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The method for analytic evaluation of four-particle integrals, proposed by Fromm and Hill, is
generalized to include complex exponential parameters. An original procedure of numerical branch
tracking for multiple valued functions is developed. It allows high precision variational solution of
the Coulomb four-body problem in a basis of exponential-trigonometric functions of interparticle
separations. Numerical results demonstrate high efficiency and versatility of the new method.
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I. INTRODUCTION

The problem of four particles with the Coulomb in-
teraction plays an important role in atomic and nuclear
physics. It forms a link between the three-body prob-
lem, which can be solved numerically with very high
precision, and many-body problems, solutions of which
are very approximate. Thus, profound studies of various
four-particle systems can provide valuable insights into
physics of systems with greater numbers of particles.

In addition to the methodological interest, the four-
body problem has unquestionable practical significance.
Positronium beams are extensively used in positronium-
atom scattering experiments, but the positronium
molecule, e+e−e+e−, has not been observed experimen-
tally yet. All existing knowledge of its properties is based
on numerical studies [1]. Molecules and ions including
µ-meson have attracted much attention traditionally in
connection with the problem of the muon catalyzed fu-
sion. Calculations suggest [2] that muonic molecules like
p+µ−p+µ− have higher nuclear reaction rates than the
corresponding three-particle ions. These examples show
that high-precision numerical solution of the four-body
problem is essential for proper understanding of various
physical phenomena.

The majority of four-particle systems are nonadiabatic,
and cannot be treated within the adiabatic approxima-
tion. The only practical way to calculate their energy and
properties is to use the variational approach, taking into
account the correlated motion of all the particles. Ba-
sis functions of the Gaussian type, depending on six in-
terparticle separations and several nonlinear parameters,
have been extensively used for such calculations [1, 2, 3].
An important advantage of the Gaussian functions is that
all integrals can be easily evaluated. The nonlinear pa-
rameters are optimized stochastically [3]: at each step of
basis expansion, many functions with randomly gener-
ated parameters are examined, and the function, giving
the largest decrease in energy, is added to the basis.

However, unlike real wavefunctions, the Gaussian func-
tions do not decay exponentially, and do not satisfy the
cusp condition. From this point of view, they are rather
unphysical. As a result, convergence of the variational
procedure is very slow, and many hundreds of basis func-
tions must be used. A recent calculation of the positro-
nium molecule [1] involved 1600 Gaussian functions. It
was suggested that further expansion of the basis was not
practical because of increasing computation time and low
probability of finding good parameters. Thus, more effi-
cient basis functions are clearly required.

A method for analytic evaluation of four-particle inte-
grals, proposed by Fromm and Hill [4], opened up possi-
bilities of variational calculation of four-particle systems
in a basis of exponential functions of interparticle sepa-
rations. This method reduces computation of integrals,
needed to determine matrix elements of a four-particle
Hamiltonian, to evaluation of the dilogarithmic function
[5] of various arguments. Application of this method,
however, is a very difficult problem. Because the diloga-
rithm is a multiple valued function, the entire algorithm
cannot be used without an effective procedure of branch
and singularity tracking.

This problem was initially solved by the authors for
the case of real exponential parameters. The first calcu-
lations of the positronium molecule [6], and several mesic
molecules [7] in the exponential basis, depending on all
six interparticle separations, have demonstrated high ef-
ficiency and great potential of this method. To the best
of our knowledge, nobody else has done this yet [8].

Because one exponential function is as effective as eight
Gaussians, a size of the basis can be reduced significantly.
However, an amount of time, needed to compute one ma-
trix element, is much larger than for the Gaussian basis.
Thus, optimization of nonlinear parameters is the main
difficulty. Deterministic optimization (gradient descent)
gives excellent results for a relatively small number of ex-
ponential basis functions. Stochastic optimization (trial
and error), used to expand the basis further, is ineffi-
cient due to a dramatic increase in computation time.
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This fact suggests that a possible alternative to an enor-
mously large Gaussian basis is a relatively short basis of
the most efficient and versatile functions with carefully
optimized parameters.

A natural generalization of the exponential basis is
the exponential-trigonometric basis, obtained by replac-
ing real exponential parameters with complex ones [9].
The exponential-trigonometric functions have been suc-
cessfully employed in variational calculations of three-
particle adiabatic systems [10]. They are much more ef-
ficient, than the ordinary exponentials for two reasons.
First, they contain twice as many nonlinear parameters,
thus allowing better approximation of the wavefunction.
Second, they exhibit nonmonotonic dependence on inter-
particle separations, being able to imitate sharp peaks
in wavefunctions of adiabatic systems. The computation
time increases only insignificantly in comparison with the
case of real exponential parameters.

In order to use the exponential-trigonometric basis in
the four-body problem, one has to evaluate the four-
particle integrals with complex parameters. The prob-
lem of branch tracking in a general complex case is
formidable. Every branch change for every multiple val-
ued function has to be taken into account if correct val-
ues of the integrals are to be obtained. An original
(and, inevitably, very nontrivial) procedure of numeri-
cal branch tracking has been developed by the authors.
The first variational calculations of four-particle systems
in the exponential-trigonometric basis proved extremely
promising [11]. They showed that one exponential-
trigonometric function can replace seven exponential
functions in calculation of e+e−e+e−, and several dozen
exponentials in studies of adiabatic systems [11]. There-
fore, it presents a real alternative to both the exponential
and Gaussian basis functions.

Even though results of the calculations involving
the exponential and exponential-trigonometric functions
have been published [6, 7, 11], details of the new method
have not been reported yet. The purpose of the present
paper is to fill this gap. We present a description of our
algorithm that will enable a reader to implement it as a
computer program.

The paper is organized as follows. Section II.A dis-
cusses what integrals are needed to compute matrix ele-
ments of a four-particle Hamiltonian, and how the num-
ber of them can be reduced. In Sec. II.B, principles of
the original method by Fromm and Hill are outlined.
Sec. II.C provides information about multiple valued
functions used in the analysis. In Sec. II.D, a simplified
procedure of branch tracking in the case of real parame-
ters is described. Sec. II.E gives a detailed exposition of
the method of branch tracking in the most general case,
when all the parameters are complex. In Sec. II.F, a prac-
tical implementation of the branch tracking algorithm is
described. The last Section presents our conclusions.

II. DESCRIPTION OF THE METHOD

A. Matrix elements of four-particle Hamiltonian

Let us consider a Hamiltonian of a four-particle system
with the Coulomb interactions:

H = − h̄2

2

4
∑

j=1

∆j

mj
+

4
∑

j<k

qjqk

rjk
. (1)

Here mj and qj , j = 1...4, are masses and charges, and
rjk = |rj −rk| are interparticle separations. Our purpose
is to evaluate matrix elements of H with exponential ba-
sis functions

Φb = exp(−
4

∑

j<k

bjkrjk), Φc = exp(−
4

∑

j<k

cjkrjk). (2)

These functions depend on complex parameters {bjk}
and {cjk}. In what follows, the notation {xjk} will al-
ways refer to six quantities, xjk , with j, k = 1...4 and
j < k, i.e. x12, x13, x14, x23, x24, x34, assuming that
xjk = xkj .

