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Abstract

A game-theoretic analysis is used to study the effects
of receiver choice on the energy efficiency of multi-hop
networks in which the nodes communicate using Direct-
Sequence Code Division Multiple Access (DS-CDMA). A
Nash equilibrium of the game in which the network nodes
can choose their receivers as well as their transmit powers
to maximize the total number of bits they transmit per unit
of energy is derived. The energy efficiencies resulting from
the use of different linear multiuser receivers in this context
are compared, looking at both the non-cooperative game
and the Pareto optimal solution. For analytical ease, par-
ticular attention is paid to asymptotically large networks.
Significant gains in energy efficiency are observed when
multiuser receivers, particularly the linear minimum mean-
square error (MMSE) receiver, are used instead of conven-
tional matched filter receivers.

1 Introduction

In a wireless multi-hop network, nodes communicate
by passing messages for one another; permitting multi-hop
communications, rather than requiring one-hop communi-
cations, can increase network capacity and allow for a more
ad hoc (and thus scalable) system (with little or no central-
ized control). For these reasons, and because of their poten-
tial for commercial, military, and civil applications, wireless
multi-hop networks have attracted considerable attention
over the past few years. In these networks, energy efficient
communication is important because the nodes are typi-
cally battery-powered and therefore energy-limited. Work
on energy-efficient communication in these multi-hop net-
works has often focused on routing protocols; this work in-
stead looks at power control and receiver design choices that

∗This research was supported in part by the U. S. Air Force Re-
search Laboratory and in part by the Defense Advanced Research Projects
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can be implemented independently of (and thus in conjunc-
tion with) the routing protocol.

One approach that has been very successful in research-
ing energy efficient communications in both cellular and
multi-hop networks is the game-theoretic approach de-
scribed in [1, 2]. Much of the game-theoretic research in
multi-hop networks has focused on pricing schemes (e.g.
[3, 4]). In this work, we avoid the need for such a pricing
scheme by using instead a nodal utility function to capture
the energy costs. It further differs from previous research
by considering receiver design, as [5] does for cellular net-
works.

We propose a distributed noncooperative game in which
the nodes can choose their transmit power and linear re-
ceiver design to maximize the number of bits that they can
send per unit of power. After describing the network and in-
ternodal communications in Section 2, we derive the Nash
equilibrium for this game, as well as for a set of games with
set receivers, in Section 3. We then extend the asymptotic
work of Tse and Hanly [6] to fit the multihop network struc-
ture in Section 4; we apply this in Section 5 to find the
Pareto optimal solution in an asymptotically large, SINR-
balanced network. Finally we present some numerical re-
sults and a conclusion in Sections 6 and 7.

2 System Model

Consider a wireless multi-hop network withK nodes
(users) and an established logical topology, where a se-
quence of connected link-nodesl ∈ L(k) forms a route
originating from a sourcek (with k ∈ L(k) by definition).
Let m(k) be the node after nodek in the route for nodek.
Assume that all routes that go through a nodek continue
throughm(k) so that nodek transmits only tom(k). Nodes
communicate with each other using DS-CDMA with pro-
cessing gainN (N chips per bit).

The signal received at a nodem (after chip-matched fil-
tering) sampled at the chip rate over one symbol duration
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can be expressed as

r(m) =

K
∑

k=1

√
pkh

(m)
k bksk + w(m) (1)

where pk, bk, and sk are the transmit power, transmit-
ted symbol, and (binary) spreading sequence for nodek;
h(m)

k is the channel gain between nodesk and m; and
w(m) is the noise vector which is assumed to be Gaus-
sian with mean0 and covarianceσ2 I. (We assume here
pm = 0.) Assume the spreading sequences are random,
i.e., sk =

1√
N

[v1 . . .vN]T , where thevi ’s are independent
and identically distributed (i.i.d.) random variables taking
values{−1,+1} with equal probabilities. Denote the cross-
correlations between spreading sequences as

ρk j = sT
k s j , (2)

noting thatρkk = 1 for all k.
Let us represent the linear receiver at themth node for

thekth signature sequence by a coefficient vectorc(m)
k . The

output of this receiver can be written as

y = ck
Tr(m) (3)

