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Abstract The automated design of analog andmixed-signal
circuits is a well-known subject of increasing technical
and economical significance, e.g., sensory circuits for inter-
net of things, cyber-physical systems, and Industry 4.0.The
demand for rapid solution achievement under constraints,
as, e.g., robustness, in established and emerging technolo-
gies as well as the migration between technologies gives
incentive to automation activities. Existing approaches and
tools still show improvement potential with regard to multi-
variate modeling, efficient and multi-objective optimization,
aswell as transparence anduser interaction options during the
design. This paper presents new approaches applied within
an emerging design environment, denoted as ABSYNTH,
with an evolving self-learning architecture for efficient hier-
archical optimization in a cascade, which includes function
approximators and simulators trained by proven evolutionary
optimization algorithms, as well as a novel domain-specific
visualization of the optimization space and the trajectory of
the design process. Nominal schematic-level sizing of the
commonly used Miller, buffer, and folded-cascode ampli-
fier circuits has been studied with our approach. For Miller,
buffer, and folded-cascode, a cascade of harmony search and
particle swarm optimization on SVR, ngspice, and cadence
simulatorswas found to be roughly 4 times, 2.5 times, and 2.5
times faster, respectively, than the flat approach with equal or
better results. In future work, we will improve the approach

B Abhaya Chandra Kammara
abhay@eit.uni-kl.de

Lingaselvan Palanichamy
lingaselvan@gmail.com

Andreas König
koenig@eit.uni-kl.de

1 Institute of Integrated Sensory Systems (ISE),
TU Kaiserslautern, Kaiserslautern, Germany

by including more demanding circuits, statistical deviations,
circuit breeding, advanced optimization, and layout genera-
tion.
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Introduction

The design of integrated circuits and systems, in particu-
lar, with analog and mixed-signal units, is a well-known
subject of increasing technical and economical significance.
The underlying optimization of the design parameters, from
device sizing for established circuits to creation or synthesis
of customized or novel circuits, traditionally is executed by
experienced human designers, but the issue of analog design
automation has been pursued in academia and industry for
more than two decades now. The advance ofMoore’s law and
the increasing complexity and heterogeneity of established
and leading edge processes along with increasing robustness
and dependability requirements further kindle the interest in
efficient analog electronics design automation. In addition to
circuit sizing/creation for a new task, also the migration of
existing circuit libraries to a new technology is a rewarding
task for automation. Adding of statistical, drift, and aging
considerations for design centering and yield optimization,
including layout synthesis and post-layout simulation results
in the loop, can be witnessed from concept to commercial
tool level, e.g., in Muneda’s WickED framework [1]. Pre-
dominantly, uni-variate statistical approaches are used, the
employed optimization methods are computationally costly,
and the design process is rather opaque and lacks interactivity
options for the user during the design process.
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In ourwork,we pursue the conception of amodular,multi-
platform, and open-access python system for analog design
automation, denoted as Analog Block and system Sizing and
sYNTHesis (ABSYNTH) framework. The research goals are
the design of an evolving, self-learning architecture for incre-
mental inclusion of cells and knowledge with efficient reuse,
to employ well-performing hierarchical optimization by cas-
cading methods, e.g., SVR and proven work-horses like
PSO, and Harmony Search algorithms, during the automated
design process, and adding transparence and improved user
interaction by domain-specific visualization techniques. The
self-learning approach promises to create a perfect balance
between speed and low accuracy of function approxima-
tion techniques and high accuracy and low speed of the
simulation-based techniques, additionally removing the need
for massive set of examples required to train the function
approximators.

In this paper, well will focus on a three-level optimiza-
tion cascade and novel visualization techniques, which are
demonstrated for commonly used circuits [2–5] nominal siz-
ing on schematic level.

In Sect. 2, the state-of-the-art is briefly rehearsed. Sec-
tion 3 describes the baseline of our research and investigation,
referring to the previously outlined state-of-the-art. Section 4
presents the architecture of the design environment, and Sect.
5 introduces our custom dynamic optimization space visu-
alization. Before concluding, Sect. 7 presents and discusses
our experiments and obtained results.

State-of-the-art

Automated analog design automation has been subject of
intensive research for the last three decades starting with
works like IDAC [6] and OASYS [7]. There are four
major approaches to tackle this problem: (1) knowledge-
based [6,8], (2) equation-based [9,10], (3) simulation-based
[11,12], and (4)model-based approaches [13,14] as surveyed
in [15]. Each approach has its advantages and disadvantages.
The first two approaches require considerable preparatory
work for each circuit individually. The substantial time and
expertise required for this preparatory work is not allevi-
ating the introduction of more circuits, the growth of the
designdatabase, and the corresponding increase in productiv-
ity [16]. Simulation-based approaches can be very effective
in this regard, however, they consume a lot of computational
resources and time, if applied in straight or flat form. With
the increase in the speed of computing machinery, this prob-
lem is not as significant as it has been a decade ago, but the
complexity of the design tasks is also increasing. The fourth
approach deals with using regression methods like support
vector regression (SVR) and neural networks to create a
model-based equivalent representation as a replacement for

simulators and costly detailed simulation runs. Though the
model-based computations are extremely fast, they require
careful training and a significant amount of samples selected
in a time-consuming and sensitive process for each circuit
and process technology pair to reach an acceptable predic-
tion accuracy [17].