In order to compute matrix elements of the operator
of kinetic energy in Eq. (1), one has to evaluate the fol-
lowing quantities:

〈Φb | cosΘjkl | Φc〉 = 〈Φb |
r2
jk + r2

jl − r2
kl

2rjkrjl
| Φc〉 , (3)

where j 6= k, k 6= l, j 6= l. The integrands in the last
formula display linear and even quadratic dependence on
certain interparticle separations. Therefore, in order to
obtain matrix elements of the Hamiltonian, Eq. (1), one
has to calculate a total of 43 integrals: one overlap in-
tegral, six integrals of the Coulomb interactions, and 36
integrals, given by Eq. (3).

It turns out, however, that it is possible to avoid com-
putation of the integrals in Eq. (3). It has been shown by
one of the authors that the matrix elements of the above
Hamiltonian can be expressed in terms of the overlap in-
tegral and six Coulomb integrals only [12]. Thus, one can
write:

〈Φb | H | Φc〉 = H1 − H2 − H3 . (4)

The individual terms in Eq. (4) are given by the following
expressions [12]:

H1 =

4
∑

j<k

[

(mj + mk)

2mjmk
ajk + qjqk

]

〈Φa | 1

rjk
| Φa〉 ; (5)

H2 =

4
∑

j<k

(mj + mk)

2mjmk
d 2

jk 〈Φa | Φa〉 ; (6)
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H3 =
4

∑

j=1

4
∑

k<l
k,l 6=j

(ajksjk + ajlsjl − ajnsjn)

2mj ajkajl
djkdjl . (7)

In these formulas, Φa is a new function with parame-
ters {ajk}, defined as ajk = (bjk + cjk)/2:

Φa = exp(−
4

∑

j<k

ajkrjk) . (8)

The parameters {djk} are defined as djk = (cjk − bjk)/2,
and the quantities {sjk} are given by:

sjk = 〈Φa | 1

rjk
| Φa〉 − ajk〈Φa | Φa〉 . (9)

The additional index n in Eq. (7) is fixed by a condition
n 6= j, k, l.

Therefore, only seven integrals – the overlap integral
and six Coulomb integrals, calculated with the function
Φa, – are needed to determine the matrix elements of the
Hamiltonian, Eq. (1). The above formulas are valid for
both real and complex parameters. They are indispens-
able for any application of this method.

B. Evaluation of four-particle integrals

In this paper, we generalize the method of analytic
evaluation of four-particle integrals, proposed by Fromm
and Hill [4], to include complex exponential parameters.
First, we would like to recall basic ideas of this method.
The following family of integrals is considered:

J({njk}, {αjk}) =

∫

(

4
∏

j<k

r
njk−1
jk ) exp(−

4
∑

j<k

αjkrjk) dV .

(10)
Here, {αjk} denotes a set of six exponential parameters,
α12, α13, α14, α23, α24, α34, and {njk} is the corre-
sponding set of non-negative integers. The integrand de-
pends on six interparticle separations, {rjk}. The inte-
gration is performed over 9-dimensional space of relative
coordinates of four particles: dV = d 3r12d

3r13d
3r14.

An integral with all njk = 0 is called “generating”:

I({αjk}) =

∫

(

4
∏

j<k

r−1
jk ) exp(−

4
∑

j<k

αjkrjk) dV . (11)

All the integrals in Eq. (10) can be obtained from the
generating integral, Eq. (11), by differentiation:

J({njk}, {αjk}) = [

4
∏

j<k

(− ∂

∂αjk
)njk ] I({αjk}) . (12)

The generating integral is given by the following formula:

I({αjk}) =
16π3

σ
[

4
∑

j=1

4
∑

k=1

v(γ
(j)
k /σ) +

4
∑

j=2

u(β
(1)
1 β

(j)
1 )] .

(13)

The functions v(z) and u(z) are expressed in terms of the
dilogarithmic function Li2(z):

u(z) = Li2(z) − Li2(1/z) ; (14)

v(z) =
1

2
Li2[(1 − z)/2]− 1

2
Li2[(1 + z)/2]− (15)

−1

4
ln2[(1 − z)/2] +

1

4
ln2[(1 + z)/2] .

In Eq. (13) for the generating integral, γ
(j)
k are third-

order polynomials in α’s, defined in the following way:

γ
(j)
k = −µ

(j)
j − µ

(j)
k + µ

(j)
l + µ(j)

m , (16)

γ
(j)
j = +µ

(j)
1 + µ

(j)
2 + µ

(j)
3 + µ

(j)
4 ,

where for each j 6= k: l 6= j, k; m 6= j, k; l 6= m. The

polynomials µ
(j)
k are defined as follows:

µ
(j)
k = αlm(−α2

jk + α2
kl + α2

km) , (17)

µ
(j)
j = 2αlmαklαkm ,

with the same restrictions on values of j, k, l, and m.
The function σ is a square root of a sixth-order poly-

nomial in α’s: σ =
√

s1 + s2. The quantity s1 in this
expression is given by

s1 =

4
∑

j=2

α2
1jα

2
lm(α2

1j+α2
lm−α2

1l−α2
1m−α2

jl−α2
jm) , (18)

where for each j: l 6= 1, j; m 6= 1, j; l 6= m. The quantity
s2 is determined as

s2 =

4
∑

j=1

α2
jlα

2
jmα2

jk , (19)

where for each j: l, m, k 6= j; l 6= m; m 6= k; l 6= k.

Finally, β
(j)
k is defined by the following expression:

β
(j)
k = (σ − γ

(j)
k )/(σ + γ

(j)
k ) . (20)

In all these formulas, indices j, k, l, m change from 1 to
4, and it is assumed that αjk = αkj for each j 6= k. If
some indices are not defined uniquely, the formulas are
symmetric under their permutations.

Eq. (13) is the main result of this method [4]. It pro-
vides an analytic expression for the generating integral,
Eq. (11). It was pointed out [4] that there is no need
to know an analytic dependence of the generating inte-
gral on the parameters {αjk} to compute the family of
integrals, Eq. (10). According to Eq. (12), all these in-
tegrals are derivatives of the generating integral. Special
formulas can be used [4] to calculate numerical values
of derivatives of functions f · g and h(g), if numerical
values of derivatives of the functions f, g, and h have
already been computed. For example, derivatives of the
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term v(γ
(j)
k /σ) in Eq. (13) can be obtained in the follow-

ing way. First, derivatives of σ2 and γ
(j)
k with respect

to {αjk} are calculated. Then derivatives of a function

h(z) = z−1/2 are computed at z = σ2. After that, us-
ing a formula for derivatives of h(g) with g = σ2, one
finds derivatives of 1/σ with respect to {αjk}. Then, us-

ing a formula for derivatives of f · g with f = γ
(j)
k and

g = 1/σ, one obtains derivatives of γ
(j)
k with respect to

{αjk}. After that, derivatives of a function h(z) = v(z)

at z = γ
(j)
k /σ are calculated. Finally, using a formula

for derivatives of h(g) with g = γ
(j)
k /σ, one can find the

derivatives of v(γ
(j)
k /σ) with respect to {αjk}. Within

this approach, all the integrals of Eq. (10) can be evalu-
ated by means of an efficient recursive procedure, working
with numbers only.

