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We investigate how the accuracy and stability of numerical relativity simulations of 1D colliding
plane waves depends on choices of equation formulations, gauge conditions, boundary conditions,
and numerical methods, all in the context of a first-order 3+1 approach to the Einstein equations,
with basic variables some combination of first derivatives of the spatial metric and components of the
extrinsic curvature tensor. Hyperbolic schemes, specifically variations on schemes proposed by Bona
and Massó and Anderson and York, are compared with variations of the Arnowitt-Deser-Misner for-
mulation. Modifications of the three basic schemes include raising one index in the metric derivative
and extrinsic curvature variables and adding a multiple of the energy constraint to the extrinsic
curvature evolution equations. Redundant variables in the Bona-Massó formulation may be reset
frequently or allowed to evolve freely. Gauge conditions which simplify the dynamical structure
of the system are imposed during each time step, but the lapse and shift are reset periodically to
control the evolution of the spacetime slicing and the longitudinal part of the metric. We show that
physically correct boundary conditions, satisfying the energy and momentum constraint equations,
generically require the presence of some ingoing eigenmodes of the characteristic matrix. Numer-
ical methods are developed for the hyperbolic systems based on decomposing flux differences into
linear combinations of eigenvectors of the characteristic matrix. These methods are shown to be
second-order accurate, and in practice second-order convergent, for smooth solutions, even when the
eigenvectors and eigenvalues of the characteristic matrix are spatially varying.

I. INTRODUCTION

The goal of projects such as the ground-based Laser Interferometric Gravitational Wave Observatory (LIGO) and
the space-based Laser Interferometer Space Antenna (LISA) is to detect gravitational waves, and to use them as a new
observational window for relativistic astrophysics. A primary source for these gravitational waves is the coalescence
of binary black holes [1]. The highly nonlinear and dynamical merger phase of this coalescence process can only be
calculated by numerical relativity, and obtaining merger gravitational waveforms, both for theoretical understanding
and for detection, is dependent on long-term stable and accurate numerical evolutions. A worldwide collaboration
of numerical relativists, physicists, mathematicians, and computer scientists has devoted considerable effort over the
last 20 years to develop 3D codes to calculate black hole merger gravitational waveforms, and significant progress
has been made, especially in the last few years. However, more groundwork is required before calculations of 3D
binary black hole merger templates for a variety of scenarios can be completed. Greater understanding of equation
formulations, boundary conditions, and dynamic gauge conditions, and the use of advanced numerical methods, is
essential to achieve this goal. We believe that an important foundation for this understanding is extensive testing and
analysis in 1D and 2D. Choptuik’s discovery of black hole critical phenomena in spherically symmetric gravitational
collapse [2] is an example of the potential of careful numerical work in 1D.

This paper reports the methodology, results, and analysis of calculations of 1D nonlinear colliding gravitational
planewave spacetimes. We have chosen to investigate hyperbolic formulations of the Einstein equations, as they are
well-posed, they can be treated with advanced numerical methods, and they can help in the analysis of boundary
conditions [3,4]. We call a set of equations hyperbolic if the characteristic matrix can be diagonalized with a complete
set of eigenvectors and real eigenvalues, following LeVeque [5]. This is called strongly hyperbolic [6] in much of
the literature. The lapse and the shift are evolved during each time step in a manner which is consistent with a
simple hyperbolic scheme. Between time steps, the lapse and the shift are reset according to conditions which are
unconstrained by the need to preserve hyperbolicity. In this way, the evolution of the hypersurfaces and spatial
coordinates can be controlled to prevent large gradients, coordinate pathologies, and instabilities. Some of the
redundant variables of a hyperbolic formulation can also be reset between time steps. This resetting can have positive
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or negative effects on accuracy and stability, depending on the eigenmode structure of the reset system. Finally, we
find that boundary conditions should not be based naively on the eigenmodes of the hyperbolic decomposition for
two reasons: (a) satisfying the constraint equations at the boundaries generically requires the presence of incoming
eigenmodes, and (b) even whether the “physical” eigenmodes are purely outgoing at the boundaries is gauge dependent.

Many ways of formulating evolution equations for the spatial metric in Einstein’s theory of General Relativity are
possible. The most thoroughly tested formulation in numerical relativity is the Arnowitt-Deser-Misner (ADM) set of
equations [7]. The standard ADM equations in vacuum are

(∂t − Lβ)hij = −2αKij, (1)

(∂t − Lβ)Kij = −α|ij + α[(3)Rij + KKij − 2Ki
lKlj ], (2)

(∂t − Lβ)Ki
j = −α|i

|j + α[(3)Ri
j + KKi

j ]. (3)

In these equations, Kij is the extrinsic curvature, K = K l
l, βi is the shift, α is the lapse, hij is the 3-metric, and (3)Rij

is the 3D Ricci tensor. The vertical bar represents a covariant derivative taken with respect to the 3-geometry. Eq.
(3) evolves what we call the “mixed” form of the extrinsic curvature tensor. The energy and momentum constraint
equations are, respectively,

E = 1/2[(3)R − Ki
jKi

j + K2] = 0, (4)

Mi = Ki
j
|j − K|i = 0. (5)

While successful calculations using the ADM formulation have been done in 2D, 3D calculations generally crash after
just a few dynamical times.

Alternative formalisms include many versions of hyperbolic systems, which add redundant variables and/or con-
straint terms to the equations to allow a complete set of eigenmodes describing evolution along the characteristics. As
indicated by Reula [6], there are an infinite number of hyperbolic formulations. We focus on variations of relatively
simple schemes proposed by Bona-Massó (BM) [8] and Anderson-York (AY) [9], in which the characteristics propagate
either at local light speed or along the hypersurface normals, and in which the variables include first derivatives of
the metric.

Initial attempts at using hyperbolic methods in 3D were based on the BM formulation [4], but did not use numerical
methods which take advantage of the eigenfields of the system. These codes were not much more successful than ADM.
Non-hyperbolic Baumgarte-Shapiro-Shibata-Nakamura (BSSN) schemes [10,11], based on conformal decomposition
of the metric, have shown considerable success in improving the stability of 3D calculations for weak and strong
gravitational fields and a variety of spacetime slicings [12]. Alcubierre et al. [13] report that a BSSN scheme, combined
with excision and certain dynamic gauge conditions, allows accurate numerical evolutions of 3D distorted dynamic
black holes up to hundreds of dynamical times.

In the context of considering only first derivative variables, a great variety of hyperbolic schemes have been proposed
that involve adding constraint terms to the equations [14–19]. Kidder, Scheel, and Teukolsky [19] examine a rather
general class of such schemes, which include the AY [9] and Frittelli-Reula [14] formulations as special cases. Among
these schemes are some which allow for long-term evolution of a Schwarschild black hole in 3D.

In this paper, we explore ways of using hyperbolic methods that combine superior accuracy with gauge conditions
which maintain stability at least for the limited dynamical times we can explore with plane waves. Three basic
first order systems are studied: BM, AY, and ADM. Hyperbolicity is obtained in our BM and AY formulations by
adding momentum constraint terms to the ADM equations, as in the standard formulations. The BM, AY, and
ADM formulations are modified by using ”mixed” forms (with one index raised) of the extrinsic curvature and metric
derivatives as variables. The BM formulations are further modified by resetting redundant variables, which gives an
overall ADM-like evolution. Further, all our formulations are varied by adding a multiple of the energy constraint
to the evolution equations for the extrinsic curvature. Specifically, −nαEhij/2 is added to Eq. (2), and −nαEδi

j/2
is added to Eq. (3), where n, the energy constraint coefficient, is an arbitrary real number. The ADM formulation
is actually hyperbolic as long as the longitudinal-transverse components of the metric and extrinsic curvature can be
assumed to vanish identically, and n < 0 or 0 < n < 1. Comparisons of results from our various ADM, BM, and
AY calculations allow us to identify and analyze aspects of equation formulation which significantly improve accuracy
and/or stability. These are mixed variables, a separation of the constraint error speeds from the other characteristic
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speeds of the system, and maintaining long-term effective hyperbolicity (taking into account resetting of redundant
variables, but ignoring deviation from strict hyperbolicity due to resetting the lapse and the shift).

While the same energy constraint terms as specified above are present in the standard BM formulation, numerical
implementations have been carried out, as far as we are aware, only for n = 0 (the Ricci evolution system) and
n = 1 (the Einstein evolution system). Adding these energy constraint terms to the AY formulation is a special case
of the more general Kidder, Scheel, and Teukolsky [19] schemes. Shinkai and Yoneda [15–17] analyzed the stability
and accuracy properties of first order hyperbolic systems using Ashtekar’s connection variables in plane-symmetric
spacetimes, and found that the addition of multiples of the constraints to the dynamical equations improved accuracy
and stability. These results have been extended to ADM systems of equations [18]. However, the approach of Shinkai
and Yoneda is different from ours in that they consider the constraints as independent dynamical variables.

Gauge choices in most previous implementations of hyperbolic formulations have been limited in order to preserve
the hyperbolicity of the system. Since no time derivatives of the lapse and the shift occur in the dynamical equations
for the other variables, the lapse and the shift can be reset arbitrarily at any time during the numerical evolution,
as pointed out by Balakrishna et al. [20]. Our gauge evolution maintains strict hyperbolicity during each time step,
but the lapse and shift are reset periodically between time steps in order to control the long-term evolution of the
coordinate system. The resetting may be accomplished by imposing algebraic conditions, by solving elliptic equations,
or by evolving the lapse and/or shift through dynamical equations implemented independently of the main hyperbolic
system.

Poor boundary conditions can result in the introduction of instabilities or inaccuracies into the numerical grid.
In numerical relativity, boundary conditions have usually been rather crudely implemented. Some sort of outgoing
radiation conditions are imposed on all components of the metric, or boundary conditions are based on an analytic
exterior solution [12,21]. One attraction of hyperbolic methods has been the possibility of basing boundary conditions
on the eigenmodes of the characteristic matrix. However, it is clear from our planewave calculations that, particularly
for the “non-physical” eigenmodes involving the non-transverse-traceless parts of the metric, making the amplitudes
of the incoming eigenmodes at the boundaries zero can lead to serious violations of the energy and momentum
constraints. Furthermore, what constitutes an incoming eigenmode is dependent on the formulation of the equations
as well as on gauge conditions. Even imposing purely outgoing boundary conditions on the “physical” eigenmodes
of the hyperbolic system is not strictly correct, as nonlinear coupling between the “physical” and “non-physical”
eigenmodes in the source terms can generate a gauge-dependent admixture of outgoing and incoming “physical”
eigenmodes. Our boundary conditions are based on quadratic extrapolation of the variables from inside the grid to
the first ghost cells on either side of the grid. The ghost cell values are then corrected to make sure the constraint
equations are satisfied on the boundaries. For 1D plane waves, projection of the Weyl tensor onto a null tetrad gives
a gauge-independent measure of the left and right-going components of the gravitational radiation. Our numerical
solutions for colliding plane waves show that as the wave packets leave the grid, the incoming components of the Weyl
tensor are in fact zero even though there are non-zero incoming “physical” eigenmodes of the characteristic matrix.

Our focus in applying hyperbolic methods to the Einstein equations is on achieving second order accuracy for smooth
solutions, when the eigenvectors and eigenvalues of the system are a function of position. Finite difference methods
such as MacCormack, Lax-Wendroff, and staggered leapfrog [22], which are often used in numerical relativity, give
good second order accuracy for smooth solutions, but standard wave propagation algorithms for hyperbolic systems as
presented by LeVeque [23] are not second order accurate when the eigenvectors and eigenvalues are spatially varying.
LeVeque suggested a new wave propagation method [24] for variable coefficient flux problems which we develop and
apply to our 1D nonlinear gravitational planewave calculations. We show in the Appendix that the new methods are
formally second order accurate even with varying eigenvectors and eigenvalues, and verify second order convergence
in our numerical results.

II. EVOLUTION EQUATIONS

The most general spatial metric for a nonlinear 1D plane wave traveling in the x-direction is

ds2 = hxxdx2 + hyydy2 + hzzdz2 + 2hyzdydz, (6)

in which hxx, hyy, hzz, and hyz are functions of x alone. We will restrict our discussion to a diagonal metric in this
paper.