=
√

pkh
(m)
k bkck

Tsk +
∑

j,k

√
p jh

(m)
j b jck

Ts j + ck
Tw(m). (4)

The signal-to-interference-plus-noise ratio (SINR),γk, of
thekth user at the output of receiverm(k) is

γk =
pkh

(m(k))
k

2 (

ck
Tsk

)2

σ2ck
Tck +

∑

j,k p jh
(m(k))
j

2 (

ck
Ts j

)2
. (5)

Each user has a utility function that is the ratio of its
effective throughput to its transmit power, i.e.,

uk =
Tk

pk
. (6)

Here, the throughput,Tk, is the net number of information
bits sent byk (generated byk or any node whose route goes
throughk) and received without error at the intended des-
tination, m(k), per unit of time. (We assume that all the
congestion control is done in the choice of routing.)

Following the discussion in [5], we will use

Tk =
L
M

R f(γk) (7)

whereL andM are the number of information bits and the
total number of bits in a packet, respectively (without loss
of generality assumed here to be the same for all users);R is
the transmission rate, which is the ratio of the bandwidth to
the processing gain and is taken for now to be equal for all

users; andf (·) is an efficiency function that closely approx-
imates the packet success rate. This efficiency function can
be any increasing, continuously differentiable, sigmoidal1

function with f (0) = 0 and f (+∞) = 1. See [5] for more
discussion of the efficiency function.

Using (7), (6) becomes

uk =
L
M

R
f (γk)
pk
. (8)

When the receiver used is a matched filter (MF) (i.e.
c(m(k))

k = sk), the received SINR is

γMF
k =

pkh
m(k)
k

2 (

sk
Tsk

)2

σ2sk
Tsk +

∑

j,k p jh
m(k)
j

2 (

sk
Ts j

)2
(9)

=
pkh

m(k)
k

2

σ2 +
∑

j,k p jh
m(k)
j

2
ρ2

k j

. (10)

When the receiver is a linear minimum mean-squared er-
ror (MMSE) receiver , the filter coefficients and the received
SINR are [7]

cMMSE
k =

√
pkh

m(k)
k

1+ pkh
m(k)
k

2
sT
k A−1

k sk

A−1
k sk (11)

and

γMMSE
k = pkh

m(k)
k

2
sT
k A−1

k sk, (12)

where

Ak = σ
2 I +

∑

j,k

p jh
m(k)
j

2
s jsT

j . (13)

When the receiver is a decorrelator2 (DE) (i.e. C =

[c1 · · · cK ] = S(STS)−1 whereS = [s1 · · · sK ]), the received
SINR is

γDE
k =

pkh
m(k)
k

2

σ2cT
k ck
. (14)

For any linear receiver with all nodes’ coefficients cho-
sen independently of their transmit powers (including the
MF and DE), as well as for the MMSE receiver,

∂γk

∂pk
=
γk

pk
. (15)

1A continuous increasing function is sigmoidal if there is a point above
which the function is concave and below which the function isconvex.

2Here, we must assume thatK ≤ N.



3 The Noncooperative Power-Control Game

Let G =
[

K , {Ak}, {uk}
]

denote the noncooperative game

whereK = {1, . . . ,K} andAk = [0,Pmax] × �N is the strat-
egy set for thekth user. Here,Pmax is the maximum allowed
power for transmission. Each strategy inAk can be written
asak = (pk, ck), wherepk andck are the transmit power and
the receiver filter coefficients, respectively, of userk. Then
the resulting noncooperative game can be expressed as the
maximization problem fork = 1, . . . ,K:

max
ak

uk =
LR
M

max
pk,ck

f (γk(pk, ck))
pk

, (16)

whereγk is expressed explicitly as a function ofpk andck.
This is similar to the noncooperative power-control game

in [5]; here, however, the channel gains are between pairs
of nodes rather than between a node and the base-station.