At this point, we can appreciate importance of
Eqs. (4)-(9). In order to obtain the matrix elements of
the Hamiltonian, Eq. (1), we have to compute the mixed
derivatives given by Eq. (12) up to the sixth order only,
i.e. for njk = 0, 1, where j, k = 1...4, and j < k. This
means that, at each step of the recursive procedure, we
calculate 26 = 64 derivatives. If we tried to evaluate
the integrals of Eq. (3) directly, it would be necessary
to compute the mixed derivatives in Eq. (12) up to 18th
order, i.e. for njk = 0...3. The number of derivatives,
calculated at each step, would increase quadratically. An
amount of time, required to carry out the entire recursive
procedure, would be enormous. Therefore, the original
method by Fromm and Hill [4], used by itself, does not
make high precision calculations of four-particle systems
possible. Only in conjunction with the method [12] for
reducing the number of integrals can it produce valuable
results.

C. The multiple valued functions

The main difficulty in using Eq. (13) for the generating
integral is the fact that the functions in this formula are
multiple valued. Indeed, the functions u(z) and v(z),
given by Eqs. (14) and (15), are expressed in terms of the
dilogarithmic function Li2(z). The dilogarithm is defined
as follows [5]:

Li2(z) = −
∫ z

0

ln(1 − ζ)

ζ
dζ . (21)

This function is analytic inside the unit circle in the com-
plex plane:

Li2(z) =
∞
∑

n=1

zn

n2
, |z| < 1 . (22)

Its values outside the unit circle can be determined using
a relation [5]:

Li2(z) = −π2

6
− 1

2
ln2(−z) − Li2(1/z) . (23)

In the immediate vicinity of the unit circle, where con-
vergence of the series in Eq. (22) is slow, the following
relations can be used to shift the argument of Li2(z):

Li2(z) =
π2

6
− ln(z) ln(1 − z) − Li2(1 − z) . (24)

Li2(z) =
1

2
Li2(z

2) − Li2(−z) . (25)

Presence of the logarithm in Eqs. (23) and (24) clearly
indicates that the function Li2(z) is, in general, multiple
valued. In order to specify its principal branch we need
to fix the principal branch of the logarithm. The complex
logarithm has branch points at 0 and ∞. We choose its
branch cut to run along the negative real axis and define
the principal branch as follows:

ln(z) = ln |z| + i arg z , − π < arg z < π . (26)

This choice determines branch cuts and fixes the prin-
cipal branch for the dilogarithm, and the functions u(z)
and v(z).

The function Li2(z) has branch points at 1 and ∞; its
branch cut runs from 1 to ∞ along the positive real axis.
The function u(z) has branch points at 0, 1, and ∞; its
branch cut goes from 0 to ∞ along the positive real axis.
The function v(z) has branch points at 1, -1, and ∞; its
branch cuts run from ∞ to -1 along the negative real
axis, and from 1 to ∞ along the positive real axis.

Fig. 1 exhibits the branch points and cuts for these
multiple valued functions.

It is important to note that the function σ, which is
present in Eq. (13) and defined using Eqs. (18) and (19),
is also a multiple valued function. The complex square
root has branch points at 0 and ∞. We choose its branch
cut to run along the positive real axis and define the
principal branch as follows:

√
z =

√

|z| exp(
i

2
arg z) , 0 < arg z < 2π . (27)

It can be seen from the definition of the generating in-
tegral, Eq. (11), that it is a continuous function of param-
eters {αjk} for all values of these parameters satisfying
the following conditions:

α12 + α13 + α14 > 0 , α12 + α23 + α24 > 0 , (28)

α13 + α23 + α34 > 0 , α14 + α24 + α34 > 0 .

α12 + α13 + α24 + α34 > 0 ,

α12 + α14 + α23 + α34 > 0 , (29)

α13 + α14 + α23 + α24 > 0 .

These conditions mean, physically, that the wavefunc-
tion of a system of four particles decreases exponen-
tially when any of the interparticle separations become
infinitely large. If the parameters {αjk} are complex, the
above inequalities must be satisfied by their real parts.
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FIG. 1: Branch cuts in the complex z plane, necessary to
define principal branches of the multiple valued functions: a)
ln(z), branch points at 0 and ∞; b) Li2(z), branch points at 1
and ∞; c) u(z), branch points at 0, 1, and ∞; d) v(z), branch
points at 1, -1, and ∞.

The continuity of the generating integral, Eq. (11), im-
plies that the right hand side of Eq. (13) is also a con-
tinuous function of {αjk}. This fact has two important
consequences.

First, the multiple valued functions u(z), v(z), and
σ(z) in Eq. (13) remain continuous while their branches
change. As a point of interest moves in 12-dimensional
space of six complex parameters, {αjk}, the arguments
of these functions move freely in the complex plane, and
their branches change repeatedly. However, a computer
can evaluate only the principal branch of the logarithm,
given by Eq. (26), and the principal branch of the square
root, given by Eq. (27). Therefore, only the principal
branches of the functions Li2(z), u(z), v(z), and σ(z), de-
fined in the complex plane with the branch cuts, can be
calculated directly. Thus, a special procedure of branch
tracking is necessary to restore continuity of these func-
tions every time their arguments cross the branch cuts.

Second, all singularities, which different terms in
Eq. (13) can have, cancel mutually. These singularities
arise when σ = 0, and when any of the following equali-
ties are satisfied:

− αjl + αjm + αjn = 0 ,

αjl − αjm + αjn = 0 , (30)

αjl + αjm − αjn = 0 ,

where for each j = 1...4: l, m, n 6= j; l 6= m; m 6= n;
l 6= n. These singularities are unphysical, and should
have no effect on the value of the generating integral.
As a point under consideration moves in the space of
the parameters {αjk}, the arguments of the functions

u(z) and v(z) can frequently appear in the vicinity of
the singular (branch) points. As a result, the values of
these functions can exhibit considerable change, even if
the parameters {αjk} change only slightly. Therefore,
a special procedure for dealing with the singularities is
needed in order to carry out explicit cancellation of all
singular terms.

This discussion demonstrates that the method of [4]
is impossible to use without an effective algorithm for
numerical branch and singularity tracking.