The standard ADM evolution equations are first order in time and second order in space. Most hyperbolic formalisms
are first order in space and time, and incorporate first derivatives of the spatial metric as additional variables. The
derivative variables as defined by BM are
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Dkij =
1

2
∂khij . (7)

In our applications with a diagonal metric, we find that switching to the “mixed” variables

Dki
j =

1

2
(∂khil)h

lj , Ki
j = Kilh

lj (8)

from the “lowered” variables, Dkij and Kij , improves accuracy significantly without other complications. However,

with a non-diagonal metric, Dki
j and Ki

j are not symmetric in i and j, and the evolution equations for Dki
j acquire

complicated source terms.
Below, we present the first order evolution equations for 1D plane waves travelling along the x-direction and

described by a diagonal spatial metric, using our mixed variables. The equations with Dkij and Kij as variables are
given in the BM papers [8]. A few points need to be made about notation. First, since our 1D problem involves
derivatives only in the x-direction, we simplify our notation Dxi

j −→ Di
j . Second, a prime indicates a spatial

derivative with respect to x. Third, our symbol for the shift is simply β instead of βi. We suppress the index on the
shift because there is only one non-zero component in this 1D case.

The evolution equations for hij are obtained from the definition of the extrinsic curvature of the hypersurfaces, Eq.
(1), and are

∂thxx = 2hxx[βDx
x + β′ − αKx

x], (9)

∂thyy = 2hyy[βDy
y − αKy

y], ∂thzz = 2hzz[βDz
z − αKz

z]. (10)

The evolution equations for Di
j are obtained by taking the time derivative of Dki

j in Eq. (8), and interchanging
space and time derivatives. The resulting equations are

∂tDx
x + ∂x[−βDx

x − β′ + αKx
x] = 0, (11)

∂tDy
y + ∂x[−βDy

y + αKy
y] = 0, ∂tDz

z + ∂x[−βDz
z + αKz

z] = 0. (12)

The Ki
j variables are evolved from the Einstein equations, Eq. (3). We include the addition of an arbitrary multiple,

n, of the energy constraint in these equations. After organization into a conservation law form, the Ki
j evolution

equations are

∂tKx
x + ∂x

[

−βKx
x +

α

hxx

(

α′

α
+ Dy

y + Dz
z

)]

=

−β′Kx
x + α

[

Kx
xKl

l +
1

hxx

(

α′

α
(Dy

y + Dz
z) − Dy

yDy
y − Dz

zDz
z − Dx

x

(

α′

α
+ Dy

y + Dz
z

))]

− n

2
αE , (13)

∂tKy
y + ∂x

[

−βKy
y +

α

hxx
Dy

y

]

= −β′Ky
y + α

[

Ky
yKl

l − Dy
yDl

l

hxx

]

− n

2
αE , (14a)

∂tKz
z + ∂x

[

−βKz
z +

α

hxx
Dz

z

]

= −β′Kz
z + α

[

Kz
zKl

l − Dz
zDl

l

hxx

]

− n

2
αE , (14b)

where we write αE so that the division between the flux terms and the source terms is apparent:

αE = −∂x

[

α

hxx
(Dy

y + Dz
z)

]

+ α [Kx
x(Ky

y + Kz
z) + Ky

yKz
z ]

+
α

hxx

[(

α′

α
− Dx

x

)

(Dy
y + Dz

z) − (Dy
yDy

y + Dy
yDz

z + Dz
zDz

z)

]

. (15)
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III. GAUGE EVOLUTION

We let the lapse and the shift evolve during each time step according to a prescription which simplifies the hyperbolic
system, and we periodically reset the lapse and the shift between time steps to control the longer term evolution of
the coordinates and to keep gauge pathologies from developing. We defer discussion of resetting gauge conditions to
Sec. V. Here, we discuss how the gauge evolves between resettings.

For a hyperbolic formulation of the equations, the natural choice for the lapse between resettings is the Choquet-
Bruhat algebraic gauge condition [25,26], because it simplifies the fluxes and source terms in the hyperbolic system
of equations considerably. This gauge condition is

α = Q
√

det(hij), (16)

where Q is a specified function of x, t.
We vary the Choquet-Bruhat algebraic gauge condition by making Q and Q′ (which equals ∂xQ) variables in the

hyperbolic system, rather than specified functions of x, t. We choose Q and Q′ as variables so that Q′ can be included
in the flux of Kx

x as part of the hyperbolic system. Otherwise, Q′′ would have to be considered part of the source of
Kx

x, and evaluating Q′′ from the lapse involves second derivatives of the metric. By advecting Q and Q′ along the
hypersurface normals, we incorporate them into the hyperbolic system in a consistent way. Our advection equations
are

∂tQ − βQ′ = 0, ∂tDQ − ∂x[βDQ] = 0, (17)

where DQ = Q′/Q. Our advection of Q corresponds to harmonic slicing [25].
There is a danger with resetting the lapse and the shift, in that fluctuations in β′ and DQ can feed back on one

another through the evolution equations for Dx
x and Kx

x. The resetting gauge conditions of Sec. V imply that a
fluctuation in Kx

x is balanced by a fluctuation in β′, and a fluctuation in Dx
x is balanced by a fluctuation in DQ.

For certain time intervals between resetting, if these fluctuations propagate at different speeds, they may drift in such
a way that they reinforce rather than cancel over much of the time interval. Although the standard procedure is to
keep the shift constant in hyperbolic schemes, we find that if we advect DQ with β′ constant, such a positive feedback
can occur, resulting in a runaway instability. However, if we advect both DQ and β′ along hypersurface normals, the
evolution is stable. Our advection equations for β and β′ are

∂tβ − ββ′ = 0, ∂tβ
′ − ∂x[ββ′] = 0. (18)

IV. CONSTRAINT EQUATIONS

The energy and momentum constraints must be satisfied by the initial conditions and throughout the evolution.
We use these constraints to obtain the initial conditions. We do not impose the constraints during the evolution
of the dynamical equations. However, we do insure that the boundary conditions are consistent with the constraint
equations, and we use the constraints to check for accuracy and convergence as the numerical evolution proceeds. The
energy and momentum constraint equations are, respectively,

E = −∂x

[

1

hxx
(Dy

y + Dz
z)

]

− 1

hxx
[Dy

yDy
y + Dy

yDz
z + Dz

zDz
z + Dx

x(Dy
y + Dz

z)] + Kx
x(Ky

y + Kz
z) + Ky

yKz
z

= 0, (19)

Mx = −∂x(Ky
y + Kz

z) − Dy
yKy

y − Dz
zKz

z + (Dy
y + Dz

z)Kx
x = 0. (20)

V. RESETTING GAUGE CONDITIONS

The lapse and shift are periodically reset between time steps in order to implement a dynamic spacetime slicing
which is unconstrained by the need to maintain a hyperbolic system. Our resetting gauge conditions are chosen to
prevent pathologies and/or strong gradients from developing in the hypersurfaces and spatial coordinates, and to help
stability properties at the boundaries of the grid.
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Changes in spacetime slicing which maintain the explicit planar symmetry only directly impact Kx
x. Nonlinear

source terms in the evolution equation for Kx
x have the potential to generate runaway growth of Kx

x when Kx
x is

positive. Our lapse resetting condition drives Kx
x toward a small negative value to insure against this. In addition,

a negative Kx
x implies that the proper distance between hypersurface normals displaced in the x-direction increases

with time. Together with our shift resetting condition, which keeps hxx roughly constant, this results in hypersurface
normals which point outward at the boundaries of the computational domain. Some features in Kx

x and Dx
x

potentially associated with instability advect along hypersurface normals (see Sec. IX), and are then advected out of
the grid before they can do much harm.

The equation for the lapse is derived by imposing the condition at the time of resetting

∂tKx
x − β∂xKx

x = −Γ[Kx
x − (Kx

x)T ], (21)

where (Kx
x)T is a specified “target” value, and Γ is a damping constant, which is chosen to be comparable to the

characteristic frequency of the waves we are propagating. Substituting this condition into the evolution equation for
Kx

x (Eq. (13)) and simplifying using the energy constraint, we obtain our lapse resetting condition,

∂x

(

α′

hxx

)

= α

[

Γ(Kx
x − (Kx

x)T ) + Kx
xKx

x − Ky
yKz

z +
Dy

yDz
z

hxx

]

− Dx
x

(

α′

hxx

)

. (22)

To limit initial transients in the lapse, given our initial condition Kx
x = 0, the target value is made proportional to

(1 − e−Γt/4).
In our colliding wave calculations, Eq. (22) as it stands can cause the lapse to become negative at the edges of

the grid, if the second derivative of the lapse becomes too negative. To prevent this, we replace S, the expression in
square brackets in Eq. (22), by

S −→ S
√

1 + (S/Slim)2
(23)

when S is negative, so S > −|Slim|. A side effect of the limiter is to allow Kx
x to become more negative than its

target value.
We choose an equation for the shift so that at the time of resetting, hxx is advected along hypersurface normals:

∂thxx − β∂xhxx = 0. (24)

Substituting this requirement into the evolution equation for hxx (Eq. (9)), we obtain the shift resetting condition,

∂xβ = αKx
x. (25)

VI. HYPERBOLIC SYSTEMS

The evolution equations presented in Sec. II have been cast in a first order, flux-conservative form, represented by
the following set of l equations

∂tq + ∂x[F(q)] = S(q), (26)

where q is a vector of l variables. The flux vector is given by

F(q) = A(x)q, (27)

where the l × l characteristic matrix A(x) is the flux Jacobian, ∂q[F(q)]. The system is hyperbolic if A(x) has a
complete set of eigenvectors and real eigenvalues.
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A. Modified Bona-Massó Formulation

The standard BM formulation [8] creates a hyperbolic scheme by introducing the redundant variables Vi, which are
defined as

Vi = Dik
k − Dk

ki =⇒ Vx = Dy
y + Dz

z. (28)

The momentum constraint is used to evolve Vx:

∂tVx + ∂x[−βVx] = α[Dy
yKy

y + Dz
zKz

z − (Dy
y + Dz

z)Kx
x − (α′/α)(Ky

y + Kz
z)]. (29)

We densitize the lapse according to the Choquet-Bruhat algebraic condition (see Sec. III), which simplifies the

standard BM system of equations considerably. With α −→ Q
√

det(hij) and (Ax = ∂x ln α) −→ DQ+Dx
x+Dy

y+Dz
z,

the fluxes for Ki
j reduce to

F (Kx
x) = −βKx

x +
α

hxx

(

DQ + Dx
x +

(

2 − n

2

)

Vx

)

, (30)

F (Ky
y) = −βKy

y +
α

hxx

(

Dy
y − n

2
Vx

)

, F (Kz
z) = −βKz

z +
α

hxx

(

Dz
z − n

2
Vx

)

. (31)

Our advection of Q and DQ, as described in Sec. III, corresponds to harmonic slicing, a special case of the standard
BM lapse evolution equation. We also advect β and β′, whereas the standard BM formulation specifies the shift as a
known function of x and t.

B. Modified Anderson-York Formulation

The AY formulation differs from the BM scheme in how the momentum constraint is used to make the system
hyperbolic. The AY scheme eliminates the need for the BM redundant variables Vi by incorporating the momentum
constraint into the evolution equation for the fkij variables, which are defined as

fkij = Dkij + hkiVj + hkjVi. (32)

The Vi variables in this equation are not separate variables, but rather denote the combinations of the D’s given in
Eq. (28).

The AY formulation replaces the BM Dkij with fkij , which are simply the spatial metric derivative terms in the Kij

fluxes of the BM formulation. Using this as a guide, we generalize the AY scheme (whose original form is restricted
to Ricci evolution, n = 0) to allow for non-zero energy constraint contributions. This leads to

fkij = Dkij + hkiVj + hkjVi −
n

2
Vkhij . (33)

The generalization in Eq. (33) works as long as the inverse transformation from fkij to Dkij exists, which is the case
for n 6= 1. An evolution equation is obtained for fkij from Eq. (33) by using the momentum constraint to eliminate

the time derivative of the Vi variables. For our modified AY scheme, we then raise one index so that fki
j = fkilh

lj

are our basic variables. A hyperbolic system results without the need for the BM redundant variables Vi.
For the diagonal metric planewave case under consideration, Eq. (33) reduces to

fx
x = Dx

x +
(

2 − n

2

)

Vx, (34)

fy
y = Dy

y − n

2
Vx, fz

z = Dz
z − n

2
Vx. (35)

We have simplified our notation in that fki
j −→ fi

j for this 1D problem. Notice that fyx
y = Vx and fzx

z = Vx, which
contribute to fluxes in the y and z directions, are not zero. However, with planar symmetry the divergence of these
flux components vanishes identically.