Since the choice of receiver is independent of the trans-
mit power andf (·) is an increasing function, the analysis
of [5] applies, so the maximization from (16) becomes:

max
pk,ck

f (γk(pk, ck))
pk

= max
pk

f (maxck γk(pk, ck))

pk
. (17)

Note that the MMSE receiver achieves the maximum SINR
amongst all linear receivers, so that if a Nash equilibrium
exists, at that equilibrium all receivers must be MMSE re-
ceivers. Then the maximization problem becomes

max
pk

f (γMMSE
k (pk))

pk
. (18)

Let GC =
[

K , {[0,Pmax]}, {uk}
]

denote the noncoopera-
tive game that differs fromG in that users cannot choose
their linear receivers but are forced to use the receive fil-
ter coefficients [c1 · · · cK ] = C (which may be a function
of the powers,P). The resulting noncooperative game can
be expressed as the following maximization problem for
k = 1, . . . ,K:

max
ak

uk = max
pk

uk(pk, ck) =
LR
M

max
pk

f (γck

k (pk))

pk
(19)

whereγck

k is expressed explicitly as a function ofpk. Then
the maximization problem in (18) is one of the gamesGC

whenC is chosen to be the MMSE receivers.
For anyC matrix (or C(P) for which (15) holds), the

utility function for each user is maximized when

pk = min{Pk, p
∗
k} (20)

wherep∗k is the unique positive number that satisfies

f (γck

k (p∗k)) = γ
ck

k (p∗k) f ′(γck

k (p∗k)). (21)

As long as the users all have the same efficiency function,

γ
c1
1 (p∗1) = . . . = γ

cK
K (p∗K) = γ∗ (22)

whereγ∗ is the unique positive number that satisfies

f (γ∗) = γ∗ f ′(γ∗). (23)

Finally, since f (γk)
pk

is quasi-concave3 in pk, we can use
the result cited in [2, Appendix I]:GC has a Nash equilib-
rium and, as is the case in [5], it is unique. At this equilib-
rium, unless there is a nodek with p∗k > Pk, the powers are
such that the nodes are SINR-balanced (i.e. (22) holds).

Returning to the gameG, a similar result holds: there
exists a unique equilibrium where all receivers are MMSE
detectors and, if the power limit is high enough, the powers
are SINR-balanced.

4 Asymptotically Large Systems: Extend-
ing the Tse-Hanly Equations to Multi-Hop
Networks

Assume that the channel gains are independent. That is,
in the asymptotic regime whenN,K → ∞ while K/N = β,

the interferers’ channel gains,h(m)
k

2
for all m , k,m(k),

are iid realizations of the random variableG with pdf fG,

and the primary channel gains,h(m(k))
k

2
for all k, are iid

realizations of the random variableH with pdf fH (where
fH(h) = 0∀h ≤ 0). Letq = P{m( j) = m(k)} for all j , k.

We can apply results from [6] to analyze the nodes’
SINRs. Then we find a probability density function forp
such that in an asymptotically large system where all nodes
have powers distributed by this function, with probability
one all nodes have SINR of at leastγ for someγ. If this dis-
tribution is not unique, we choose the one that minimizes
the nodes’ powers. For simplicity, and since we are consid-
ering the asymptotic regime, we assume that the distribution

of pk is independent of all channel gains except forh(m(k))
k

2
.

For convenience of notation, letfp,H(·, ·) = f
pk,h

(m(k))
k

2(·, ·),

and note
∫ ∞
0

f (p, h)dp = fH(h) for all h. Then the joint

density ofpk, h(m(k))
k

2
, andh(m( j))

k

2
for j , k is

f
pk,h

(m(k))
k

2
,h(m( j))

k

2(p, h, g) = fp,H(p, h)δ(g− h)q

+ fp,H(p, h) fG(g)(1− q). (24)

Applying the results from [6], when the receiver at node
k is a matched filter, decorrelator, or MMSE receiver, the
random SINR at the receiver converges in probability as

3A function is quasi-concave if there exists a point below which the
function is nondecreasing and above which the function is non-increasing.



