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Surface magnetic canting in a ferromagnet
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The surface magnetic canting (SMC) of a semi-infinite film with ferromagnetic exchange interac-
tion and competing bulk and surface anisotropies is investigated via a nonlinear mapping formulation
of mean-field theory previously developed by our group [L. Trallori et al., Int. J. Mod. Phys. B
10, 1935-1988 (1996)], and extended to the case where an external magnetic field is applied to the
system. When the field H‖ is parallel to the film plane, the condition for SMC is found to be the
same as that recently reported by Popov and Pappas [Phys. Rev. B 64, 184401 (2001)]. The
case of a field H⊥ applied perpendicularly to the film plane is also investigated. In both cases, the
zero-temperature equilibrium configuration is easily determined by our theoretical approach.

PACS numbers: 75.70.Rf, 75.70.-i, 75.30.Kz

Recently Popov and Pappas1 - motivated by their
previous valuable experimental work2 on the magnetic
properties of an ultrathin (1.5 monolayers-thick) Fe film
grown on the surface of a 15nm-thick Gd(0001) film - de-
termined the zero-temperature phase diagram of a semi-
infinite Heisenberg ferromagnet, with exchange constant
J > 0, subject to a surface anisotropy, KS , competitive
with the bulk one, KB. In the mean-field approxima-
tion, since the system is inhomogeneous only along one
direction (i.e., the normal to the surface), the problem
is reduced to consider the energy of the one-dimensional
model1

E = −J

∞
∑

n=1

cos(θn − θn+1) + KS sin2 θ1

+ KB

∞
∑

n=2

sin2 θn − gµBH‖

∞
∑

n=1

cos θn (1)

where θn is the angle formed by the classical vector mo-
ment of the n-th layer with the film plane. To fix ideas,
in the following we will assume KB > 0 (i.e., the bulk
anisotropy favours the alignment of the vector moments
along the film plane, θ = 0) and KS < 0 (i.e., the surface
anisotropy favours the alignment along the film normal,
θ = π/2). H‖ denotes an external magnetic field applied
parallel to the film plane.

Expanding the energy in Eq. (1) to second order for

each θn, E ≈ E0 + θT A θ, and performing a stability
analysis, Popov and Pappas1 showed that it is possible
to have surface magnetic canting (SMC) provided that

kS + 1 + h‖ <
1

kB − (kS − 1)
(2)

where kS = 2KS/J , kB = 2KB/J and h‖ = gµBH‖/J .
Hence it follows that for kS < −1 − h‖, the surface is
always canted whatever the value of the in-plane bulk
anisotropy; otherwise there is SMC for |KS | exceeding a
threshold value which depends on KB, J and H‖.

Surely, the theoretical analysis of Popov and Pappas1

is quite original and valuable. However, it is worth not-
ing that, in the special case H‖ = 0, a condition for sur-
face magnetic canting analogous to Eq. (2) was obtained
by our group some years ago3 using a rather different
method: i.e., a nonlinear mapping formulation of mean-
field theory.4,5,6,7,8,9 Within this framework, the proper-
ties of a magnetic film are formulated as a problem in
nonlinear dynamics, in terms of an area-preserving map,
where the surfaces are introduced as appropriate bound-
ary conditions. In this Brief Report, using the method
developed in Refs. 4,5,6,7,8,9, not only we obtain the
condition for surface magnetic canting, but also we cal-
culate the zero-temperature magnetization profile of the
film, both in the case of the model, Eq. (1), considered
by Popov and Pappas1, and in the case that a magnetic
field is applied perpendicularly to the film plane, see Eq.
(16) below.10

Let us summarize our method. The equilibrium con-
figurations of the semi-infinite (n ≥ 1) film are obtained
from Eq. (1) by θn-derivation

∂E

∂θn

= J sin(θn − θn+1) − J sin(θn−1 − θn)(1 − δn,1)

+ KS sin(2θn)δn,1 + KB sin(2θn)(1 − δn,1)
+ gµBH‖ sin θn = 0 (3)