The evolution equations for fi
j are

7



∂tfx
x + ∂x[−βfx

x − β′ + αKx
x] =

(

2 − n

2

)

αC, (36)

∂tfy
y + ∂x[−βfy

y + αKy
y] = −n

2
αC, ∂tfz

z + ∂x[−βfz
z + αKz

z ] = −n

2
αC, (37)

where

C = [Dy
yKy

y + Dz
zKz

z − (Dy
y + Dz

z)Kx
x − (α′/α)(Ky

y + Kz
z)]. (38)

The D’s in Eq. (38) are not separate variables, but denote:

Dx
x = fx

x −
(

2 − n
2

1 − n

)

[fy
y + fz

z ], (39)

Dy
y =

1

2(1 − n)
[(2 − n)fy

y + nfz
z], Dz

z =
1

2(1 − n)
[(2 − n)fz

z + nfy
y]. (40)

These relations are the inverse transformation of the system of Eqs. (34) to (35). One can see that n = 1 is not
allowed.

The Ki
j evolution equations are the same as in our modified BM scheme, with the understanding again that the

D’s in the source terms are not separate variables, but the above linear combinations of f ’s (Eqs. (39) to (40)). The

fluxes are defined so the fi
j variables can replace the expressions involving Di

j in the fluxes of our modified BM
scheme. The following fluxes result:

F (Kx
x) = −βKx

x +
α

hxx
(DQ + fx

x), (41)

F (Ky
y) = −βKy

y +
α

hxx
fy

y, F (Kz
z) = −βKz

z +
α

hxx
fz

z. (42)

The AY formalism imposes the Choquet-Bruhat algebraic condition on the lapse, as we did in our modified BM
scheme. The evolution of the lapse and the shift between gauge resettings is treated in exactly the same way as in
our modified BM formalism.

C. Modified Arnowitt-Deser-Misner Formulation

The simplest of the hyperbolic schemes we present is our modified ADM formulation, which consists of Eqs. (9) to

(14), (17), and (18), with α = Q
√

det(hij) and α′/α = DQ + Dx
x + Dy

y + Dz
z . This system is hyperbolic when the

metric is diagonal if n < 0 or 0 < n < 1. The fluxes for Ki
j are

F (Kx
x) = −βKx

x +
α

hxx

[

DQ + Dx
x +

(

2 − n

2

)

(Dy
y + Dz

z)
]

, (43)

F (Ky
y) = −βKy

y +
α

hxx

[(

1 − n

2

)

Dy
y − n

2
Dz

z
]

, F (Kz
z) = −βKz

z +
α

hxx

[(

1 − n

2

)

Dz
z − n

2
Dy

y
]

. (44)

The hyperbolicity of our modified ADM system of equations breaks down for n = 0 and n ≥ 1. Although our ADM
formulation at n = 0 is non-hyperbolic, it is stable. At n = 1, however, the system is both non-hyperbolic and on the
verge of being unstable. For n > 1, the equations are elliptic, giving unstable exponential growth of errors.
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D. Wave Modes

1. BM

The hyperbolic system of equations obtained from the modified BM formulation described in Sec. VI A is

∂tq + ∂x[A(x)q] = S(q), (45)

where

q =



























Dx
x

Dy
y

Dz
z

Kx
x

Ky
y

Kz
z

Vx

DQ

β′



























, (46)

and

A(x) =





























−β 0 0 α 0 0 0 0 −1
0 −β 0 0 α 0 0 0 0
0 0 −β 0 0 α 0 0 0
α

hxx

0 0 −β 0 0 α
hxx

(

2 − n
2

)

α
hxx

0

0 α
hxx

0 0 −β 0 − α
hxx

(

n
2

)

0 0

0 0 α
hxx

0 0 −β − α
hxx

(

n
2

)

0 0

0 0 0 0 0 0 −β 0 0
0 0 0 0 0 0 0 −β 0
0 0 0 0 0 0 0 0 −β





























. (47)

The nine eigenmodes of the homogeneous system are obtained from the characteristic matrix, A(x). Six of the
eigenmodes travel along the light cones. They are:

1√
hxx

[

Dx
x + DQ +

(

2 − n
2

)

Vx

]

±
[

Kx
x − β′

α

]

,
1√
hxx

[

Dy
y − n

2 Vx

]

± Ky
y, 1√

hxx

[

Dz
z − n

2 Vx

]

± Kz
z

}

speeds = −β ± α√
hxx

. (48)

The remaining three eigenmodes are simply the variables Vx, DQ, and β′, which travel along the hypersurface normals,
with speeds −β.

The eigenmodes of the characteristic matrix, however, do not necessarily describe how solutions of the full nonlinear
system of equations propagate. It is a special property of planewave systems that eigenmodes of the full nonlinear
system of equations exist which consist of purely right-going waves with Ky

y ± Kz
z = (Dy

y ± Dz
z)/

√
hxx, purely

left-going waves with Ky
y ± Kz

z = −(Dy
y ± Dz

z)/
√

hxx, and Dx
x = Kx

x = 0. These are solutions of the Einstein
equations in a gauge with α = 1 and β′ = 0. In our nonlinear colliding plane wave calculations, our initial conditions
are such that the waves have this form. The right-going wave is in the left half of the grid, the left-going wave is in
the right half of the grid, and they are just at the point of colliding. When discussing solutions of the full nonlinear
system of equations, we refer to the transverse-traceless quantities (Dy

y−Dz
z)/

√
hxx and (Ky

y−Kz
z), the constraint

quantities (Dy
y + Dz

z)/
√

hxx and (Ky
y + Kz

z), and the longitudinal variables Dx
x/

√
hxx and Kx

x. After the waves
pass through each other, it is only approximately true that the transverse-traceless quantities have the form of purely
right-going and purely left-going waves as described above and it is not at all true that the constraint quantities have
this form.

The characteristic speeds apply to small amplitude, short wavelength perturbations in the variables, so that the
principal terms (which are first derivative terms) dominate over the source terms. The disturbances in the constraint
quantities which propagate along the characteristics will generally be constraint-violating because the constraints
explicitly tie the principal terms to the nonlinear source terms, and require that they cancel. The longitudinal variables,
Dx

x/
√

hxx and Kx
x, are not eigenmodes of the homogeneous system. In the full nonlinear system, Dx

x/
√

hxx and Kx
x

have some features which propagate along the light cones, and some features which propagate along the hypersurface
normals. The propagation of the longitudinal variables is strongly dependent on the choice of gauge.
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2. AY

There is a complete set of eight eigenmodes of the modified AY homogeneous system of equations. The six
eigenmodes which travel along the light cones are

1√
hxx

(fx
x + DQ) ±

(

Kx
x − β′

α

)

,
fy

y

√
hxx

± Ky
y, fz

z

√
hxx

± Kz
z







speeds = −β ± α√
hxx

. (49)

The remaining two eigenmodes are the variables DQ and β′, which travel along the hypersurface normals, with speeds
−β.

3. ADM

For the modified ADM homogeneous system, the eigenmodes, which form a complete hyperbolic system for n < 0
or 0 < n < 1, consist of “longitudinal” and “physical” eigenmodes propagating along the light cone,

1√
hxx

[

nDx
x + nDQ +

(

2 − n
2

)

(Dy
y + Dz

z)
]

±
[

nKx
x − nβ′

α +
(

2 − n
2

)

(Ky
y + Kz

z)
]

,
1√
hxx

[Dy
y − Dz

z] ± [Ky
y − Kz

z]

}

speeds = −β ± α√
hxx

,

(50a)

“constraint” eigenmodes propagating inside the light cone for 0 < n < 1,

√

1−n
hxx

[Dy
y + Dz

z] ± [Ky
y + Kz

z]
}

speeds = −β ± α√
hxx

√
1 − n, (50b)

and the DQ and β′ eigenmodes with speeds −β. Hyperbolicity fails for n = 0 because the “longitudinal” eigenmodes
are not independent of the “constraint” eigenmodes, for n = 1 because the two “constraint” eigenmodes are not
independent of each other, and for n > 1 because the “constraint” eigenvalues are complex.

VII. BOUNDARY CONDITIONS

Since in numerical relativity, computations are usually performed on a limited grid within a much larger space, the
boundary conditions should be designed to be consistent with how waves propagate while they are still inside the
grid. Even more important, since the evolution equations admit constraint-violating solutions, constraint violations
will propagate into the grid unless boundary conditions are carefully designed to suppress them.

Consider the “constraint” eigenmodes. They are [Dy
y + Dz

z − nVx]/
√

hxx ± [Ky
y + Kz

z] in BM and AY (though

expressed in terms of different variables), and
√

1 − n [Dy
y + Dz

z]/
√

hxx ± [Ky
y + Kz

z] in ADM. Even for the same
value of the energy constraint coefficient n, what is outgoing in BM and AY is different from what is outgoing in
ADM. Furthermore, for a given solution, the amplitudes of the BM, AY, and ADM modes depend on n. Whatever the
correct boundary condition, its effect on the solution should be independent of the equation formulation. The relative
amount of right and left-going “constraint” modes is also gauge dependent, in the sense that the choice of boundary
conditions in solving the constraint equations in the initial conditions is a gauge choice, and this affects the relative
values of (Dy

y + Dz
z) and (Ky

y + Kz
z) at all later times. The initial conditions symmetric about the midpoint of

the grid at x = 10 give purely incoming “constraint” modes for n = 0 ([Dy
y + Dz

z ]/
√

hxx = ±[Ky
y + Kz

z ] on the
left/right edges of the grid) initially and at all times until the effects of the wave collision reach the boundaries.

The “longitudinal” eigenmodes involving Dx
x and Kx

x are also formulation dependent, since they are different in
ADM from what they are in BM and AY, and they depend on n in all three formulations. There is gauge freedom to
pose any boundary conditions one likes on these modes, but a poor choice might give rise to singularities in Dx

x or
Kx

x inside the grid.
The “physical” eigenmodes [Dy

y − Dz
z ]/

√
hxx ± [Ky

y − Kz
z] are the same in all three formulations, and are

independent of n. However, their time evolution is gauge-dependent because the nonlinear source terms in their
evolution equations involve the gauge-dependent constraint quantities. With our choice of initial gauge, the amplitudes
of (Dy

y − Dz
z)/

√
hxx and (Ky

y − Kz
z) differ by about 3 per cent after the wave collision, so there is typically a 3

per cent admixture of the incoming “physical” eigenmode as the outgoing waves approach the boundaries.
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A gauge-independent measure of the amplitudes of left and right-going gravitational waves can be obtained by
projecting the Weyl tensor onto a complex null tetrad, as in the Newman-Penrose spin coefficient formalism [27],

Ψ0
± = R(t)(y)(t)(y) − R(t)(z)(t)(z) + R(x)(y)(x)(y) − R(x)(z)(x)(z) ∓ 2[R(t)(y)(x)(y) − R(t)(z)(x)(z)] (51)

for right/left propagation. A purely right-going wave would have Ψ0
− = 0. Our numerical results indicate that plane

waves after a collision are indeed purely outgoing by this standard. As an outgoing wave boundary condition, using
the evolution equations to evaluate the time derivatives of the extrinsic curvature in the Riemann tensor, this becomes

(

∂x

[

(Dy
y − Dz

z)√
hxx

∓ (Ky
y − Kz

z)

])

1√
hxx

+
1

2

(Dy
y − Dz

z)√
hxx

[

(Dy
y + Dz

z)√
hxx

∓ (Ky
y + Kz

z)

]

+
1

2

(Dy
y + Dz

z)√
hxx

[

(Dy
y − Dz

z)√
hxx

∓ (Ky
y − Kz

z)

]

= 0 (52)

at the right/left boundaries. This expression is consistent with [Dy
y − Dz

z]/
√

hxx = ±[Ky
y − Kz

z] if and only if
[Dy

y + Dz
z]/

√
hxx = ±[Ky

y + Kz
z ].