D. Branch tracking in the real case

Before discussing a general algorithm of branch track-
ing, it is beneficial to consider a particular case, when
all the exponential parameters, {αjk}, are real numbers.
Let us introduce the following parametrization:

αjk(p) = (αjk − 1)p + 1 , 0 ≤ p ≤ 1 . (31)

As the real parameter p changes from 0 to 1, the cor-
responding point in 6-dimensional space moves from
(1,1,1,1,1,1) to (α12, α13, α14, α23, α24, α34). If the pa-
rameters {αjk} satisfy the conditions of Eqs. (28) and
(29), the parameters {αjk(p)} will satisfy these condi-
tions for any p between 0 and 1. Therefore, the gen-
erating integral, given by Eq. (13), must be a con-
tinuous function of p. It is known [4] that Eq. (13)
with the functions u(z), v(z), and σ(z), represented by
their principal branches, yields the correct value for the
generating integral at the reference point (1,1,1,1,1,1).
If this value changes continuously, as the parameter p
goes from 0 to 1, one can be sure that the generating
integral will be computed correctly at the final point
(α12, α13, α14, α23, α24, α34). Therefore, continuity of this
integral is a criterion of the correct branch tracking.

Let us define a function S(p) as the sum in the square
brackets of Eq. (13) when the parameters {αjk(p)} are
used instead of {αjk}:

S(p) =

4
∑

j=1

4
∑

k=1

v(γ
(j)
k /σ) +

4
∑

j=2

u(β
(1)
1 β

(j)
1 ) . (32)

Our purpose is to ensure that this function is continuous
along the path from p = 0 to p = 1.

First, we consider a case when σ2(p) > 0. The func-
tion σ(p) is real, and all the arguments of the functions
u(z) and v(z) in Eq. (32) are real as well. It will be
shown in Sec. II.E that only imaginary parts of these
functions exhibit discontinuities, when their arguments
cross the branch cuts. Because the generating integral is
real, the imaginary parts of the functions u(z) and v(z) in
Eq. (32) must cancel anyway. Therefore, discontinuities
in the real part of S(p) may appear near the singular
points of the functions u(z) and v(z) only. The singu-
larities of different terms in Eq. (32) should cancel one
another. However, because of possible branch changes,
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complete cancellation may not happen. The formulas of
Sec. II.E suggest that, near the singular points of u(z)
and v(z), the real part of the function S(p) can undergo
changes by mπ2, where m is some integer. Thus, the
function S(p) can have finite discontinuities, which are
integer multiples of π2.

From now on, the branch tracking is only a techni-
cal problem. To solve it, it is necessary to find all val-
ues of the parameter p between 0 and 1, which cor-
respond to singular points. They include zeros of the
sixth-order polynomial σ2(p), and values of p, at which
the parameters {αjk(p)} satisfy any of the conditions of
Eq. (30). Let us denote the resulting set of numbers as
{pj}, j = 1...n. The correction function, needed to re-
move discontinuities of the function S(p), is given by the
following expression:

C(p) = −π2
∑

pj<p

Nint[(S(pj + ǫ)−S(pj − ǫ))/π2] . (33)

Here, the function Nint[x] returns an integer number,
nearest to the real number x. The value of ǫ in actual
calculations was set to 10−2. The correct value of the
generating integral can now be determined from the for-
mula:

I =
16π3

σ
[

4
∑

j=1

4
∑

k=1

v(γ
(j)
k /σ) +

4
∑

j=2

u(β
(1)
1 β

(j)
1 ) + C(1) ] .

(34)

Therefore, in the case of the real parameters {αjk},
the procedure of branch tracking can be implemented
without a detailed numerical analysis of behavior of the
multiple valued functions. All we need to do is to calcu-
late the function S(p) twice for each singular point p j ,
encountered along the path from p = 0 to p = 1, and
subtract discontinuities, proportional to π2. The time,
needed to determine the correction C(1) in Eq. (34), is
shorter than the time, required to carry out the recursive
procedure for the family of integrals. It does not increase
the overall computation time significantly.

The case of σ2(p) < 0 is also straightforward. The
quantity σ is now imaginary. The function S(p) is imag-
inary as well, thus giving a real value of the generating
integral. Im(S(p)) can be expressed in terms of Clausen’s
function Cl2(θ), which is a real function of a real argu-
ment [4, 5]. Eqs. (33) and (34) are valid also in this case,
if S(p) is replaced by Im(S(p)), and σ(p) is replaced by
Im(σ(p)). Therefore, in both cases (σ2 > 0 and σ2 < 0)
the entire algorithm for analytic evaluation of the four-
particle integrals can be presented in the real form with-
out any use of complex numbers.

This simplified method of branch tracking has been
successfully employed in variational calculations of four-
particle systems [6, 7]. Therefore, the described method
of branch tracking in the case of real exponential param-
eters is both theoretically correct and practically reliable.

E. Branch tracking in the complex case

Let us now describe a method of branch tracking in
a general case, when the exponential parameters, {αjk},
are complex numbers. It is assumed that their real parts
satisfy Eqs. (28) and (29). We use the same parametriza-
tion as before, but with a complex parameter p :

αjk(p) = (αjk − 1)p + 1 , 0 ≤ Re(p) ≤ 1 . (35)

As p moves in the complex plane from 0 to 1,
the corresponding point in 12-dimensional space of
six complex parameters moves from (1,1,1,1,1,1) to
(α12, α13, α14, α23, α24, α34). The generating integral,
Eq. (13), must be a continuous function of p. Moreover,
its value, computed at the final point, {αjk}, should not
depend on a choice of the path from p = 0 to p = 1. How-
ever, an optimal choice of this path can facilitate branch
tracking considerably.

Fig. 2 exhibits three examples of paths in the complex
p plane. In case a), there are no singular points on or
near the real axis between 0 and 1. The path is simply
a straight lime segment between these points. In case
b), there is one point, p 1, at which different terms in
Eq. (13) exhibit singular behavior. The path is the same
as before, except for a small semicircle in the vicinity of
this point. In case c), there are two singular points, p 1

and p 2, near the real axis between 0 and 1. The path
is more complicated, as shown in the figure. In general,
only those singular points in the p plane, which are close
to the real interval between 0 and 1, are of interest. The
path should be carefully defined in the vicinity of every
such point to allow precise analysis of behavior of all
arguments of the multiple valued functions. The values of
p, at which singularities may arise, can be found from the
polynomial equation σ2(p) = 0, and from twelve linear
equations, contained in Eq. (30).

In order to obtain correction functions for the function
u(z), defined by Eq. (14), we have to consider behavior
of this function near its branch points 0, 1, and ∞:

u(z → 0) =
1

2
ln2(−z) + u(0)(z) ;

u(z → 1) = −2 ln(z) ln(1 − z) + u(1)(z) ; (36)

u(z → ∞) = −1

2
ln2(−z) + u(∞)(z) .

In these formulas, the functions with subscripts (0), (1),
and (∞) are functions, analytic in the vicinities of 0, 1,
and ∞, respectively.

