grown under mildly dehydrating conditions over the same time

period, protonemal filaments occasionally arose from the game-

tophore leaflets (Fig. S4). Taken together, the osmotic/drought

pathway and the wounding response are both necessary triggers

for pluripotency establishment. Such a failsafe situation makes

sense to prevent reprogramming of differentiated cells under

normal conditions.

Defining moderately regulated genes following the
global transcriptome trend

Due to the long time scale of observation (four days), a strong

correlation between transcriptome response and phenotype is

expected [4,6]. Therefore, we utilized a multi-dimensional scaling

analysis (MDS) to identify strongly and uniquely responding genes,

assuming them to be key to the stress response and cell

differentiation. Here, we use MDS to map the matrix of all

pairwise Euclidean distances between gene expression time series

onto a two-dimensional space. We identified 299 significantly

responding genes by fitting a multivariate skew-normal distribu-

tion to the resulting two-dimensional MDS distribution (q-value

,0.05) (Fig. S2B); such genes provide a marked link to the cellular

transdifferentiation phenotype development (Fig. 1). However,

GO terms for transcriptional processes, regulation of gene

expression, DNA methylation and chromatin organization, all of

which are expected to point to the underlying transdifferentiation

control, are underrepresented among these (Table S1). Genes

important for development, such as TFs, are mostly weak to

moderately strong regulated, and thus are problematic to detect by

standard analyses. To overcome this problem we hypothesize (i)

that plant cell transdifferentiation proceeds along a coordinated

change of the whole transcriptome and (ii) that genes putatively

coordinating this process follow the global change of the

transcriptome. This hypothesis is supported in the light of the

cell attractor idea, should apical stem cell development bear

similarities to self-organization in complex systems. There, few

variables, called order parameters, become unstable upon

stimulation and control the transition dynamics of the whole

deviations from 1,000 random samples using a gene set size of p = 200. The background colors refer to the time windows of phenotype response:
immediate stress response (0–6 h), reprogramming decision (12–24 h), cell wall rebuilding and cell division (36–96 h). B, Whole transcriptome
trajectory of the mutual information I versus Pearson correlation rV: time increases along the trajectory. The node annotation refers to the respective
time in hours. Colors correspond to the transdifferentiation time phases as defined in A. C, Euclidean distance between correlation trajectories of
ranked gene subsets and whole transcriptome. Dotted, colored lines depict the Euclidian distances from comparing whole transcriptome and ranked
gene subsets for different gene subset sizes p = [100,150,200,300,400,500,1000]. The red line depicts a least squares fit of a 7th order polynomial to all
data points. Dark and light grey areas mark the significance cutoffs of the MDS analysis (q-value ,0.05) and transcriptome trajectory approach (rank
1,500). Black arrows indicate the five predicted TFs with putative involvement in transdifferentiation and the non-involved PpRSL2 paralog
(Phypa_165193). The five small plots depict sample gene subset trajectories of the mutual information I versus the Pearson correlation rV (green lines).
The black lines denote the whole transcriptome trajectory from b. The arrows mark the respective data points for the Euclidean distance (Eucl. Dist.)
in the large plot.
doi:10.1371/journal.pone.0060494.g003
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system [4]. Akin to this, only few genes were found to be strongly

responding during transdifferentiation (Fig. S2A), correlating well

with the cellular phenotype development over time. Turning this

argument around, genes reflecting the mechanisms leading to

transdifferentiation, like signal transduction cascades, should have

comparatively low differential response strength but should follow

the global trend of the transcriptome.