Since conventional outgoing wave boundary conditions are not appropriate, our boundary conditions are based on
a smooth second order extrapolation of the variables, which is corrected to make sure the energy and momentum
constraint equations are satisfied on the boundaries. Eq. (52) could also be imposed at the boundaries to further
improve the extrapolation, but we have not tried this. Our procedure is detailed further in Sec. VIII B 3.

In addition to the eigenmodes discussed above, there are eigenmodes propagating along the hypersurface normals,
which can be incoming or outgoing, depending on the sign of the shift on the boundaries. It seems to be important
for stability that the hypersurface normals do not point into the grid (see Secs. IXC and IXD).

Our results show that quadratic extrapolation without correction for the energy and momentum constraints produces
a significant but not dominant error (see Sec. IXD). However, errors from imposing outgoing boundary conditions
on the “constraint” eigenmodes, or from using standard constant extrapolation, would swamp all other errors as they
propagate into the grid. Standard constant extrapolation, which gives the same values for the variables, and therefore
the fluxes, in the ghost cell and adjoining physical cell, also eliminates the incoming “constraint” eigenmodes.

VIII. NUMERICAL METHODS

A. Strang Splitting

As described in Sec. VI, all of the formulations we tested, both hyperbolic and non-hyperbolic, are in first order,
flux conservative form. We solve all these sytems of equations using a Strang-split method [22]. In this method,
the homogeneous transport part of Eq. (26) and the contributions from the source terms are treated separately. In
particular, the following straightforward system of ordinary differential equations is first solved over half a time step

∂tq = S(q). (53)

Then, the transport part of Eq. (26), which contains the flux terms, is solved over a full time step

∂tq + ∂x[F(q)] = 0. (54)

Our methods for solving the transport step are discussed in Sec. VIII B below. The calculation is completed by again
solving Eq. (53) over half a time step.

We choose to use the Strang-split method because it is simpler in the context of how we are handling boundary
conditions. An iterative scheme such as the MacCormack method [28] requires repeated implementation of the
boundary conditions each time step. However, in the Strang-split scheme, the boundary conditions are imposed
only once during each time step. The fewer applications of the boundary conditions in the Strang-split method
is advantageous because we are using quadratic extrapolation to obtain ghost cell values. Quadratic extrapolation
amplifies any jitter at the boundaries, and the frequent application of quadratic extrapolation in iterative schemes
such as MacCormack could easily lead to an instability.
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B. Transport Step

In the transport step, we solve Eq. (54) both with a finite difference method and with a wave propagation approach,
which takes advantage of the eigenfields of a diagonalizable hyperbolic system. Advanced numerical methods for
diagonalizable hyperbolic systems introduce limiter functions to resolve sharp discontinuities that typically arise in
hydrodynamics problems. A smooth problem can be solved just as accurately and more efficiently with a finite
difference method. In vacuum general relativity, discontinuities may or may not arise, depending on the gauge
conditions. Commonly used gauge conditions lead to steep gradients near black hole horizons. One can deal with these
gradients by using high resolution methods requiring diagonalizable hyperbolic formulations; or, one can dynamically
adjust the gauge conditions so as to avoid the steep gradients altogether [29].

Whether one uses a finite difference method or a sophisticated hyperbolic technique, it is important to have a
numerical scheme which is fully second order accurate for smooth solutions and generalizable to black hole spacetimes
and higher dimensions. It is straightforward to devise a finite difference scheme based on a Taylor series expansion
which is formally second order accurate. High resolution Riemann-based wave propagation algorithms introduced
by LeVeque [23], which decompose △q across a grid cell interface into a linear combination of eigenvectors of the
A(x) matrix, are applicable to a wide variety of diagonalizable hyperbolic problems. Flux differences are calculated
from the △q decomposition. We refer to these algorithms as “standard wave decomposition” methods. However, the
standard wave decomposition methods are not second order accurate for smooth solutions when the characteristic
matrix A(x) is a function of position, because the changes in A(x) across cell boundaries as well as △q’s must be
accounted for in flux differences. In numerical relativity problems, A(x) depends on the lapse, the shift, and the
spatial metric, and can have gradients comparable with the gradients in q.

LeVeque has suggested a wave propagation approach for solving variable coefficient flux problems based on splitting
up the jump in F(q) rather than the jump in q [24]. We refer to this approach as “flux-based wave decomposition”.
We develop and apply this method to solve the Einstein equations for 1D nonlinear plane waves as described below
in Sec. VIII B 1. We show in the Appendix that flux-based wave decomposition methods are formally second order
accurate for sufficiently smooth solutions for arbitrary smooth variations of the eigenvalues and eigenvectors (see also
Bale et al. [30]). For further discussion and analysis of flux-based wave decomposition methods, in the context of
more general approximate Riemann solvers, see [31]. While it is difficult to formally prove second order convergence
for numerical methods since this also requires proving stability, our numerical tests of these methods, and those of
reference [30], typically exhibit second order convergence.

1. Flux-Based Wave Decomposition

Using Eq. (54) to update average grid cell values of the variables q requires knowing flux values at grid cell interfaces.
The interface flux values are found by solving the following equation, obtained by multiplying Eq. (54) by A(x) on
the left hand side:

∂t[F(q)] + A(x)∂x[F(q)] = 0. (55)

The time derivative of A(x) vanishes because the variables on which A(x) depends (the lapse, the shift, and the
longitudinal part of the spatial metric) have no fluxes, and are not updated during the transport step. Using Eq. (55)
to compute the interface fluxes was originally described by Bona et al. [8]. However, it is not clear from [8] how they
handled problems in which A(x) varies from cell to cell.

Eq. (55) is a linear advection equation for the flux vector, F(q). As such, flux values at cell interfaces can be updated
by solving Riemann problems based on decomposing flux differences between adjacent grid cells into eigenvector
expansions (see [5] for a discussion of solving Riemann problems for the advection equation), and including correction
terms to give second order accuracy. We develop two wave propagation methods based on this idea which we call
Methods I and II. A wave in this approach is defined as a discontinuity in the flux associated with a certain eigenmode
across the characteristic corresponding to that eigenmode.

We explicitly deal with the fact that the eigenvalues and eigenvectors of the characteristic matrix are varying across
the grid. The magnitudes of the eigenvalues give the wave speeds and the signs of the eigenvalues give the wave
directions. In the flux decomposition for Method I, we need to decide if a wave is left-going or right-going at a
given cell interface. This is determined by the sign of the average of the eigenvalues obtained from the characteristic
matrices on either side of the interface. If the average eigenvalue for a particular eigenmode is negative, then the
corresponding eigenvector is evaluated in the cell to the left of the interface. If the average eigenvalue is positive, then
the eigenvector is evaluated in the cell to the right of the interface. In Method II, the eigenvalues and eigenvectors at
a cell interface are obtained from the characteristic matrix at the interface, calculated as an average from the adjacent
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cells. For both methods, waves with zero interface speed still contribute to the flux difference. We can include these
contributions in either the left-or right-going waves of Method I, as long as we do so consistently.

In Method I, the flux difference decomposition takes the following form at the interface between cells i and i − 1:

F(qi) − F(qi−1) = Aiqi − Ai−1qi−1 =

m
∑

L=1

γL
i− 1

2

rL
i−1 +

M
∑

R=m+1

γR
i− 1

2

rR
i , (56)

where r are right eigenvectors of the characteristic matrix, and M is the total number of eigenmodes. We denote
the left-going waves at this interface as WL

i− 1
2

= γL
i− 1

2

rL
i−1, where 1 ≤ L ≤ m. The right-going waves are given by

WR
i− 1

2

= γR
i− 1

2

rR
i , where m + 1 ≤ R ≤ M . The number of left-going waves, m, can vary from interface to interface

since the sign of the average eigenvalue can change from cell to cell. The eigenvectors ri−1 are evaluated in cell i− 1.
Likewise, ri are evaluated in cell i. The coefficients γi− 1

2
are obtained by solving Eq. (56); the subscripts i − 1

2 indicate

interface values. In Method II, the flux difference decomposition at a given interface between cells i and i − 1 is the
same as Eq. (56), except the eigenvectors ri− 1

2
of the averaged characteristic matrix Ai− 1

2
= (Ai−1 + Ai)/2 replace

both ri−1 and ri.
Method I is implemented in the context of the CLAWPACK software package [32]. The first order wave propagation

and second order corrections in both Methods I and II are analogous to Eqs. (18) and (19) of LeVeque’s paper on
standard wave decomposition methods [23]. The updated value of qi is given by

qi = qi −
△t

△x

(

∑

R

WR
i− 1

2

+
∑

L

WL
i+ 1

2

)

− △t

△x

(

F̃i+ 1
2
− F̃i− 1

2

)

. (57)

F̃i± 1
2

are flux correction terms which can be reduced near discontinuities by introducing limiter functions. Limiters

prevent the oscillatory behavior around discontinuities seen with finite difference methods. In the absence of limiting,
the flux corrections are

F̃i± 1
2

=
1

2

(

∑

R

WR
i± 1

2

−
∑

L

WL
i± 1

2

)

− 1

2

△t

△x

M
∑

p=1

λp

i± 1
2

W
p

i± 1
2

, (58)

where λp

i± 1
2

denote cell-interface speeds.

Both flux-based wave decomposition methods I and II are successful in giving second order convergent results in
our numerical calculations.

2. Finite Difference Method

To solve Eq. (54) using a Lax-Wendroff finite difference method, we first perform a second order Taylor expansion
of q around t:

q(x, t + △t) = q(x, t) + △t ∂tq(x, t) +
1

2
△t2 ∂2

t q(x, t). (59)

Observe that

∂tq = −∂x[A(x)q], (60)

and, taking another time derivative,

∂2
t q = −∂x[A(x)(∂tq)] = ∂x[A(x)∂x(A(x)q)]. (61)

Note that the time derivative of A(x) vanishes as in Eq. (55). Plugging these expressions for ∂tq and ∂2
t q into Eq.

(59) gives

q(x, t + △t) = q(x, t) −△t ∂x[A(x)q(x, t)] +
1

2
△t2 ∂x[A(x)∂x(A(x)q(x, t))]. (62)

Making the centered finite difference approximation to the derivatives in Eq. (62), the updated value of qi is given by

qi = qi −
△t

△x
(Ai+1qi+1 − Aiqi) +

1

4

(△t

△x

)2

[(Ai + Ai+1)(Ai+1qi+1 − Aiqi) − (Ai−1 + Ai)(Aiqi − Ai−1qi−1)].

(63)
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3. Boundary Conditions

Our numerical methods only require values in one ghost cell at each boundary. We obtain values for all variables in
the ghost cell by quadratic extrapolation from the three adjacent physical cells. Numerical integration of the constraint
equations from the last physical cell to the ghost cell by the trapezoidal rule is used to correct the constraint quantities
(Dy

y + Dz
z)/

√
hxx and (Ky

y + Kz
z) in the ghost cell, with iteration to convergence.

IX. RESULTS

A. Initial Conditions

The initial conditions must satisfy the constraint equations, Eqs. (19) and (20). Since the constraint equations are
differential equations, they require boundary conditions for their solutions. Different choices of boundary conditions
correspond to different gauge conditions. We choose symmetric boundary conditions which give flat space between
two waves. This means that we choose (Dy

y + Dz
z) and (Ky

y + Kz
z) to vanish initially between the waves.