N,K → ∞ while K/N = β. These asymptotic SINRs are
uniquely described by the equations (wherej , k):

γMF =
pkh

(m(k))
k

2

σ2 + βE

[

p jh
(m(k))
j

2
] (25)

γDE =















pkh(m(k))
k

2
(1−β)

σ2 , α < 1;
0, α ≥ 1.

(26)

and

γMMSE =
pkh

(m(k))
k

2

σ2+β
∫ ∞
0

dp
∫ ∞
0

dg fP(p) fG(g)I (pg, pkh
(m(k))
k

2
, γMMSE)

,

(27)

whereI (a, b, c) = ab
b+ac.

If the nodes choose their transmit powers so that the
SINRs are balanced, the following theorem determines
what SINRs are achievable at all receivers as well as the
minimum transmit powers to achieve any achievable SINR
when the nodes use the MMSE receiver, under the assump-
tions listed above.

Theorem 4.1. A necessary and sufficient condition for an
SINR,γ, to be achievable is for

βγq
1

1+ γ
+ βγ(1− q)E

[

G
H + γG

]

< 1. (28)

When (28) holds, each user can achieve the desired SINR,
γ, and the minimum power solution to do so is to assign
each node, k, transmit power

pk = PMMSE

(

h(m(k))
k

2
, γ

)

(29)

=
1

h(m(k))
k

2
· γσ2

1− βγq 1
1+γ − βγ(1− q)E

[

G
H+γG

] . (30)

4.1 Proof of Theorem 4.1

We start with a lemma that is a straightforward conse-
quence of the definition ofI (a, b, c).

Lemma 4.2. For all positive real numbers a0, a, b, c, a0 ≤ a
if and only if I(a0, b, c) ≤ I (a, b, c).

Then the proof follows.

Proof. To show necessity, assume that there is a pdff with
∫ ∞
0

f (p, h)dp = fH(h) for all h, such that in an asymptot-
ically large system where all nodes have powers and pri-
mary channel gains distributed byf , with probability one

all nodes have SINR when using an MMSE receiver of at
leastγ for some setγ. Let Q = inf {ph : f (p, h) > 0}. Then

Q
γ
≥ σ2 + β

∫ ∞

0
dg

∫ ∞

0
dp

∫ ∞

0
dh f

pk,h
(m(k))
k

2
,h(m( j))

k

2(p, h, g)I (pg,Q, γ)

= σ2 + βq
∫ ∞

0
dp

∫ ∞

0
dh fp,H(p, h)I (ph,Q, γ)

+ β(1− q)
∫ ∞

0
dg

∫ ∞

0
dp

∫ ∞

0
dh fp,H(p, h) fG(g)I (ph

g
h
,Q, γ)

≥ σ2 + βq
∫ ∞

0
dp

∫ ∞

0
dh fp,H(p, h)I (Q,Q, γ)

+ β(1− q)
∫ ∞

0
dg

∫ ∞

0
dp

∫ ∞

0
dh fp,H(p, h) fG(g)I (Q

g
h
,Q, γ)

= σ2 + βq
Q

1+ γ
+ β(1− q)

∫ ∞

0
dg

∫ ∞

0
dh fH(h) fG(g)

gQ
h+ γg

= σ2 + Qβq
1

1+ γ
+ Qβ(1− q)E

[

G

H + γG

]

. (31)

This implies that

Q

(

1− βγq 1
1+ γ

− βγ(1− q)E

[

G
H + γG

])

≥ γσ2 > 0,

(32)

soβγq 1
1+γ + βγ(1− q)E

[

G
H+γG

]

< 1, proving necessity.
When (28) holds, it is easy to show thatPMMSE (h, γ) is

positive for all primary channel gains,h. It is also straight-
forward to show that if each node,k, uses transmit power

PMF

(

h(m(k))
k

2
, γ

)

, all nodes will achieve the SINR require-

ment,γ, finishing the proof of sufficiency.
Finally, consider any other joint distribution of powers

and primary channel gains whose marginal distribution for
H is fH , and letQ∗ be the minimal received power in this
distribution. Then by exactly the same argument as was
used in the proof of necessity,

Q∗ ≥ γσ2

1− βγq 1
1+γ − βγ(1− q)E

[

G
H+γG

] (33)

= hPMMSE(h, γ), ∀h > 0. (34)

This means that assigning powers according toPMMSE does
indeed give the minimal power solution. �

5 A Global Optimization Problem

A useful global optimization problem is

max
K

∑

k=1

αkuk =
L
M

R max
K

∑

k=1

αk f (γk)
pk

, (35)

where theαk’s are set weighting variables. This problem is
equivalent to finding a Pareto-optimal solution of the game.