Therefore, we defined a temporal state space trajectory of the

transcriptome from its Pearson correlation and mutual informa-

tion with respect to the 0 h time points [25] (Fig. 3A and B) and

compared this trajectory with those of gene subsets: genes were

ranked according to the associated p-values from the MDS

analysis and then split into subsets of equal size (cf. Methods). For

each gene subset, a correlation trajectory was calculated and

compared to the global trajectory using the Euclidean distance in

correlation space. We assume that subset trajectories following the

whole transcriptome trajectory (small Euclidean distance and/or

large correlation) contain genes contributing to the overall

phenotypic response caused by detachment. Quantifying the

contribution of each gene subset to the global gene response we

found that moderately strong responding genes up to rank position

1,500 lie significantly closer to the global gene trajectory (Fig. S9),

while the most differentially regulated genes do not follow the

global change of the transcriptome (Fig. 3C). The calculation of

Figure 4. TF analysis and microarray-based fold expression profiles. Violin plots of differential gene response and gene kinetics for 1,500/28
genes/TFs (‘‘Other Genes’’/TFs) with predicted impact on transdifferentiation. A, p-value distribution of differential gene response kinetics. B, Start
distribution of gene expression. C, Distribution of time from start to maximal fold change of gene expression. Vertical black bars, white dots and
shaded areas denote the interquartile range, median values and kernel density, respectively. The p-values of a one-sided t-test denoting the
significance of distribution differences are shown above the horizontal bars. D, Response kinetics of the bHLH TFs. Red lines denote a logistic fit to
the expression kinetics. Arrows mark the onset and time of maximal fold expression. Error bars are estimated from the whole transcriptome standard
deviation.
doi:10.1371/journal.pone.0060494.g004
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the individual data points in Fig. 3C is depicted in the subpanels

surrounding the large plot. Therein, the black lines show the

global trajectory from Fig. 3B, which is the same for all plots. The

green lines indicate the correlation trajectories for the specific gene

subsets. Clearly, the correlation trajectories for the different gene

subsets change. For genes with low rank numbers, gene subset and

whole transcriptome trajectories are similar in shape and lie close

to each other. However, trajectories differ from each other with

increasing gene rank (top row of subplots) and consequently, the

Euclidean distance between the green and the black trajectories

increases. This way we define a set of 1,500 genes putatively

controlling transdifferentiation, which includes phenotype related

genes as well as 28 TFs (Fig. S5).

TFs with unique kinetics are predicted to act as key
players

Characterizing the kinetics of these TF genes we find that both

their start and their time to peak expression precedes that of other

genes (Fig. 4B, C), although they are less strongly responding

(Fig. 4A). The majority of TFs become maximally expressed within

the first 24 h (Fig. 4C). Focusing on the hypothesized time window

of the reprogramming decision 12–24 h a.d. (Fig. 1), only five

genes show a specific up-regulation during this phase and closely

follow the global transcriptome trajectory: two basic helix-loop-

helix (bHLH; Fig. 4D), one APETALA2 (AP2), one mTERF and

one MADS-box TF (Fig. S5).

One of the predicted bHLH TFs (PpRSL1, ROOT HAIR

DEFECTIVE 6-like 1, Phypa_167487) has previously been

described [26] as a positive regulator of caulonema and rhizoid

development together with its functionally partially redundant

paralog PpRSL2 (Phypa_165193; Table 1). The paralog pair has

been argued to be functionally orthologous to the Arabidopsis

thaliana ROOT HAIR DEFECTIVE 6 (RHD6) gene, a positive

regulator of root hair development [26,27]. In the phylogenetic

tree (Fig. S6) the ortholog relationship between A. thaliana RHD6/

RSL1 and P. patens RSL1/2 is clearly evident. However, in our

analysis PpRSL2 is not predicted to be involved in the cellular

decision due to the fact that it does not show predominant

activation in the early phase alone (Fig. 4D) and is ranked beyond

the first 1,500 genes (Fig. 3C). Estimation of up-regulation time of

the two predicted bHLH TFs is 1.87 h and 2.61 h (Fig. 4D),

maximum activation 17.4 and 18.8 h a.d., i.e. during the early

phase (12–24 h a.d.; Fig. S7). The second bHLH factor

(Phypa_165670) belongs to the same bHLH subfamily as RSL1

and 2, namely the RHD/RSL clade (Fig. S6, Table 1). PpRSL1

has previously been shown to be repressed by abscisic acid [28],

suggesting a role in ABA/drought signaling. Given our tran-

scriptome trajectory reconstruction (Fig. 3C, 4D), we hypothesized

(i) that PpRSL1 would be involved in the establishment of apical

stem cells and (ii) that PpRSL2 would not exert a critical influence

on cell transdifferentiation after leaflet detachment. Therefore we

analysed the P. patens RSL1/2 loss-of-function single (Drsl1, Drsl2)

mutants [26] as well as the double mutant (Drsl1/2) with regard to

leaflet regeneration.

Phenoytypic analyses of loss-of-function mutants
confirm key player predictions

As a measure for transdifferentiation into apical stem cells we

took the average number of filaments formed per leaflet 72 h a.d.