The variables hxx, Kx
x, and the combinations (Dy

y − Dz
z) and (Ky

y − Kz
z) are freely specifiable. We normally

take hxx = 1, Kx
x = 0, and

0.25 ln

(

hyy

hzz

)

=
2
∑

i=1

Ai cos2
[

2

π

(x − x0i)

wi

]

sin [ki(x − x0i) + δi] , (64)

for −wi < (x − x0i) < wi, and zero outside that range. The x derivative of Eq. (64) gives (Dy
y − Dz

z)/2. In
our standard initial conditions for colliding plane waves, one wave is initially on the left and moving to the right,
with [Ky

y − Kz
z ]1 = [(Dy

y − Dz
z)/

√
hxx]1. The other wave is initially on the right and moving to the left, with

[Ky
y − Kz

z ]2 = −[(Dy
y − Dz

z)/
√

hxx]2. The parameters for 0 ≤ x ≤ 20 are wi = 4.0, ki = 1.6, Ai = 0.08, x01 = 6.0,
x02 = 14.0, δ1 = 0, and δ2 = π. These initial conditions, depending on the variables, are symmetric (or antisymmetric)
about x = 10, and symmetry (or antisymmetry) is preserved throughout the evolution. Hence, our figures only show
the range 0 ≤ x ≤ 10. Since the initial plane waves do not overlap, and (Dy

y +Dz
z) and (Ky

y +Kz
z) vanish at x = 0,

the initial conditions are two analytic single plane waves of the type described by Misner, Thorne, and Wheeler [33].

0 2 4 6 8 10
−0.1

−0.05

0

0.05

0.1

0.15

x

FIG. 1. Initial conditions for derivatives of the transverse metric. The solid line is (Dy
y − Dz

z)/(2
√

hxx) and the dashed
line is 2(Dy

y + Dz
z)/

√
hxx. Note that x = 10 is the center of the grid.

Our initial conditions produce large amplitude, nonlinear colliding gravitational plane waves. Our measure of “large
amplitude” is that hyy and hzz are substantially different from 1 by the time the waves have traversed the grid. It is
known that nonlinear planewave spacetimes develop a singularity behind the wave [34,35]. For a single plane wave,
this is only a coordinate singularity, while for colliding plane waves, a physical singularity also develops. The values
we take for our wave amplitudes are about as large as possible without allowing a singularity to develop during the
crossing time of the waves. One can get a feel for this value by asking at what amplitude does a singularity develop
at the left edge of the grid for a single plane wave exiting the right edge? For a single wave as given by Eq. (64) with
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the shape specified by our values for wi and ki, and a flat metric ahead of the wave, the answer is approximately
0.11. This is an upper limit, however, because the effects of colliding waves add together in a way which is hard to
estimate. The initial conditions for (Dy

y ± Dz
z) are shown in Fig. 1.

B. Comparing Evolution Systems

1. Testing for the Optimal System

We experiment with several different formulations of the Einstein equations to determine the factors involved in
improving the global accuracy of 1D colliding gravitational plane wave calculations. The basic formalisms we test are
the modified BM, AY, and ADM schemes of Sec. VI. In all of these schemes, using mixed variables rather than lowered
variables improves accuracy significantly. We also compare alternative ways of handling the redundant variable Vx

in the BM schemes. Vx can be left to evolve independently (no-reset BM), or it can be reset periodically to enforce
the constraint that Vx = Dy

y + Dz
z (reset BM). Results have been calculated for a range of values of the coefficient

n of the energy constraint term in the extrinsic curvature evolution equations, from about −0.4 to 1.0, and in some
cases for values of n > 1. For the ADM and reset BM schemes, the results near 0 and 1 reflect the breakdown of
hyperbolicity at these values of n. Results are primarily shown for t = 12 since this is the latest time at which the
physical waves are largely within the grid.
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FIG. 2. Evolution of the metric derivatives. The solid line is at t = 8, the dashed line at t = 10, and the dotted line at
t = 12. (a) (Dy

y − Dz
z)/(2

√
hxx), (b) (Dy

y + Dz
z)/(2

√
hxx), and (c) Dx

x/
√

hxx.

Fig. 2 shows the evolution of linear combinations of metric derivatives appearing in the eigenmodes from t = 8
to t = 12, after the physical waves have finished colliding. In these high resolution (4000 cell) calculations, the
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numerical errors are negligible on the scale of the graph, and we have verified that all the different formulations seem
to be converging to the same solution. The quantity (Dy

y − Dz
z)/(2

√
hxx) is shown in Fig. 2a. The coordinate

speed of propagation can be read off the graph: it is roughly two units in x for every two units of time until around
t = 12, when the coordinate speed of light starts to differ significantly from one. Over the same range of times, the
quantity (Ky

y − Kz
z)/2 is within about 3 per cent of −(Dy

y − Dz
z)/(2

√
hxx), close to but not identical to what is

expected from the left-propagating “physical” eigenmode. In Fig. 2b, we see that the steps in (Dy
y + Dz

z)/(2
√

hxx)
are associated with extrema of (Dy

y − Dz
z)/(2

√
hxx). At these times, (Ky

y + Kz
z)/2 = (Dy

y + Dz
z)/(2

√
hxx) to

the left of the physical wave. In the vicinity of the physical wave, (Ky
y + Kz

z)/2 has step-like features associated
with steps in (Dy

y + Dz
z)/(2

√
hxx), but ascending to the right. In the region between the waves, (Ky

y + Kz
z)/2

is much larger than (Dy
y + Dz

z)/(2
√

hxx) and increases with time. Fig. 2c shows the evolution of Dx
x/

√
hxx. The

prominent feature in this figure is a small residual effect (note that the scale of the graph is 10−4) of the prominent
feature in Kx

x shown in Fig. 9 which survives the near cancellation of Kx
x in the evolution equation of Dx

x from
our shift resetting condition (Eq. (25)). Since αKx

x − β′ = 0 each time the shift is reset, this feature in Dx
x/

√
hxx

tends to advect along the hypersurface normals. The generation and modification of features in Dx
x/

√
hxx is due to

the different evolutions of αKx
x and β′ between gauge resettings. The feature in Kx

x results from our lapse resetting
condition, Eqs. (22) and (23), when a strong imbalance between the transverse D’s and K’s occurs near the center
of the grid as the waves collide, creating negative values for S. This in turn causes the limiter to take effect, which
allows Kx

x to dip in the negative direction.
To compare the overall accuracies of different formulations, we present 1-norms of the energy constraint errors in

Fig. 3 and 1-norms of errors in Dx
x/

√
hxx in Fig. 4 at t = 12 for 500 cell grids. The constraint errors are predominantly

errors in the derivatives of the constraint quantities, and are insensitive to errors in the longitudinal variables. For
each scheme, the 1-norm errors are plotted for a number of values of the energy constraint coefficient, ranging from
−0.25 to 0.95 at 0.05 increments. Since our ADM scheme is not hyperbolic for n = 0, the transport steps of the ADM
calculations are solved with the finite difference numerical method, whereas the transport steps of the BM and AY
calculations use our flux-based wave decomposition methods. The choice of numerical method makes little difference
to the results.
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FIG. 3. 1-norm errors of the energy constraint plotted against the energy constraint coefficient, n, for several different
formulations of the Einstein equations. Evaluated at t = 12 with a grid resolution of 500 cells. Note that the largest value of
n plotted is 0.95. Point A is the formulation closest to the standard BM scheme [4].

Fig. 3 identifies factors which affect accuracy as measured by 1-norm energy constraint errors. It is apparent that
using mixed variables improves accuracy significantly in the BM formulation. Similar improvements occur in the
AY and ADM formulations. The 1-norm energy constraint errors for ADM and the ADM-like reset BM schemes
are almost identical, differing by only 1 to 2 per cent over the range −0.25 ≤ n ≤ 0.85, and are minimized for
0.25 ≤ n ≤ 0.80. Point “A” on Fig. 3 is the formulation closest to the BM scheme as implemented in reference [4].
The identical formulation using mixed instead of lowered variables decreases the 1-norm energy constraint error 3.1
times. If the mixed BM system of equations is transformed into an ADM-like scheme by frequently resetting Vx, and
an energy constraint coefficient of 0.5 is used, a 9.3-fold decrease in the 1-norm energy constraint error compared to
point “A” is obtained. Both the ADM and the reset BM error curves peak at n = 0, and increase rapidly as n → 1,
though the increase as n → 1 for mixed reset BM occurs too close to n = 1 to be apparent in Fig. 3. The rise in
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energy constraint errors at n = 0 and n = 1 reflects in part the breakdown of hyperbolicity in ADM at these values
of n. The effects of this breakdown are more severe at n = 1 than at n = 0 because ADM is unstable for n > 1.
Momentum constraint errors are similar to or smaller than the energy constraint errors.

The 1-norm energy constraint errors in the no-reset BM schemes vary slowly for all n. These schemes are well-
behaved for n ≥ 1, and the errors for the mixed version continue to decrease. Despite the breakdown in the AY scheme
at n = 1, the constraint errors do not increase strongly until n gets close to 1. The AY formulation is well-behaved
for n > 1.

Since the true value of Dx
x/

√
hxx is not known exactly, we must extrapolate to estimate the true value and calculate

the 1-norm errors shown in Fig. 4. Assuming quadratic convergence, the error estimate at each grid cell of a 500 cell
calculation is 4

3 times the difference between the 500 and 1000 cell results. For Dx
x/

√
hxx at time t = 12, the 500

cell errors deviate from quadratic scaling in the region 8 < x < 10, where the feature in Dx
x/

√
hxx associated with

the spike in Kx
x is located. Here, our standard extrapolation underestimates the errors for the ADM and no-reset

BM formulations, and overestimates the errors for the reset BM formulations, but the effects on Fig. 4 are not very
significant.
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FIG. 4. 1-norm errors of Dx
x/

√
hxx plotted against the energy constraint coefficient, n, for several different formulations of

the Einstein equations. Evaluated at t = 12 with a grid resolution of 500 cells. Errors are estimated from comparisons with
1000 cell calculations, assuming quadratic convergence. Note that the largest value of n plotted is 0.95. The legend is the same
as in Fig. 3 except that the AY mixed values are multiplied by 0.045.

Fig. 4 shows that the same factors which decrease the 1-norm energy constraint errors also decrease the 1-norm
errors in Dx

x/
√

hxx. Specifically, using mixed variables instead of lowered variables in the no-reset BM formulation
at n = 0 decreases the 1-norm error in Dx

x/
√

hxx 1.5 times. The shapes of the curves fall into the same two classes
as described above for Fig. 3. If one frequently resets Vx and sets n = 0.5 in mixed BM, the 1-norm error decreases
6-fold from point “A”. The errors in Dx

x/
√

hxx in the ADM and reset BM schemes peak at n = 0 and increase rapidly
as n → 1, again reflecting, in part, the failure of hyperbolicity at these values of n.

The fact that Fig. 4 is at all similar to Fig. 3 is because the Dx
x/

√
hxx errors and the constraint errors behave

similarly in the region of the physical wave (this is described in detail in Sec. IXB2). However, there are several
differences between these two figures. First, the ADM curve in Fig. 4 is well above the reset BM curve. Second, the
reset BM curves have smaller drop-offs from n = 0 in Fig. 4. Third, the decreasing slopes of the no-reset BM curves
are bigger in Fig. 4 than in Fig. 3. These differences are due to relatively large formulation-dependent numerical
errors in Dx

x/
√

hxx in the region 8 < x < 10, which contribute to the 1-norms. Recall that the evolution of the
feature in Dx

x/
√

hxx in this region depends mainly on the evolutions of Kx
x and β′ between gauge resettings. We

expect the numerical errors for Kx
x to differ from those for β′, since these two variables evolve by quite different

equations. Further, we expect these numerical errors to be larger where Kx
x (and β′) vary rapidly (see Fig. 9). Small

differences in these numerical errors among the different formulations result in large differences in numerical errors
for Dx

x/
√

hxx in this region. For example, the errors in Dx
x/

√
hxx for 8 < x < 10 are larger at n = 0 than at n = 0.5

for the mixed no-reset BM scheme, explaining the decreasing slopes in Fig. 4, and are larger for ADM than for reset
BM, explaining the displacement between the mixed ADM and mixed reset BM curves.

