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Neuroscience continues to experience a tremendous growth in data; in terms of the

volume and variety of data, the velocity at which data is acquired, and in turn the

veracity of data. These challenges are a serious impediment to sharing of data, analyses,

and tools within and across labs. Here, we introduce BRAINformat, a novel data

standardization framework for the design and management of scientific data formats.

The BRAINformat library defines application-independent design concepts and modules

that together create a general framework for standardization of scientific data. We

describe the formal specification of scientific data standards, which facilitates sharing

and verification of data and formats. We introduce the concept of Managed Objects,

enabling semantic components of data formats to be specified as self-contained

units, supporting modular and reusable design of data format components and

file storage. We also introduce the novel concept of Relationship Attributes for

modeling and use of semantic relationships between data objects. Based on these

concepts we demonstrate the application of our framework to design and implement

a standard format for electrophysiology data and show how data standardization

and relationship-modeling facilitate data analysis and sharing. The format uses HDF5,

enabling portable, scalable, and self-describing data storage and integration withmodern

high-performance computing for data-driven discovery. The BRAINformat library is open

source, easy-to-use, and provides detailed user and developer documentation and is

freely available at: https://bitbucket.org/oruebel/brainformat.
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1. INTRODUCTION

Neuroscience research is facing an increasingly challenging data problem due to the growing
complexity of experiments and the volume/variety of data being collected from many acquisition
modalities. Neuroscientists are routinely collecting data in a broad range of formats that are
often highly domain specific, ad-hoc and/or designed for efficiency with respect to very specific
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tools and data types. Even for single experiments, scientists
are interacting with often tens of different formats—one
for each recording device and/or analysis—while many
formats are not well-described or are only accessible via
proprietary software. Navigating this quagmire of formats
hinders efficient analysis, data sharing, and collaboration and
can lead to errors and misinterpretations. File formats and
standards that can represent neuroscience data and make the
data easily accessible play a key role in enabling scientific
discovery, development of reusable tools for analysis, and
progress toward fostering collaboration in the neuroscience
community.

The requirements toward a data format standard for
neuroscience are highly complex and go far beyond the needs
of traditional, modality-specific formats (e.g., image, audio, or
video formats). A neuroscience data format needs to support
the management and organization of large collections of data
from many modalities and sources, e.g., neurological recordings,
external stimuli, recordings of external responses and events (e.g.,
motion-tracking, video, audio, etc.), derived analytic results, and
many others. To enable data interpretation and analysis, the
format needs to also support storage of complex metadata, such
as, descriptions of recording devices, experiments, or subjects
among others.

In addition, a usable and sustainable neuroscience data format
needs to satisfy many technical requirements. For example, the
format should be self-describing, easy-to-use, efficient, portable,
scalable, verifiable, extensible, easy-to-share, and support self-
contained and modular storage. Meeting all these complex needs
is a daunting challenge. Arguably, the focus of a neuroscience
data standard should be on addressing the application-centric
needs of organizing scientific data and metadata, rather than on
reinventing file storage methods. We here focus on the design of
a framework for standardization of data formats while utilizing
HDF5 as the underlying data model and storage format. Using
HDF5 has the advantage that it already satisfies most of the basic,
technical format requirements; HDF5 is self-describing, portable,
extensible, widely supported by programming languages and
analysis tools, and is optimized for storage and I/O of large-scale
scientific data.

In this manuscript we introduce BRAINformat, a novel
data format standardization framework and API for scientific
data, developed at the Lawrence Berkeley National Labs in
collaboration with neuroscientists at the University of California,
Berkeley and the University of California, San Francisco.
BRAINformat supports the formal specification and verification
of scientific data formats and supports the organization of
data in a modular, extensible, and reusable fashion via the
concept of managed objects (Section 3.1). We introduce
the novel concept or relationship attributes for modeling of
direct relationships between data objects. Relationship attributes
support the specification of structural and semantic links between
data, enabling users and developers to formally document
and utilize object-to-object relationships in a well-structured
and programmatic fashion (Section 3.2). We demonstrate
the use of chains of object-to-object relationships to model
complex relationships between multi-dimensional arrays based

on data registration via the concept of advanced index map
relationships (Section 3.2.4). We demonstrate the application of
our framework to design and implement a standard format for
electrophysiology data and show how data standardization and
relationship-modeling facilitate multi-modal data analysis and
data sharing (Section 4).

2. BACKGROUND AND RELATED WORK

The scientific community utilizes a broad range of data formats.
Basic formats explicitly specify how data is laid out and formatted
in binary or text data files (e.g., CSV, BOF, etc). While such
basic formats are common, they generally suffer from a lack
of portability, scalability and a rigorous specification. For text-
based files, languages and formats, such as the Extensible Markup
Language (XML) (Bray et al., 2008) or the JavaScript Object
Notation (JSON) (JSON, 2015), have become popular means to
standardize documents for data exchange. XML, JSON and other
text-based standards (in combination with character-encoding
schema, e.g., ASCII or Unicode) play a critical role in practice
in the exchange of usually relatively small, structured documents
but are impractical for storage and exchange of large scientific
data arrays.

For storage of large scientific data, HDF5 (The HDF
Group, 2015) and NetCDF (Rew and Davis, 1990) among
others, have gained wide popularity. HDF5 is a data model,
library, and file format for storing and managing large and
complex data. HDF5 supports groups, datasets, and attributes
as core data object primitives, which in combination provide
the foundation for data organization and storage. HDF5 is
portable, scalable, self-describing, and extensible and is widely
supported across programming languages and systems, e.g., R,
Matlab, Python, C, Fortran, VisIt, or ParaView. The HDF5
technology suite includes tools for managing, manipulating,
viewing, and analyzing HDF5 files. HDF5 has been adopted
as a base format across a broad range of application sciences,
ranging from physics to bio-sciences and beyond (Habermann
et al., 2014). Self-describing formats address the critical need
for standardized storage and exchange of complex and large
scientific data.

Self-describing formats like HDF5 provide general capabilities
for organizing data, but they do not prescribe a data organization.
The structure, layout, names, and descriptions of storage
objects, hence, often still differ greatly between applications
and experiments. This diversity makes the development of
common and reusable tools challenging. VizSchema (Shasharina
et al., 2009) and XDMF (Clarke and Mark, 2007) among
others, propose to bridge this gap between general-purpose,
self-describing formats and the need for standardized tools
via additional lightweight, low-level schema (often based on
XML) to further standardize the description of the low-
level data organization to facilitate data exchange and tool
development.