According to [5], even in the special case of a cellular sys-
tem whereL(k) = {k} for all nodesk = 1, 2, . . . ,K and all
nodes are transmitting to the base-station, “Pareto-optimal
solutions are, in general, difficult to obtain.” For simplic-
ity, we restrict the problem by requiring that the solution
is “fair”: all nodes have equal receiver output SINRs (i.e.
SINR-balancing), soγ = γ1 = γ2 = . . . γK .

With this assumption, (35) becomes

L
M

R max f (γ)
K

∑

k=1

αk

pk
. (36)

For the matched filter, we can apply (5) withm = m(k)
to see that the users’ SINRs are equal if and only if

(

B+

(

1
γ
+ 1

)

D

)

p(γ) = σ21 (37)

whereB is aK by K matrix with entriesBk j = −h(m(k))
j

2
ρ2

k j,
D is K by K diagonal matrix with diagonal entriesDkk =

h(m(k))
k

2
, and1 is a vector ofK ones.

The SINR that maximizes (36) is theγ that satisfies

0 =
∂

∂γ















f (γ)
K

∑

k=1

αk

pk(γ)















(38)

=
∂

∂γ

[

f (γ)
]

K
∑

k=1

αk

pk(γ)
− f (γ)

K
∑

k=1

αk

p2
k(γ)

∂

∂γ

[

pk(γ)
]

,

(39)

wherepk(γ) and ∂
∂γ

[

pk(γ)
]

are thekth elements of

p(γ) = σ2

(

B+

(

1
γ
+ 1

)

D

)−1

1 (40)

and

∂

∂γ

[

p(γ)
]

= σ2 (γB+ (1+ γ) D)−1 D (γB+ (1+ γ) D)−1 1.

(41)

For the decorrelator, it is easy to show that the non-
cooperative results are equal to the globally optimal results,
since the users’ achieved SINRs are independent of all the
powers of all interferers.

Finally, for the MMSE receiver, we can apply the results
from Section 4. In a large system, if all users choose their
transmit powers based on the values ofh(m( j))

k for m( j) ,
m(k) only through the average of these interference gains
and if we use the assumptions of Section 4, the SINR is
approximated by

γMMSE
k ≃

pkh
(m(k))
k

2

σ2 + 1
N

∑

j,k I (p jh
(m(k))
j

2
, pkh

(m(k))
k

2
, γMMSE

k )
.

(42)

Any γk which satisfies∂γk

∂pk
=
γk

pk
is a solution to (42).

Then the power for userk to achieve the SINRγ∗ is

pMMSE
k =

1

h(m(k))
k

2

γ∗σ2

1− βγ∗
(

q 1
1+γ∗ + (1− q)ζ(γ∗)

) , (43)

whereζ(γ) is the mean value of G
H+γG in the network. Equal

received SINRs amongst the users is achieved with mini-

mum power consumption whenpkh
(m(k))
k

2
= κ(γ) is constant

for all k and

κ(γ) =
γσ2

1− βγ
(

q 1
1+γ + (1− q)ζ(γ)

) . (44)

Then, (36) can be expressed as

L
M

R















K
∑

k=1

αkh
(m(k))
k

2














max
γ

f (γ)
κ(γ)
. (45)

The solution to maxγ
f (γ)
κ(γ) must satisfy ∂

∂γ

(

f (γ)
κ(γ)

)

= 0.
Combining this with (44) gives the equation that must be
satisfied by the solution to the maximization problem in
(45):

f (γ) = γ f ′(γ)



















1−
βqγ

(1+γ)2 + β(1− q)γζ(γ)

1− βqγ2

(1+γ)2 − β(1− q)γζ(γ)



















. (46)

If ζ(γ) << 1, then the equation is approximately the
same as in the cellular case [5] withK/N → βq. Then,
the ability to use multiple hops to communicate, and there-
fore reduce transmit power, has similar results to reducing
the system load; furthermore, for a large range of values of
βq, the MMSE target SINRs for the noncooperative game
and for the Pareto-optimal solution are close.