Another difference between Figs. 3 and 4 is that the 1-norm errors of Dx
x/

√
hxx are one to two orders of magnitude

higher for AY than for the other formulations, whereas the 1-norm energy constraint errors for AY and the other
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formulations are comparable. For example, the 1-norm error in Dx
x/
√

hxx at n = 0.5 is about 70 times higher for the
mixed AY formulation than for the mixed no-reset BM formulation, whereas the 1-norm AY energy constraint error is
about 2.5 times higher. The subtraction of two numbers with large errors in Eq. (39) gives a large error for Dx

x/
√

hxx

in the AY formulation. When we introduce substantial variations in hxx in the initial conditions, so that Dx
x is much

larger than (Dy
y + Dz

z), and hxx is substantially different from 1, then equally large errors are introduced into all
the formulations. In our particular calculations, the errors already present in the AY scheme fortuitously cancel the
introduced errors, resulting in Dx

x/
√

hxx errors for mixed AY and mixed no-reset BM which are within a factor of 2.
These results demonstrate our ability to significantly increase the accuracy of 1D highly nonlinear colliding grav-

itational plane wave calculations through equation formulation. In particular, the choice of a mixed set of indices
improves the accuracy of the formulations for all values of the energy constraint coefficient tested. Resetting Vx in
the BM formulations creates ADM-like schemes. This is an advantage for 0.25 ≤ n ≤ 0.80, where ADM is hyperbolic,
and a disadvantage for n = 0 or n = 1, where ADM is not hyperbolic.

2. Error Propagation

In order to understand the variations in accuracy among the formulations, it is instructive to look at how errors
vary with position, and how they propagate over time. We focus on the energy constraint errors and the errors in
Dx

x/
√

hxx, since they are representative of errors in the transverse and longitudinal parts of the metric, respectively.
Momentum constraint errors are comparable to or less than the energy constraint errors.

Since the principal parts of the energy and momentum constraints are the derivatives of the constraint quantities,
the constraint errors propagate with the same speeds as the “constraint” eigenmodes (which are given in Sec. VI D
for BM, AY, and ADM). The constraint error propagation can also be obtained from the evolution equations for the
energy and momentum constraints, which form their own closed hyperbolic system. The constraint errors propagate
along the light cones for the no-reset BM and AY formulations. For ADM, the constraint errors propagate at

vADM = −β ± α√
hxx

√
1 − n. (65)

We expect the constraint errors to also propagate at vADM for the reset BM scheme. Note that for n < 0 or 0 < n < 1,
vADM is different from any of the other characteristic speeds of the system. We find that a separation of the constraint
error speeds from the other characteristic speeds improves accuracy.

Fig. 5a shows the energy constraint error propagation for reset BM and n = 0. First, notice that the constraint
errors are large where the physical wave is present, and that at a given location, the error decreases almost to zero
when the physical wave has passed. However, there is a rapid increase in the energy constraint errors propagating with
the physical wave. Second, from the graph we see that the waveform of the energy constraint errors propagates at
roughly unit coordinate speed, which, over the times we are considering, is approximately coordinate light speed. The
energy constraint errors are predominantly errors in the derivatives of (Dy

y + Dz
z)/

√
hxx. Errors in the propagation

of (Dy
y + Dz

z)/
√

hxx are largest where its second derivative is largest, at the corners of the steps visible in Fig.
2b. From the energy constraint equation, the steps in (Dy

y + Dz
z)/

√
hxx are associated with large values of the

physical quantities (Dy
y − Dz

z)/
√

hxx and (Ky
y − Kz

z). These physical quantities propagate at light speed, and
constraint errors, once generated, propagate with the velocity of the “constraint” eigenmodes, which is also light speed
for reset BM with n = 0. Since new errors remain in phase with the propagating old errors, the constraint errors
are continuously reinforced. Careful comparison of Fig. 2b with Fig. 5a shows that the constraint error peaks are
coincident with the corners of the steps in (Dy

y + Dz
z)/

√
hxx at all three times shown.

The same argument applies to AY and no-reset BM, since these formulations also have “constraint” mode errors
propagating at light speed, but Fig. 3 shows larger errors for ADM and reset BM at n = 0 than for AY and no-
reset BM. We attribute the larger ADM and reset BM errors to the breakdown of hyperbolicity in ADM at n = 0,
so that the “constraint” eigenmodes, which propagate at light speed with constant amplitude, interact with the
“longitudinal” eigenmodes through the constraint quantities. As n → 0, any errors in the constraint quantities tend
to produce amplified errors in the longitudinal variables, because n(Dx

x +DQ) and n(Kx
x −β′/α) are the same order

of magnitude as the constraint quantities in the ADM “longitudinal” eigenmodes. The errors in Dx
x and Kx

x then
feed back to the constraint quantities through the source terms of the evolution equation for (Ky

y + Kz
z).

Fig. 5b shows a dramatic decrease in both the energy constraint errors and the growth rate of the errors in the
mixed reset BM formulation when n = 0.5. Furthermore, the full waveform of the energy constraint errors does not
maintain its shape as it propagates, as does the waveform in Fig. 5a. By tracking the rightmost bump in this figure,
one can determine the speed of the errors to be approximately 0.7 times light speed, which agrees with the value
predicted by Eq. (65). Because the energy constraint errors lag behind the source of the errors, namely, the steps in
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(Dy
y + Dz

z)/
√

hxx, there is not constant reinforcement and rapid growth of the errors in the region of the physical
wave. This results in greater overall accuracy for reset BM than for no-reset BM at n = 0.5, as seen in Fig. 3.

Fig. 5c shows the energy constraint error propagation for mixed no-reset BM at n = 0.5. In contrast to Fig. 5b,
the waveform is maintained reasonably well, and the errors grow more rapidly in time. This is because the constraint
errors travel at light speed; so, as in Fig. 5a, there is a continuous reinforcement of the errors. For no-reset BM at
n = 0, the curve is practically the same as what we show here at n = 0.5. The error waveform has a smaller growth
rate than that for reset BM at n = 0, presumably because of the hyperbolicity of the no-reset formulation, as discussed
earlier. We have also looked at the AY constraint error propagation and confirm that errors propagate at light speed
for all values of n. Because the constraint errors travel with the physical waves for all n in these formulations, their
1-norm errors vary slowly with n in Fig. 3.
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FIG. 5. Energy constraint error propagation using our mixed BM formulation. The solid line is at t = 8, the dashed line
at t = 10, and the dotted line at t = 12. Evaluated with a grid resolution of 500 cells, for (a) n = 0, with Vx resetting, (b)
n = 0.5, with Vx resetting, (c) n = 0.5, with no Vx resetting.

The errors in Dx
x/
√

hxx versus x at t = 12 for the reset BM formulations are shown in Fig. 6, for energy constraint
coefficients of (a) 0 and (b) 0.5. Fig. 6a shows a localization of the errors in the region of the physical wave (0 ≤ x ≤ 6).
Fig. 6b shows the dramatic decrease in the errors for 0 ≤ x ≤ 6 when n = 0.5. The mixed no-reset errors in this
region at n = 0.5 are larger by a factor of about 2 than the mixed reset errors at n = 0.5, and only slightly smaller
than the mixed no-reset errors at n = 0. The fact that there is a similar reduction in constraint errors and Dx

x/
√

hxx

errors when going from no-reset BM to reset BM at n = 0.5 suggests that the constraint errors are a major source
of errors for Dx

x/
√

hxx. From the failure of hyperbolicity in ADM at n = 0, one expects the errors in Dx
x/

√
hxx to

increase more rapidly for reset BM than the constraint errors, but we do not see clear evidence for this. The increase
in errors is about the same going from t = 8 to t = 12, perhaps because the Dx

x/
√

hxx errors have not yet reached
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their asymptotic limit. The spikey errors at approximately 8.7 ≤ x ≤ 10 in both Figs. 6a and b are discussed in Sec.
IXB 1.
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FIG. 6. Errors in Dx
x/

√
hxx versus x for our BM mixed and lowered formulations, with Vx resetting. Evaluated at t = 12

with a grid resolution of 500 cells. Errors are estimated from comparisons with 1000 cell calculations, assuming quadratic
convergence, for (a) n = 0, and (b) n = 0.5.

The ADM and ADM-like reset BM systems show rapid increases in errors as n → 1 in Figs. 3 and 4. The
breakdown of hyperbolicity at n = 1 results in errors in (Dy

y + Dz
z)/

√
hxx becoming large compared to errors in

(Ky
y + Kz

z). The contribution to the energy constraint errors from errors in the derivatives of (Dy
y + Dz

z)/
√

hxx

increases correspondingly. Since the “constraint” eigenmodes propagate along the hypersurface normals at n = 1,
the errors in (Dy

y + Dz
z)/

√
hxx also reinforce errors in variables which propagate along the hypersurface normals,

namely, Dx
x/

√
hxx, β′, and DQ.

Fig. 7 shows the errors in (Dy
y − Dz

z)/(2
√

hxx) as a function of x for three formulations at an n of 0.5. The
amplitudes and shapes of the errors for the different formulations are roughly the same, because the evolution equations
for (Dy

y −Dz
z)/(2

√
hxx) are similar for the different formalisms. The curve shapes do not change significantly when

one uses n = 0 instead of n = 0.5 because n does not enter into the evolution equations for (Dy
y − Dz

z)/(2
√

hxx).
The entire graph shown in Fig. 7 converges quadratically except for the bump around x = 6, which converges linearly.
This bump is near the trailing edge of the physical wave, where the initial conditions are not smooth enough to give
second order accuracy. The errors for the formulations which are not shown are similar.
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FIG. 7. Errors in (Dy
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hxx) versus x for different formulations. Evaluated at t = 12 with a grid resolution of
500 cells. Errors are estimated from comparisons with 1000 cell calculations, assuming quadratic convergence, for n = 0.5.
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Calculations of the distribution and propagation of energy constraint errors and errors in Dx
x/

√
hxx have illumi-

nated how resetting Vx in the BM formulations to create overall ADM-like evolutions increases or decreases accuracy
and stability, depending on the value of n. Intermediate values of n separate constraint error speeds from the other
characteristic speeds of the system, resulting in significant improvements in accuracy. Values of n for which ADM
hyperbolicity fails result in rapid increases in errors.

The higher accuracy of reset BM compared to the other formulations when 0.25 ≤ n ≤ 0.80 is seen when hxx = 1
and Dx

x = 0 in our initial conditions. When we introduce substantial variations in hxx in the initial conditions, so
that Dx

x is at least as large as (Dy
y +Dz

z), and
√

hxx varies by a factor of 2 to 3, the accuracy results are dominated
by the errors directly associated with the variations in hxx. These errors depend primarily on the amplitude of
Dx

x/
√

hxx, and are largest where the derivative of Dx
x/

√
hxx is largest. They are similar in all the formulations and

are independent of n; thus, they tend to equalize the results from the different formulations.

C. Gauge Conditions

Our gauge conditions involve both a periodic resetting of the lapse and the shift, and an evolution of the lapse
and the shift between resettings. The lapse and shift are reset according to Eqs. (22) and (25), with Γ = 1, and
(Kx

x)T = −0.02. They are reset at constant time intervals rather than after a specific number of time steps, to give
resolution-independent results. Between resettings, β, β′, Q, and DQ are advected along hypersurface normals.

Fig. 8 shows the behavior of the lapse and the shift at the left boundary of the grid with time. The values of ln(α)
and β are fixed at zero at x = 10, the grid center. ln(α) and β vary approximately monotonically from the grid center
to the edges; therefore, we illustrate how they behave as a function of time by graphing their values at the edge, where
typically ln(α) and β are largest in magnitude.
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FIG. 8. The shift, β, and the logarithm of the lapse, ln(α), at the left grid edge plotted against time at intervals △t = 0.2.
The values of β and ln(α) are fixed at zero at the grid center.

In Fig. 8, the lapse oscillates at the grid edge until about t = 6. From t = 6 to t = 12, ln(α) becomes increasingly
negative until it starts leveling off around t = 12. The lapse is determined by Eq. (22). Since we set the lapse to
one and its first derivative to zero at the center of the grid, whether the lapse is greater than or less than one at the
edge is determined by the sign of the second derivative of the lapse with respect to proper distance, the quantity S
in Eq. (22). The large terms in S are typically −Ky

yKz
z and Dy

yDz
z/hxx. These nearly cancel when Dy

y, Dz
z,

Ky
y, and Kz

z are dominated by a single propagating ”physical” wave pulse. As two such pulses collide, constructive
interference in Dy

y and Dz
z implies destructive interference in Ky

y and Kz
z , and vice versa, which causes rather

large oscillations in the value of the lapse at the edge of the grid. Note that at t = 4, there is maximum constructive
interference of Dy

y and Dz
z. Once the waves have largely passed through each other (t > 6), Ky

y and Kz
z are

large, and Dy
y and Dz

z are small in the region between the separating waves, so the second derivative of the lapse
is strongly negative, and becomes more strongly negative as Ky

y and Kz
z become steadily larger. By t = 12, the

limiter in Eq. (22), which is necessary to prevent the lapse from becoming negative at the edge of the grid, largely
stops further decrease of the lapse at the edge.