Optimization algorithms are an essential part of the last
three approaches. While, older equation-based approaches
used simulated annealing [12] genetic algorithms [18] etc.,
approaches with posynomial equations and geometric pro-
gramming are becomingmore predominant in the last decade
[19–21]. From our survey, we found that genetic algorithms
(GA), genetic programming and simulated annealing have
been predominantly used in simulator- and model-based
approaches. Other evolutionary algorithms such as Particle
swarm optimization (PSO) [22], differential evolution (DE),
harmony search (HS) [23], and artificial bee colony opti-
mization (ABC) which have become popular in other fields
have also been used to a lesser degree in these approaches.
Some notable works are [2–5]. In the first work [5], ultra-
low-powerMiller OTA and a three-stageMiller op-ampwere
sized using PSO, GA, and a modified PSO called HPSO and
found that HPSO converges better than the alternatives. In
[2] OTAMiller has been optimized using DE, PSO and ABC
they are compared. They found that DE performs better than
PSO, while ABC does not reach the targets in this scenario.
In the thirdwork [3], nth order filterswere optimized by PSO,
ABC, HS, and DE. They found that, while HS is the fastest
algorithm, it has the highest error while the other algorithms
converged better. In [4], comparing DE and HS, the authors
also came to a similar conclusion. In our experiments, com-
paring standard PSO (SPSO) 2007, SPSO 1995, harmony
search, and cuckoo search, we found that PSO (SPSO95) and
HS are able to provide fast solutions reaching our desired tar-
get values. We will be employing PSO and HS in our work
in a more involved way, both individually for reference pur-
pose as well as in a dedicated hierarchy. We will also show
that our approach produces effective results evenwith default
parameter settings.

Baseline of investigation

In general, analog sizing and synthesis has been applied to a
richvariety of practical circuits, e.g., filters, oscillators, PLLs,
amplifiers and comparators, and in part new circuits have
been created or evolved by the algorithms. However, in most
of the work we refer to, the focus has been on amplifier cir-
cuits. Thus, we considered three typical single-ended op amp
circuits of increasing complexity as a research vehicle for
this work. These are a two-stage Miller amplifier (MA) [24],
three-stage buffer amplifier (BA) [24], and a folded-cascode
amplifier (FCA). For all these circuits, for each transistor the
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Fig. 1 Schematic of Miller
amplifier used in this work

length was fixed as 1 µm and the width was chosen as a
design parameter. Narrowing down the degrees of freedom
by choosing a unit length of all transistors, the number of
devices corresponds to the number of optimization parame-
ters. These variables are the parameters that shall be used for
the optimization process inside the framework. There is one
restriction in the investigations: the passive components are
fixed to a typical value and are not yet subject to optimiza-
tion themselves. The knowledge-based information such as
matching information or symmetry constraints for transistor
pairs were obtained from the schematic and provided to the
systems optimization engine, further reducing the number of
parameters.

Circuits

The MA shown in Fig. 1 is taken from [24]. It consists of
ten transistors. After symmetry considerations, we optimize
eight design parameters, while pursuing ten objectives in the
multi-objective approach, as shown in Table 4.

The second amplifier is a BA shown in the Fig. 2. It is
taken from [24]. It consists of twenty-four transistors. After
symmetry considerationsweoptimize nine parameters,while
pursuing ten objectives in the multi-objective approach, as
shown in Table 4.

The third amplifier is an FCA [24] as shown in the Fig. 3.
The circuit consists of twenty-nine transistors. After symme-
try considerations, we optimize 18 parameters, while again
pursuing ten objectives in the multi-objective approach, as

shown in Table 4. The vast number of transistors is attributed
to the type of bias circuit used, while constructing this circuit.
This FCA was created in a practical activity of our group as
a part of a voltage-controlled voltage-source for impedance
spectroscopy.

Meta-heuristic algorithms

In this work, we focus on two algorithms mentioned in Sect.
2. The first one is PSO which has been used in analog
design automation before in [2,3,5]. In our work, we will
use the PSO as presented in [22]. The parameters of PSO are
described below.

– w: Inertia. typ.range: [0, 1].
– c1: Cognitive scaling factor. typ. range: [0, 2].
– c2: Social scaling factor. typ. range: [0, 2].
– r1, r2: Random values between 0 and 1.
– Velocity: Particle’s velocity.
– Local: Particle’s local best known position.
– Global: Swarm’s best known position.
– Current: Current position of the particle.

The second algorithm is harmony search (HS). It is a
music-inspired algorithm, which has been studied for ana-
log design automation in a few papers [3,4]. In this work, we
use harmony search as described by the algorithm [23].

