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We use natural gradient (NG) learning neural networks (NNs) for modeling and identifying nonlinear systems with memory. The
nonlinear system is comprised of a discrete-time linear filter H followed by a zero-memory nonlinearity g(·). The NN model is
composed of a linear adaptive filter Q followed by a two-layer memoryless nonlinear NN. A Kalman filter-based technique and
a search-and-converge method have been employed for the NG algorithm. It is shown that the NG descent learning significantly
outperforms the ordinary gradient descent and the Levenberg-Marquardt (LM) procedure in terms of convergence speed and
mean squared error (MSE) performance.
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1. INTRODUCTION

Most techniques that have been proposed for nonlinear
system identification are based on parametrized nonlinear
models such as Wiener and Hammerstein models [1, 2, 3, 4],
Volterra series [5], wavelet networks [3], neural networks
(NNs) [6, 7], and so forth. The estimation of the parame-
ters is performed either using nonadaptive techniques such
as least squares methods and higher-order statistics-based
methods [4, 8, 9, 10, 11], or adaptive techniques such as
the backpropagation (BP) algorithm [12, 13, 14] and online
learning [3, 15].

NN approaches for modeling and identifying nonlinear
dynamical systems have shown excellent performance com-
pared to classical techniques [1, 6, 9, 13, 16].

NNs trained with the BP algorithm [14, 16] have, how-
ever, two major drawbacks: first, their convergence is slow,
which can be inadequate for online training; second, the NN
parameters may be trapped in a nonoptimal local minimum,
leading to suboptimal approximation of the system [6]. Nat-
ural gradient (NG) learning [17, 18] on the other hand, has
been shown to have better convergence capabilities than the
classical BP algorithm because it takes into account the ge-
ometry of the manifold in which the NN weights evolve.
Therefore, NG learning can better avoid the plateau phenom-
ena, which characterize the BP learning curves.

The unknown nonlinear system studied in this paper
(Figure 1) is a nonlinear Wiener system composed of a lin-
ear filter H(z) = ∑Nh−1

k=0 hkz−k followed by a zero-memory

nonlinearity g(·). This nonlinear system structure has been
used in many applications, for example, in satellite commu-
nications where the uplink channel is composed of a lin-
ear filter followed by a traveling wave tube (TWT) amplifier
[5, 19, 20], in microwave amplifier design when modeling
solid-state power amplifiers (SSPAs) [13], in adaptive con-
trol of nonlinear systems [9], and in biomedical applications
whenmodeling the relationships between cardiovascular sig-
nals [1, 2].

The nonlinear system output signal is corrupted by a
zero-mean additive white Gaussian noiseN0(n). It can be ex-
pressed at time n as

d(n) = g


Nh−1∑

k=0
hkx(n− k)


 +N0(n). (1)

The NN model (Figure 1) is composed of an adaptive filter

Q(z) = ∑Nq−1
k=0 qkz−k followed by a two-layer (zero-memory)

adaptive NN. The two-layer NN is composed of a scalar (real-
valued) input,M neurons in the input layer, and a scalar out-
put.

This structure aims at adaptively identifying the linear fil-
ter H by the adaptive filter Q, and modeling the nonlinearity
g(·) by the zero-memory NN.

The unknown nonlinear system is assumed to be a black
box and the learning process is performed using the input-
output signals only (i.e., the filter-memoryless nonlinearity
structure is known, but we do not have access to the internal
signals of this structure).
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Figure 1: Identification of a nonlinear system with memory using an adaptive neural network.

The NN output at time n is expressed as

s(n) =
M∑
k=1

ck f


wk

Nq−1∑
i=0

qix(n− i) + bk




=
M∑
k=1

ck f
(
wkQ

tX(n) + bk
)
,

(2)

where {wk}, {bk}, {ck}, k = 1, . . . ,M, are the NN weights,
Q = [q0 q1 · · · qNQ−1]t, and

X(n) = [x(n) x(n− 1) · · · x
(
n−NQ + 1

)]t
. (3)

The network and filter parameters are updated in order to
minimize the loss function l (or squared error) between the
system output and the NN output:

l
(
θ(n)

) = 1
2
e(n)2 = 1

2

(
d(n)− s(n)

)2
, (4)

where θ represents the set of the adaptive parameters:

θ

=
[
w1w2 · · ·wM b1b2 · · · bM c1c2 · · · cM q0q1· · ·qNQ−1

]t
.