Introducing the variables sn = sin(θn−θn−1), in the bulk
(n ≥ 2) we obtain the nonlinear mapping

Jsn+1 = Jsn + KB sin(2θn) + gµBH‖ sin θn

θn+1 = θn + sin−1(sn+1) (4)

while on the surface plane n = 1 we have

Js2 = KS sin(2θ1) + gµBH‖ sin θ1

θ2 = θ1 + sin−1(s2) (5)

The map, Eq. (4), is area-preserving because its Jacobian
determinant is 1

detĴ = det

[

∂sn+1

∂sn

∂sn+1

∂θn

∂θn+1

∂sn

∂θn+1

∂θn

]
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= det

[

1 S(θn)
1√

1−s2
n+1

1 + 1√
1−s2

n+1

S(θn)

]

(6)

where S(θn) = 2KB

J
cos(2θn) +

gµBH‖

J
cos θn. The trajec-

tories in (θ, s) space are associated with equilibrium con-
figurations, while the fixed points of the map correspond
to uniform ground states of the bulk system. For KS < 0
and KB > 0, the hyperbolic fixed point: (θ∞, s∞)=(0, 0)
represents the energetically stable bulk configuration,
while the elliptic fixed point: (θ∞, s∞)=(π/2, 0) repre-
sents an unstable bulk configuration.

Now we observe that, by introducing a fictitious plane
n = 0, characterized by the angle θ0 and the variable
s1 = sin(θ1−θ0), the nonlinear mapping Eq. (4), valid in
the bulk (n ≥ 2), can be assumed to hold even for n = 1,

Js2 = Js1 + KB sin(2θ1) + gµBH‖ sin θ1

θ2 = θ1 + sin−1(s2) (7)

provided that the following boundary condition is satis-
fied

s1 =
KS − KB

J
sin(2θ1). (8)

Thus, among all trajectories in (θ, s) space obtained from
Eqs. (4)(7), only those which satisfy Eq. (8) represent
equilibrium configurations for the semi-infinite ferromag-
net.

By linearizing the map in the neighborhood of a fixed
point,11 one is led to solve the eigenvalue equation

λ2 − TrĴ λ + detĴ = 0 (9)

Near the hyperbolic fixed point (θ∞, s∞)=(0, 0), one ob-
tains two real eigenvalues (λ1 < 1, λ2 > 1)

λ1,2 = 1 +
S(θ∞)

2
∓

√

S(θ∞)

2

[

2 +
S(θ∞)

2

]

(10)

and the slopes, in the (θ, s) phase space, of the orbit in-
flowing to (”1”) and outflowing from (”2”) the hyperbolic
fixed point are, respectively

m1,2 =

∂sn+1

∂θn

λ1,2 − ∂sn+1

∂sn

∣

∣

∣

∣

∣

(0,0)

(11)

Within this theoretical framework, the condition for
surface magnetic canting is that ms, the (negative) slope
of the boundary condition curve Eq. (8), calculated in
the hyperbolic fixed point

ms =
ds1

dθ1

∣

∣

∣

(0,0)
=

2(KS − KB)

J
(12)

should be smaller than m1, the (negative) slope of the
trajectory inflowing to the hyperbolic fixed point, see

FIG. 1: Map phase portraits calculated from Eqs. (4)(7) us-
ing Hamiltonian parameters J = 1, KB = 0.1, KS = −0.3
for different values of a magnetic field H‖ applied parallel to

the film plane: (a) gµBH‖ = 0; (b) 0.05; (c) 0.155 (threshold
value, see Eq. (15); (d) 0.3. The dashed curve represents the
boundary condition at the surface, Eq. (8). Arrows denote in-
flowing and outflowing trajectories associated with hyperbolic
fixed points.