The parameters of the HS algorithm are provided below:

– HMS (harmony memory size): problem dependent.
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Fig. 2 Schematic of buffer amplifier used in this work

Fig. 3 Schematic of folded-cascode amplifier used in this work

– HMCR (harmony memory considering rate): typ.range:
[0.7, 0.99].

– PAR (pitch adjusting rate): typ range: [0.1, 0.5].

Multi-objective optimization approach

We employ an agglomerative approach for fitness func-
tion computation in multi-objective optimization, which

makes use of the weighted sum of normalized fitness val-
ues of each parameter. A thresholded normalized difference
between the target specifications and the simulator outputs
are used to obtain the individual specifications as described in
Eq. (1).

f =
{

(ov − spec.)/spec. for minimum search
(spec. − ov)/spec. for maximum search
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Table 1 Simulator execution time for one fitness run ofMiller amplifier

Simulator Real execution
time (s)

User + system
execution time (s)

OCN 240 45

NGS 8 6

SVR 0.5 0.4

Table 2 Execution time for simulators with PSO algorithm on Miller
amplifier

Simulator Real execution
time (min)

User + system
execution time (min)

OCN 395 93

NGS 15 9

SVR 20 5

f i t =
{
f if f > 0
0 if f < 0

(1)

where ov is the obtained value from function approxima-
tors or simulators. Due to this advantageous normalization,
for the regarded moderate complexity circuits, unity weights
could be successfully employed unlike in previous works
[25], where the finding of appropriate weights for unnormal-
ized cost function represented a major challenge. We have
found by moderate sensitivity investigations that other than
unity weights will not have perceivable advantages in result
quality. Only if one of several objectives are esteemed con-
siderably higher in value than the others, then the application
of non-unity weights will be meaningful.

Time measurement

In our work, we deal with two simulators, the open source
ngspice simulator (NGS) and cadence virtuoso OCeaN
(OCN). We use AMS hitkit 4.1 with 350 nm technology. All
the experiments were performed on a Core2 Duo PC with 2
GHz frequency and 4 GB memory. We have used the linux
time command to measure the time taken for the simulations.
This provided three time values, real time, which is the same
as wall clock time, user time, which is the time when the
simulation was using the CPU resources, and system time,
when the program was accessing the kernel. The sum of user
time and system time would provide information indepen-
dent of the other processes running in the system. In all
cases, the time values mentioned are themean of five or more
runs.

Fig. 4 ABSYNTH flow diagram showing the concept and its work
flow with available methods shown in grey

ABSYNTH concept and architecture

Hybrid multi-objective optimization approach

ABSYNTH concept is shown in Fig. 4. As we have men-
tioned in Sect. 2, the accuracy vs. speed properties of
model-based and simulator-based approaches are substan-
tially different, which is illustrated in Fig. 5. The time
comparison in running simulations with these methods is
provided in Tables 1 and 2. Further, the BSIM3v3 version
employed by cadence and ams hitkit is 3.24, while ngspice
uses the newer BSIM3v3 version 3.3. This leads to subtle
discrepancies in the results, which are not harmful in our
hierarchical approach (Fig. 5).

From the information above, we can come to a conclusion
that seeding the more accurate simulators with the results
of less accurate ones will provide a nice balance. This is
exploited in our work by cascading the methods as shown
in Fig. 1. The mixture of random seeds and seeds from the
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Fig. 5 Comparison of speed and accuracy between function approxi-
mators and simulation tools

simulators help in maintaining the diversity. This approach
has shown to be very robust to problems with the insuffi-
ciently trained SVR model during the start-up phase of the
self-learning system explained in Sect. 4.2, as it will only
increase the time consumed to reach the results, but will not
affect their quality.

let svrpop = SVR population size ;
let ngspop = NGS population size ;
let ocnpop = OCN population size ;
let rs = percentage of random seeds ;
let ngsrs = round(ngspop * rs) ;
let ocnrs = round(ocnpop * rs) ;
Generate svrpop random seeds;
while mean fitness > svr f i t do

Run meta-heuristic on SVR model;
end
Initialize NGS with ngsrs random seeds and (ngspop − ngsrs)
best solutions from SVR;
while mean fitness > ngs f i t do

Run meta-heuristic on NGS ;
end
Initialize OCN with ocnrs random seeds and (ocnpop − ocnrs)
best solutions from NGS;
while best fitness ! = 0 do

Run meta-heuristic on OCN ;
end
return best solution;

Algorithm 1 Hybrid optimization using function approx-
imator (SVR) and a cascade of simulators based on their
speed taken from Fig. 5