(5)

Different NN algorithms are presented and tested in this pa-
per. These algorithms are based on the NG descent, the or-
dinary gradient descent, and on the Levenberg-Marquardt
(LM) procedure [4]. In this paper, we show that the NG

learning overcomes the other methods in terms of conver-
gence speed and MSE performance.

We also study which part of the adaptive system (i.e., the
linear or nonlinear part) is the most sensitive to the NG de-
scent (in terms of performance improvement).

Comparisons between classical NN and other adaptive
system identification approaches are not within the scope of
this paper. These comparisons have been extensively stud-
ied by several authors (see, e.g., [12] for an extended bibli-
ography). Other applications of the NG descent to satellite
communications, such as nonlinear channel predistortion,
equalization, and maximum likelihood receiver design can
be found in [7].

The following section presents the different NN algo-
rithms. Section 3 presents computer simulations and illus-
trations. Finally, the conclusion is given in Section 4.

2. ALGORITHMS

2.1. The LMS-backpropagation (LMS-BP) algorithm

The LMS-BP algorithm updates the weights by following the
ordinary gradient descent of the error surface:

θ(n + 1) = θ(n)− µ∇θl
(
θ(n)

)
, (6)

where µ is a small positive constant and ∇θ represents the
ordinary gradient with respect to vector θ, which is expressed
as

∇θl
(
θ(n)

) = −e(n)∇θs(n), (7)
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where

∇θs(n) =




c1QtX(n) f ′
(
w1QtX(n) + b1

)
...

cMQtX(n) f ′
(
wMQtX(n) + bM

)
c1 f ′

(
w1QtX(n) + b1

)
...

cM f ′
(
wMQtX(n) + bM

)
f
(
w1QtX(n) + b1

)
...

f
(
wMQtX(n) + bM

)
x(n)

M∑
k=1

ckwk f
′(wkQ

tX(n) + bk
)

...

x
(
n−NQ + 1

) M∑
k=1

ckwk f
′(wkQ

tX(n) + bk
)




.

(8)

(In the right-hand side of (8), the weights are at time n.)
This algorithm will be called LMS-BP because the update

of the NN weights {w1w2 · · ·wM b1b2 · · · bN c1c2 · · · cM}
in (6) corresponds to the classical BP algorithm [14], and the
update of the filter weights {q1q2 · · · qNQ} corresponds to the
LMS algorithm [15].

2.2. Natural gradient (NG) learning

The ordinary gradient is the steepest descent direction of a
cost function if the space of parameters is an orthonormal
coordinate system. It has been shown [17, 21] that in the case
of multilayer NNs, the steepest descent direction (or the NG)
of the loss function is actually given by

−∇̃θl(θ) = −Γ−1∇θl(θ), (9)

where Γ−1 is the inverse of the Fisher information matrix
(FIM)

Γ = [γi, j] =
[
E

(
∂l(s \ x; θ)

∂θi

∂l(s \ x; θ)
∂θj

)]
. (10)

Thus, the NG learning algorithm updates the parameters as

θ(n + 1) = θ(n)− µΓ−1∇θl
(
θ(n)

)
. (11)

The calculation of the expectations in the FIM requires the
knowledge of the pdfs of x and s, which are not always avail-
able. Moreover, the calculation of the inverse of the FIM is
computationally very costly. A Kalman filter technique will
be used for an online estimation of the FIM inverse

Γ̂−1(n + 1)

= (1 + εn
)
Γ̂−1(n)− εnΓ̂

−1(n)∇θs(n)
(∇θs(n)

)t
Γ̂−1(n),

(12)

where∇θs(n) is the (ordinary) gradient of s(n) (see(8)).

