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Abstract can be implemented independently of (and thus in conjunc-
tion with) the routing protocol.
A game-theoretic analysis is used to study tjfects One approach that has been very successful in research-

of receiver choice on the energyfieiency of multi-hop  ing energy icient communications in both cellular and
networks in which the nodes communicate using Direct- multi-hop networks is the game-theoretic approach de-
Sequence Code Division Multiple Access (DS-CDMA). A scribed in [1,2]. Much of the game-theoretic research in
Nash equilibrium of the game in which the network nodes multi-hop networks has focused on pricing schemes (e.g.
can choose their receivers as well as their transmit powers [3, 4]). In this work, we avoid the need for such a pricing
to maximize the total number of bits they transmit per unit scheme by using instead a nodal utility function to capture
of energy is derived. The energfieiencies resulting from  the energy costs. It further fiiéers from previous research
the use of dferent linear multiuser receivers in this context by considering receiver design, as [5] does for cellular net
are compared, looking at both the non-cooperative game works.

and the Pareto optimal solution. For analytical ease, par-

. o X ) We propose a distributed noncooperative game in which
ticular attention is paid to asymptotically large networks

" L : the nodes can choose their transmit power and linear re-
Significant gains in energyfeiency are observed when  cejyer design to maximize the number of bits that they can

multiuser receivers, particglarly the Iinea_r minimum mean ¢4 per unit of power. After describing the network and in-

square error (MMSE) receiver, are used instead of conven-ya ,qal communications in Section 2, we derive the Nash

tional matched filter receivers. equilibrium for this game, as well as for a set of games with
set receivers, in Section 3. We then extend the asymptotic
work of Tse and Hanly [6] to fit the multihop network struc-

1 Introduction ture in Section 4; we apply this in Section 5 to find the
Pareto optimal solution in an asymptotically large, SINR-

) ) ) balanced network. Finally we present some numerical re-
In a wireless multi-hop network, nodes communicate gyjts and a conclusion in Sections 6 and 7.

by passing messages for one another; permitting multi-hop

communications, rather than requiring one-hop communi-

cations, can increase network capacity and allow foramore2  System M odel

ad hoc (and thus scalable) system (with little or no central-

ized control). For these reasons, and because of theirpoten

tial for commercial, military, and civil applications, veless Consider a wireless multi-hop network with nodes
multi-hop networks have attracted considerable attention(users) and an established logical topology, where a se-
over the past few years. In these networks, eneffigient quence of connected link-nodése L(k) forms a route
communication is important because the nodes are typi-originating from a sourcé& (with k € L(k) by definition).
cally battery-powered and therefore energy-limited. Work Let m(k) be the node after nodein the route for node.

on energy-ficient communication in these multi-hop net- Assume that all routes that go through a nédeontinue
works has often focused on routing protocols; this work in- throughm(k) so that node transmits only tan(k). Nodes
stead looks at power control and receiver design choicés thacommunicate with each other using DS-CDMA with pro-

cessing gaimN (N chips per bit).
*This research was supported in part by the U. S. Air Force Re- . . . .
search Laboratory and in part by the Defense Advanced ResPaojects The signal received at a node(after chip-matched fil-

Agency. tering) sampled at the chip rate over one symbol duration
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can be expressed as

K
r™ =" VBhMbisc + w (1)
k=1

where pg, bk, and s are the transmit power, transmit-
ted symbol, and (binary) spreading sequence for rigde
h(™ is the channel gain between nodksand m; and
w™ s the noise vector which is assumed to be Gaus-
sian with mear0D and covariance?|. (We assume here

users; and (-) is an dficiency function that closely approx-
imates the packet success rate. THikency function can
be any increasing, continuouslyfidirentiable, sigmoidél
function with f(0) = 0 andf(+) = 1. See [5] for more
discussion of theféiciency function.