Let us introduce the following notations. A com-
plex function z(p) will represent any of the arguments,

β
(1)
1 β

(j)
1 , of the function u(z) in Eq. (13). It depends

on p through the parameters αjk(p), given by Eq. (35).
Let {pj}, j = 1...N, denote values of the parame-
ter p, for which z(pj) are singular points 0, 1, ∞, or
any points, where z(p) crosses the real axis. It is as-
sumed that 0 ≤ Re(pj) ≤ 1 for each j = 1...N , and
Re(pj) < Re(pj+1). Each point pj will be characterized
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FIG. 2: Examples of paths in the complex p plane: a) no
singular points on or near the real axis between 0 and 1; b)
one singular point, p 1, on the real axis; c) two singular points,
p 1 and p 2, near the real axis. The plots are not to scale.

by an index nj , and either integer mj, or real δj . The
index nj = 1...6 specifies a type of singular behavior,
as explained below. The number mj provides informa-
tion about direction, in which the real axis is crossed by
z(p). We set mj = +1, if the axis is crossed from be-
low (i.e. ↑), and mj = −1, if it is crossed from above
(i.e. ↓). The real quantity δj is equal to a change in
arg(z(p) − z(pj)), when z(p) moves in the vicinity of a
singular point z(pj). If z(pj) = ∞, the quantity δj de-
notes a change in arg(z(p)). These notations will allow
us to present the algorithm of branch tracking as a series
of formulas.

Five correction functions, unj
(z, j), are needed to re-

store continuity of the computed function u(z).
If z(p) crosses the branch cut ] 1, +∞ [ at z(pj),

let nj = 1, and

u1(z, j) = +2π2 − 2mjπ i [ ln(−z) + Uj ] . (37)

If z(p) crosses the branch cut ] 0, 1 [ at z(pj),
let nj = 2, and

u2(z, j) = −2π2 + 2mjπ i [ ln(−z) + Uj ] . (38)

If z(p) moves near the singular point z(pj) = 1,
let nj = 3, and

u3(z, j) = 2 i δj[ ln(z) + Ûj ] . (39)

If z(p) moves near the singular point z(pj) = 0,
let nj = 4, and

u4(z, j) = −δ2
j /2 − i δj [ ln(−z) + Uj ] . (40)

If z(p) moves near the singular point z(pj) = ∞,
let nj = 5, and

u5(z, j) = +δ2
j /2 + i δj[ ln(−z) + Uj ] . (41)

If z(p) crosses the branch cut ] −∞, 0 [ of the
function ln(z) at z(pj), let nj = 6.

The logarithms in these formulas are multiple valued
functions themselves. Their branches can also change,
and they can exhibit singular behavior, while an argu-
ment z(p) moves further in the complex plane. Because
only the principle branch of the logarithm is calculated
by a computer, the additional terms, Uj and Ûj are in-
cluded to correct values of these functions. These terms
are given by the following formulas:

Uj = +

N
∑

k>j
nk=1,2

2mkπ i −
N

∑

k>j
nk=4,5

i δk ; (42)

Ûj = −
N

∑

k>j
nk=6

2mkπ i −
N

∑

k>j
nk=4,5

i δk . (43)

The condition nk = 1, 2 in these formulas means that we
have to sum up only those indices mk, that correspond
to situations, when z(p) crosses the branch cuts ] 1, +∞ [
and ] 0, 1 [. The condition nk = 4, 5 limits the summation
of δk to those cases, when z(p) moves near the singular
points 0 and ∞. If nk = 6, we consider only situations,
when z(p) crosses the real axes in the interval ] −∞, 0 [.

Thus, each singular or crossing point z(pj), encoun-
tered by the argument z(p) of the function u(z), gives
rise to a correction function, unj

(z, j), required to make
u(z) continuous. However, the structure of this correc-
tion function at the end of the path, p = 1, will depend
on behavior of z(p) near all the following singular and
crossing points, z(p k), j < k ≤ N . The resulting correc-
tion function, uc(z), obtained after passing all the points
z(pj), j = 1...N , is given by the following expression:

uc(z) =

N
∑

j=1

unj
(z, j) . (44)

In order to see, how these correction functions operate,
consider values of the principal branch of u(z) at the
edges of the branch cut ] 1, +∞ [:

u(x± i ǫ) =
π2

3
−2Li2(1/x)− 1

2
ln2(x)± i π ln(x) . (45)

In this formula, x > 1 is real, and ǫ → +0. Imagine that
the branch cut is crossed from below (↑). Then mj = +1,
and the value of the correction function u1(z, j), defined
by Eq. (37), at the point z = x + iǫ is equal to

u1(x + iǫ, j) = −2π i ln(x) .
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If the branch cut is crossed from above (↓), mj = −1,
and the value of this correction function at the point
z = x − iǫ is equal to

u1(x − iǫ, j) = +2π i ln(x) .

Thus, the correction function u1(z, j), added after the
branch cut is crossed, eliminates the finite discontinuity
of the principal branch, Eq. (45), of the function u(z)
along ] 1, +∞ [. The correction function u2(z, j), defined
by Eq. (38), acts in a similar way at ] 0, 1 [.

Imagine now that the argument of u(z) goes around
the singular point at ∞, starting from z = x + iǫ, and
coming back to z = x − iǫ, without crossing the branch
cut along the positive real axis. The value of u(z) exhibits
a singular change (from Eq. (45)) by

∆u = −2π i ln(x) .

In this case, δj = 2π, and the value of the correction
function u5(z, j), defined by Eq. (41), at the point z =
x − iǫ is equal to

u5(x − iǫ, j) = +2π i ln(x) .

Thus, the correction function u5(z, j), added after z has
moved near the singular point at ∞, eliminates the sin-
gular contribution to the value of the function u(z).
The correction functions u3(z, j) and u4(z, j), given by
Eqs. (39) and (40), produce similar results for the other
singular points.

If, in the above examples, the argument of u(z) first
crosses the branch cut, and then moves around the
singular point, the correction function u1(z, j) has to
be modified by adding nonzero Uj to the logarithm
according to Eq. (37).

The same principles of branch tracking apply to the
function v(z), defined by Eq. (15). First, we consider
behavior of this function near its branch points 1, -1,
and ∞:

v(z → 1) = −1

4
ln2[(1 − z)/(1 + z)] + v(1)(z) ;

v(z → −1) =
1

4
ln2[(1 + z)/(1 − z)] + v(−1)(z) ; (46)

v(z → ∞) =
1

2
ln(−z2/4) ln[(z + 1)/(z − 1)] + v(∞)(z) .

In these formulas, the functions with subscripts (1), (-1),
and (∞) are functions, analytic in the vicinities of 1, -1,
and ∞, respectively.

Let us again consider a complex function z(p), which

can represent each of the arguments γ
(j)
k /σ of the func-

tion v(z) in Eq. (13). Let {pj}, j = 1...N , denote values
of the parameter p, such that z(pj) are singular points 1,
-1, ∞, or z(p) crosses the real axis. It is assumed that
their real parts form an increasing set of numbers be-
tween 0 and 1. As before, each point pj is characterized
by an index nj , and either mj or δj . Values of nj will be

assigned below, and meanings of mj and δj remain the
same.