A search-and-converge schedule will be used for εn in or-
der to obtain a good trade-off between convergence speed
and stability:

εn = ε0 + cεn/τ

1 + cεn/τε0 + n2/τ
(13)

such that small n corresponds to a “search” phase (εn is close
to ε0) and large n corresponds to a “converge” phase (εn is
equivalent to cε/n for large n), where ε0, cε, and τ are positive
real constants. Using this online Kalman filter technique, the
update of the weights (i.e., (11)) becomes

θ(n + 1) = θ(n)− µΓ̂−1∇θl
(
θ(n)

)
. (14)

This algorithm will be called the coupled NGLMS-NGBP be-
cause the filter parameter space and the NN parameter space
together are considered as a single space.

2.3. The disconnected NGLMS-NGBP algorithm

Since the filter and the memoryless NN are physically sepa-
rated, then a choice can be made concerning the parameter
space:

(i) either we consider a single parameter space for the
filter coefficients and NN weights (as we have done
above),

(ii) or we consider two different parameter spaces, one for
the filter and the other for the neural network. In this
case, the parameter space of filter Q can be described
with an FIM Γ2 = [γi, j(Q)] which equals

γi, j(Q) = E

[
∂l(s|x;Q)

∂qi

∂l(s|x;Q)
∂qj

]
. (15)

The parameter space for the NN is described by a new
vector

θNN =
[
w1w2 · · ·wM b1b2 · · · bM c1c2 · · · cM

]t
, (16)

and its FIM will be denoted as Γ1.

The same Kalman filter technique as in Section 2.2 will be
used here in order to avoid the explicit calculation of the in-
verses of the two FIMs, Γ−11 and Γ−12 , which will be estimated
online by Γ̂−11 and Γ̂−12 as follows:

Γ̂−11 (n + 1) = (1 + εn
)
Γ̂−11 (n)

− εnΓ̂
−1
1 (n)

(∇θNN s
)(∇θNN s

)T
Γ̂−11 (n),

Γ̂−12 (n + 1) = (1 + εn
)
Γ̂−12 (n)

− εnΓ̂
−1
2 (n)

(∇Qs
)(∇Qs

)T
Γ̂−12 (n).

(17)

The adaptive system parameters are therefore updated as fol-
lows:(

θNN (n + 1)
Q(n + 1)

)
=
(
θNN (n)
Q(n)

)
− µ

(
Γ̂−11 (n)∇θNN l

(
θNN

)
Γ̂−12 (n)∇Ql(Q)

)
,

(18)
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where Γ̂−11 is the inverse Fisher matrix for the NN weights (a
3M × 3M matrix) and Γ̂−12 is the inverse Fisher matrix for
the filter weights (an NQ × NQ matrix). The other terms are
expressed as

∇θNN l
(
θNN

) = −e(n)∇θNN s(n), (19)

where

∇θNN s(n) =




c1QtX(n) f ′
(
w1QtX(n) + b1

)
...

cMQtX(n) f ′
(
wMQtX(n) + bM

)
c1 f ′(w1QtX(n) + b1)

...

cM f ′
(
wMQtX(n) + bM

)
f
(
w1QtX(n) + b1

)
...

f
(
wMQtX(n) + bM

)




(20)

and∇Ql(Q) = −e(n)∇Qs(n), where

∇Qs(n) =
( M∑

k=1
ckwk f

′(wkQ
tX(n) + bk

))
X(n). (21)

This algorithm will be called the separated (or disconnected)
NGLMS-NGBP algorithm because the two spaces are treated
separately. Note that the computational complexity is lower
than the single space NG algorithm because here we deal
with two small matrices rather than a large one (i.e., this is
equivalent to neglecting the coupling terms between the fil-
ter and the NN in the matrix Γ). In the simulations below,
we will show that these terms are negligible in practice (see
Figure 2).

Other variants of this algorithm can be derived easily, de-
pending on where we would like to apply the NG procedure.
For example, if we would like to use the classical LMS algo-
rithm for the adaptive filter and use the NG for the NN, then
we keep the upper equations in (18) which concern the up-
date of θNN and use the LMS algorithm forQ (i.e., the update
of filter Q in (6)).