Application-oriented formats then generally focus on
specifying the organization of data in a semantically meaningful
fashion, including but not limited to the specification of
storage object names, locations, and descriptions. Many
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application formats build on existing self-describing formats,
e.g., NeXus (Klosowski et al., 1997) (neutron, x-ray, and
muon data), OpenMSI (mass spectrometry imaging) (Rübel
et al., 2013), CXIDB (Maia, 2012) (coherent x-ray imaging),
or NetCDF (Rew and Davis, 1990) in combination with CF
and COARDS metadata conventions for climate data, and
many others. Application formats are commonly described by
documents specifying the location and names of data items
and often provide application-programmer interfaces (API) to
facilitate reading and writing of format files. Some formats are
further governed by formal, computer-readable, and verifiable
specifications. For example, NeXus uses the NXDL (NeXus
International Advisory Committee, 2016) XML-based format
and schema to define the nomenclature and arrangement
of information in a NeXus data file. On the level of HDF5
groups, NeXus also uses the notion of Classes to define the
fields that a group should contain in a reusable and extensible
fashion.

The critical need for data standards in neuroscience has been
recognized by several efforts over the course of the last several
years (e.g., Sommer et al., 2016); however, much work remains.
Here, our goal is to contribute to this discussion by providing
much-needed methods and tools for the effective design of
sustainable neuroscience data standards and demonstration of
the methods in practice toward the design and implementation
of a usable and extensible format with an initial focus on
electrocardiography data. The developers of the Klustakwik
suite (Kadir et al., 2013, 2015) have proposed an HDF5-
based data format for storage of spike sorting data. Orca
(also called BORG) (Keith Godfrey, 2014) is an HDF5-based
format developed by the Allen Institute for Brain Science
designed to store electrophysiology and optophysiology data.
The NIX (Stoewer et al., 2014) project has developed a set of
standardized methods and models for storing electrophysiology
and other neuroscience data together with their metadata in one
common file format based on HDF5. Rather than an application-
specific format, NIX defines highly generic models for data
as well as for metadata that can be linked to terminologies
(defined via odML) to provide a domain-specific context for
elements. The open metadata Markup Language odML (Grewe
et al., 2011) is a metadata markup language based on XML
with the goal to define and establish an open and flexible
format to transport neuroscience metadata. NeuroML (Gleeson
et al., 2010) is also an XML-based format with a particular
focus on defining and exchanging descriptions of neuronal
cell and network models. The Neurodata Without Borders
(NWB) (Teeters et al., 2015) initiative is a recent project
with the specific goal “[...] to produce a unified data format
for cellular-based neurophysiology data based on representative
use cases initially from four laboratories—the Buzsaki group at
NYU, the Svoboda group at Janelia Farm, the Meister group at
Caltech, and the Allen Institute for Brain Science in Seattle.”
Members of the NIX, KWIK, Orca, BRAINformat, and other
development teams have been invited and contributed to the
NWB effort. NWB has adopted concepts and methods from
a range of these formats, including from the here-described
BRAINformat.

3. STANDARDIZING SCIENTIFIC DATA

3.1. Data Organization and File Format API
BRAINformat adopts HDF5 as its main storage backend. HDF5
provides the following primary storage primitives to organize
data within HDF5 files:

• Group: A group is used—similar to a folder on a file system—
to group zero or more storage objects.
• Dataset: A dataset defines a multidimensional array of data

elements, together with supporting metadata (e.g., shape and
data type of the array).
• Attribute: Attributes are small datasets that are attached

to primary data objects (i.e., groups or datasets) and are
used to store additional metadata to further describe the
corresponding data object.
• Dimension Scale: This is a derived primitive that uses a

combination of datasets and attributes to associate datasets
with the dimension of another dataset. Dimension scales are
used to further characterize dataset dimensions by describing,
for example, the time when samples were measured.

Beyond these basic data primitives, we introduce:

• Relationship Attributes: Relationship attributes are a novel,
custom attribute-type storage primitive that allows us to
describe and model structural and semantic relationships
between primary data objects in a human-readable
and computer-interpretable fashion (described later in
Section 3.2).

Neuroscience research inherently relies on complex data
collections from many modalities and sources. Examples include
neural recordings, audio and video, eye- and motion-tracking,
task contingencies, stimuli, analysis results, and many others. It
is therefore critically important to specify formats in a modular
and extensible fashion while enabling users to easily reuse format
modules and integrate new ones. The concept of managed objects
allows us to address this central challenge in an easy-to-use and
scalable fashion.

3.1.1. Managed Objects
A managed object is a primary storage object—i.e., file,
group, or dataset—with: (i) a formal, self-contained format
specification that describes the storage object and its contents (see
Section 3.1.2), (ii) a specific managed type/class, (iii) a human-
readable description, and (iv) an optional unique object identifier,
e.g., a DOI. In file, these basic managed object descriptors
are stored via standardized attributes. Managed object types
may be composed—i.e., a file or group may contain other
managed objects—and further specialized through the concept
of inheritance, enabling the independent specification and reuse
of data format components. The concept of managed objects
significantly simplifies the file format specification process by
allowing larger formats to be specified in an easy-to-manage
iterative manner. By encapsulating semantic sub-components,
managed objects provide an ideal foundation for interacting
with data in a manner that is semantically meaningful to
applications.
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The BRAINformat library provides dedicated base classes
to assist with the specification and development of interfaces
for new managed object types. The ManagedObject base API
implements common features and interfaces to:

• define the specification of a given managed type,
• recursively construct the complete format specification,

while automatically resolving nesting of managed
objects,
• verify format compliance of a given HDF5 object,
• access common managed object descriptors, e.g., type,

description, specification, and object identifier,
• access contained objects, e.g., datasets, groups, managed

objects, etc.,
• retrieve all managed objects of a given managed type,
• automatically create manager class instances for HDF5 objects

based on their managed type, and
• for creation of new instances of managed objects via a

common create(..) method.

To implement a new managed object type, a developer
simply defines a new class that inherits from the
appropriate base type, i.e., ManagedFile, ManagedGroup, or
ManagedDataset. Next, the developer implements the class
method get_format_specification(...) to create a formal format
specification (see Section 3.1.2) and implements the object
method populate(...) to define the type-specific population of
managed storage objects to ensure format compliance upon
creation, i.e., the goal is to avoid that managed objects can
be created in an invalid state to ensure format compliance
throughout their life cycle.