6 Numerical Results

Consider a multi-hop network withK = 100 nodes dis-
tributed randomly in a square 500 meters by 500 meters
surrounding an access point in the center. We use a sim-
ple routing scheme where all nodes transmit to the closest
node that is closer to the access point (or the access point
if that is closest). We assume that each packet contains 100
bits of data and no overhead (L = M = 100); the trans-
mission rate isR = 100 kb/s; the thermal noise power is
σ2 = 5 × 10−16 Watts; the channel gains are distributed
with a Rayleigh distribution with mean 0.3d−2, whered is
the distance between the transmitter and receiver; and the
processing gain isN. We use the same efficiency function
as [5], namelyf (γ) = (1− e−γ)M.

Table 1 shows the average utility for four representative
sets of randomly chosen spreading sequences, one for each



of N = 50, 100, 200, and 300, comparing the mean utility
under the various power choice method discussed above.
Table 2 shows the target SINRs for the socially optimal re-
sults displayed in Table 1.

MF DE MMSE
N = 50
non-coop. 0 1.198× 1010

soc. opt. 2.025× 10−14 1.199× 1010

N = 100
non-coop. 0 1.095× 108 1.417× 1010

soc. opt. 1.050× 10−4 1.095× 108 1.417× 1010

N = 200
non-coop. 0 7.459× 109 1.476× 1010

soc. opt. 2.512× 10−10 7.459× 109 1.476× 1010

N = 300
non-coop. 0.2056 1.001× 1010 1.493× 1010

soc. opt. 1.351× 109 1.001× 1010 1.493× 1010

Table 1. Mean utilities for four representative
sets of spreading sequences.

N MF DE MMSE
50 0.87 6.39
100 1.31 6.47 6.43
200 0.99 6.47 6.45
300 5.03 6.47 6.46

Table 2. Socially optimal SINRs for the same
four representative sets of spreading se-
quences.

The socially optimally implemented MF receiver per-
forms poorly in heavily-loaded systems, while the non-
cooperative implementation fails to achieve non-zero utility
except in the case with the lightest load. Even in the case
whereβ = 1/3, the mean utility for the socially optimal MF
receiver is less than a tenth of the MMSE receiver’s mean
utility. Using the DE receiver (for which we require that
K ≥ N), as was noted in Section 5, there is no difference
between the non-cooperative and socially optimal results:
both cases have the same target SINR and thus the same
mean utility. For the MMSE receiver, this difference be-
tween the mean utility in the non-cooperative and socially
optimal implementations is very small. Finally, the DE and
MMSE receivers both significantly outperform the MF re-
ceiver in all four of these cases. There is, however, a price to
pay in using the better-performing receivers: these receivers
require more information at every node as well as signifi-
cantly more computation. These issues will be addressed
further in later research.

7 Conclusion

We have analyzed the cross-layer issue of energy-
efficient communication in multi-hop networks using a
game theoretic method. Focusing on linear receivers, we
have derived the transmit power levels that results in a Nash
equilibrium for multiple receiver designs, showing that at
this equilibrium the users are SINR-balanced. We then gen-
eralized the important asymptotic work of Tse and Hanly
to allow for the case where users and their interferers may
be transmitting to different locations, keeping the cellular
example as a special case. We applied these asymptotic re-
sults, as well as exact results for the MF and DE receivers,
to find the equations for the SINR-balanced Pareto-optimal
solution. We showed that the MMSE receiver is the optimal
receiver and that in many cases the non-cooperative MMSE
receiver results are quite close to the socially optimal re-
sults.
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