Using [), [®) becomes

L Lo

- P« ®)

M

pm = 0.) Assume the spreading sequences are random, ,_When the receiver used is a matched filter (MF) (i.e.

i.e., % = %[vl...vN]T, where thev;’s are independent
and identically distributed (i.i.d.) random variablesitak
values{-1, +1} with equal probabilities. Denote the cross-
correlations between spreading sequences as
Pkj = S¢S, 2)
noting thatoyk = 1 for all k.
Let us represent the linear receiver at thi node for

thekth signature sequence by a fagent vectorc(km). The
output of this receiver can be written as

y=c'r™ (3)
= \/ﬁh(km)bkaTSk + Z \/p_jhgm)bjCkTSj + CkTW(m). (4)

j#k

The signal-to-interference-plus-noise ratio (SINR), of
thekth user at the output of receivexk) is

B9 (675’

k)2 2°
20k Ok + Xk p;h(,»m‘ ) (CkTSj)

(%)

Yk

Each user has a utility function that is the ratio of its
effective throughput to its transmit power, i.e.,

Pk
Here, the throughput, is the net number of information
bits sent byk (generated bk or any node whose route goes
throughk) and received without error at the intended des-
tination, m(k), per unit of time. (We assume that all the

congestion control is done in the choice of routing.)
Following the discussion in [5], we will use

Uk

(6)

= LRt

TkM

(7)
whereL andM are the number of information bits and the
total number of bits in a packet, respectively (without loss
of generality assumed here to be the same for all ugeis);
the transmission rate, which is the ratio of the bandwidth to
the processing gain and is taken for now to be equal for all

™) = g, the received SINR is

(k)2 2
MF _ P (s
Yk = m(k)2 2 (9)
o287 s+ X PV (37s))
hm(k)2
_ Py (10)

K2 2
o2+ Y P o2,

When the receiver is a linear minimum mean-squared er-
ror (MMSE) receiver , the filter cdcients and the received
SINR are [7]

(K)
Vo _
CMSE = A (11)
1+ pkhk S AL
and
2 1.
TIMSE = p e ST A s, (12)
where
2
A =02l + Z p,—hrj”(k) SiS] - (13)

j#k

When the receiver is a decorrel@dDE) (i.e. C =
[cr---ck] = S(STS)t whereS = [s; - - - ]), the received
SINR is

2
DE _ pkh?(k)
Tk o2cloc’

(14)

For any linear receiver with all nodes’ diieients cho-
sen independently of their transmit powers (including the
MF and DE), as well as for the MMSE receiver,

Ok _ %k

. 15
opk P (19)

1A continuous increasing function is sigmoidal if there isoérp above
which the function is concave and below which the functioodsvex.
2Here, we must assume thiét< N.



3 The Noncooper ative Power-Control Game

LetGg = [7( {Ak},{uk}] denote the noncooperative game
whereX = {1,...,K} andA = [0, Pmad x RN is the strat-
egy set for théth user. HerePnax is the maximum allowed
power for transmission. Each strategyAg can be written
asax = (pk, ck), wherepy andcy are the transmit power and
the receiver filter coicients, respectively, of usér Then

the resulting noncooperative game can be expressed as th

maximization problem fok = 1,...,K:

f (yk(Px. Ck))
Pk ’

whereyy is expressed explicitly as a function pf andcy.
This is similar to the noncooperative power-control game

LR
—- max

maxuy =
& M pec

(16)

As long as the users all have the sarfiiceency function,

YEPD) = ... = v (pk) = 7' (22)

wherey* is the unique positive number that satisfies

fo7) =y 0. (23)
Finally, sincel®) g quasi-concavein py, we can use
fhe result cited in iz, Appendix 1]Gc has a Nash equilib-
rium and, as is the case in [5], it is unique. At this equilib-
rium, unless there is a nodewith p; > Py, the powers are
such that the nodes are SINR-balanced ([L&. (22) holds).
Returning to the gamg, a similar result holds: there
exists a unique equilibrium where all receivers are MMSE
detectors and, if the power limit is high enough, the powers

in [5]; here, however, the channel gains are between pairsgre SINR-balanced.

of nodes rather than between a node and the base-station.