BRAINformat efficiently supports self-contained, modular,
and mixed data storage strategies, by allowing managed groups
and datasets to be stored either directly within the same file as the
parent group or separately in an external HDF5 file and included
in the parent via an external link. To transparently support
external storage of managed objects, we provide a generic file
storage container formanaged objects. This strategy enables users
to create and interact with managed objects in the same manner
independent of whether they are stored internal or external
to the current HDF5 file, effectively hiding the complexity of
interacting with possibly large numbers of files. Being able to
effectively use self-contained and modular storage strategies is
critical for management of neuroscience data due to the diversity
and large number of measurements and derived data products
that need to be managed and analyzed in conjunction. Self-
contained storage eases data sharing, as all data is available
in one file. Modular storage then allows us to dynamically
link and integrate complex data collections without requiring
expensive data copies, easesmanagement of file sizes, and reduces
the risk for file corruption by minimizing changes to existing
files.

3.1.2. Format Specification
To enable the broad application and use of data formats, it is
critical that the underlying data standard is easy to interpret

by application scientists as well as unambiguously specified
for programmatic interpretation and implementation by
developers. Therefore, each format component (i.e., managed
object type) is described by a formal, self-contained format
specification that is computer interpretable while at the
same time including human-readable descriptions of all
components.

We generally assume that format specifications are minimal,
i.e., all file objects that are defined in the specificationmust adhere
to the specification, but a user may add custom objects to a file
without violating format compliance. The relaxed assumption of
aminimal specification ensures on the one hand that we can share
and interact with all format-compliant files and components in
a standardized fashion, while at the same time enabling users
to easily integrate dynamic and custom data (e.g., instrument-
specific metadata). This strategy allows researchers to save all
their data using standard format components, even if they only
partially cover the specific use-case. This is critical to enable
scientists to easily adopt file standards and to allow standards
to adapt to the ever-evolving experiments, methods, and use-
cases in neuroscience and facilitate new science rather than
impeding it.

The BRAINformat library defines format specification
document standards for files, groups, datasets, attributes,
dimensions scales, managed objects, and relationship attributes.
All specification documents are based on hierarchical Python
dictionaries that can be serialized as JSON documents for
persistent storage and sharing. For all data objects we
specify the name and/or prefix of the object, whether
the object is optional or required, and provide a human-
readable textual description of the purpose and content
of the object. Depending on the object type (e.g., file,
group, dataset, or attribute) additional information is
specified, e.g., (i) the datasets, groups, and managed objects
contained in a group or file, (ii) attributes for datasets,
groups and files, (iii) dimension scales of datasets, (iv)
whether a dataset is a primary dataset for visualization
and analysis or (v) relationships between objects. Figure 1

shows as an example an abbreviated summary of the format
specification of our example electrophysiology data standard
described in Section 4 and Supplement 1. Relationship
attributes and their specification are discussed further in
Section 3.2.

The BRAINformat library implements a series of dedicated
data structures to facilitate development of format specifications,
to ensure their validity, and to simplify the use and interaction
with format documents. Using these data structures enables
the incremental creation of format specifications, allowing
the developer to step-by-step define and compose format
specifications. The process of creating new format specifications
is in this way much like creating an HDF5 file, making
the overall process easily accessible to new users. For
example, the following simple code can be used to generate
the parts of the BrainDataEphys specification shown in
Figure 1:
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>>> from brain.dataformat.spec import *

>>> # Define the group

>>> brain_data_ephys = GroupSpec(group=None, prefix=’ephys_data_’,

description="Managed group for storage of raw Ephys recordings.")

>>> # Define the raw dataset and associated attribute and dimension

>>> raw_data_spec = DatasetSpec(dataset=’raw_data’, prefix=None, optional=False, primary=’True’,

description="Dataset with the Ephys recordings data")

>>> raw_data_spec.add_attribute( AttributeSpec(attribute=’unit’, prefix=None, value=’Volt’) )

>>> raw_data_spec.add_dimension( DimensionSpec(name=’space’, unit=’id’, dataset=’electrode_id’,

axis=0, description="Id of the recording electrode"))

>>> # Add the dataset to the group

>>> brain_data_ephys.add_dataset(raw_data_spec, ’ephys_data’)

Using our specification infrastructure we can easily compile
a complete data format specification document that lists all
managed object types and their format. The following simple
example code compiles the specification document for our
neuroscience data format directly from the file format API (see
also Section 4):

>>> from brain.dataformat.spec import FormatDocument

>>> import brain.dataformat.brainformat as brainformat

>>> json_spec = FormatDocument.from_api(module_object=brainformat).to_json()

Figure 1 shows an abbreviated summary of the result of the
above code. Alternatively, we can also recursively construct the
complete specification for a given managed object type, e.g., via:

>>> from brain.dataformat.brainformat import BrainDataFile

>>> from brain.dataformat.spec import *

>>> format_spec = BrainDataFile.get_format_specification_recursive() # Construct the document

>>> file_spec = BaseSpec.from_dict(format_spec) # Verification of the document

>>> json_spec = file_spec.to_json(pretty=True) # Convert the document to JSON

In this case, all references to other managed objects are
automatically resolved and their specification embedded in the
resulting specification document. While the basic specification
for BrainDataFile consists only of ≈ 11 lines of code (see
Supplement 1.1.2), the full, recursive specification contains more
than 2170 lines (see Supplement 1.2). Being able to incrementally
define format specifications is critical because it allows us to
easily extend the format in a modular fashion, define and
maintain semantic subcomponents in a self-contained fashion,
and avoids hard-to-maintain, monolithic, large documents while
still making it easy to create comprehensive specifications
documents when necessary.

The ability to compile complete format specification
documents directly from data format APIs allows developers to
easily integrate new format components (i.e., managed object
types) in a self-contained fashion simply by adding a new API
class without having to maintain separate format specification
documents. Furthermore, this strategy avoids inconsistencies
between data format APIs and specification documents since
format documents are updated automatically.

The concept of managed objects in combination with the
format specification language and API provide an application-
independent design concept that allows us to define application-
specific formats and modules that are built on best practices.