That number was found to be significantly (p,0.05, one-sided t-

test, n = 40–60) lower in Drsl1 and Drsl1/2 mutants as compared to

the wildtype and Drsl2 (Fig. 5A). No significant difference was

detected between Drsl2 and wildtype or between Drsl1 and the

double mutant. While the double mutant and Drsl1 form 1.50 and

1.43 filaments per leaflet, respectively, Drsl2 forms 2.88 and the

wildtype 3.15 (Fig. 5). Since not all leaflets form filaments, we also

used the number of leaflets that have formed at least one filament

72 h a.d. as an indicator. Here, we found that 37.5% of the double

mutant and 43.3% of Drsl1 leaflets have formed filaments, while

this number was 61.7% for both Drsl2 and the wildtype. We

conclude that RSL1, with its distinct early activity peak around 18

h a.d. (Fig. 4D), is clearly positively involved in the transdiffer-

entiation of leaflet cells into apical stem cells, while its close paralog

RSL2 is not. Thus, Drsl1 as well as the double mutant exhibit a

significantly reduced capacity to form filaments (Fig. 5A), which

demonstrates a broader role than previously anticipated of the

bHLH ortholog PpRSL1.

The role of bHLH TFs in cellular decisions: influence of
redundancy and dimerization?

Our approach singled out TFs putatively involved in the

transdifferentiation process, which was confirmed in the case of

PpRSL1. Namely, we find PpRSL1 expressed early during the

reprogramming, before the cells are transformed into apical cells

and start their tip growth. Similar to this, the AtRHD6 gene is

expressed in hair cells of the root before they grow the

protuberances that are known as root hairs [26]. It should be

noted that the only other tip-growing cells in A. thaliana, pollen

tubes, are not affected by down-regulation of AtRHD6 [26].

Therefore, the function of the A. thaliana protein has apparently

been specialized during evolution, while the P. patens protein has

kept a more general functionality, although it is still able to

complement the Atrhd6 phenotype [26].

Constitutive expression of PpRSL1 and 2 in P. patens leads to

massive generation of rhizoids from gametophore tissue [29]. In

both, A. thaliana and P. patens, only the double knockouts of the

respective close paralog pairs severely affect root hair, respectively

caulonema and rhizoid development, demonstrating that both

paralogs are involved in positively regulating these cell types to

start tip growing. It may well be that this is achieved by the two

Table 1. Main transcription factors discussed in the manuscript.

P. patens v1.2 protein id Name TF family Predicted to be involved?

Loss-of-
function
mutant
studied? Comment

Phypa_167487 RSL1 bHLH yes yes

Phypa_165193 RSL2 bHLH no yes Close paralog of RSL1

Phypa_165670 n.a. bHLH yes no Same clade as RSL1 and 2

doi:10.1371/journal.pone.0060494.t001
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proteins acting as a heterodimer, as bHLH TFs are required to act

as dimers.

With regard to the reprogramming of differentiated leaflet cells

into tip growing chloronemal cells in P. patens, however, it is

tempting to speculate that instead of PpRSL2, which we have

shown not to contribute to this process, the other bHLH subfamily

member identified by us (Phypa_165670) will form a heterodimer

with PpRSL1 in order to achieve this particular regulation

(Fig. S7). In this context, comparable signaling by bHLH

heterodimers has been described in other systems, e.g. the human

HES/HERP proteins, which are Notch effectors and affect cell

fate decisions via repression of downstream target genes [30]. This

suggests that some differentiation processes in complex animals

and plants might follow the same underlying signaling principles.

Since redundancy of the PpRSL1/2 paralogs in formation of

rhizoids from gametophore stems vs. chloronemal filaments from

leaflets is different, we looked into another transdifferentation

process, namely the formation of vegetative diaspores, brachy-

cytes, from protonemal cells. Here, all three mutants are severely

impaired with regard to number of brachycytes formed (Ta-

ble S4). Also, the double mutant formed only 8% of subapical

brachycytes, while it generated 78% of apical brachycytes. Hence,

the formation of brachycytes, with regard to functional redun-

dancy of both paralogs, is more akin to rhizoid formation than to

apical stem cell formation from detached leaflets, where only

PpRSL1 is involved.

Interestingly, coupling of environmental and developmental

cues via cascades of bHLH proteins occurs in many systems from

human neurons to seed plant root hairs [31]. Here, we find similar

evidence for bHLH cascading, as bHLH TFs appear highly

ranked in all phases of the reprogramming (Fig. S7). Most

probably, bHLH TFs act together with further players as

described in e.g. neuron development, where an interplay of

bHLH and homeodomain TFs is required for cell fate specifica-

tion [32].