3. ILLUSTRATIONS AND SIMULATION RESULTS

3.1. Description of the unknown system and the
algorithms that have been implemented

Concerning the unknown structure to be identified, we have
taken the nonlinearity as

g(x) = αx

1 + βx2
, α = 2, β = 1. (22)

This function has the same shape as amplitude conversions
of several high-power amplifiers used in communications.
The input signal has been taken as a white Gaussian sequence
with variance 1.
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Figure 2: Learning curves of the coupled and disconnected NG al-
gorithms.

The filter H weights were taken as

H = [1.4961 1.3619 1.0659 0.6750 0.2738 −0.0575
−0.2636 −0.3257 −0.2634 −0.1250]t .

(23)

The noise standard deviation was σ = 0.002, ε0 = 0.005,
cε = 1 and τ = 70, 000 (for the NG algorithms), and λ = 0.99
(for the RLS algorithm). The learning rate was fixed to µ =
0.007 (for each algorithm), this is because this value repre-
sents a good trade-off between convergence speed and MSE
error. Fifty Monte Carlo runs have been done to estimate the
learning curves.

The filter-nonlinearity structure corresponds to a typical
model of uplink satellite channels [5]. The filter Q is com-
posed of 10 weights which have been initialized with 0. The
NN was composed of M = 5 neurons which have been ini-
tialized with small random values (the same values have been
taken for the different algorithms, so that the initial point in
the MSE surface is the same for all algorithms). The num-
ber of neurons has been chosen equal to 5 because a higher
number does not significantly improve the approximation of
the nonlinearity, whereas a lower number strongly affects the
approximation performance.

The purpose of this part is to study the efficiency of nat-
ural gradient learning and to see which part of the adaptive
system is the most sensitive to NG learning (in terms of im-
provement of the algorithm performance).

We have implemented the following algorithms:

(i) the classical LMS algorithm for the adaptive filter and
the BP for the NN (LMS-BP),

(ii) the classical LMS for the adaptive filter and the NG for
the NN (LMS-NGBP),

(iii) NG LMS for the adaptive filter and BP for the NN
(NGLMS-BP),
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(iv) NG LMS for the adaptive filter and NG for the NN,
the parameter space is considered as a single space as
explained in Section 2.2 (coupled NGLMS-NGBP),

(v) NG LMS for the adaptive filter and NG for the
NN. Both algorithms are separated in the sense of
Section 2.3 (NGLMS-NGBP, disconnected).

We have also implemented the RLS algorithm [15] for
the adaptive filter (instead of LMS) and tested the follow-
ing algorithms: RLS-BP, RLS-NGBP, NGRLS-BP, NGRLS-
NGBP (coupled), and NGRLS-NGBP (disconnected). See
Appendix A for the NGRLS-NGBP algorithm.

The performance of our system has also been compared
to the LM procedure (see, e.g., [4]), which has been adapted
to our identification problem (see Appendix B). Similarly
to the NG algorithm, the LM algorithm can be applied
to the whole structure (we will call it LMLMS-LMBP), or
to the nonlinear part only (we will call it LMS-LMBP).
The parameter λ for the LM algorithm was initialized by
λ(1) = 0.2, then, every 50 iterations, it is divided or multi-
plied by 5, depending on whether the average squared error
has decreased or increased during the last 50-iteration win-
dow.

3.2. System identification and sensitivity
to natural gradient descent

Figure 2 compares the learning curves obtained by coupled
and separated versions of the NGLMS-NGBP algorithm as
well as the NGRLS-NGBP algorithm. It can be seen that there
is no significant difference between the coupled and sepa-
rated versions. This shows that the coupling terms in the FIM
inverse can be neglected. This can be explained by the fact
that both unknown system and model are composed of two
physically separated parts (i.e., a linear filter and a memo-
ryless nonlinearity). Therefore, the coupling terms are not
expected to significantly affect the convergence speed. This
certainly depends on the system model, for example, if the
unknown system and/or the adaptive model are not com-
posed of physically separated parts, then the coupling terms
may play an important role in the convergence behavior. The
authors in [1, 2, 6, 13] have presented interesting discussions
on the BP algorithm applied to nonlinear Wiener and Ham-
merstein systems and have given some analytical and quali-
tative results on the convergence behavior of each part of the
adaptive system. Therefore, in what follows, we will keep the
separated version of the algorithms which is computationally
less complex.