The behavior of the shift in Fig. 8 reflects the behavior of Kx
x in Fig. 9, since β′ is proportional to Kx

x by Eq.
(25). The resetting of the lapse keeps Kx

x near its target value of −0.02 until t > 10, when the limiter in Eq. (22)
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takes hold, allowing Kx
x to become steadily more negative. Since the derivative of the shift is proportional to Kx

x,
and the shift is clamped to zero at the center of the grid, the shift at the left edge of the grid is positive and starts
getting steadily larger for t > 10.
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FIG. 9. Kx
x versus x at the times indicated in the legend. Kx

x is driven to a target value of −0.02 by our lapse resetting
condition. The spike at x ≈ 9 develops as the waves collide, due to the limiter in the equation for the lapse. The effects of the
limiter are felt over a wider range of x at t = 12.

Recall that a negative Kx
x, in combination with our shift resetting condition, causes the hypersurface normals to

point away from the computational grid at the boundaries (see Sec. V). These resetting gauge conditions are designed
so that Q and β are advected out of the grid, in order to suppress the development of instabilities associated with
extrapolation at the grid edge. As long as (Kx

x)T ≤ 0, the shift is positive at the left edge of the grid and the
advection velocity is negative. However, Fig. 10 shows that when (Kx

x)T = +0.02, so that the shift is negative at the
left edge, the solution becomes unstable at the grid edge once the physical wave reaches the edge.
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FIG. 10. Development of an instability at the left boundary in the evolution of Dx
x/

√
hxx when the Kx

x target value is
+0.02 in our lapse resetting condition. The instability is substantially stronger with the higher resolution grid. Note that the
physical wave reaches the left edge at t = 10.

D. Boundary Conditions

Fig. 11 compares two methods for implementing boundary conditions: quadratic extrapolation of all the variables
with and without correcting the extrapolated values of (Dy

y +Dz
z)/

√
hxx and (Ky

y +Kz
z) to insure that the energy

and momentum constraint equations are satisfied at the boundaries. Failure to strictly enforce the constraints at the
edges of the grid results in significant constraint errors propagating over much of the grid by t = 8.
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FIG. 11. Energy constraint error for our standard boundary condition, which corrects quadratic extrapolation of the variables
at the boundaries using the constraint equations (solid line), versus quadratic extrapolation only (dashed line). Evaluated at
t = 8 with a grid resolution of 500 cells using our mixed BM formulation with Vx resetting and n = 0.5.

The jitter at the left edge of Fig. 6, which graphs the errors in Dx
x/
√

hxx versus x, is due to numerical errors
and the use of quadratic extrapolation in our boundary conditions. It is most prominent when the physical wave is
crossing the boundary, but it is not unstable as long as the hypersurface normal at the boundary does not point into
the grid (see Sec. V). We will explore ways of reducing this jitter either through the use of limiters near the boundary
and/or improved extrapolation methods.

E. Numerical Methods

TABLE I. Convergence results for errors in the metric derivative variables. Evaluated at t = 12 using our mixed BM
formalism, resetting Vx, with n = 0.5, and flux-based wave decomposition method I.

1

2

[

(Dy
y
−Dz

z)√
hxx

]

1

2

[

(Dy
y
+Dz

z)√
hxx

]

Dx
x√

hxx

(500 − 1000)/(1000 − 2000)a 3.98 3.99 5.09

(1000 − 2000)/(2000 − 4000)b 3.97 3.99 4.38

aThe 1-norm of the difference between the 500 and 1000 cell calculations is divided by the 1-norm of the difference between
the 1000 and 2000 cell calculations.
bThe 1-norm of the difference between the 1000 and 2000 cell calculations is divided by the 1-norm of the difference between
the 2000 and 4000 cell calculations.

TABLE II. Convergence results for the energy and momentum constraint errors. Evaluated at t = 12 using our mixed BM
formalism, resetting Vx, with n = 0.5, and flux-based wave decomposition method I.

energy constraint momemtum constraint

500/1000a 4.02 3.97

1000/2000b 4.00 3.98
2000/4000c 3.99 3.99

aThe 1-norm of the 500 cell calculation is divided by the 1-norm of the 1000 cell calculation.
bThe 1-norm of the 1000 cell calculation is divided by the 1-norm of the 2000 cell calculation.
cThe 1-norm of the 2000 cell calculation is divided by the 1-norm of the 4000 cell calculation.
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We compare convergence results from our two flux-based wave decomposition schemes with those from the tra-
ditional finite difference approach. Tables I and II show quadratic convergence for errors in the metric derivative
variables and in the momentum and energy constraints at t = 12 using our optimal evolution scheme and flux-based
wave decomposition method I. Quadratic convergence for the metric derivative variables is tested by comparing 1-
norms of differences between results evaluated at 500 and 1000 cell resolutions, 1000 and 2000 cell resolutions, and
2000 and 4000 cell resolutions. Convergence is calculated in this way because true values are unavailable for the metric
derivative variables. Constraint errors can be calculated directly so quadratic convergence is determined simply by
taking the ratios of results from grid resolutions that differ by a factor of two. There is very little difference in the
results of the three numerical methods tested. Further, the 1-norm results from the three numerical methods all
converge to the same answer.

Tables I and II show that our flux-based wave decomposition methods are second order convergent when the
characteristic matrix A(x) has significant spatial variation, because of the spatial dependence of the lapse and the
shift (see Eq. (47) and Fig. 8). However, in these calculations the eigenvectors of A(x), which depend only on√

hxx, are roughly constant. We have tested convergence of both our flux-based wave decomposition methods when
the eigenvectors of A(x) vary rapidly, by introducing a 3-fold variation in

√
hxx. Our results are still second order

convergent.

X. DISCUSSION

A. Summary

We have identified ways of improving the accuracy and stability of 1D nonlinear colliding gravitational plane wave
calculations through an in-depth study of equation formulations, dynamic gauge conditions, boundary conditions, and
numerical methods. Three issues stand out in our study of equation formulations. The first issue which improves the
accuracy of all the formulations tested is raising an index in the metric derivative and extrinsic curvature variables.
The separation of constraint and physical behavior in our calculations is much simpler with mixed variables than
with lowered variables. Since the dominant feature of plane wave solutions is the physical wave, and since the mixed
variables have a simple linear relation to the “physical” eigenmodes, the mixed form gives an advantage in accuracy.
In addition, the variables in the source terms of the evolution equations are in mixed form, so a cleaner system of
equations results.

Second, it is advantageous if the “constraint” eigenmodes, which are constraint violating, propagate at different
speeds from other features in the solution, so that nothing in the actual solution is constantly in step with the constraint
errors. Our gauge conditions result in features which propagate on the hypersurface normals as well as on the light
cones. With a multiple between 0.25 and 0.80 of the energy constraint equation added to the evolution equations for
the extrinsic curvature in the ADM and reset BM schemes, the “constraint” eigenmodes propagate neither on the light
cones, nor on the hypersurface normals, and the growth rates of constraint errors and errors in Dx

x/
√

hxx significantly
decrease. However, when the amplitude of Dx

x is large compared to (Dy
y + Dz

z), formulation-independent errors
associated with the derivatives of Dx

x/
√

hxx dominate the overall errors for 0.25 ≤ n ≤ 0.80.
Third, we find that when hyperbolicity fails in ADM, for values of the energy constraint coefficient equal to 0 or 1,

the constraint errors and errors in Dx
x/

√
hxx increase much more quickly in both ADM and reset BM than they do

in no-reset BM. At n = 0, the “constraint” and “longitudinal” eigenmodes are no longer independent, causing a rapid
growth of errors which travel with the physical waves. These errors decrease and stabilize, however, when the waves
exit the grid. At n = 1, the two “constraint” eigenmodes are not independent, causing errors in (Dy

y + Dz
z)/

√
hxx

to increase rapidly. This results in large errors in the energy constraint and in variables which propagate along the
hypersurface normals.

The key to our approach to dynamic gauge conditions for hyperbolic calculations is to maintain a simple diago-
nalizable hyperbolic evolution during each time step, while allowing periodic, flexible resetting of the lapse and the
shift between time steps. By resetting the lapse and the shift, we can control the coordinate system in a dynamic
and (in principle) arbitrary way, unconstrained by the need to maintain hyperbolicity. Our gauge resetting conditions
control the longitudinal components of the extrinsic curvature and the spatial metric so as to prevent pathologies and
strong gradients from developing in the hypersurfaces and spatial coordinates. Further, our gauge resetting conditions
cause the hypersurface normals to point away from the grid at the edges. This helps to suppress the development of
instabilities at the boundaries which are associated with features advecting along the hypersurface normals.

A careful study of boundary conditions has led us to the conclusion that it is incorrect to impose outgoing wave
boundary conditions based on the eigenmodes of the hyperbolic decomposition. A substantial contribution from
the incoming “constraint” eigenmodes is necessary to satisfy the constraint equations at the boundaries. In the
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presence of nonlinearities, the interaction of the “physical” eigenmodes with the incoming “constraint” eigenmodes
generates an admixture of incoming and outgoing “physical” eigenmodes. The right and left-going gravitational wave
amplitudes can be determined by projecting the Weyl tensor onto a null tetrad, and our numerical results indicate that
the gravitational waves after the collision are purely outgoing according to this definition. Our boundary condition
procedure consists of an accurate calculation of the incoming eigenmodes of the characteristic matrix at the boundaries
by quadratic extrapolation of all the variables, and correction of the ghost cell values using the energy and momentum
constraint equations. This procedure, in combination with our lapse and shift resetting conditions which insure that
the hypersurface normals at the boundaries do not point into the grid, has given stable, accurate, and second order
convergent results.

Finally, we have developed flux splitting numerical methods for solving hyperbolic formulations of the Einstein
equations which are second order accurate for smooth solutions, even when the eigenvalues and eigenvectors of the
characteristic matrix are spatially varying. These methods are based on decomposing flux differences between adjacent
grid cells into linear combinations of the eigenvectors of the characteristic matrix. We show that these methods are
formally second order accurate and, in practice, second order convergent.

B. Relevance of Results and Future Directions

Our results suggest that hyperbolicity can be a useful guide to picking equation formulations for numerical integra-
tion of the Einstein equations. When eigenvectors are incomplete, or some eigenvectors are nearly linearly dependent,
some solutions to the equations will tend to grow without bound or by large factors. In 2D and 3D, the ADM and
ADM-like equation formulations for non-diagonal metrics fail to have a complete set of characteristic eigenvectors for
any value of the energy constraint coefficient. This may be at the root of some of the instabilities seen in 3D ADM
codes.

However, hyperbolicity, which involves only the principal terms in the equations, is not the whole story. The
constraint equations relate derivatives of some quantities (the constraint quantities) to nonlinear terms involving
additional quantities, so the actual evolution of the constraint quantities for constraint-satisfying solutions may be
very different from the evolution implied by the “constraint” eigenmodes, which satisfy equations without source
terms. It seems to be advantageous if the speeds of the short-wavelength errors in the constraint quantities, which
are the “constraint” mode eigenvalues, differ substantially from the propagation speeds of the major features in the
constraint quantities. In 1D, both the ADM and the no-reset BM formulations are safely hyperbolic for n ≈ 0.5, but
the former is substantially more accurate because no-reset BM has the same speeds for the “constraint” eigenmodes
and the features in the constraint quantities, whereas ADM has different speeds. How much of an advantage it is to
have different speeds depends on the dominant source of errors. In a gauge where hxx is close to 1, the dominant
numerical errors in the constraint quantities are associated with features in the same quantities, but in a gauge where
the dominant numerical errors are associated with features in hxx, it does not make much difference whether the
“constraint” eigenmodes and features in the constraint quantities have the same velocities. In generic black hole
spacetimes, it is probably not possible to find a gauge where the physical waves dominate the metric; therefore,
the separation of speeds may not make much difference in accuracy for 2D and 3D calculations of greatest physical
interest.