Eq. (11). Thus, the condition for surface magnetic cant-
ing turns out to be

2(KS − KB)

J
<

S(θ∞)

S(θ∞)
2 −

√

S(θ∞)
2

[

2 + S(θ∞)
2

]

(13)

Taking into account that KS < 0 and KB > 0, this
equation can be rewritten as

|KS |
J

>
2KB + gµBH‖

4J

√

1 +
4J

2KB + gµBH‖

− 2KB − gµBH‖

4J
(14)

which is readily seen to be completely equivalent to
Eq. (2). Thus, in the case of external magnetic field
parallel to the film plane, for sufficiently high surface
anisotropy (i.e., 2|KS | > J + gµBH‖), the surface is al-
ways canted whatever the value of KB. Otherwise, there
is SMC for |KS | exceeding a threshold value which de-
pends on KB, J and H‖: see Eq. (14).

In Fig. 1 we report the different map phase portraits
obtained from Eqs. (4)(7) for different, increasing val-
ues of H‖. The boundary condition curve - which does
not depend on the value of H‖, see Eq. (8) - is also re-
ported (dashed line). In zero field, H‖ = 0 (see Fig. 1a),
for the chosen values of the parameters, the condition,
Eq. (13), for the slopes ms and m1 calculated in the hy-
perbolic fixed point, is satisfied: thus, the configuration
with surface magnetic canting is the ground state. As H‖

is increased, the slope m1 of the trajectory inflowing to
(θ∞, s∞) =(0,0) becomes more negative and θ1 decreases
(see Fig. 1b). Finally, for H‖ ≥ HC‖, where HC‖ is a
threshold value given by

gµBHC‖ =
[2(KB − KS)]

2

J + 2(KB − KS)
− 2KB , (15)

the boundary condition curve is no more intersected:
thus, the uniform configuration with all spins parallel
to the film plane becomes energetically favoured (see
Figs. 1c,d).

Let us now consider a semi-infinite ferromagnetic film
(J > 0) with competing surface and bulk anisotropies
(KS < 0, KB > 0) and with an external magnetic field
applied perpendicularly to the film plane.10 The energy
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FIG. 2: Map phase portraits calculated from Eq. (17) using
Hamiltonian parameters J = 1, KB = 0.1, KS = −0.3 for dif-
ferent values of a magnetic field H⊥ applied perpendicularly
to the film plane: (a) gµBH⊥ = 0; (b) 0.10; (c) 0.20 (thresh-
old value, gµBHC⊥ = 2KB); (d) 0.3. The dashed curve repre-
sents the boundary condition at the surface, Eq. (8). Arrows
denote inflowing and outflowing trajectories associated with
hyperbolic fixed points.

is

E = −J

∞
∑

n=1

cos(θn − θn+1) + KS sin2 θ1

+ KB

∞
∑

n=2

sin2 θn − gµBH⊥

∞
∑

n=1

sin θn (16)

The map equations are now (n ≥ 1)

Jsn+1 = Jsn + KB sin(2θn) − gµBH⊥ cos θn

θn+1 = θn + sin−1(sn+1) (17)

while the boundary condition at the surface plane turns
out to be the same as in the case of in-plane magnetic
field, Eq. (8). The Jacobian determinant takes the same
form as in Eq. (6): the only difference is that now S(θn) =
2KB

J
cos(2θn) + gµBH⊥

J
sin θn. In contrast with the case

of in-plane field, now the hyperbolic fixed point (θ∞, s∞)
is characterized by an angle, θ∞, which depends on the
field intensity

θ∞ =

{

sin−1
[

gµBH⊥

2KB

]

, for gµBH⊥ < 2KB ,
π
2 , for gµBH⊥ ≥ 2KB

(18)

and s∞ = 0. In Fig. 2 we report different map phase
portraits, obtained from Eq. (17) calculated for different,
increasing values of H⊥. The boundary condition curve
Eq. (8), independent of the value of H⊥, is also reported
(dashed line). It is apparent from the map topology (see
Figs. 2a,b) that for 0 < H⊥ < HC⊥, where gµBHC⊥ =
2KB is a threshold field value, one does have surface
magnetic canting even in the case that SMC is absent for
zero field. In contrast, for H⊥ ≥ HC⊥ (see Figs. 2c,d), no
intersection is possible between the boundary condition
curve and the trajectory inflowing in the hyperbolic fixed
point (θ∞, s∞)=(π

2 , 0): thus, the uniform configuration
with all spins perpendicular to the film plane becomes
the ground state.