Incrementally evolving self-learning capability

In standard model-based approaches using function approxi-
mators, usually neural networks [26] or support vector regres-
sion [13,17] methods, etc., are employed together with suf-
ficient and suitable training data for each investigated circuit
to predict the simulator results [17]. Acquiring these data and
performing the training of the named methods take substan-

tial time until acceptable results are achieved. This implies,
that for every new circuit the designer has to cope with this
overhead, even for sophisticated methods, like the active
training described in [17]. In our work, in contrast, we try to
incrementally obtain the initial SVR training data for a new
circuit from the results generated by the meta-heuristic algo-
rithms on NGS and cadence OCN simulators from previous
runs. Thus, we have a high initial simulation effort for a new
circuit, which decreaseswith the number of conducted circuit
simulations in our evolving self-learning architecture. The
procedure is transparent to the user, i.e., there is no workload
overhead imposed on the user. This is illustrated in Fig. 6.
The parameters of the SVR γ , ε and K are found automat-
ically using the same meta-heuristic algorithms again, e.g.,
PSO or HS, as an efficient alternative to the commonly used
grid search. This search is done only during the first training
phase for each new circuit. Here, the percentage of random
seeds, as shown in Algorithm 1, can be controlled based on
the number of iterations in NGS for effective learning in
SVR.

Status of the ABSYNTH architecture’s implementation

Figure 7 shows a block diagram with all the current elements
and the building blocks planned in the immediate future of
this work.

TRAVISOS: optimization space visualization

The monitoring of the optimization process by visualization
means adds transparency to the design process and allows
for assessing the quality of the obtained solution [27,28]. In
addition to the conventional cost function over time-based
visualizations, as shown in Fig. 8, the optimization space
itself and the evolution of the regarded population of opti-
mization solutions can be elucidated by suitable visualization
techniques. The underlying problem of optimization space
visualization is quite related to the well-known task of fea-
ture space visualization in pattern recognition and intelligent
system design [29,30]. As in these related fields, the high-
dimensional data, comprised here by the design or sizing
parameters in analog circuit and system design automation,
have to be subject to a dimensionality reducing mapping,
as, e.g., multi-dimensional-scaling (MDS) and, in particular,
non-linear-mapping (NLM) methods, like Sammon’s map-
ping and its extension to data recall (NLMR) [27,29,31].
The application of these methods allow the generation of a
lower dimensional, e.g., three-dimensional, similarity pre-
serving scatter plot, which will show solution quality and
relative location of the solutions. For instance, the latter
information allows to understand which regions of the solu-
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Fig. 6 Incrementally evolving
self-learning architecture. The
size of the circle denotes the
time while the pie chart shows
the effort distribution

Fig. 7 Current status of
ABSYNTH implementation.
The planned future
improvements are in grey
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Fig. 8 Visualization techniques currently used in ABSYNTH. The goalpost view is similar to a orthogonal version of the radar plot

tion space have been explored and what level of diversity
is currently maintained by the optimization algorithm. This
can naturally be extended from single snapshot monitoring

of the optimization process to a complete solution swarm
trajectory visualization. As will be shown in the following
experimental section, our suggested visualization approach
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can give numerous salient insights not to be obtained from
the conventional cost or progress curve plots. In addition,
the approach opens the door to interactive visualization and
optimization [28] by allowing selective user manipulations
from one population to the next. The proposed new heuris-
tic method for solution swarm trajectory visualization in the
regarded optimization space is illustrated in Fig. 2. First, a
standard NLM is computed based on the initialization data of
the optimization problem. Then, the projections of all swarm
elements for the next and all following populations will be
computed by the NLMR, which uses the previously obtained
results as anchor points. Thus, at low cost successive map-
pings with smooth transitions of solution locations for the
trajectory visualization can be computed. However, it is a
well-known fact that all dimensionality reducing mappings
have their problems in terms of displaying an unavoidable
mapping error related to the intrinsic dimensionality of the
data to be mapped as well as to the employed mapping
method itself. This means that solutions with unchanged
location in the original design parameter space could see
unjustified and disturbing location fluctuations in successive
projections.

To avoid this problem, in our work, the previous position
in the projection space of solutions with unchanged location
in the design space will be just copied to the new projection
space of the next optimization iteration, only the solutions
with changes will be subject to NLMR projection.

Perform Sammon’s Mapping on Pop0;
while i <= present iteration do

while j < population size do
if Particle pi ( j) is equal to Particle pi−1( j) then

Use NLMR result of pi−1( j);
else

Apply NLMR to pi ( j);
end

end
Plot the mapping data;

end

Algorithm 2 Algorithm for solution swarm TRAjectory
VISualization in the regarded Optimization Space (TRAV-
ISOS).

Summarizing, the TRAVISOS heuristic mapping appr-
oach given in Fig. 2 allows the creation of solution swarm
trajectory visualization in the regarded optimization space
and problem at low to moderate computational cost. This
can be employed for transparent analysis and user-centered
interactive optimization or designer-in-the-loop optimiza-
tion, e.g., [27]. The suggested TRAVISOS algorithm and
the overall approach are salient for but not limited to
the analog sizing and synthesis activities regarded in this
work.