Since the choice of receiver is independent of the trans-

mit power andf(:) is an increasing function, the analysis
of [5] applies, so the maximization frofi{]16) becomes:

f

max P Gd) - T(max, yi(pe &)
Px-Ck Pk Pk Pk

Note that the MMSE receiver achieves the maximum SINR

amongst all linear receivers, so that if a Nash equilibrium

exists, at that equilibrium all receivers must be MMSE re-
ceivers. Then the maximization problem becomes

f(R™MSE(pK))
Px '

(17)

max
Px

(18)

Let Gc = [7(,{[0, Pmaﬂ},{uk}] denote the noncoopera-
tive game that diers fromgG in that users cannot choose
their linear receivers but are forced to use the receive fil-
ter codficients ;---ck] = C (which may be a function
of the powerspP). The resulting noncooperative game can
be expressed as the following maximization problem for
k=1,...,K:

LR

f (v ()
V Max— S (19)

maxuy = maxug(pk, Ck) =
aK Pk

whereyﬁk is expressed explicitly as a function p§. Then
the maximization problem if{18) is one of the ganggs
whenC is chosen to be the MMSE receivers.

For anyC matrix (or C(P) for which {I8) holds), the
utility function for each user is maximized when

Pk = min{Py, pi} (20)

wherepy is the unique positive number that satisfies

FOR () = 7 (P R (P)- (21)

4 Asymptotically Large Systems. Extend-
ing the Tse-Hanly Equations to Multi-Hop
Networ ks

Assume that the channel gains are independent. That is,
in the asymptotic regime whed, K — oo while K/N = 3,
the interferers’ channel gainisll((m)2 for all m # k m(k),
are iid realizations of the random varialgewith pdf fg,

and the primary channel gainlslf(m("))2 for all k, are iid
realizations of the random variabt¢ with pdf fy (where
fu(h) = O¥h < 0). Letq = P{m(j) = m(k)} for all j # k.

We can apply results from [6] to analyze the nodes’
SINRs. Then we find a probability density function fpr
such that in an asymptotically large system where all nodes
have powers distributed by this function, with probability
one all nodes have SINR of at leadior somey. If this dis-
tribution is not unique, we choose the one that minimizes
the nodes’ powers. For simplicity, and since we are consid-
ering the asymptotic regime, we assume that the distributio

of pk is independent of all channel gains exceptﬁﬂ(k))z.
For convenience of notation, lépn(-,-) = fpk w2 (),
Tk

and notefom f(p,h)dp = fy(h) for all h. Then the joint
density ofpy, h(km(k))z, andh(km(j))2 for j # kis

fpk,hﬁ“k))z,hﬁ"“”z(p’ h,g) = for(p. h)o(g - h)g

+fon(p.Nfe(@)(1-a).  (24)
Applying the results from [6], when the receiver at node

k is a matched filter, decorrelator, or MMSE receiver, the

random SINR at the receiver converges in probability as

3A function is quasi-concave if there exists a point below akhihe
function is nondecreasing and above which the function iisinoreasing.



N, K — oo while K/N = 8. These asymptotic SINRs are all nodes have SINR when using an MMSE receiver of at

uniquely described by the equations (whgeek): leasty for some sey. LetQ = inf{ph: f(p,h) > 0}. Then
(MK)2 Q “aa
PMF P _ (25) 5 2 0'2+ﬁ£ dgj(; dpfdhfpk’hinxk»z,h(km(i))z(p’ h,g)l(pg Q.7)
o2 + ,B]E[pjh(jm(k)) ] , % o
2 ~ct+pa [ dp [ dnfu(emi(eh Q)
(k)1 _
yDE — w’ a < 1’ (26) 0o o 0o g
0, a>1 +B(1-0) A dg | dp ; dhfon(p. N fe(@1(Phy . Q.7)
and >o24pq [ dp [ dhfu(p.HIQ Q)
0 0
2 00 00
s _ ™ AL 1) f dg [ dp [ dnfun(p. M @1(QE Q)
- 00 00 2 ’
o2+B J"dp ;g fo(p) fo(9)! (g, pkh™)”, yMMSE) Q
o S ~+p-a) [ dg f dn () fe(0) 22
wherel (a, b, ¢) = ;2. =’ + QBQ— +QB(1-aE | +yG , (31)
If the nodes choose their transmit powers so that the
SINRs are balanced, the following theorem determines This implies that
what SINRs are achievable at all receivers as well as the
minimum transmit powers to achieve any achievable SINR Q(l _ﬁyqi —By(L-q)E ) > yo? > 0,
when the nodes use the MMSE receiver, under the assump- 1 H+7G
tions listed above. (32)

Theorem 4.1. A necessary and gficient condition for an ~ so8yq= T +By(1-QE [H+ G] < 1, proving necessity.