Five correction functions, vnj
(z, j), are used to make

the computed function v(z) continuous.
If z(p) crosses the branch cut ] 1, +∞ [ at z(pj),

let nj = 1, and

v1(z, j) = +π2 + mjπ i { ln[(1 + z)/(1− z)] + Vj } . (47)

If z(p) crosses the branch cut ] −∞,−1 [ at z(pj),
let nj = 2, and

v2(z, j) = −π2 −mjπ i { ln[(1 + z)/(1− z)] + Vj } . (48)

If z(p) moves near the singular point z(pj) = 1,
let nj = 3, and

v3(z, j) = +
δ2
j

4
− i

δj

2
{ ln[(1 + z)/(1 − z)] + Vj } . (49)

If z(p) moves near the singular point z(pj) = −1,
let nj = 4, and

v4(z, j) = −
δ2
j

4
− i

δj

2
{ ln[(1 + z)/(1 − z)] + Vj } . (50)

If z(p) moves near the singular point z(pj) = ∞,
let nj = 5, and

v5(z, j) = − i δj{ ln[(z + 1)/(z − 1)] + V̂j } . (51)

If z(p) crosses the branch cut ] − 1, 1 [ of the
function ln[(z + 1)/(z − 1)] at z(pj), let nj = 6.

The additional terms, Vj and V̂j , necessary to correct
behavior of the logarithms, are given by the following
formulas:

Vj = −
N

∑

k>j
nk=1,2

2mkπ i +

N
∑

k>j
nk=3

i δk −
N

∑

k>j
nk=4

i δk ; (52)

V̂j = +
N

∑

k>j
nk=6

2mkπ i +
N

∑

k>j
nk=3

i δk −
N

∑

k>j
nk=4

i δk . (53)

As in the previous case, a correction function vnj
(z, j)

has to be added to the function v(z) every time its argu-
ment z(p) passes a singular or crossing point z(pj). This
way, the calculated function v(z) can be made continu-
ous. However, the form of this correction function at the
end of the path depends on behavior of z(p) near all the
points z(p k), following z(pj). The resulting correction
function, vc(z), is the following:

vc(z) =

N
∑

j=1

vnj
(z, j) . (54)
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Let us now briefly discuss the effect of using these cor-
rection functions. Consider values of v(z) at the edges of
the branch cut ] 1, +∞ [:

v(x ± iǫ) =
1

2
Li2[2/(1 + x)] − 1

2
Li2[2/(1 − x)] +

+
1

2
ln2[2/(1 + x)] − 1

2
ln2[2/(x − 1)] ± (55)

± i
π

2
ln[(x − 1)/(x + 1)] .

Here, x > 1 is real, and ǫ → +0. Imagine that the branch
cut is crossed from below (↑). Then mj = +1, and a value
of the correction function, v1(z, j), defined by Eq. (47),
at a point z = x + iǫ is equal to

v1(x + iǫ, j) = − i π ln[(x − 1)/(x + 1)] .

If the branch cut is crossed from above (↓), then mj =
−1, and a value of this correction function at z = x − iǫ
is equal to

v1(x − iǫ, j) = + i π ln[(x − 1)/(x + 1)] .

Therefore, the function v1(z, j), added to the function
v(z) after the branch cut is crossed, removes the discon-
tinuity of the principal branch along ] 1, +∞ [. The cor-
rection function v2(z, j), given by Eq. (48), makes v(z)
continuous at ] −∞,−1 [.

Imagine now that the argument of v(z) moves around
the singular point +1, starting from z = x + iǫ and re-
turning to z = x − iǫ, without crossing the branch cut.
The value of v(z) undergoes a change (from Eq. (55)) by

∆v = − i π ln[(x − 1)/(x + 1)] .

Because δj = 2π, a value of the correction function
v3(z, j), defined by Eq. (49), at z = x − iǫ is equal to

v3(x − iǫ, j) = + i π ln[(x − 1)/(x + 1)] .

Thus, by adding the correction function v3(z, j), it is pos-
sible to eliminate the singular contribution to the value of
v(z), when z goes around the singular point +1. The cor-
rection functions v4(z, j) and v5(z, j), given by Eqs. (50)
and (51), produce the same results for the other two sin-
gular points.

If, in the above examples, the argument of v(z) first
crosses the branch cut, and then moves around the
singular point, the correction function v1(z, j) should be
modified by adding nonzero Vj according to Eq. (47).

It is important to note that the function σ(z) is also a
multiple valued function. Its principal branch, defined by
Eq. (27), changes sign each time the argument z crosses
the branch cut along the positive real axis. If this hap-
pens N times while the parameter p changes from 0 to
1, the corrected value σc(z) of this function at p = 1 is
equal to

σc(z) = (−1)Nσ(z) , (56)

where σ(z) is the value of the principal branch of the
complex square root.

We are now in a position to write a corrected expres-
sion for the generating integral:

I =
16π3

σc
[

4
∑

j=1

4
∑

k=1

(v+vc)(γ
(j)
k /σc)+

4
∑

j=2

(u+uc)(β
(1)
1 β

(j)
1 )]

(57)
In this formula, each of 16 terms with the function v(z)
contains its own correction function vc(z), which is char-
acterized by its own N and sets of numbers {p l}, {nl},
{ml}, and {δl}. The same is true for each of the three
terms with the function u(z).

Eq. (57) is profoundly different from the original for-
mula, Eq. (13), for the generating integral. In Eq. (13),
the functions u(z), v(z), and σ(z) are expressed in terms
of the multiple valued logarithm and square root. When
Eq. (57) is used, it is assumed, on the contrary, that
all the logarithms and square roots are represented by
their principal branches, and, therefore, can be readily
evaluated by a computer. The multiple valued nature
of the functions u(z), v(z), and σ(z) is taken into ac-
count explicitly by means of the additional correction
terms and factors. Also, singular contributions from
different terms in Eq. (13) are expected to cancel each
other to yield a correct value for the generating integral,
Eq. (11). When we use Eq. (57), all the singular con-
tributions from different terms are cancelled explicitly

and separately, so that each function (v + vc)(γ
(j)
k /σc)

or (u + uc)(β
(1)
1 β

(j)
1 ) is continuous along the path from

(1,1,1,1,1,1) to (α12, α13, α14, α23, α24, α34). As a result,
the generating integral, obtained from Eq. (57), is a con-
tinuous function of the complex parameters {αjk}. Thus,
the problem of branch tracking is successfully solved in
the most general case.

Let us consider an example of branch tracking for the
function v(z) with the argument z(p). A sample path
in the complex p plane is displayed in Fig. 3a, and the
corresponding path from z(0) = A to z(1) = B in the
complex z plane is shown in Fig. 3b. There are five points
of interest: z(p 1) = 1, z(p 3) = ∞, and z(p 5) = −1 are
singular points of the function v(z); z(p 2) and z(p 4) are
points, where the argument z(p) crosses the branch cuts.
According to the chosen classification: n1 = 3, δ1 = π;
n2 = 1, m2 = +1; n3 = 5, δ3 = π; n4 = 2, m4 = −1;
n5 = 4, δ5 = π. Using Eqs. (47)-(53), one can easily
obtain expressions for the correction functions:

v3(z, 1) =
π2

4
− i

π

2
{ ln[(1 + z)/(1 − z)] − i π } ;

v1(z, 2) = π2 + i π{ ln[(1 + z)/(1 − z)] + i π } ;

v5(z, 3) = 0 − i π{ ln[(z + 1)/(z − 1)] − i π } ;

v2(z, 4) = −π2 + i π{ ln[(1 + z)/(1 − z)] − i π } ;

v4(z, 5) = −π2

4
− i

π

2
{ ln[(1 + z)/(1 − z)] + 0 } .
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FIG. 3: Illustration of branch tracking in the complex case:
a) the path in the complex p plane, chosen to avoid singu-
lar points, p 1, p 3, and p 5; b) the corresponding path in the
complex z plane from z(0) = A to z(1) = B, where z(p) is an
argument of the multiple valued function v(z).