Summary and outlook
Time-resolved gene expression kinetics are able to reveal details

about the molecular and developmental time-sequential pattern of

developmental progression in complex systems; here: in vivo apical

stem cell formation in P. patens upon detachment of leaflets over a

time course of several days. We introduce a novel methodology to

predict key players from time-resolved transcriptome data by (i)

defining genes that follow the global transcriptome response and

are moderately regulated and (ii) isolating TFs among this

population that display peak expression in the critical phase (here:

Figure 5. Phenotypic analysis. A, Average number of filaments per leaflet 72 h a.d. (error bars: standard error; RSL1&1_2 vs. RSL2&WT: p,0.05,
one-sided t-test, n = 4–6). Detached leaflet of Drsl1 (B, without filament) and wildtype (C, with two filaments protruding close to the wounding site;
arrows) at 72 h a.d.
doi:10.1371/journal.pone.0060494.g005
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reprogramming of a leaflet cell into an apical stem cell). The

present analysis of transcriptome trajectories singled out several

TFs, predominantly from the bHLH family, putatively involved in

transdifferentiation (Fig. S5). Phenotypic analysis of loss-of-func-

tion mutants demonstrates that the prediction is valid and that the

closely related paralogs PpRSL1 and 2 do not act redundantly

with regard to establishment of apical stem cells. We expect the

methodology introduced here to aid in the detection of synergistic

action of TFs involved in developmental processes of complex

systems. In particular, it might be employed to predict key

regulators during aberrant gain of pluripotency by cancer cells.

Future analyses of this kind in different systems might reveal

general principles of networks controlling developmental progres-

sion in plants and animals.

Materials and Methods

Tissue culture and microscopy
Physcomitrella patens Gransden 2004 [33] was grown as previously

described [13]. Preculture of gametophores was carried out by

placing single gametophores with their stem into agarized (solid)

medium and subsequent growth for four weeks. Leaflets were

detached using forceps and placed into liquid medium or onto

solid medium covered by a sheet of cellophane. Detachment of

leaflets was always carried out in the middle of the 16 h light

period and detached leaflets were subsequently placed under the

same 16 h light/8 h dark regime under which the preculture had

occurred. Therefore, the 12 and 36 h a.d. harvest time points

represent the dark period and all other time points the light period.

Harvesting of leaflets was carried out by filtering through nylon

mesh followed by immediate freezing in liquid nitrogen.

Phenotypic analyses
Detached leaflets were observed under a stereo microscope 72 h

after detachment (a.d.) in order to determine the number of

filaments per leaflet. Four to six repetitions with 10 leaflets each

were carried out. For setup and long term observation refer to

Fig. S8. To determine the influence of osmotic conditions, leaflets

were incubated in liquid mineral medium vs. iso-osmotic

protoplast regeneration medium supplemented with glucose and

mannitol to 540 mOs. Three repetitions with 10 leaflets each were

carried out and analyzed 120 h a.d. Brachycytes (vegetative

diaspores) were induced by adding (+)-cis, trans-abscisic acid (ABA;

Duchefa; 25 mmol final concentration) to freshly homogenized

protonemal liquid culture set to 100 mg*L21 dry weight.

Observation was carried out after two weeks and formed

brachycytes scored into apical, subapical or side-branching,

respectively. Six repetitions were carried out and total number

of scored brachycytes was: WT 315, rsl1 222, rsl2 280, rsl1/2 161.

For number of brachycytes formed, 100 mL culture per line was

scored in three independent replicates.

RNA Isolation
Isolation of total RNA was performed using the RNeasy Plant

Micro Kit (Qiagen, Hilden, Germany) with an on-column DNase

treatment following the manufacturers’ protocol. Using the

MessageAmp II aRNA Kit (Ambion, Texas, USA), 100 ng total

RNA were amplified to yield sense-strand amplified RNA (aRNA),

which was reverse transcribed into first strand cDNA using

SuperScript III (Invitrogen, Karlsruhe, Germany) and random

hexamer oligonucleotides (Fermentas, St. Leon-Rot, Germany).