SINR,y, to be achievable is for When [Z8) holds, it is easy to show tHRfivse (h, y) is
positive for all primary channel gainb, It is also straight-

(28) forward to show that if each nodk, uses transmit power

<1l
+VG] (h(m(k))z, y) all nodes will achieve the SINR require-

When [ZB) holds, each user can achieve the desired SINRment 7, finishing the proof of sfiiciency.
y, and the minimum power solution to do so is to assign Finally, consider any other joint distribution of powers

1
.BVQF +By(1-qE w

each node, k, transmit power and primary channel gains whose marginal distribution for
H is fy, and letQ* be the minimal received power in this
_ (m(K)2 ) distribution. Then by exactly the same argument as was
P = Puamse (h" Y (29) used in the proof of necessity,
1 yo?
. (30) . yo?
7?1 pyarl —By(1- QB[S Q= (33)
1y [HWG] 1- ﬂqu _ﬂ7(1 Q)E [H+7G
4.1 Proof of Theorem H = hPumse(h,y), Yh > 0. (34)
This means that assigning powers accordinBygse does
We start with a lemma that is a straightforward conse- jhdeed give the minimal power solution. o
guence of the definition df(a, b, c).
Lemma4.2. For all positive real numbers@a, b, c, & < a 5 A Global Optimization Problem
if and only if I(ag, b, ¢) < I(a, b, ¢).
A useful global optimization problem is
Then the proof follows.
o L S anf ()
Proof. To show necessity, assume that there is afpdfth maxkz_; Ukl = MR maxkz_; P (35)

fow f(p,h)dp = fy(h) for all h, such that in an asymptot-
ically large system where all nodes have powers and pri-where thexy's are set weighting variables. This problem is
mary channel gains distributed dy with probability one equivalent to finding a Pareto-optimal solution of the game.



According to [5], even in the special case of a cellular sys- Any yx which satlsﬁeiﬂ % js a solution to[[4R).

tem wherelL(k) = {k} for all nodesk = 1,2,...,K and all Then the power for usé«to achieve the SINR* is
nodes are transmlttmg to the base- stat|0n, “Pareto -@htim )
solutions are, in general, filcult to obtain.” For simplic- lll/IMSE 1 Yo 43)

ity, we restrict the problem by requiring that the solution
s “fair”; all nodes have equal receiver output SINRs (i.e.

SINR-balancing), sg = y1 = y2 = ... yk. whereZ(y) is the mean value §25 in the network. Equal
With this assumption[{35) becomes received SINRs amongst the users is achieved with mini-

2 1 - By (ard= + (1 - ()

L K o mum power consumption Whepnh(km(k)) = k() is constant
SR maxf(y) ) =~ (36)  forallkand
M e P
. . yo?
For the matched filter, we can appl¥ (5) with= m(k) k(y) = - (44)
to see that the users’ SINRs are equal if and only if 1-pr (q Ty + (1= q){(y))
(B . (E N 1) D) b(y) = 0?1 (37) Then, [36) can be expressed as
Y K
L (M(K)2 f(y)
whereB is aK by K matrix with entriesBy; = hﬁm(k))zpﬁ i MR (kz; iy o) (45)
D is K by K diagonal matrix with diagonal entrid3yy = B
h(km(k))z, and1 s a vector ofK ones. The solution to maxt) must satisfy 2 (f(y) = 0.
The SINR that maximize§{B6) is thethat satisfies Combining this with [(214) gives the equation tl')1at must be
satisfied by the solution to the maximization problem in
3g) @)
{ » Z e (38)
+B(1-a)yi()
[f()] Z f(y )Z B, 1 =7'0) [1 - G
P« ('}’) ( ) a 1 @T+y)? :B(l - q)?’g(Y)
(39) If Z(y) << 1, then the equation is approximately the
h d2 thekth el ts of same as in the cellular case [5] wikyN — Bqg. Then,
wherepy(y) an dy [Pn)] are elements o the ability to use multiple hops to communicate, and there-
-1 fore reduce transmit power, has similar results to reducing
P(y) ( ( + 1) D) 1 (40) the system load; furthermore, for a large range of values of
and B4, the MMSE target SINRs for the noncooperative game

and for the Pareto-optimal solution are close.
0 _ _
5y PO = o?(yB+(1+y)D) DB+ (1+7)D) "1