Table 3 Experiment parameters used for experiments in Table 4 and
visualizations

PSO SVR NGS OCN

Num. Par. 20 10 10

Max. Gen. 1000 1000 10

Target fitness Mean < 2 Mean < 0.2 Best ≤ 0

C1 2 2 2

C2 2 2 2

Inertia 0.5 0.5 0.5

Min 1 1 1

Max 100 100 100

HS SVR NGS OCN

Harmony size 20 10 –

HCMR 0.9 0.9 –

PAR 0.3 0.3 –

Max. Iter. 10,000 10,000 –

Target fitness Mean < 2 Mean < 0.2 –

Min 1 1 –

Max 100 100 –

Experiments and results

Circuit sizing methods results

As prepared in the previous sections, here we study two
different optimization cascades embedded in our hybrid self-
learning architecture. The first optimization cascade will
employ PSO algorithm for all three steps in the cascade. This
will be referred to as PPP. The second approach employsHar-
mony Search algorithm on the model-based (SVR) and NGS
levels, while PSO is the choice for OCN simulation level.
Table 4 shows the results for mean of a minimum of five runs
of the algorithm. The target specifications, which are com-
posed of 10 objectives in the multi-objective approach, have
been taken from the respective references mentioned above
with the circuits. We have also added the resulting speci-
fications manually reached in our group, by students with
moderate experience in analog design. A flat reference run
of PSO OCN combination is additionally added for com-
parison. All the transistor sizes are in integer steps in this
work; however, resolution can be changed as desired. The
experiment parameters can be found in Table 3. The min-
imum and maximum values shown in Table 3 are the soft
boundary conditions for the algorithms. These are also the
transistor size limits. At present, area has not been included
as an optimization parameter in the algorithm (Fig. 9).

From these results we can see that both the algorithm cas-
cades work at least competitively and are able to reach their
targets much faster than the corresponding manual and flat
approaches. We can also see that using Harmony search for
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Fig. 9 One run of the described work flow showing the integrated visualization techniques employed in the front-end user interface of ABSYNTH
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Conventional visualization of partially evolved examples for MA, BA and FCA
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Fig. 11 3D TRAVISOS
visualization showing the
comparison between
insufficiently trained SVR and
NGS for FCA using the same
parameters. Here, an
18-dimensional space has been
reduced to three dimensions
using TRAVISOS algorithm

Fig. 12 Comparison of conventional visualization and TRAVISOS 1:
conventional visualization

providing the seeds is faster than using PSO without any
reduction in the quality of results. In Fig. 10, we can see the
progress of the fitness function over each iteration for one
example per type. In the case of the MA, we can see how the
fitness improves ideally for both PPP and HHP approaches
(HHP reaches the target in lesser number of iterations.). In
the second scenario with BA, we can observe that the SVR
model fitness and the ngspice fitness varies, this is because of
themodels training and the scale of theY-axis, which ismuch
smaller for this example. In the FCA example, the SVR is
unable to reach ameaningful fitness value; however, theNGS
andOCNare able to reach the targets. These examples under-
pin the robustness of such a hybrid approach. From Fig. 10a
and Fig. 12, we can observe the evolution ofMA as described
in Fig. 6. Even though the latter takes more iterations than
the former, the computational effort is much less. Further,
it is possible to stop the SVR much earlier, when it reaches
saturation with little or no error reduction (see Fig. 12).

Fig. 13 Comparison of
conventional visualization and
TRAVISOS 2: TRAVISOS SVR
generation 0
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Fig. 14 Comparison of
conventional visualization and
TRAVISOS 3: TRAVISOS SVR
generation 1300

Fig. 15 Comparison of
conventional visualization and
TRAVISOS 4: TRAVISOS SVR
generation 1953

Fig. 16 Comparison of
conventional visualization and
TRAVISOS 5: TRAVISOS NGS
generation 1 (1954 in Fig. 12)

Visualization methods results

In this section, we would like to demonstrate the advantages
of the suggested TRAVISOS method in giving additional
insight into crucial steps of the optimization processes by
selected examples and visualization snapshots from our
investigations reported above. However, the main advantage
of TRAVISOS method and tool will only be fully be vis-
ible, when it is interactively employed in the ABSYNTH

design framework.We have attached a complementary video
(online) [32] generated from visualizations of all optimiza-
tion iterations for one example of PSO with Miller amplifier.
Each point in the video represents one solution. One has be
to reminded about the fact that in the given form of visualiza-
tion, reducing from ten or more dimensions down to three,
the values given on the three axes only express similarity
or closeness of design parameter sets, but have no explicit
physical meaning.
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Fig. 17 Comparison of
conventional visualization and
TRAVISOS 6: TRAVISOS
OCN generation 3 (1957 in Fig.
12). A complementary video
showing the complete process
can be found in [32]

Table 5 Comparison of different ADA techniques with ABSYNTH

Methods Equation based Function approximator based Simulation based ABSYNTH

Speed High High Low Low, improves with repetitions

Accuracy High Low, improves with examples High High

Preparation effort High High Low Low

Human influence for new circuits Design of equations 100+ examples for learning Almost nothing Almost nothing

Evolution over repetitions Not possible Not found Not possible Present

Human computer interface No research found No research found No research found TRAVISOS, GoalPost view

First, we regard here the example of the FCA dis-
cussed above. Though the conventional visualization given in
Fig. 10c is salient,more relevant information canbeprovided.
In Fig. 11, we have visualized snapshots of one particu-
lar, tentatively trained SVR results for PPP by TRAVISOS
approach. Additionally, we have run a complete simulation
using ngspice, merged the two data sets, and visualized the
resulting solution space.