3.2. Modeling Data Relationships
Neuroscience data analytics often rely on complex structural and
semantic relationships between datasets. For example a scientist

may use audio recordings to identify particular speech events
during the course of an experiment and in turn needs to locate
the corresponding data in an electrocorticography recording
dataset to study the neural response to the events. In addition,
we often encounter structural relationships in data, for example,
when using index arrays or when datasets have been acquired

simultaneously and/or using the same recording device and
many others. To enable efficient analysis, reuse, and sharing of
neuroscience data it is critical that we can model the diverse

relationships between data objects in a structured fashion to
enable human and computer discovery, use, and interpretation
of relationships.

Modeling data relationships is not well-supported by
traditional data formats, but is typically closer to the domain of
scientific databases. In HDF5, we can compose data via HDF5
links (soft and hard) and associate datasets with the dimensions
of another dataset via the concept of dimension scales. However,
these concepts are limited to very specific types of data links
that do not describe the semantics of the relationship. A new
general approach is needed to describe more complex structural
and semantic links between data objects in HDF5.

3.2.1. Specifying and Storing Relationships
Here we introduce the novel concept of relationship attributes
to describe complex semantic relationships between a source
object and a target data object in a general and extensible fashion.
Relationship attributes are associated with the source object and
describe how the source is related to the target data object. The
source and target of a relationship may be either a HDF5 group
or dataset.

Relationship attributes are like other file components specified
via a JSON dictionary and are part of the specification of datasets
and groups. Like any other data object, relationships may also be
created dynamically to describe relationships that are unknown a
priori. Specific instances of relationships are stored as attributes
on the source HDF5 object, where the value of the attribute is
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FIGURE 1 | Abbreviated specification document for our neuroscience data format listing all current managed object types and partial specification for

select types, illustrating the general structure of a format specification document. The full specification document is shown in Supplement 1.3.

the JSON document describing the relationship. As illustrated in
Figure 2, the JSON specification of a relationship consists of:

• The specification of the name of the attribute and whether
the attribute is optional. When stored in HDF5 we prepend
the prefix RELATIONSHIP_ATTR_ to the user-defined name
of the attribute to describe the attribute’s class and ease
identification of relationship attributes.
• A human-readable description of the relationship and

an optional JSON dictionary with additional user-defined
metadata.
• The specification of the type of the relationship (described next

in Section 3.2.2).
• The specification of the axes of the source object to which

the relationship applies. This may be: (i) a single index, (ii) a

list of axes, (iii) a dictionary of axis indices if the axes have a
specific user meaning, or iv) None if the relationship applies
to the source object as a whole. Note, we do not need to specify
the location of the source object, as the specification of the
relationship is always associated with either the source object
in HDF5 itself or in the format specification.
• The specification of the target object describing the location

of the object and the axes relevant to the relationship (using
the same relative ordering or names of axes as for the source
object).

3.2.2. Relationship Types
The relationship type describes the semantic nature of the
relationship. The BRAINformat library currently supports the
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FIGURE 2 | Example specification of a relationship attribute.

following relationship types, while additional types can be added
in the future:

• order: This type indicates that elements along the specified
axes of the relationship are ordered in the target in the same
way as in the source. This type of relationship is very common
in practice. For example, in the case of dimension scales an
implicit assumption is that the ordering of elements along
the first axis of the scale-dataset matches the ordering of
the elements of the dimension it describes. This assumption,
however, is only implicit and is by no means always true
(nor does HDF5 require this relationship to be true). Using
an order relationship we can make this relationship explicit.
Other common uses of order relationships include describing
the matched ordering of electrodes in datasets that have been
recorded using the same device ormatched ordering of records
in datasets that have been acquired synchronously.
• equivalent: This type expresses that the source and target

object encode the same data (even if they might store different
values). This relationship type also implies that the source and
target contain the same number of values ordered in the same
fashion. This relationship occurs in practice any time the same
data is stored multiple times with different encodings. For
example, to facilitate data processing a user may store a dataset
of strings with the names of tokens and store another dataset
with the equivalent integer ID of the tokens (e.g., |baa| = 1,
|gaa| = 2, etc.).
• indexes: This type describes that the source dataset contains

indices into the target dataset or group. In practice this
relationship type is used to describe basic data structure where
we store, for example, a list of unique values (tokens) along
with other arrays that reference that list.
• shared encoding:This type indicates that the source and target

data object contain values with the same encoding so that
the values can be directly compared via equals “==”. This
relationship is useful in practice any time two objects (datasets
or groups) contain data with the same encoding (e.g., two

datasets describing external stimuli using the same ontology).

• shared ascending encoding: This type implies that the source
and target object share the same encoding and that the

values are sorted in ascending order in both. The additional
constraint on the ordering enables i) comparison of values
via greater than “>” and less than “<” in addition to equals
== and ii) more efficient processing and comparison of data
ranges. For example, in the case of two datasets that encode
time, we often find that individual time points do not match
exactly between the source and target (e.g., due to different
sampling rates). However, due to the ascending ordering of
values, a user is still able to compare ranges in time in a
meaningful way.
• indexes values: This type is typically used to describe value-

based referencing of data and indicates that the source object
selects certain parts of the target based on data values (or keys
in the case of groups). This relationship is a special type of
shared encoding relationship.
• user: The user relationship is a general container to allow users

to specify custom semantic relationships that do not match
any of the existing relationship patterns. Additional metadata
about the relationshipmay be stored as part of the user-defined
properties dictionary of the relationship attribute.

3.2.3. Using Relationship Attributes
Relationship attributes are a direct extension to the previously
described format specification infrastructure. Similar to other
main data objects, BRAINformat provides dict-like data
structures to help with the formal specification of relationship
attributes. In addition, the BRAINformat library also provides
a dedicated RelationshipAttribute API, which supports creation
and retrieval of relationship attributes (as well as index map
relationship, described in Section 3.2.4) and provides easy
access to the source and target HDF5 object and corresponding
specifications of relationship attributes.

One central advantage of explicitly modeling relationships is
that it allows us to formalize the interactions and collaborative
usage of related data objects. In particular, the relationship types
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imply formal rules for how to map data selections from the
source to the target of a relationship. The RelationshipAttribute
API implements these rules and supports standard data selection
operations, which allows us to easily map selections from the
source to the target data object using a familiar array syntax.
For example, assume we have two datasets A and B that are
related via an indexes relationship RA→B. A user now selects
the values A[1 : 10] and wants to locate the corresponding data
values in B. Using the BRAINformat API we can now simply write
RA→B[1 :10] to map t he selection [1 :10] from the sourceA to the
target B, and if desired retrieve the corresponding data values in
B via B[RA→B[1 : 10]]. Figure 3 provides an overview of the rules
for mapping data selections based on the relationship type.