The resulting correction function, vc(z), is

vc(z) = −3π2

2
+ i π ln[(1 + z)/(1 − z)] −
− i π ln[(z + 1)/(z − 1)] .

One can see that this function is different from zero, even
if A = B, i.e. the contour is closed. This is not surpris-
ing. Even though v(z) is represented by its principal
branch, the sum v(z) + vc(z) is still a multiple valued
function. Its value generally undergoes a finite change,
if its argument traverses a closed loop, encircling branch
points. Consider a value of vc(z) at z = x − iǫ, where
−1 < x < 1, and ǫ → +0. In this case, the logarithms
cancel, and

vc(x − iǫ) = −π2/2 .

Contributions of this type from different terms in Eq. (57)
produce an additional constant mπ2, needed to correct
a value of the generating integral in the case of real pa-
rameters {αjk}. Thus, Eq. (34) is a particular case of
Eq. (57).

This example demonstrates that the branch tracking
in the general case requires a comprehensive numerical
analysis of behavior of all the arguments in Eq. (13).

F. Numerical procedure and results

Practical implementation of the method, described in
the previous sections, is inevitably a very complicated

FIG. 4: Segmentation of the path in the complex p plane,
needed to analyze behavior of arguments of the multiple val-
ued functions numerically.

task. Detailed information about the recursive proce-
dure, needed to compute the family of integrals, Eq. (10),
can be found in [4]. Here we describe only the procedure
for numerical branch tracking.

First, the set of points, {p k}, at which different terms
in Eq. (13) can exhibit singular behavior, is determined.
This is done by solving the sixth-order equation σ2 = 0,
and linear equations of Eq. (30), with the parametriza-
tion according to Eq. (35). Only those values of p, that
lie in or near the real interval ] 0, 1 [, are included in the
set {p k}. Then, a path from 0 to 1 in the complex p
plane is chosen. Fig. 2 gives an idea of this. The whole
path is shifted downward by a small imaginary quan-
tity iǫ to avoid possible ambiguities, when arguments of
the functions u(z) and v(z) are real. All the arguments
in Eq. (57) are computed at the final point of this path,
p = 1−iǫ. In actual calculations, ǫ was set to 10−28. This
did not affect values of the integrals, but was enough to
shift the arguments from the real axis.

The path in the complex p plane is divided into small
intervals, as shown in Fig. 4. The intervals ]P l, P l+1 [,
into which the linear segments between the singular
points, {p k}, are divided, have a typical length of 10−2.
Each small semicircle beneath a singular point, p k, has
a radius r = 10−9, and divided into six parts. The cor-
responding boundary points are

P l = p k + r exp[ i (π l/6) ]− i ǫ , l = 0...6. (58)

In order to obtain full information about behavior
of different arguments in Eq. (13), all these arguments
should be computed at all the points P l along the path.

The quantities γ
(j)
k , β

(j)
k , and σ2, given by Eqs. (16)-(20),

are simple functions of {αjk(p)}, so this calculation can
be performed almost immediately. The values of each
argument are analyzed, and the numbers N , nj , mj, and
δj , j = 1...N , needed to apply the formulas of Sec. II.E,
are determined. This procedure works as follows. To find
out, if an argument crosses the real axis, the imaginary
parts of its values, computed at points P l and P l+1, are
compared. If they have opposite signs, dichotomy is used
to reduce the interval, and determine, where the real axis
is crossed, and in which direction. This is also done for
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the intervals along each small semicircle, but without the
dichotomy. In this manner, all the crossing points can be
found and analyzed. At each interval, ]P l, P l+1 [, this
analysis is carried out for σ2 first. If σ2 crosses the posi-
tive real axis, when p is between P l and P l+1, the sign of

σ should be changed. Then, all γ
(j)
k , computed at P l+1,

should be multiplied by (-1), and all β
(j)
k – inverted. The

quantity δj is determined as follows:

δj =

5
∑

l=0

[ arg(z(P l+1)) − arg(z(P l)) ] . (59)

Here, the points P l are specified by Eq. (58), and z can

stand for any of the arguments γ
(j)
k /σ and β

(1)
1 β

(j)
1 as

functions of {αjk(p)}. The right hand side of this formula
is presented as a sum, because as p changes from P 0 to
P 6, the argument z(p) may go around the singular point,
z(p k) several times. Thus, behavior of each argument
in the vicinity of each singular point can be analyzed.
The described procedure of numerical branch tracking
provides all the information, necessary for successful use
of Eq. (57).

The entire algorithm for analytic evaluation of the
four-particle integrals with complex parameters was
tested in four different ways.

First, real parameters {αjk} were used, and the re-
sults, obtained using the complex algorithm of Sec. II.E,
were compared with results, provided by the method of
Sec. II.D for the real case. The real parts of the computed
integrals, Eq. (10), were invariably in excellent agree-
ment. The imaginary parts, given by the new method,
were at least 20 orders of magnitude smaller than the
real parts, and could be considered negligible. Therefore,
the complex algorithm works correctly for any acceptable
real parameters.

Second, the parameters {αjk} were multiplied by an
arbitrarily chosen complex number λ. A resulting inte-
gral, Eq. (10), with a particular set {njk} must be equal
to its original value, multiplied by f = −1/(−λ)K , where
K = n12+n13+n14+n23+n24+n34+3. Various λ’s were
used, and values of the integrals, calculated directly, were
compared with the rescaled original values. Remarkable
agreement was observed in all these cases. Note that dif-
ferent values of λ correspond to different paths in the
space of parameters according to Eq. (35).

Third, if two exponential parameters, α13 and α24, are
equal to zero, the six Coulomb integrals and one over-
lap integral, needed to determine matrix elements of the
Hamiltonian according to Eqs. (4)-(9), can be obtained
analytically in terms of rational functions and logarithms.
Values of these integrals, calculated with various sets of
complex parameters, α12, α14, α23, α34, were compared
with the same integrals, computed using the new method.
They were always in complete agreement.

Fourth, different paths in the complex p plane were
chosen. They included singularities, located not only
near the real axis, but also further away. The results did

not depend on the choice of the path. This fact suggests
that the described method of numerical branch tracking
is stable and reliable. Of course, the path in actual cal-
culations should be as simple as possible, provided that
all nearby singularities are carefully taken into account.