FromFig. 10c,we cannot understand the issue, as informa-
tion on solution diversity, clogging, clustering, or coverage
in the optimization space cannot explicitly be extracted.
In contrast, TRAVISOS allows this, showing that the SVR
model here has not been trained with sufficient data and it
is compelled to move towards one, obviously not too for-
tunate region in the optimization space, while the ngspice
results, which have achieved good fitness, are more diverse
and spread out intomore fortunate regions of the optimization
space. The visualization helps to understand the optimization
space, as well as the current aptness of SVR training for new
cells, and opens the door for interactive optimization.

In Figs. 12, 13, 14, 15, 16 and 17, the entire cascade of
the optimization process is visualized by the TRAVISOS
method, limiting to a series of representative snapshots here.
A complementary video showing the process can be found
in [32].

These clearly show the movement of the PSO particles for
the SVR model in the optimization space and the evolution

of the solution quality. Then, it can be monitored, how these
are translated into solutions in the NGS simulations. In the
end, we see the final solutions achieved by the OCN.

While the training of the SVR model in general can be
understood as a continuing process without a definite ter-
mination, the visualization can help to assess whether a
sufficient training quality has been achieved. In the inves-
tigated case, SVR seems to have been satisfactorily trained,
as can be understood from the unchanged solution space for
the final result.

This is confirmed by the following simulations steps, since
the NGS simulations finish in one generation and OCN reach
the target in just three generations.

Summarizing, the TRAVISOS method complements con-
ventional graphical monitoring and assessment techniques
of optimization processes. Even the simple examples of the
first realization step given here show that salient additional
information to better understand and in the future guide the
optimization and the underlying design process are provided.

Conclusions

In this paper, we have introduced three novel contributions to
the vivid field of electronic design automation for analog and
mixed-signal circuits and systems. Inspired by concepts from
computational intelligence, we introduced an evolving self-

123



266 Complex Intell. Syst. (2016) 2:251–267

learning architecture that alleviates the introduction of new
circuits into the supported cell spectrum, and we introduced
and demonstrated a hierarchical multi-objective optimiza-
tion cascade from SVR, PSO, and HS in the context of this
architecture that saves effort in general and is flexible with
regard to existing a priori knowledge vs. required computa-
tional effort. This approach was demonstrated as part of our
emerging ABSYNTH environment together with cadence
tools, ngspice and ams AG 0.35 µm CMOS technology on
schematic level for amplifier structures commonly used in
related work, but with a more comprehensive set of spec-
ification values as optimization goals in an agglomerative
approach. Results compared to conventional flat optimiza-
tion approaches and comparison to manual design activities
showed the viability and salience of our approach, e.g., for
the best case of the Miller amplifier and HHP as the best
variant of our approach, consumed only 26% time of the flat
approach,while fullymeeting the specifications.Afinal com-
parisonbetween theproperties and advantages ofABSYNTH
to other ADA methods is shown in Table 5.

Further, we introduced a novel visualizationmethod of the
optimization space and trajectory (TRAVISOS) that allows
more efficient and transparent human supervision of opti-
mization process properties, e.g., diversity and neighborhood
relations of solution qualities.

In future work, we will extend the palette of pursued
specifications values also to area, etc., take our work to
higher level circuits, e.g., instrumentation amplifiers, filters,
phase-locked loops, and voltage-controlled current sources,
or even non-linear circuits, and add statistical, yield-related
optimization, circuit breeding, aswell as physical layout gen-
eration, extraction, and inclusion in the optimization loop. In
particular, we will also extend our work on the TRAVISOS
method moving it from an analysis to an interactive tool,
achieving designer-in-the-loop functionality, i.e., letting the
designer observe, potentially interfere, and guide the opti-
mization by existing expert knowledge or intuition to faster
explore better locations in the optimization space.
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Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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Commons license, and indicate if changes were made.