The eigenmode decomposition in higher dimensions depends on a chosen direction of propagation, as do the com-
binations of the actual variables which can be identified as “longitudinal”, “constraint”, and “physical” quantities.
In addition, putting the equations into first-order form requires a choice of derivative ordering, which has important
effects on the hyperbolicity of the system. A “directional splitting” approach to solving the transport steps, in which
∂tq+∂kF

k = 0 is solved separately for each coordinate direction k, does, at least for some choices of derivative order-
ing, allow the identification of “longitudinal”, “constraint”, and “physical” eigenmodes for one coordinate direction
at a time. The decomposition involves projecting the Dkij ’s and Kij ’s perpendicular to and into the constant-xk

surfaces. The eigenvectors can be constructed explicitly.
Using the mixed coordinate components Dki

j and Ki
j as variables when the metric is not diagonal gives complicated

source terms in the Dki
j evolution equations, because the Dki

j are no longer pure derivatives. Another possibility is
to take as the variables the components of an orthonormal triad and the projection of the extrinsic curvature onto
the triad (or the Ashtekar variables [15–17]). The triad formalism, because the extrinsic curvature tensor projected
on the triad is symmetric, has fewer variables than the mixed coordinate component formalism. In neither case would
the variables be simply related to the eigenvectors of the characteristic matrix when the metric is non-diagonal or the
triad vectors are not along the coordinate directions; thus, there is no obvious advantage to trying to generalize our
mixed variables in 1D to generic 2D and 3D calculations. However, we plan to explore these questions further.

Our approach to dynamic gauge conditions, namely, implementing a simple hyperbolic evolution during each time
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step, then resetting the lapse and the shift between time steps, is general. A hyperbolic evolution during each time
step allows the use of flux-based wave decomposition numerical methods. A long-term strictly hyperbolic evolution,
however, is destroyed in all our hyperbolic formulations when we reset the lapse and shift. Despite this, resetting the
gauge can be used to increase the accuracy and stability of our 1D calculations. Achieving the same goal in 2D or
3D calculations will be more difficult. There is no one longitudinal direction, and there is not enough gauge freedom
to control the longitudinal components of the metric and extrinsic curvature for all directions. What gauge resetting
conditions are most effective in 2D and 3D remains an open question.

Our boundary condition results indicate that simple outgoing wave boundary conditions based on the eigenmodes
of the characteristic matrix are not valid in general and are inconsistent with the constraint equations. On the other
hand, extrapolation (in particular, quadratic extrapolation) is a numerically dangerous procedure. Although one can
use constraint extrapolation to constrain certain linear combinations of the variables, this technique is likely to be less
effective in higher dimensions than in 1D because the number of variables increases more rapidly than the number of
constraints. Using an outgoing wave boundary condition based on the Weyl tensor to further constrain the variables
is problematic in the general case. While the peeling theorem [36] in an asymptotically flat spacetime does show that
the incoming wave projection of the Weyl tensor falls off much more rapidly than the outgoing wave projection in
the wave zone, one cannot assume that the outgoing wave dominates in 3D numerical relativity calculations, which
typically have to be truncated at best in the inner part of the wave zone. The ingoing part of the Weyl tensor contains
non-radiative quasi-static quadrupole moment contributions which cannot be assumed to vanish.

The flux-based wave decomposition numerical methods we have presented for hyperbolic formulations of the Einstein
equations are completely generalizable, and should prove useful for calculations in black hole and Brill wave spacetimes
where the eigenvectors and eigenvalues have significant spatial variation. We hope to extend our exploration of
hyperbolic methods to include the use of limiters and upwind differencing. Limiters will be used to suppress short
wavelength numerical instabilities. With upwind differencing, one does not need ghost cells at the apparent horizon
boundary of an excised black hole, where the eigenmodes are purely ingoing.

In conclusion, we have developed basic methodologies for hyperbolic formulations of the Einstein equations, which
improve accuracy and stability in 1D, and which we think merit further exploration in the context of numerical
relativity calculations of more substantial physical interest.
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APPENDIX A: SECOND ORDER ACCURACY OF FLUX-BASED WAVE DECOMPOSITION

In the wave propagation stage of solving for the time evolution of a hyperbolic system, the equations being solved
are exact conservation laws (Eq. (54)). The integral form of the conservation law can be used to update the average
q’s in the ith cell,

qn+1
i ≡ 1

△x

∫

cell i

qn+1dx = qn
i − 1

△x

[∫ tn+1

tn

Fi+ 1
2
dt −

∫ tn+1

tn

Fi− 1
2
dt

]

, (A1)

where i± 1
2 denotes values on the cell boundaries. We base our discussions of accuracy on Taylor series expansions in

both t and x, assuming that the cell size △x and the time step △t = tn+1 − tn are the same order. Time and spatial
derivatives are related by the wave propagation equation, Eq. (54), and F is assumed to depend on q and x. Second
order accuracy means that the error in one time step in qn+1

i decreases faster than (△t)2 as △t and △x go to zero.
Expanding F in a Taylor series in time,

∫ tn+1

tn

Fi± 1
2
dt ≈ △t Fn

i± 1
2

+
1

2
△t2 ∂tF

n
i± 1

2

+
1

6
△t3 ∂2

t F
n
i± 1

2

. (A2)
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In order that qn+1
i be accurate to second order while neglecting the last term in Eq. (A2), ∂2

t F must be continuous
in x. From the evolution Eq. (55) for F, assuming the dependence of F on q is analytic, second order continuity in
∂2

t F is guaranteed by second order continuity in ∂2
xF. The resulting equation is

∫ tn+1

tn

Fi± 1
2
dt ≈ △t Fn

i± 1
2

− 1

2
△t2 Ai± 1

2
(∂xF)n

i± 1
2

. (A3)

Let Fi be the cell-centered values of F, which differ from F(qi, xi) by a term of order △x2 ∂2
xFi. Then expanding

F in a Taylor series in x about the cell-center value,

Fn
i± 1

2

≈ 1

2
(Fn

i + Fn
i±1) −

1

8
△x2 (∂2

xF)n
i ≡ Fn

i ± 1

2
△ Fn

i± 1
2

− 1

8
△x2 (∂2

xF)n
i . (A4)

Since the second-order error terms are the same for Fi+ 1
2

and Fi− 1
2
, and change the same way when Fi and Fi+1

are replaced by F(qi, xi) and F(qi+1, xi+1), they cancel in the difference of the flux integrals in Eq. (A1) and can be
omitted, if ∂2

xF is continuous.
To obtain a second-order accurate contribution to qn+1

i from the second term in Eq. (A3), it is sufficient that Ai± 1
2

and (∂xF)n
i± 1

2

be accurate to first order. In Method II, Ai± 1
2

is approximated to first order by 1
2 (Ai + Ai±1). A

Taylor expansion of (∂xF)n
i± 1

2

gives, to first order,

(∂xF)n
i± 1

2

≈
△Fn

i± 1
2

△x
. (A5)

Flux-based wave decomposition consists of decomposing the flux differences △Fn
i+ 1

2

into a sum over eigenvectors

of the characteristic matrix, and similarly for △Fn
i− 1

2

. Different versions evaluate these eigenvectors at different

locations. From the point of view of smooth solutions, the preferred location is to base the decomposition of Ai± 1
2

at the respective cell boundaries. The decomposition of △Fn
i+ 1

2

into a sum of right eigenvectors of the matrix Ai+ 1
2

can be written

△ Fn
i+ 1

2

= Ri+ 1
2
Γi+ 1

2
, (A6)

where Ri+ 1
2

is a matrix whose columns are the right eigenvectors r
p

i+ 1
2

, and the column vector Γi+ 1
2

consists of the

coefficients of the decomposition, γp

i+ 1
2

. Then

Ai+ 1
2
△ Fn

i+ 1
2

= Ri+ 1
2
Λi+ 1

2
Γi+ 1

2
, (A7)

where Λi+ 1
2

is the diagonal matrix of eigenvalues of Ai+ 1
2
. Let λp

i+ 1
2

be the pth eigenvalue, or wavespeed, and let

W
p

i+ 1
2

≡ γp

i+ 1
2

r
p

i+ 1
2

, where r
p

i+ 1
2

is the pth eigenvector, ie., the pth column of Ri+ 1
2
. Equation (A7) can be written

Ai+ 1
2
△ Fn

i+ 1
2

=
∑

p

λp

i+ 1
2

W
p

i+ 1
2

. (A8)

Combining Eqs. (A3)–(A5) and (A8), and noting that △Fn
i+ 1

2

=
∑

p W
p

i+ 1
2

, gives

∫ tn+1

tn

Fi+ 1
2
dt ≈ △t

[

Fn
i +

1

2

∑

p

W
p

i+ 1
2

− 1

2

△t

△x

∑

p

λp

i+ 1
2

W
p

i+ 1
2

]

, (A9)

and a similar expression for the flux integral at i − 1
2 . In Eq. (A1), these give for qn+1

i an expression which is easily
shown to be equivalent to the substitution of Eqs. (58) into Eq. (57). Thus, we have shown that Method II of Sec.
VIII B 1 is second-order accurate for ∂2

xF continuous.
Method I is based on expressions similar to Eq. (A9) for the flux integrals, but the eigenvectors in Wi+ 1

2
, for

instance, are derived from Ai for the left-going eigenmodes at the i + 1
2 interface and derived from Ai+1 for the

right-going eigenmodes. In the last term in Eq. (A9), the eigenvalues λp

i+ 1
2

are approximated to first-order accuracy

as the average of the eigenvalues associated with the adjacent cells, but the Wi+ 1
2

are only zeroth-order accurate.
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The first-order corrections to the eigenvectors are the same at the i± 1
2 interfaces, if the same eigenmodes are left and

right-going at each interface and the first derivatives of the eigenvectors are continuous. (Recall that in Method I,
the sign of the averaged eigenvalue at a given interface determines the direction of the eigenmode at that interface.)
The second condition normally follows from continuity of ∂xA, but may fail if some of the eigenmodes are nearly
degenerate. With this qualification, the first-order corrections in this term will cancel between the two interfaces, as
long as the same eigenmodes are left- and right-going at each interface. When the averaged eigenvalues at the cell
interfaces do change sign, continuity of the first derivatives of the eigenvalues implied by continuity of ∂xA means
λp

i+ 1
2

and λp

i− 1
2

are both of order △x. The last term in Eq. (A9), which becomes the last term in Eq. (58), is then

second-order accurate by itself. The terms first-order in △t in Eqs. (57) and (58) will differ in second order from their
values in Method II, but combine by construction to give

∑

L

WL
i+ 1

2

+
1

2

[

∑

R

WR
i+ 1

2

−
∑

L

WL
i+ 1

2

]

=
1

2

[

∑

R

WR
i+ 1

2

+
∑

L

WL
i+ 1

2

]

≡ 1

2
△ Fn

i+ 1
2

(A10)

and

∑

R

WR
i− 1

2

− 1

2

[

∑

R

WR
i− 1

2

−
∑

L

WL
i− 1

2

]

=
1

2
△ Fn

i− 1
2

. (A11)

The result for qn+1
i is the same as Method II through second order, as long as the eigenvectors are smooth as discussed

above. While eigenmodes are degenerate for many hyperbolic formulations of the Einstein equations, the eigenvectors
can be chosen with the required smoothness.

Both methods, when the smoothness conditions are satisfied, are equivalent through second order to the Lax-
Wendroff finite difference scheme presented in Sec. VIII B 2.
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Massó, Phys. Rev. Lett. 68, 1097 (1992).
[9] A. Anderson and J. W. York, Jr., Phys. Rev. Lett. 82, 4384 (1999).

[10] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D59, 024007 (1999).
[11] M. Shibata and T. Nakamura, Phys. Rev. D52, 5428 (1995).
[12] M. Alcubierre et al., Phys. Rev. D62, 044034 (2000).
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