Figure 3a compares the learning curves of 8 versions of
the NG algorithm. It can be seen that, in order to obtain
an improvement of the convergence speed and MSE perfor-
mance, the NG descent should be applied at least to the NN
part. If the ordinary gradient is used for the NN, then the
algorithm may be trapped in a local minimum, whether we
apply the NG to the filter or not. When the NG is applied
to both parts (i.e., the filter Q and the NN), then there is
only a slight improvement compared to applying the NG to
the NN part only. This can be explained by the fact that the
linear part converges very quickly to a scaled version of the
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Table 1 Generalization MSE for the different algorithms.

Algorithm Generalization MSE

LMS-BP 5.2 10−5

NGLMS-BP 5.1 10−5

RLS-BP 4.9 10−5

NGRLS-BP 4.8 10−5

LMS-NGBP 4.8 10−6

RLS-NGBP 4.9 10−6

NGLMS-NGBP 5 10−6

NGRLS-NGBP 4.9 10−6

LMLMS-LMBP 1.8 10−5

LMS-LMBP 1.2 10−5

unknown filter, whereas the nonlinear part takes more time
to converge. We can conclude that the overall convergence
speed is mostly controlled by the nonlinear part and that the
NG descent improvement will mostly affect this part of the
system.

This means that it is more interesting to apply NG to
the NN part only rather than applying it to the whole struc-
ture. This considerably reduces the computational complex-
ity while keeping a good overall performance. For example,
Figure 3 shows that, in order to achieve an MSE of 10−4,
the LMS-NGBP needs 6, 000 iterations, whereas the LMS-BP
needs more than 17, 000 iterations.

Figure 3b compares the NG to the LM algorithm. The
LMS-LMBP and the LMLMS-LMBP have been tested. It can
be seen that the NG algorithm outperforms these two ver-
sions of the LM algorithm. For example, an MSE error of
10−4 is reached by the NGLMS-NGBP algorithm in less than
5, 000 iterations, whereas the same error is reached by the
LMS-LMBP in 10, 000 iterations, and by the LMLMS-LMBP
in 17, 000 iterations. The LM final MSE is also higher than
that of the NG algorithm (see Table 1).

Concerning the effect of the learning rate µ on the con-
vergence speed, Figure 3c illustrates the MSE error (at the
30, 000th iteration) versus µ for three different algorithms
(the other algorithms were not shown for the clarity of the
figure). It can be seen that the value 0.007 represents an op-
timal value for the MSE performance. The LMS-BP has a
typical behavior of an ordinary gradient-type descent, with
a global minimum and an increasing MSE as we go away
from the minimum. This is because large µ introduces more
error, and for small µ, the convergence is slow, so the MSE
error reached at the 30, 000th iteration remains high. For
the LMS-NGBP, the optimal value is 0.007, however, the
MSE curve is very flat for smaller values (which means that
the algorithm converged well before the 30, 000th iteration).
For high µ, the MSE increases relatively fast, and instability
may occur. Finally, for the LMS-LMBP, the MSE curve be-
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Figure 4: Impulse responses of the adaptive filters after normaliza-
tion and unknown filter H , where • represents qk and + represents
hk . (All impulse responses are almost superimposed.)
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Figure 5: Transfer functions of the converged nonlinear memory-
less parts obtained by the different algorithms (after normalization)
and comparison with the exact TWT characteristic.

havior is somewhat between the LMS-BP and LMS-NGBP,
which is expected since, as discussed in Appendix B, the
LM algorithm has a mechanism which is a kind of “com-
bination” between the NG descent and the ordinary de-
scent.

Computer simulations show that Q converges to H
(within a scale factor) for all algorithms. In Figure 4 we have
superimposed the impulse response of filter H and that of
the converged filter Q for each of the above algorithms (after
normalization with the inverse of the scale factors).
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Concerning the nonlinearity, it has also been successfully
identified by the memoryless NN. Figure 5 superimposes the
unknown nonlinearity g(z) and the NN transfer functions
obtained by the different algorithms. It can be seen that all
these functions are close to g(z).