Relationship attributes standardize the specification, storage,
and programmatic interface for creating, discovering, and using
relationships and related data objects. Describing relationships
between data explicitly greatly simplifies the process of
interacting with multiple datasets and facilitates the collaborative
use of data by enabling utilization of multiple datasets in
conjunction without having to a priori know the relationships
and datasets involved. In this way, relationship attributes also
open the route for the standardized development of novel data-
driven analytics and workflows based on the programmatic
discovery and use of related data objects.

3.2.4. Index Map Relationships
Beyond the description of direct object-to-object relationships,
relationship attributes also form the building blocks that allow
us to specify higher-order relationships. Using relationship
attributes we can define chains of object-to-object relationships
that, when interpreted in conjunction, express highly complex
structural and semantic relationships. Imagine the following
situation: scientists have acquired an optical microscopy image A
and a mass spectrometry image (MSI) B of the same brain. Using

the optical image a scientist identifies a particular brain region of
interest and nowwants to study the chemical makeup of the same
region further using the MSI image. This seemingly simple task
of accessing corresponding data values in two related datasets
is in practice, however, often highly complex. Even if the data
registration problem between the datasets is solved, a user still
has to know exactly: (i) the location of both datasets A and B, (ii)
how the two datasets are related, (iii) what the transformations
generated by the data registration process are, (iv) how to utilize
that information to map betweenA and B, and (v) write complex,
custom code to access the data.

Index map relationships allow us to explicitly describe this
complex relationship between A and B via a simple chain of
object-to-object relationship attributes and to greatly simplify
the cooperative interaction with the data. Rather than describing
the relationship between A and B directly, users can create an
intermediate index map MA→B that stores for each pixel in A
the index of the corresponding pixel(s) in B.MA→B explicitly and
unambiguously describes the mapping fromA to B so that we can
directly utilize the mapping without having to perform complex
and error-prone index transformations (which would be needed
if we described the mapping implicitly, e.g., via scaling, rotation,
morphing and other data transformations). As Table 1 shows, we
can unambiguously describe the complex relationship between
A and B via MA→B through a series of simple relationship
attributes.

Given only our source dataset A (or index map MA→B) we
can now easily discover all relevant data objects (A, B, and
MA→B) and relationships (Table 1) without having to a priori
know the mapping or the location of the datasets. Via the
index map relationship we can now directly map selections:
(i) from A to MA→B and vice versa (ii) from MA→B to B,
and most importantly (iii) from A to B simply by selecting
data via our indexes relationship (Table 1, row 3) to retrieve

FIGURE 3 | Overview of the main relationship types and the implied mapping of point- and range-based selections from the source to the target

object. In each cell we show the source object on the left and the target object of the relationship on the right. (A) For order relationships we can directly map array

indices between the data objects. In the case of order relationships involving HDF5 Groups we assume alphabetic ordering of elements. (B) In the case of indexes

relationships we map selections by retrieving the relevant indices from the source array. (C) For shared encoding and indexes values relationships we support data

selection via value-based data mapping, i.e., we map selections by locating all data values in the target object that match at least one of the values we selected in the

source object. (D) Shared ascending encoding relationships behave in general similar to shared encoding relationships, however, the additional constraint that values

are sorted in ascending order enables us to map range selections directly based on the minimum and maximum value selected in the source (in contrast to the strict

equal value matching of shared encoding). (E) User relationships define custom user semantics and do not imply a specific mapping between data elements (not

shown).
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TABLE 1 | Overview of the relationships used to define an advanced index map relationship.

Source Relationship Target Description

1. A
order
−−−−−→ MA→B This relationship describes that elements in A are ordered in the same way as the elements in the index map MA→B. In

addition we may further specify the axes in the source A and target MA→B along which the relationship applies.

2. A
order
←−−−−− MA→B Inverse of (1), describing the object ordering relationship between MA→B and A.

3. MA→B
indexes
−−−−−→ B This relationship indicates that MA→B stores indices into B and describes how our map can be used to access B. An

example specification of this relationship is shown in Figure 2.

4. A
user
−−−−−→ B An optional user-type relationship may be used to further characterize the semantic relationship between A and B.

We present a specific example later in Figure 4.

the corresponding indices from our index map MA→B. As data
mappings are described explicitly, indexmap relationships enable
registration and mapping under arbitrary transformations. Also,
mappings are not required to be unique—i.e., arbitrary N-to-M
mappings between elements are permitted—and the source and
target of relationships may not just be datasets but also groups,
i.e., index map relationship can be used to define mappings
between contents of groups or even groups and datasets in HDF5.

BRAINformat implements the concept of index map
relationships—similar to dimension scales and relationship
attributes—via a set of simple naming conventions for the
attribute names. In addition to the RELATIONSHIP_ATTR
prefix, we use a set of reserved post-fix values for the attribute
name to identify the different components of the index
map relationship, specifically, _IMR_SOURCE_TO_MAP,
_IMR_MAP_TO_SOURCE, _IMR_MAP_TO_TARGET,
_IMR_SOURCE_TO_TARGET. The BRAINformat API directly
supports index map relationships so that we can, for example,
directly create and locate all relationships that define an index
map relationship via a single function call and programmatically
interact with the relationships. The Jupyter notebook available
at http://tinyurl.com/jsuzvar provides a tutorial of the Python
API for creating and using relationship attributes and index map
relationships.

Index map relationships have broad practical applications,
including data registration, multi-modal data analysis, sub-
component analysis, correlation and alignment of data
dimensions, or multi-resolution data storage. Index map
relationships are directly applicable to specify the mapping
between images in a time series or a stack of physical slices
as well as to define correspondences between images from
different modalities. We may also define mappings between
select dimensions of a dataset to correlate data from different
recordings in time or space. Furthermore, analytics are often
based on characteristic sub-components of a dataset. As such,
a user may extract and separately process sub-components
of datasets (e.g., a sub-image of a single cell) and use index
map relationships to map the extracted or derived analysis
data back to the original data. To optimize data classification
and other compute-intensive analyses, a user may perform
initial calculations on lower-resolution datasets and use index
map relationships to access corresponding data values in
high-resolution variants of the data for further processing.