Table I displays values of the integrals for three differ-
ent sets of parameters {αjk}, used to test the computer
program. Many other sets of parameters were also con-
sidered. All the integrals were calculated using the gen-
eral algorithm for numerical branch tracking, described
in Sec. II.E. Implementation of this algorithm requires
quadruple precision. The program computes a family of
64 integrals, Eq. (10), with two possible values for ev-
ery index: njk = 0, 1. Only seven integrals, necessary
to obtain matrix elements of the Hamiltonian according
to Eqs. (4)-(9), are presented in Table I for each set of
parameters.

Our results demonstrate that the developed algorithm
allows precise evaluation of the four-particle integrals
with arbitrary complex parameters, provided that the
integrals themselves converge.

The described method makes it possible to use the
highly versatile exponential-trigonometric basis functions
in variational calculations of four-particle Coulomb sys-
tems. In order to illustrate efficiency of the new basis, we
would like to mention some results, obtained previously
[11] for the following systems: e+e−e+e−, p+µ−p+µ−,
µ+e−µ+e−, and p+e−p+e−. The calculations were per-
formed using one exponential-trigonometric basis func-
tion:

Ψ = Ŝ exp(−
4

∑

j<k

Ajkrjk) sin(

4
∑

j<k

Bjkrjk + C) . (60)

This function includes 12 real nonlinear parameters,
{Ajk} and {Bjk}, and one linear parameter, tan(C).
It can be considered a linear combination of two expo-
nential functions, Eq. (2), with the complex parameters

Ajk ± i Bjk. The operator Ŝ ensures that this function
has correct symmetry with respect to permutations of
particles.

All integrals, necessary to determine matrix elements
of the Hamiltonian, Eq. (1), with the function Ψ, were
computed according to the method, described in this pa-
per. The nonlinear parameters were subjected to careful
gradient optimization. For more details about this cal-
culation, see [11].

Table II exhibits values of the ground-state energy, E,
for e+e−e+e−, p+µ−p+µ−, µ+e−µ+e−, and p+e−p+e−,
determined using the variational method with the trial
function Ψ. The table also displays the most accurate en-
ergy values, E0, available for these systems [1, 2, 14, 15].
One can see that the relative errors are 0.2%, 0.7%,
2.4%, and 3.6%, respectively. The results for two adi-
abatic systems, µ+e−µ+e− and p+e−p+e−, with very
low mass ratios, m/M , are very impressive. Neither
Gaussian, nor exponential functions are even nearly as
efficient [11]. Thus, a single symmetrized exponential-
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TABLE I: Examples of four-particle integrals evaluated using the algorithm for numerical branch tracking in the complex case.

{αjk} {njk} Re (J ) Im (J )

α12 = 1.56 011111 0.20550889174003868108D+03 -0.52323042463487687803D - 21

α13 = −0.69 101111 0.49701602825033406834D+02 0.37462639365280834442D - 21

α14 = 2.71 110111 0.33278606420131925558D+03 0.29262335382214159490D - 21

α23 = 1.75 111011 0.69156207020089168507D+02 0.39044885805975934492D - 21

α24 = 1.42 111101 0.20401147280211976836D+03 0.44225408142944401598D - 21

α34 = −0.50 111110 0.50046583501959809463D+02 0.75995078405826138804D - 21

111111 0.21644781505854395857D+03 0.32039794574654543500D - 20

α12 = 1.56 ∗ (1 + 0.5 i) 011111 -0.70977575942226172269D+02 0.45253255249692588012D+02

α12 = −0.69 ∗ (1 + 0.5 i) 101111 -0.17165677159247121876D+02 0.10944340655611068217D+02

α12 = 2.71 ∗ (1 + 0.5 i) 110111 -0.11493589374343266153D+03 0.73279810811752133344D+02

α12 = 1.75 ∗ (1 + 0.5 i) 111011 -0.23884805635825330948D+02 0.15228263175782374191D+02

α12 = 1.42 ∗ (1 + 0.5 i) 111101 -0.70460405295819730405D+02 0.44923522162040663029D+02

α12 = −0.50 ∗ (1 + 0.5 i) 111110 -0.17284824763945988644D+02 0.11020305731851711925D+02

111111 -0.40739676150047588287D+02 0.68031854740817630022D+02

α12 = 1.29 + 1.19 i 011111 0.41299141847575234393D+01 -0.13354699318829522025D+01

α13 = 0 101111 0.25568585205838373519D+01 -0.14420903111112389762D+01

α14 = 2.53 − 1.32 i 110111 0.39327459787814931363D+01 -0.64522069912295906967D+01

α23 = 1.86 + 1.44 i 111011 0.56761553854820761165D+01 -0.12198339708832004631D+01

α24 = 0 111101 0.38294186820466745046D+01 -0.25317810705579310712D+01

α34 = 0.65 − 0.93 i 111110 0.26044120278339787630D+01 -0.23151954768733032766D+01

111111 0.37849264531713841033D+01 -0.28372153117607227596D+01

TABLE II: Ground-state energy, E, of four molecules, com-
puted with a single exponential-trigonometric basis function.
The most accurate values, E0, of this energy are taken from
Refs. 1, 2, 14 and 15, respectively. Atomic units.

System m/M E E0 Error

e+e−e+e− 1 -0.514956 -0.516003 0.2%

p+µ−p+µ− 0.1126095 -198.2056 -199.6294 0.7%

µ+e−µ+e− 0.0048363 -1.113198 -1.141000 2.4%

p+e−p+e− 0.0005446 -1.122378 -1.164025 3.6%

trigonometric basis function, Eq. (60), provides a remark-
able accuracy in variational calculations of various four-
particle systems.

III. CONCLUSION

The method for analytic evaluation of four-particle in-
tegrals with complex parameters, described in this paper,
can be regarded as both further theoretical development
and practical implementation of the original method by
Fromm and Hill [4]. Validity of this method is not lim-
ited to the case of real parameters. Moreover, because
the integrals are expressed in terms of multiple valued
complex functions, it is more natural to consider a gen-
eral case when all the parameters are complex. The orig-

inal formula, Eq. (13), for the generating integral can be
used only in the immediate vicinity of the standard refer-
ence point where all the parameters are equal to 1. The
procedure of numerical branch tracking, proposed in this
paper, allows computation of the integrals at any other
point in the space of six complex parameters, by taking
into account all branch changes along the path. The sim-
plified method of branch tracking for real parameters is
also discussed.

The new method makes possible high precision varia-
tional solution of the Coulomb four-body problem in the
basis of exponential-trigonometric functions. The first
calculations have shown high efficiency of this basis [11].
They have also demonstrated correctness of the branch
tracking algorithm, described in this paper.

However, if the full potential of the exponential-
trigonometric basis is to be revealed, an efficient
procedure for selecting optimal values of the nonlinear
parameters is necessary. Ideally, all the parameters
should be chosen a priori, and all matrix elements
– computed only once. Such a procedure has been
developed by the authors for the case of adiabatic
three-particle systems [10]. All nonlinear parameters
of the exponential-trigonometric functions had been
chosen before the computation, which yielded 10 correct
significant figures for the ground state energy of H+

2 [10].
We believe that the exponential-trigonometric basis can
provide similar precision in calculations of four-particle
systems.
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