Microarray experiments
Microarray experiments (including RNA isolation, amplification

and labeling) were carried out as previously described [13]. Due to

the low amount of available material, two subsequent rounds of

amplification were carried out, according to the manufacturers’

protocol (MessageAmp II aRNA Kit; Ambion, Texas, USA). All

RNA samples were quality checked using a Bioanalyzer 2100

(Agilent, Santa Clara, USA). Raw data processing was carried out

using Analyst 2.0 (Genedata, Basel, Switzerland) as previously

described [13]. Probe sets were normalized (median scaling to a

target value of 1) using a rank invariant set (RIS), which consisted

of 48 non-differentially expressed genes (fold change ,1.25)

common to all pairwise array-to-array comparisons. The resulting

27,715 probes were further filtered prior to analysis. Lowly

expressed genes (abundance values ,1 for more than 75% of all

time points per gene) and genes with an inter quartile range ,0.25

were discarded, reducing the filtered set to 17,158 probes. Fold

expression values were calculated with respect to the mean of the

0 h time point, taken in duplicate and log2 transformed.

Quantitative realtime PCR
The EMBOSS implementation eprimer3 (http://emboss.

sourceforge.net/) was used for design of gene-specific oligonucle-

otides (Table S2). Quantitative realtime PCR was performed using

SensiMix SYBR Kit (Quantace, Berlin, Germany) on a Light-

Cycler 480 (Roche, Mannheim, Germany) according to the

manufacturers’ instructions. For each 25 mL reaction 50 ng of

aRNA-equivalent were used. Triplicate measurements on each

sample and melting curve analysis were performed for all samples

to ensure product specificity. Results from reactions with multiple

products were removed prior to further analysis. Resulting Cp-

values (crossing point, threshold cycle) were normalized to 60S

ribosomal protein L19 (Phypa_222528) and ribosomal protein S21

(Phypa_61453), employing the comparative Ct method (DDCt), as

their measured expression levels showed the lowest variation

between the time points used. qPCR validation at 24 h a.d. was

carried out on an independent biological replicate to confirm the

up-regulation of the three TFs predicted to be involved and FIE

(Phypa_61985). All four genes showed high log2 fold changes at

24 h a.d. relative to time point zero (Table S3).

Periodicity analysis
Periodic patterns in time series resulting from biological

experiments are of great interest. Direct Fourier analysis is only

applicable when data points are evenly spaced, which is not the

case in our experimental setup. The Lomb – Scargle periodogram

approach can quantify the periodic behavior of the gene

expression time series for every gene. This analysis provides a

direct method to treat unevenly spaced time points. Here, the

method proposed by [18] is used, which combined a Lomb –

Scargle test statistic for periodicity with a multiple hypothesis

testing procedure to detect significant periodic gene expression

patterns. We tested 1,500 regulated genes that were predicted to

be important in transdifferentiation for dominant oscillation

periods TGene around 24 h (Fig. 2). We used the time points from

0–72 h for periodogram analysis, such that the critical period of

24 h lies well between the lower and the upper frequency bounds

of the spectral analysis. Based on the mean time interval of the 10

measured time points, the periodogram was evaluated at 40 evenly

spaced test frequencies between fmin~1=72h, and

fmax~1=16h: 88 genes show a dominant oscillation period

23 h,P,25 h, with the lowest p-value (FDR-corrected q-value)

of 0.07 (0.605). Therefore circadian rhythmicity does not seem

to have a dominant role in this data set.
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Significance analysis of gene subset and whole
transcriptome distance

To assess the significance of the local minimum of the Euclidean

distance between moderately regulated genes and the global

transcriptome trajectory, we compared the goodness of fit of

polynomial regression models to the set of Euclidean distances

from rank ordered or randomly ordered gene subsets. For this, we

fitted the data points from the ordered and the randomized subsets

to both a full and a reduced model and calculated the deviation

from the ratio of the likelihood ratio statistic and the likelihood

under the full model [34]. In detail, we fitted a 7th order

polynomial jointly to the data points from ordered and random-

ized gene subsets
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where d
ord=rand
i denote the Euclidean distance from the ordered/

random gene subsets to the whole transcriptome trajectory.