6 Numerical Results
(41)

For the decorrelator, it is easy to show that the non-  Consider a multi-hop network witk = 100 nodes dis-
cooperative results are equal to the globally optimal tesul tributed randomly in a square 500 meters by 500 meters
since the users’ achieved SINRs are independent of all thesurrounding an access point in the center. We use a sim-
powers of all interferers. ple routing scheme where all nodes transmit to the closest

Finally, for the MMSE receiver, we can apply the results node that is closer to the access point (or the access point
from Sectiorl}. In a large system, if all users choose their if that is closest). We assume that each packet contains 100
transmit powers based on the valueshfit” for m(j) #  bits of data and no overheatl ¢ M = 100); the trans-
m(k) only through the average of these interference gainsmission rate iR = 100 kbys; the thermal noise power is
and if we use the assumptions of Sectidn 4, the SINR iso? = 5 x 10716 Watts; the channel gains are distributed
approximated by with a Rayleigh distribution with mean®i-2, whered is
the distance between the transmitter and receiver; and the
processing gain i8l. We use the samdtiency function
as [5], namelyf(y) = (1 - e )M,

Table 1 shows the average utility for four representative
sets of randomly chosen spreading sequences, one for each

(m(k))2
MMSE Prhy
Yk

RS I ,(p]h(m(k))2 De h(m(k))2 MMSE)
(42)



of N = 50, 100, 200, and 300, comparing the mean utility

7 Conclusion

under the various power choice method discussed above.

Table 2 shows the target SINRs for the socially optimal re-
sults displayed in Table 1.

MF DE MMSE

N =50

non-coop.|| 0 1.198x 10'°
soc. opt. || 2.025x 107 1.199x 100
N =100

non-coop.|| 0 1.095x 10° | 1.417x 10
soc. opt. || 1.050x 10* | 1.095x 10° | 1.417x 10
N =200

non-coop.|| 0 7.459x 10° | 1.476x 10
soc. opt. || 2512x 10710 | 7.459%x 10° | 1.476x 10'°
N = 300

non-coop.|| 0.2056 1.001x 109 | 1.493x 10'°
soc. opt. 1.351x 10° 1.001x 10'° | 1.493x 10%°

Table 1. Mean utilities for four representative
sets of spreading sequences.

N MF | DE | MMSE
50 | 0.87 6.39
100 | 1.31| 6.47 | 6.43
200 || 0.99| 6.47 | 6.45
300 || 5.03| 6.47 | 6.46

Table 2. Socially optimal SINRs for the same
four representative sets of spreading se-
guences.

The socially optimally implemented MF receiver per-
forms poorly in heavily-loaded systems, while the non-
cooperative implementation fails to achieve non-zerdtytil
except in the case with the lightest load. Even in the case
whereB = 1/3, the mean utility for the socially optimal MF
receiver is less than a tenth of the MMSE receiver's mean
utility. Using the DE receiver (for which we require that
K > N), as was noted in Sectidi 5, there is nfatience
between the non-cooperative and socially optimal results:

both cases have the same target SINR and thus the same

mean utility. For the MMSE receiver, thisftkrence be-
tween the mean utility in the non-cooperative and socially
optimal implementations is very small. Finally, the DE and
MMSE receivers both significantly outperform the MF re-
ceiver in all four of these cases. There is, however, a poice t
pay in using the better-performing receivers: these recgiv
require more information at every node as well as signifi-

We have analyzed the cross-layer issue of energy-
efficient communication in multi-hop networks using a
game theoretic method. Focusing on linear receivers, we
have derived the transmit power levels that results in a Nash
equilibrium for multiple receiver designs, showing that at
this equilibrium the users are SINR-balanced. We then gen-
eralized the important asymptotic work of Tse and Hanly
to allow for the case where users and their interferers may
be transmitting to dferent locations, keeping the cellular
example as a special case. We applied these asymptotic re-
sults, as well as exact results for the MF and DE receivers,
to find the equations for the SINR-balanced Pareto-optimal
solution. We showed that the MMSE receiver is the optimal
receiver and that in many cases the non-cooperative MMSE
receiver results are quite close to the socially optimal re-
sults.
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cantly more computation. These issues will be addressed

further in later research.
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