References

1. Muneda (2014) EDA tools for design migration, modelling, verifi-
cation and optimization of custom ICdesign andOLED simulation.
http://www.muneda.com

2. Sabat S, Kumar K, Udgata S (2009) Differential evolution and
swarm intelligence techniques for analog circuit synthesis. In:

World congress on nature biologically inspired computing, 2009.
NaBIC 2009, pp 469–474. doi:10.1109/NABIC.2009.5393356

3. Vural R, Ayten U (2012) Optimized analog filter approximation via
evolutionary algorithms. In: 2012 12th international conference on
intelligent systems design and applications (ISDA), pp 485–490.
doi:10.1109/ISDA.2012.6416586

4. Kudikala S, Sabat S, Udgata S (2011) Performance study of
harmony search algorithm for analog circuit sizing. In: 2011 inter-
national symposiumon electronic systemdesign (ISED), pp 12–17.
doi:10.1109/ISED.2011.42

5. Thakker R, Baghini M, Patil M (2009) Low-power low-voltage
analog circuit design using hierarchical particle swarm optimiza-
tion. In: 2009 22nd international conference on VLSI design, pp
427–432. doi:10.1109/VLSI.Design.2009.14

6. Degrauwe MGR, Nys O, Dijkstra E, Rijmenants J, Bitz S, Goffart
BLAG, Vittoz E, Cserveny S, Meixenberger C, Van Der Stappen
G, Oguey H (1987) IDAC: an interactive design tool for ana-
log CMOS circuits. IEEE J Solid State Circuits 22(6):1106–1116.
doi:10.1109/JSSC.1987.1052861

7. Maulik P, Carley L, Allstot D (1993) Sizing of cell-level analog
circuits using constrained optimization techniques. IEEE J Solid
State Circuits 28(3):233–241. doi:10.1109/4.209989

8. El-Turky F, Perry E (1989) Blades: an artificial intelligence
approach to analog circuit design. IEEE Trans Comput Aided
Design Integr Circuits Syst 8(6):680–692. doi:10.1109/43.31523

9. KohHY, Sequin C, Gray P (1990) OPASYN: a compiler for CMOS
operational amplifiers. IEEE Trans Comput Aided Design Integr
Circuits Syst 9(2):113–125. doi:10.1109/43.46777

10. Gielen GGE, Walscharts H, Sansen W (1989) ISAAC: a symbolic
simulator for analog integrated circuits. IEEE J Solid State Circuits
24(6):1587–1597. doi:10.1109/4.44994

11. Nye W, Riley D, Sangiovanni-Vincentelli A, Tits A (1988)
Delight.spice: an optimization-based system for the design of inte-
grated circuits. IEEE Trans Comput Aided Design Integr Circuits
Syst 7(4):501–519. doi:10.1109/43.3185

12. Medeiro F, Perez-VerduB, Rodriguez-VazquezA,Huertas J (1995)
A vertically integrated tool for automated design of sigma; delta;
modulators. IEEE J Solid State Circuits 30(7):762–772. doi:10.
1109/4.391115

13. Bernardinis FD, JordanMI, Sangiovanni-VincentelliA (2003)Sup-
port vectormachines for analog circuit performance representation.
In: Proceedings of DAC, pp 964–969

14. Barros M, Guilherme J, Horta N (2007) An evolutionary optimiza-
tion kernel using a dynamic GA-SVM model applied to analog
IC design. In: 18th European conference on circuit theory and
design, 2007. ECCTD2007, pp 32–35. doi:10.1109/ECCTD.2007.
4529529

15. Barros MFM, Guilherme JMC, Horta NCG (2010) Analog circuits
and systems optimization based on evolutionary computation tech-
niques. Springer, Berlin

16. Ochotta E, Rutenbar R, Carley L (1996) Synthesis of high-
performance analog circuits in ASTRX/OBLX. IEEE Trans Com-
putAidedDesign Integr Circuits Syst 15(3):273–294. doi:10.1109/
43.489099

17. Ding M, Vemuri R (2005) An active learning scheme using sup-
port vector machines for analog circuit feasibility classification. In:
18th international conference on VLSI design, 2005, pp 528–534.
doi:10.1109/ICVD.2005.47

18. Wim Kruiskamp DL (1995) Darwin: CMOS OPAMP synthesis
by means of a genetic algorithm. In: 32nd conference on design
automation, 1995. DAC ’95, pp 433–438. doi:10.1109/DAC.1995.
249986

19. Zhang Y, Liu B, Yang B, Li J, Nakatake S (2012) CMOS op-
amp circuit synthesis with geometric programming models for
layout-dependent effects. In: 2012 13th international symposium

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.muneda.com
http://dx.doi.org/10.1109/NABIC.2009.5393356
http://dx.doi.org/10.1109/ISDA.2012.6416586
http://dx.doi.org/10.1109/ISED.2011.42
http://dx.doi.org/10.1109/VLSI.Design.2009.14
http://dx.doi.org/10.1109/JSSC.1987.1052861
http://dx.doi.org/10.1109/4.209989
http://dx.doi.org/10.1109/43.31523
http://dx.doi.org/10.1109/43.46777
http://dx.doi.org/10.1109/4.44994
http://dx.doi.org/10.1109/43.3185
http://dx.doi.org/10.1109/4.391115
http://dx.doi.org/10.1109/4.391115
http://dx.doi.org/10.1109/ECCTD.2007.4529529
http://dx.doi.org/10.1109/ECCTD.2007.4529529
http://dx.doi.org/10.1109/43.489099
http://dx.doi.org/10.1109/43.489099
http://dx.doi.org/10.1109/ICVD.2005.47
http://dx.doi.org/10.1109/DAC.1995.249986
http://dx.doi.org/10.1109/DAC.1995.249986