Table 1 gives the generalization MSE (i.e., MSE obtained
by the different converged structures for an input that was
not used in the learning process). It can be seen that the
NG approach yields better MSE approximation performance
than the other methods.

3.3. Tracking capabilities

In order to illustrate the tracking capabilities of the algo-
rithms, we simulated a change in the nonlinearity g(·) oc-
curring during online learning at the 25, 000th iteration.
Figure 6a shows the old and new characteristic of the non-
linearity. This may happen for example in satellite commu-
nications where TWT amplifier characteristics are subject to
change because of thermodynamical perturbations.

It can be seen from Figure 6b that, when the change oc-
curs, the MSE considerably increases, then it is decreased by
the algorithm. TheNG approach again is much faster to track
the change than the ordinary gradient. The final MSE is also
better (the ordinary gradient algorithms stood in local min-
ima until the end of the learning process). (The LM proce-
dure is not included in these comparisons since it has a lower
performance than the NG algorithm for a higher computa-
tional complexity.)

Figure 7 shows the sensitivity of applying the NG to
the linear part (see also [18] for an interesting study of
the NG algorithm applied to linear systems). The figure
shows that, even though the LMS-NGBP algorithm gives a
smaller MSE (before the change) than the NGLMS-NGBP
algorithm, it is slower to track the change. This can be ex-
plained by the fact that the change that affected the non-
linearity has also introduced a considerable misadjustment
error on the filter weights pushing them far away from
the point that was reached before the change. The weights
had then to be reupdated in order to reach their original
state before the change (see also [6] for a detailed analyt-
ical study in the case of the BP algorithm). Other simula-
tion results show that the algorithms are robust to changes
(in both linear and nonlinear parts), that is, even for more
severe changes, the tracking capabilities are good and the
NG descent always outperforms the ordinary gradient de-
scent.

It should be noted that the NG variants of the RLS-BP al-
gorithm have, in general, a slightly better convergence speed
than the NG variants of the LMS-BP algorithm, except for
the tracking problem (Figure 6b), where the NGLMS-NGBP
algorithm was faster to track the change than the NGRLS-
NGBP algorithm.

3.4. Computational complexity

Although the NG learning outperforms the BP algorithm in
terms of convergence speed andMSE, it has a higher compu-
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(a) Nonlinearity before and after the change.
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(b) Tracking of change in the nonlinear part: learning curves of
the natural gradient and ordinary gradient.

Figure 6

tational complexity. Here we compare only the BP and NG
applied to the nonlinear part (composed ofM neurons) since
we have seen that it is not worth using the NG for the linear
part. For a network composed of M neurons, the BP algo-
rithm requires O(M) multiplications and additions at each
iteration. When the NG is used, this value becomes O(M2).
This is due to the matrix multiplication occurring in the NG
weight update and in the estimation of the inverse of the
Fisher matrix.

One of the advantages of the BP algorithm is that we can
exploit parallelism between neurons. Thus, with M proces-
sors working in parallel, we can reach a complexity of O(1)
per processor for each iteration. For the NG algorithm, paral-
lelism can also be exploited: withM parallel processors, each
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Figure 7: Tracking of change in the nonlinear part: sensitivity of the
linear part to the NG descent.

iteration will requireO(M) multiplications and additions per
processor. The number of times we need to calculate the out-
put of the sigmoid is, of course, the same for both algorithms.

4. CONCLUSION

This paper studied different NG descent-based NN algo-
rithms for the identification of nonlinear systems with mem-
ory. The unknown systemwas comprised of a linear filter fol-
lowed by a memoryless nonlinearity. The NN structure was
composed of a linear adaptive filter followed by amemoryless
nonlinear NN. A Kalman filter-based technique and a search-
and-converge method have been employed for the NG algo-
rithm. Computer simulations have shown that the NG ap-
proach gives faster convergence speed and smaller MSE than
the ordinary gradient descent and the LM procedure. Sev-
eral variants of the NG algorithm have been studied. It has
been shown that the improvement of the convergence speed
is mainly governed by applying the NG to the nonlinear NN
part (i.e., applying the NG to both linear and nonlinear parts
does not significantly improve the performance, compared
to applying the NG to the nonlinear NN part only). An ap-
plication of tracking of changes in nonlinear systems has also
been presented.