Figure 4 illustrates an example index map relationship for
mapping between a mass spectrometry imaging (MSI) dataset

of the left coronal hemisphere of a mouse brain and a
derived, monochrome image. For the example we use an MSI
dataset made available by Louie et al. (Lee et al., 2012) via
OpenMSI (Rübel et al., 2013). The MSI dataset has a size
of (120 × 122 × 80, 339) and has been processed via peak
detection and integration, principle component analysis, and
interpolation to generate a (610 × 600) monochrome summary
image for exploration. Each pixel in the MSI image maps to a
5 × 5 sub-region in the monochrome image. We, hence, create
a 4-dimensional index map dataset where: (i,ii) the first two
dimensions correspond to the spatial dimensions x and y of the
images, (iii) the third dimension is our index axis of length 2 since
each pixel is described by two integer indices, and (iv) the fourth
dimension is our stacking axis with the list of all corresponding
pixel. Using the BRAINformat API, we can now create the index
map relationship (arrows in Figure 4) via a single function call.
As illustrated in Figure 5, we can now easily map a selection
(here [36, 70]) from our MSI image (source) to the monochrome
image (target) simply by applying the selection to our index
map relationship (imr) via imr[′MAP_TO_TARGET′][36, 70]
and retrieve the data of the corresponding subimage from our
monochrome image. The source code for this example is available
at http://tinyurl.com/hvjckhf. In practice the type of interactions
illustrated in this example are critical for the analysis of multi-
modal imaging experiments, e.g., using high-resolution histology
imaging in combination with MS-based chemical imaging.

As this example illustrates, index map relationships allow
us to explicitly and unambiguously describe complex data
relationships. This is critical to enable programmatic discovery
and use of relationships and to perform complex multi-
data analytics while reducing risk for errors due to implicit
assumptions about relationships. Here we focus on index
map relationships, but the same basic concept of chaining
relationships could be applied to construct other types of
complex object inter-relationships as well.

4. APPLICATIONS TO NEUROSCIENCE
DATA

In the following we describe the application of our framework
to develop a format for neuroscience data by focusing on
electrophysiology experiments recording from the primary
auditory cortex (A1) of anesthetized rats. These data share
many requirements with standard physiology data collected
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FIGURE 4 | Illustration of an index map relationship describing the interaction between a mass spectrometry image (MSI) and a derived monochrome

image. The MSI image is in this case 5× smaller than the monochrome image. The intermediary index map describes for each pixel in the MSI image which pixels it

corresponds to in the the monochrome image. Two order relationships (red arrows) describe the interactions between the MSI image and the map and vice versa. A

third indexes relationship links our index map to the monochrome image and describes how the map can be used to access the image. Optionally, we may create a

fourth user relationship (black arrow) to further characterize the semantic relationship between the derived and original image (e.g., to store a description of the

algorithm and parameters used to generate the image). Naturally, we can also describe the inverse mapping between the original and processed image via a second

index map relationship.

FIGURE 5 | Example showing the application of index map relationships for data selection. (A) First we apply the selection [36, 70] (red arrow) to our source,

MSI dataset. (B) As expected, this results in the selection of a single mass spectrum. (C) We next map the same selection to our target dataset. From the red arrow

we can see that the selection was mapped correctly to same relative location as in our source, image. (D) The pixel plot illustrates that the mapping resulted, as

expected, in the selection of a 5× 5 sub-image from our target image. In (C,D) we use the color map shown on the right to map gray-scale values in the monochrome

image to color.
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by the broader neuroscience community: storage of signal
recordings over time across multiple spatially distributed sensors
with potentially heterogenous geometries, complex and multi-
tiered task descriptions (e.g., complex auditory stimuli), post-
hoc processing of raw data to extract the signal of interest, the
association of physiology data with multi-modal data streams
collected simultaneously by other devices (e.g., audio or video
recordings of stimuli and subject actions), the linkage of data
associated with the same “task” across multiple sessions, and the
necessity to store rich metadata to make sense of it all.

4.1. High-Level Data Organization
Figure 6A shows the organization of an example
electrophysiology dataset from a rat experiment stored using
our file format. Scientists in the Bouchard lab recorded neural
responses to audio stimuli simultaneously using a micro
electrocorticography (µECoG) grid and laminar polytrode.
Recordings were subsequently processed for a time-frequency
analyses (e.g., wavelet decomposition) and event detection
(multi-unit activity). In the file, the data is organized in a series
of managed groups with corresponding format specification and
API classes. A complete list of all managed object types is shown
in Figure 1 and the JSON documents with the complete file and
format specification documents are shown in Supplement 1.3
and 1.4.

In the HDF5 file the data is organized in a basic semantic
hierarchy. On the highest level we distinguish between data and
descriptors, i.e., raw and processed data generated through
experimentation and analysis vs. globally accessible metadata.
We then further distinguish between static metadata (i.e.,
descriptions of the basic data acquisition and experimental
parameters) and dynamic metadata (e.g., descriptions of post-
processing parameters) and categorize data into internal

data (i.e., data collected inside the brain, e.g., electrophysiology
recordings) and external data (i.e., data collected external to
the animal, e.g., sensory stimuli, audio recordings, position of
body parts, etc.). Raw and processed data may then either be
directly stored as part of the internal and external data
groups or further grouped into collections, e.g., here to
group data related to theµECoG grid and polytrode, respectively.
These divisions impose some minimal structure on the format
easing interpretability and traversal by users.

In practice, scientists regularly acquire data in series of distinct
experimental sessions often distributed over long periods of
time. To facilitate management and sharing of data, it is useful
to store the data generated from such distinct recordings in
separate data files, yet for analysis purposes the data often needs
to be analyzed in context. To allow the organization of related
files, we support the grouping of files in managed container
files (BrainDataMultiFile) in which each primary file is

FIGURE 6 | (A) Visualization of the organization of datasets and groups in the rat electrophysiology recordings using our data format, with gray edges (managed by)

indicating the hierarchy of objects in the HDF5 file. (B) Same as (A) but additionally showing all 522 relationship attributes (colored edges) describing structural and

semantic relationships between the data objects. The number of nodes and edges in the graph are indicated in the legend. In addition, the file also contains 372

regular attributes (not shown).
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represented by an HDF5 group /entry_# that defines an
external link to the root group of the corresponding file. This
simple concept enables users to organize large collections of
related files (e.g., data from multiple experimental sessions) and
interact with the data as if it were located in a single file. In
addition, as described earlier in Section 3.1.1, the BRAINformat
library supports modular storage of individual managed objects
in separate HDF5 files (which are in turn included in the parent
via external links). This allows users to flexibly store and share
data from multiple modalities and analytics as independent
files while at the same time making the results easily accessible
from the main data file and limiting the need for large-scale
updates to the main file, significantly reducing risk of data
corruption.