Complex Intell. Syst. (2016) 2:251–267 267

on quality electronic design (ISQED), pp 464–469. doi:10.1109/
ISQED.2012.6187534

20. del Mar HershensonM (2002) Design of pipeline analog-to-digital
converters via geometric programming. In: IEEE/ACM interna-
tional conference on computer aided design, 2002. ICCAD 2002,
pp 317–324. doi:10.1109/ICCAD.2002.1167553

21. DasGupta S, Mandal P (2010) An improvised MOS transistor
model suitable for geometric program based analog circuit siz-
ing in sub-micron technology. In: 23rd international conference on
VLSI design, 2010. VLSID ’10, pp 294–299. doi:10.1109/VLSI.
Design.2010.31

22. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
Proceedings., IEEE international conference on neural networks,
1995, vol 4, pp 1942–1948. doi:10.1109/ICNN.1995.488968

23. Geem ZW, Kim JH, Loganathan G (2001) A new heuristic opti-
mization algorithm: harmony search. Simulation 76(2):60–68.
doi:10.1177/003754970107600201

24. Allen PE, HolbergDR (2002) CMOS analog circuit design. Oxford
University Press, Oxford

25. Tawdross PMM (2007) Bio-inspired circuit sizing and trimming
methods for dynamically reconfigurable sensor electronics in
industrial embedded systems. Ph.D. thesis, Institute of Integrated
Sensory Systems (ISE), Dept. EIT, University of Kaiserslautern,
Kaiserslautern

26. Alpaydin G, Balkir S, Dundar G (2003) An evolutionary approach
to automatic synthesis of high-performance analog integrated cir-
cuits. IEEE Trans Evolut Comput 7(3):240–252. doi:10.1109/
TEVC.2003.808914

27. Hayashida N, Takagi H Visualized IEC: interactive evolutionary
computation with multidimensional data visualization. In: 26th
annual conference of the IEEE industrial electronics society, 2000.
IECON 2000, vol 4, pp 2738–2743 (2000). doi:10.1109/IECON.
2000.972431

28. König A, Blutner FE, Eberhardt M, Wenzel R (1998) An acoustic
data base navigator for the interactive analysis of psycho-acoustic
sound archives. In: Proceedings of the 5th international conference
on soft computing and information/intelligent systems IIZUKA’98,
16–20 October 1998, Iizuka, Fukuoka, Japan. World Scientific, pp
60–63

29. König A (2001) Dimensionality reduction techniques for inter-
active visualization, exploratory data analysis, and classification.
In: Pattern recognition in soft computing paradigm. World Scien-
tific Publishing Co., Inc., River Edge, pp 1–37. http://dl.acm.org/
citation.cfm?id=375278.375282

30. König A, Eberhardt M, Wenzel R (1999) Quickcog self-learning
recognition system—exploiting machine learning techniques for
transparent and fast industrial recognition system design. In: Image
processing Europe, pp 10–19

31. Pohlheim H (2006) Multidimensional scaling for evolutionary
algorithms 8212; visualization of the path through search space
and solution space using sammon mapping. Artif Life 12(2):203–
209. doi:10.1162/artl.2006.12.2.203

32. (2015) Travisos (supplementary video). https://www.youtube.
com/watch?v=I8qFMB9Xtss

123

http://dx.doi.org/10.1109/ISQED.2012.6187534
http://dx.doi.org/10.1109/ISQED.2012.6187534
http://dx.doi.org/10.1109/ICCAD.2002.1167553
http://dx.doi.org/10.1109/VLSI.Design.2010.31
http://dx.doi.org/10.1109/VLSI.Design.2010.31
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1109/TEVC.2003.808914
http://dx.doi.org/10.1109/TEVC.2003.808914
http://dx.doi.org/10.1109/IECON.2000.972431
http://dx.doi.org/10.1109/IECON.2000.972431
http://dl.acm.org/citation.cfm?id=375278.375282
http://dl.acm.org/citation.cfm?id=375278.375282
http://dx.doi.org/10.1162/artl.2006.12.2.203
https://www.youtube.com/watch?v=I8qFMB9Xtss
https://www.youtube.com/watch?v=I8qFMB9Xtss

	Multi-objective optimization and visualization for analog design automation
	Abstract
	Introduction
	State-of-the-art
	Baseline of investigation
	Circuits
	Meta-heuristic algorithms
	Multi-objective optimization approach
	Time measurement

	ABSYNTH concept and architecture
	Hybrid multi-objective optimization approach
	Incrementally evolving self-learning capability
	Status of the ABSYNTH architecture's implementation

	TRAVISOS: optimization space visualization
	Experiments and results
	Circuit sizing methods results
	Visualization methods results

	Conclusions
	References