~xx~(x1,x2, . . . ,xN{1,xN ) and ~~~(e1,e2, . . . ,eN{1,eN ) denote the

mean rank of the residual error term, respectively. N = 520 is the

total number of gene sets with different size p = [100, 150, 200,

300, 400, 500, 1,000] considered. The parameters li denote the

model coefficients. We compared the goodness of fit of the reduced

model above to a full model that allows separate coefficients for the

randomized and ordered gene sets.
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where the meaning of the variables and coefficients ai,bi, remains

the same. If the regression model using the ordered gene subsets is

significantly different from the one obtained using a randomized

gene list, the residual sum of squares should become substantially

smaller when fitting the full model with more parameters as

compared to a fit with the reduced model. Hence, we propose the

null hypothesis that the quality of fit does not change when fitting

the ordered and the randomized data either to the full or the

reduced model. If that is the case, the minimum of the Euclidean

distance between moderately regulated genes and the global

transcriptome trajectory cannot be explained from the specific

gene response strength. The difference between the deviances for

the two models follows approximately a chi-square distribution

with k degrees of freedom, where k is the number of additional

parameters available to the full model, from which we calculated

the p-value using the ANOVA function in R. Testing different

subset sizes and all data points from all subsets together, we always

found p-values ,1e–5 (Fig. S9), indicating that the shape of the

fitted polynomial is indeed a result of using an ordered list of

genes, confirming the local extrema for minimal distance and

maximal correlation of moderately strong responding genes.

Ranking and multi-dimensional scaling
Dynamic gene response was estimated from a multi-dimensional

scaling analysis (MDS), which projects the distance matrix

containing the Euclidian distances between all gene kinetics onto

a two dimensional space. To calculate the projection, retaining the

original distances as closely as possible, we applied the HiT-MDS

algorithm [35], which maximizes the Pearson correlation of the

original and the reconstructed distances using a gradient descent

approach. The resulting point distribution was then fitted to a

skewed multivariate normal distribution using the R-package ‘sn’

[36] (Version 2.14, http://www.R-project.org).

P-values p�i for each gene, denoting the gene response, are

calculated from the integral over the normed probability density of

the skewed multivariate normal distribution

pi~1{

ð
Pr w Pr (xi ,yi )

Pr(x0,y0)dx0dy0

where Pr (xi,yi) denotes the probability density of gene i located

via the MDS projection at xi,yi: Genes are subsequently ranked

according to their false-discovery rate adjusted q-values applying

the Benjamini-Hochberg procedure [37].

Gene Ontology analysis
Gene Ontology (GO) analysis was performed using the GOstats

library from R (Version 2.14, http://www.R-project.org). The P.

patens GO annotation (11,328 annotated genes) was used [33]. Bias

analysis of GO terms related to biological process (BP) was done

via a conditional hypergeometric test using a cutoff of p,0.05.

To robustly estimate differentially regulated genes per time

point in the commonly encountered presence of outliers and

skewness [38], we fit a skew t-distribution distribution [36] to the

log2 fold change between the expression values at 0 h and the

respective time points (Fig. S10). In addition to the regular t-

distribution f (x) with ndf degrees of freedom, a skew-t distribution,

fskew(x) has an additional skewing parameter c such that

fskew
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where j and v denote the location and scale of the distribution.

The gene fold expression histogram was fitted using maximum

likelihood estimation for the univariate skew-t distribution,

implemented in the R package ‘sn’. Maximum likelihood

estimation of the distributions was in good agreement with the

experimental data outperforming other approaches such as robust

estimation (Fig. S3). Regulated genes having a p-value ,0.05,

one-sided t-test, were considered significantly up- or down-

regulated (Fig. S3, S10).

Whole transcriptome and gene subset correlation
trajectories

Transcriptome trajectories are visualized in a two-dimensional

correlation space defined by the Pearson correlation and mutual

information of the temporal gene deviations [25]. As the linear
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correlation measure we use a modified Pearson correlation.

rV ½V (t0),V (ti)�~
V (t0) � V (ti)

DV (t0)DDV (ti)D
,

where the vectors V (ti) and V (t0) contain the deviations of each

gene from their temporal mean at the time points ti and t0. rv
accounts for differences in expression variability, yet similar

temporal profiles. The mutual information

I ½V (t0),V (ti)�~
X

x[V(t0)

X
y[V (ti )

p(x,y) ln
p(x,y)

p0(x)pi(y)