4.2. Storing Electrophysiology Data
A common application in neurophysiology experiments
is the acquisition and storage of voltage recordings over
time across multiple spatially distributed sensors, e.g., via
electrocorticography (ECoG), multi-channel electrophysiology
from silicon arrays or Utah arrays. The BrainDataEphys

module defines a managed group in HDF5 that serves as a
container to collect all data pertaining to the voltage recordings
by a single device. The primary dataset raw_data defines a
two-dimensional, space × time array storing electrical recordings
in units of Volts. Auxiliary information about the data, e.g., the
sampling_rate in Hz among others, are stored as additional
datasets and attributes.

The voltage recordings are also further characterized via
a series of dimension scales describing: (i) the identifier of
electrodes (e.g., linear channel index from DAQ), (ii) the sample
time in milliseconds, and optionally (iii) the anatomical name
and integer id of the spatial region where each electrode is
located. In addition, the BrainDataEphys API allows users to
easily add custom dimension scales to the data. Dimension scales
are described by: (i) a data array with the scale’s data, (ii) the units
of the values, (iii) a human-readable description of the contents
of the scale, (iv) the name of the scale, and (v) the the associated
axis. The ability to easily generate custom dimension scales
enables users to conveniently associate additional descriptions
with the data, e.g., scales describing the classification of electrodes
or time values into unique groups/clusters or to encode the
occurrence of different events in time. Dedicated functions
for look-up and retrieval of all or select dimensions scales—
including all auxiliary data, e.g., the units or description of the
scale(s)—ease the integration and use of dimensions scales for
analytics.

As described earlier, the creation of managed objects is
standardized. All required data structures are initialized during
the creation process, ensuring that the file is always valid. Other,
optional structures (e.g., the anatomy) may be saved directly
during the creation or added later. To ease the use of the format
during acquisition, BrainDataEphys supports auto-expand-
data, a mode in which the raw data and associated dimension
scale arrays are initially created as empty datasets that are
automatically expanded as new recordings are acquired over time
(see also Supplement 2).

A central advantage of the modular managed object
design of our format is its reusability and extensibility.
For example, in practice, electrophysiology data and other
temporal recordings across multiple sensors, are often further
processed to extract specific frequency bands or fixed-length
events/features (e.g., phonemes or task trials). To support this,
the BrainDataEphysProcessed managed type expands
BrainDataEphys to support three-dimensional voltage arrays
of space × time × band and associated additional metadata
and dimension scales. The modular managed object design
also greatly simplifies the format specification process by
allowing us to define the format incrementally and reduces the
size of specification documents. For example, while the full
format specification of BrainDataFile consists of 2173 lines, the
specification of the individual modules is ≈ 66% shorter (see
Supplement 1.2 and 1.3).

Users can interact with the voltage recordings directly via
standard array-based data selection (similar to NumPy arrays)
while auxiliary data, e.g., the sampling rate and dimensions
scales, can be easily retrieved via corresponding access functions
or key-based data selection (similar to Python dictionaries). In
addition to the rat data described here, we also successfully
stored electrocorticography (ECoG) recordings collected from a
neurosurgical patient during speech production in the file format
(see Supplement 3).

4.3. Modeling Data Relationships
In practice, neuroscience data exhibits complex structural and
semantic relationships, e.g., derived datasets and data recorded
synchronously or using the same instrument are often related
in space and/or time. Unfortunately, data formats typically do
not support modeling of data relationships so that users have
to infer relationships from the file hierarchy (Figure 6A) and
unstructured metadata. In practice, the lack of standardized
information about relationships may lead to errors in data
analysis and interpretation and hinders efficient data reuse and
sharing.

Using the concept of relationship attributes allows us to
formalize this process and model complex relationships between
datasets in a standardized, human- and computer-readable
fashion. Common relationships, e.g., order relationships
between dimension scales and actual data and other scales are
created automatically by the format library. Custom relationships
can then be easily defined via single function calls using the
RelationshipAttribute.create(...) API.

Even though the example file in Figure 6A describes just a
single recording session with a few additional processed results,
the number of relationships quickly exceeds the number of
data objects. Modeling only the most common relationships, we
established 522 relationship attributes in the rat data example
(Figure 6B), describing a highly complex network of links
between data objects. It is easy to see why users become
quickly overwhelmed when having to remember and tediously
reconstruct these data relationships, leading to critical errors
and high cost for analysis and hindering the design of reusable,
multi-modal analytics.
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4.4. Multi-Modal Data Analysis
Analytics involving data frommultiple modalities and processing
stages depend on the ability tomap complex queries and resulting
selections between datasets. Figure 7A shows a deceivingly
simple example visualization of six plots showing raw voltages
from an electrode on the µECoG grid and one on the polytrode,
and two corresponding processed results for each. The curves
show the same time range and the same electrode for the
corresponding device. As Figure 7B illustrates, construction of
this visualization depends on a complex network of datasets
and relationships. Using relationship attributes allows us to
easily store, discover, and retrieve relationships as well as search
for relationships via RelationshipAttribute.find_

relationships(source, target). Using relationships,
we can then conveniently and reliably map selections between
two datasets simply by applying the selection via array slicing
to the corresponding RelationshipAttribute object and
subsequently applying the mapped selection to the target dataset.
The generation of the plots shown in Figures 6A,B, 7A, 8 is
documented in the following Jupyter code notebook http://
tinyurl.com/zq6uuja.

Figure 8 shows another example of a common analysis for the
measured neural response to audio stimuli of varying frequency
(0.5 to 32 KHz) and attenuation (0 to−70 dB) for all electrodes of
the µECoG grid and the polytrode. This kind of analysis requires
a series of datasets describing stimulus onsets, amplitudes, and
frequencies and electrode layouts and responses. Identification
of the relevant datasets and reliable and consistent mapping of
selections for retrieval of corresponding data values then relies on

a series of relationship attributes between the datasets. This plot
suggests that the stimulus response recorded via the µECoG grid
on the cortical surface is consistent with the response recorded
by the polytrode from inside the cortex.