APPENDICES

A. NGRLS-NGBP ALGORITHM

We use here the estimation of the steepest descent to calcu-
late the gain and the estimated covariance matrix at each step
in the recursive least square (RLS [15]) algorithm. We have
again two estimations of the inverse of Fisher matrices, one
for the perceptron parameters and one for the filter coeffi-
cients. We simply replace the classic gradient by the steepest
descent estimation in the classic RLS equations. This gives


θNN (n + 1)

Q(n + 1)


 =


θNN (n)

Q(n)


− e(n)


µΓ̂−11 (n)∇θNN s,

K(n)


 ,

K(n + 1) = P̂(n)Γ̂−12 (n)∇Qs

λ +
(∇Qs

)T
Γ̂−12 (n)P̂nΓ̂−12 (n)∇Qs

,

P̂(n + 1) = 1
λ

(
P̂(n)− K(n)

(∇Qs
)T
Γ̂−12 (n)P̂(n)

)
,

Γ̂−11 (n + 1) = (1 + εn
)
Γ̂−11 (n)

− εnΓ̂
−1
1 (n)

(∇θNN s
)(∇θNN s

)T
Γ̂−11 (n),

Γ̂−12 (n + 1) = (1 + εn
)
Γ̂−12 (n)

− εnΓ̂
−1
2 (n)

(∇θs
)(∇θs

)T
Γ̂−12 (n).

(A.1)

Note that we can consider also the whole space

θ=
[
w1w2· · ·wM b1b2· · ·bM c1c2· · ·cM q0q1· · ·qNQ−1

]t
,

(A.2)

and derive the single space NGRLS-NGBP algorithm as we
did in Section 2.1.

B. THE LEVENBERG-MARQUARDT (LM) ALGORITHM

The LM learning algorithm (see, e.g., [4]) can be extended to
our system identification problem by updating the parame-
ters as follows:

θ(n + 1) = θ(n)− µG−1∇θl
(
θ(n)

)
, (B.1)

where G−1 = [∇θl(θ(n)) · ∇θl(θ(n))t + λ(n)I]−1, with I the
identity matrix and λ(n) a positive scalar which is decreased
after each reduction of the cost function (e.g., by dividing
λ by 5) and is increased only when a tentative step would
increase the cost function (e.g., multiplying λ by 5).

One of the main difficulties in the implementation of the
LM method is an effective strategy for controlling the size
of λ at each iteration. Some researchers propose a method,
which is to estimate the relative nonlinearity using a linear
prediction and a cubic interpolated estimation. In our im-
plementation, we simplify the method by evaluating the cost
function over a window of p iterations, for example, p = 50,
and λ is updated every p iterations.

Another main difficulty is the problem of an ill-
conditioned matrix when we make the inverse operation. We
will then use the Kalman filtering technique to estimate it
online:

Ĝ−1(n + 1)

= (1 + ε(n)
)
Ĝ−1(n)

− ε(n)Ĝ−1(n)
[∇θs(n)

(∇θs(n)
)′
+ λ(n)I

]
Ĝ−1(n).

(B.2)

The updating procedure then becomes

θ(n + 1) = θ(n)− µĜ−1∇θl
(
θ(n)

)
. (B.3)
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The LM approach can be seen as a combination between the
NG and the ordinary gradient descent. When λ is small, it
follows the NG descent. When λ is high, it follows the ordi-
nary gradient descent.

Similarly to the NG algorithm, the LM approach can be
applied to both linear and nonlinear parts. Also the space of
parameters can be considered as a whole space or as two sepa-
rated spaces (one for the linear part, the other for the nonlin-
ear part). In our simulations, we have taken the same Kalman
procedure parameters for both NG and LM algorithms.

Note that the LM approach is more complex than the NG
algorithm because of the conditional update of λ and the ma-
trix addition in (B.2).
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