� �
{ (ti)

accounts for non-linear relationships between two gene deviation

vectors V(ti) and V (t0): The joint and marginal distributions

p(x,y) and p0(x), pi(y) are estimated by discretizing the gene

expression deviation. The constant (ti) corrects for the systematic

error from discretization of the continuous gene expression values

and is calculated from the minimal I using 100 random

permutations of V (ti):
To calculate the whole transcriptome Pearson correlation rV and

mutual information I between time points t0 and ti, we generated

the vectors V0 and Vi from sampling gene sets of size ptranscriptome

from the whole transcriptome (N = 17,158) and taking the average

over 1,000 repeats. Plotting rV ½V (t0),V (ti)� against I ½V(t0),V (ti)�
for all time points defines a trajectory in correlation space for the

whole transcriptome. To assess the contribution of individual gene

sets to the dynamic behavior of the whole transcriptome, we first

ranked all genes according to the MDS p-values. The ranked list of

N = 17,158 genes was then divided into non-overlapping gene sets

of equal size psubset. For each of these gene groups we calculated a

subset trajectory and compared each trajectory to the whole

transcriptome trajectory of the same sampling size (psubset =

ptranscriptome) using the Euclidean distance as well as the Pearson

correlation (Fig. S11). We assume that subset trajectories having a

small Euclidean distance and a large correlation with the whole

transcriptome trajectory contain genes that are important for the

overall phenotypic development. The analysis was repeated for

different set sizes, which we chose as p =

[100,150,200,300,400,500,1000], being limited by sampling noise

and by resolution for small and large sampling set sizes,

respectively.

Estimation of gene induction times
Gene induction times were estimated by approximating the

mRNA fold expression values to a logistic function [39]

g(t)~
a

1z exp (b{ct)
:

Parameter fitting for a,b,c was done using a Levenberg-

Marquardt non-linear least squares algorithm as implemented in

the R package minpack.lm. The up-regulation time for each gene

was defined as the time of maximal change in the acceleration of

the logistic function. This point can be calculated by finding the

maximum of the third derivative (i.e., the first time at which the

fourth derivative of the logistic function equals zero).

Data access
The microarray data can be accessed from ArrayExpress

(http://www.ebi.ac.uk/arrayexpress/) under the accession num-

ber E-MTAB-915.

Supporting Information

Figure S1 Mean and variance of transcriptome re-
sponse in P. patens after leaflet detachment. A, Mean

and B standard deviation of leaflet transcriptome fold change a.d.

Two independent experiments were conducted, labeled S and T;

the 0 h time point was sampled in both. The fold change has been

normalized with respect to the two experiments performed

individually at 0 h (shown in blue and black, respectively), as well

as to their mean (shown in red).

(PDF)

Figure S2 p-value histogram of transcriptome response
and multi-dimensional scaling of the gene expression
profiles up to 96 h a.d. A, p-value histogram for dynamic

transcriptome response scores evaluated from the MDS analysis

and fitting with a bivariate skew normal distribution, resulting in a

long-tailed distribution. The barplot insert shows the log2 fold

change dynamics of two previously known markers for apical stem

cell differentiation, the transcriptional regulator PpFIE

(Phypa_61985) as well as Cyclin D;1 (Phypa_226408). B, Multi-

dimensional scaling (MDS) analysis of transcriptome response to

leaflet detachment using 17,128 genes [35]. Symbol colors indicate

the p-value of differential regulation for the whole time course.

Significantly regulated genes with a FDR-corrected q-value ,0.05

are marked by black dots and are additionally labeled with the P.

patens gene IDs. The positions of the five predicted TFs as well as

the weakly regulated PpRSL2 (165193) are additionally indicated

by red squares. The red dashed lines mark curves of equal

probability density by fitting a bivariate skew normal distribution

to the point distribution.

(PDF)

Figure S3 Gene Ontology analysis of transcriptome
response after leaflet detachment. Biased biological process

GO categories for significantly regulated genes at 1–96 h a.d.

Gene fold expression profiles were fit to a skew-t distribution and

considered significantly up- or down-regulated for a p-value

,0.05. GO analysis was done using a conditional hypergeometric

test from the R Bioconductor package GOstats, using as

background 11,283 genes having a GO annotation. GO categories

were considered significant with a cutoff p-value ,0.05. The p-

values in the plot are log-transformed and color-coded in a range

from 0 to 5. Highlighted categories are mentioned in the text.

(PDF)

Figure S4 Protonemal filaments occasionally emerge
from leaflets of slowly dehydrated gametophores.
Gametophores were slowly dehydrated over several weeks in petri

dishes devoid of covering laboratory film. Under these conditions,

occasional emergence of protonemal filaments from leaflets of

dehydrated gametophores can be seen (arrows).