The formal modeling of data relationships is a powerful tool
that allows us to more easily design reusable, complex multi-
modal data analytics while drastically reducing the risk for
errors. The ability to discover and use relationships for mapping
between data also facilitates data reuse and sharing by providing
critical information about dependencies between data objects
and empowering users not familiar with the data to quickly and
reliably create complex data analytics.

5. CONCLUSIONS AND FUTURE WORK

Neuroscience is facing an incredible data challenge; novel
experimental technologies generate increasingly large volumes
of data (often 100s of GB to TBs) at ever faster rates while
large varieties of data from different acquisition modalities are
being combined to enable the integrated study of different
aspects of experiments (e.g., via electrical and optical physiology,
fMRI, MSI, electron and light microscopy, video and audio
recording, among many others). Efficient and easy-to-use data
standards are a critical foundation to solving this challenge by
enabling efficient storage, management, sharing, and analysis
of complex neuroscience data. Standardizing neuroscience data
is as much about defining common schema and ontologies
for organizing and communicating data as it is about defining
basic storage layouts for specific data types. Arguably, the focus

FIGURE 7 | (A) Plot of electrode 0 of the ECoG grid data (left) and electrode 4 of the polytrode data for time = (1050000, 1059000)ms for the raw voltage recorded at

12.2KHz (top) and the processed gamma (middle) and multi-unit activity (MUA) (bottom) data. (B) Graph illustrating the construction of the plot shown in (A). While the

plot may appear simple, the task of simultaneously visualizing data from different modalities and processing stages requires a complex network of datasets,

selections, and relationships for mapping selections to enable the reliable and consistent extraction of matching data across datasets.
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FIGURE 8 | Visualization of the response of all electrodes in the ECoG grid (A) and the polytrode (B) to tone stimuli at a frequency of 0.5 to 32 KHz and

an attenuation of 0 to −70dB. The polytrode was inserted at the intersection of electrodes 12, 13, 14, and 15 in the µECoG grid (demarcated with red bar). Each

plot represents a single electrode, while the index of the electrode as defined by the layout of the recording device is indicated in the bottom right of each plot. Each

bin in a plot represents the mean of the z-scored response in the 25–50Hz frequency band after each onset of a tone stimulus of the corresponding amplitude and

frequency. Each stimulus is presented 20 times for 300ms each throughout the experiment.

of a neuroscience-oriented standard should be on addressing
the application-centric needs of organizing scientific data and
metadata, rather than on reinventing file storage and format
methods. For the development of BRAINformat we have used
HDF5 as the basic storage format, because it already satisfies a
broad range of the more basic requirements.

The complexity and variety of experiments and the diversity
of data types and acquisition modalities used in neuroscience
make the creation of a general, all-encompassing standard a
daunting—if not futile—task. We have introduced the concept of
managed objects (and managed types), which—in combination
with an easy-to-use, formal format-specification document
standard and API—enables us to divide and conquer the
standardization problem in a modular and extensible fashion.
Format components specified using these concepts can be easily
reused and extended, verified for format-compliance, and stored
in a self-contained andmodular fashion. The format specification
and managed object APIs are not specific to neuroscience,

but define application-independent design concepts that enable
us to efficiently create application-oriented format modules.
We have demonstrated the application of these concepts to
develop an extensible standard for electrophysiology data that is
portable, scalable, extensible, self-describing, and that supports
self-contained (single-file) and modular (multiple-linked-files)
storage.

We have also introduced the novel concept of relationship
attributes for modeling and use of structural and semantic
relationships between data objects, including advanced index
map relationships based on the notion of relationship chains.
Modeling data relationships enables the structured use and
analysis of related and multi-modal data, facilitates discovery, is
central to provenance, and avoids potentially critical use errors.
We have demonstrated the use of relationships attributes to
facilitate the reliable and reusable implementation of multi-
modal data analyses. Although these features are available
through an API, the data stored in the format is fully specified
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and human readable, so that domain scientists can access the it
even without our API.

We are actively working with the Bouchard lab and Denes lab
at Lawrence Berkeley National Laboratory and the Chang lab at
the University of California, San Francisco on the development
and evaluation of data standards for neurophysiology data
(the PIs and members of all three labs are also authors on
this manuscript). Members of the BRAINformat team are also
engaged with the Kavli Institute for Fundamental Neuroscience,
San Francisco and have contributed to Neurodata Without
Borders (NWB). We have demonstrated the application of
BRAINformat to electrophysiology experiments by the Bouchard
lab recording from the primary auditory cortex (A1) of
anesthetized rats (Section 4) as well as electrocorticography
(ECoG) data collected from neurosurgical patients during
speech production by the Chang lab (Supplement 3). These
data share many requirements with most physiology data
collected by the community: storage of signals recordings
over time across multiple spatially distributed sensors with
potentially heterogenous geometries, complex and multi-tiered
task descriptions, post-hoc processing of raw data to extract
the signal of interest, the association of physiology with multi-
modal data streams collected simultaneously by other devices,
the linkage of data associated with the same task or stimulus
across multiple sessions, and the necessity to store rich metadata
to make sense of it all. While we have focused so far on
the application of BRAINformat to electrophysiology data, a
central goal of the modular, managed-object-based design has
always been to facilitate extension and reuse of existing modules
and creation of new format modules for integration of new
information and data types in support of extended and new
application use cases.

The novel concepts and capabilities introduced by the
BRAINformat standardization framework fill important gaps in
the portfolio of available tools for creating advanced standards
for modern scientific data. Beyond just the design of a specific
new format, a primary goal of our work is to provide the
community with effective methods and tools to design and
explore new formats. These concepts and tools provide a
foundation to facilitate and inform efforts aimed at defining
community-wide standards, such as the NWB (Teeters et al.,
2015) initiative. In large part due to the contributions of
members of a number of format development teams, including
BRAINformat, NWB has adopted the use of formal, JSON-based
format specification documents and a module-based format
design similar to the format specification methods and managed-
object-based design we have introduced here. The BRAINformat
library is open source, has detailed developer documentation

and user tutorials, and is freely available at: https://bitbucket.org/
oruebel/brainformat.

In our future work we plan to extend BRAINformat
via advanced support for metadata ontology and data type
specification capabilities and efficient metadata search and
data annotation modules. We will develop capabilities to
enable linking and interaction with external data stored in
third-party formats (e.g., movies or images) and will develop
additional data modules needed to provide a broader coverage
of use cases in neuroscience research. Future work on making
metadata machine readable, as well as human readable, is
important to accelerate the analysis of diverse data sets en
masse.
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