In Fig. 3a,b we report the zero-temperature equilib-
rium configurations of the semi-infinite film obtained via
the map method for different values of the intensity of
an external magnetic field, applied in-plane or perpen-
dicularly to the plane, respectively. In both cases we
have chosen Hamiltonian parameters which, in zero field,
give rise to surface magnetic canting. We observe that
as the in-plane field H‖ is increased (see Fig. 3a from
top to bottom), the surface angle θ1 decreases until, for
H‖ ≥ HC‖, a uniform configuration with all spin in-plane

FIG. 3: (a) Equilibrium configurations of the semi-infinite
film with Hamiltonian parameters J = 1, KB = 0.1, KS =
−0.3, as calculated from the map equations Eqs. (4)(7) and
boundary condition at the surface Eq. (8). The different
curves refer to selected values of gµBH‖ = 0, 0.10, 0.15, and
H‖ > HC‖, see Eq. (15), with the field increasing from top
to bottom. The lines are guides to the eye. (b) The same
as in (a), but for magnetic field applied perpendicularly to
the film plane. The different curves refer to selected values
of gµBH⊥ = 0, 0.10, 0.15, 0.19, and H⊥ ≥ HC⊥ (where
gµBHC⊥ = 2KB = 0.2), with the field increasing from bot-
tom to top.

is obtained. In contrast, in the case of increasing perpen-
dicular field (see Fig. 3b from bottom to top), the surface
angle θ1 increases and so does the bulk angle θ∞, defined
in Eq. (18). As gµBH⊥ reaches the threshold value 2KB,
a uniform configurations with all spins perpendicular to
the film plane is obtained.

It is worth noting that by the map method it is possible
to calculate, with any desired accuracy, the equilibrium
configuration even in the case of a film with a finite num-
ber N of spins, provided that the boundary condition on
the second surface,6,8 sN = −KS−KB

J
sin(2θN ), is taken

into account, in addition to Eq. (8).12

Finally, we observe that the approach described here
can be used to investigate the zero-temperature mag-
netic properties of the Fe/Gd film,2 provided that the
model (1) is modified in order to account for the anti-
ferromagnetic coupling between the Fe surface plane and
the Gd underlying one.13 However, owing to the absence
of frustration effects, only qualitative modifications to
the results obtained here are expected. Moreover, it is
worth noting that the non-uniform ground state is not
affected by a surface enhancement of the exchange con-
stant (which is present in the Fe/Gd film, since the 1.5
monolayers of Fe order at a Curie temperature substan-
tially higher than Gd). In fact, since at T = 0 the mag-
netization of each plane takes the saturation value, the
surface exchange only keeps the spins on the surface par-
allel to each other, without modifying their orientation
with respect to the spins on the underlying plane: i.e., at
T = 0 the possibility of a non-uniform ground state only
arises from the competition between surface and bulk
anisotropies.8 In contrast, the interpretation of the quite
interesting finite temperature properties of Fe/Gd films,
like the two-step reorientation transition experimentally
observed by Arnold et al.,2 would require not only an
improvement of model (1) but also a much more refined
analysis. In fact, at T 6= 0 both the modulus and the ori-
entation of the magnetization vary with the plane index,
so that the dimensionality of the map increases and the
equilibrium configuration of the film cannot generally be
calculated without resorting to some approximation.7

In conclusion, a mean-field theoretical method, where
the equilibrium properties of a magnetic film are formu-
lated in terms of an area-preserving map and the sur-
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faces are introduced as appropriate boundary conditions,
was exploited in this paper. In particular, the model of
a semi-infinite Heisenberg ferromagnet with competing
bulk and surface anisotropies was investigated when an
external magnetic field is applied parallel or perpendic-
ular to the film surface. In both cases, the condition for
surface magnetic canting as well as the zero-temperature
equilibrium configuration were easily determined by such

a theoretical approach.
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