(PDF)

Figure S5 Transcription factors among the top ranked
genes. TFs putatively involved in the development of apical stem

cells in P. patens. All 28 annotated TFs [40] up to gene rank 1,500

are shown. Colored backgrounds indicate a potential role in

differentiation due to their dominant peak in fold expression

within the early phase (12–24 h a.d.) and ranking among the first

1,500 genes. The green highlighted TF was verified as involved in

this study, the TFs in yellow were also detected based on their

significant up-regulation in the early phase (cf. Figs. 3, S11). Error

bars have been estimated from the variance of expression for the

0 h time point that was taken in duplicate.

(PDF)
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Figure S6 Phylogenetic tree of bHLH transcription
factors. Gene family tree of part of the plant bHLH proteins,

centered on the RSL subclade (members shown in red). The tree

was calculated based on bHLH protein domains using Bayesian

inference as previously described [28], posterior probabilities are

shown at the nodes. Accession numbers, resp. gene names for

previously annotated P. patens and A. thaliana bHLH proteins, are

shown. Besides proteins from these two organisms, OsBP-5

(CAD32238) from O. sativa was included, as it belongs to this

subfamily. The two P. patens bHLH TFs detected by their early

peaking upon leaflet detachment are PpRSL1 and Phypa_165670

(marked in blue), while PpRSL2 was shown not to be involved in

apical stem cell formation (see text).

(PDF)

Figure S7 Timeline of transcriptional activation after
detachment. Mean TF activity per time point, the three

response intervals are denoted as well as TFs (shown by family

assignment) significantly differentially regulated in the respective

interval. Mean fold change denotes the sum of log2 fold change

values of all annotated TFs [40] within the P. patens genome. The

error bars denote the standard deviation of the mean fold change.

(PDF)

Figure S8 Long-term observation of detached leaflets.
Petri dish of a leaflet detachment/transdifferentiation experiment,

62 d a.d., demonstrating the lack of rhizoids in the double mutant

(upper right) and that no severe differences in long term

gametophore growth are visible (wt: upper left; Drsl1 lower right;

Drsl2 lower left).

(PDF)

Figure S9 Regression Analysis of Gene subset Euclidean
Distance. The Euclidean distances of ordered (dark red lines)

and randomized (grey lines) gene subsets for different gene set sizes

and all gene sets combined have been fitted with two different

polynomial regression models. Plot titles denote the respective

gene set size. A full regression model allows separate fitting of the

randomized and ordered gene sets, depicted by the black and

orange dashed lines, respectively. A reduced model (red dashed

line) fits both types of gene subsets simultaneously. The p-values of

the ANOVA comparison of the two models confirm the

differences between the full and reduced model. Thus, the local

minimum of the Euclidean distance between moderately regulated

genes and the global transcriptome trajectory is indeed a result of

using an ordered list of genes.

(PDF)

Figure S10 Skew-t distribution fit to gene fold expres-
sion. A, B Normal, robust and skew-t distribution fit to the log2

gene fold change at 1 h (A) and 96 h (B). C, D Comparison of

goodness-of-fit of the fitting distributions: quantile-quantile plots of

the sample distributions. The skew-t distribution shows the best fit

to the distributions, in particular with respect to the outliers at

low/high quantiles. Abbreviations: SD: standard deviation, IQR:

inter quartile range.

(PDF)

Figure S11 Euclidean Distance and Pearson Correlation
of Gene subsets and whole transcriptome trajectory. A,

Euclidean distance and C Pearson correlation of ranked gene

subsets with respect to the whole genome trajectory. Both

measures have their absolute maximum around gene rank

1,500. B, Projection of the Euclidean distance and Pearson

correlation showing the simultaneous extremum of both measures

for genes ranked between 1,000–1,500. The dark and light shaded

areas in a and c mark the cutoff for significantly regulated genes

from the MDS and transcriptome trajectory at rank 299 and

1,500, respectively. The cross in B marks the rank 1,500. The

arrows in A and C depict the location of the five predicted TFs and

of the non-involved paralog, as shown in Fig. 3.

(PDF)

Table S1 Gene Ontology categories of biological pro-
cesses being under-represented among the significantly
regulated genes. Significantly regulated genes as detected from

the MDS analysis (299 genes with a q-value ,0.05). Altogether,

11,283 genes were annotated and used as background. GO

categories were considered significant with a cutoff of p,0.05.

(PDF)

Table S2 Oligonucleotides used for realtime PCR.

(PDF)

Table S3 qPCR validation. Log2-fold expression values

relative to time point zero are shown.

(PDF)

Table S4 Brachycyte formation upon ABA treatment.

(PDF)
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