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Abstract

In this paper, the periodic solutions for the oscillation of a mass attached to a stretched elastic wire are obtained using
the homotopy analysis method (HAM). HAM helps us to obtain square root frequency (� = ω2) in the form of
approximation series of the convergence control parameter �. Finally, the so-called valid region of � is determined by
plotting the �-� curve. Comparison of the obtained results with exact solutions provides confirmation for the validity
of HAM.
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Introduction
It is difficult to solve nonlinear problems especially
by analytic technique. There are some analytic tech-
niques for solving nonlinear problems such as the per-
turbation method [1], the Lyapunov’s small parameter
method [2], the δ-expansion method [3], and the Ado-
mian decomposition method [4,5] that are well known.
These methods cannot always guarantee the convergence
of approximation series. In 1992, Liao [6] employed the
basic ideas of the homotopy to overcome the restrictions
of traditional techniques [7,8], namely, homotopy analy-
sis method (HAM). The topic of HAM has been rapidly
growing in recent years and successfully applied to many
nonlinear boundary problems such as nonlinear oscil-
lators with discontinuities [9-12]. In this paper, we use
HAM to obtain periodic solutions of the oscillation of a
mass attached to a stretched elastic wire and afterwards
compare the obtained results with exact solutions. The
system oscillates between symmetric bounds [−A,A], and
its frequency depends on the amplitude A. The oscillation
of a mass attached to a stretched elastic wire is as follows:

d2v
dt2

+v− λv√
1 + v2

= 0, 0< λ≤ 1, v(0)=A, v
′
(0)=0.

(1)
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Note that for both the small and large v, (1) becomes [13]

ω ≈ √
1 − λ for A�1 and ω≈1 for A � 1.

(2)

According to (1) which is with odd nonlinearity, we
rewrite (1) without including its square root. Then, (1) can
be written in the form

(
1 + v2

) (
d2v
dt2

v
) (

2v + d2v
dt2

)
+ (

1 − λ2 + v2
)
v3=0,

v(0) = A, v
′
(0) = 0. (3)

Assume that the solutions (3) are periodic with the
period T = 2π

ω
, where ω is the frequency of oscillation.

Substituting � = ω2, τ = ωt, and v(t) = V (τ ) in (3), we
have

(
1+V 2) (

�
d2V
dτ 2

V
) (

2V+�
d2V
dτ 2

)
+(1−λ2+V 2)V 3=0,

V (0) = A,V
′
(0) = 0. (4)

Method of solution
The limit cycles of (4) are periodic motions with period
T = 2π

ω
, and thus, V (τ ) can be expressed by

V (τ ) =
∞∑

m=0
cm cos(mτ), (5)
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where cm are coefficients to be determined. Under the
above rules of solution expression denoted by (5) and the
boundary conditions, it is natural to choose

V0(τ ) = A cos(τ ) (6)

as the initial guess to V (τ ). Let �0 denote the ini-
tial approximation of the frequency �. Under the rules
of solution expression, we choose the auxiliary linear
operator

L[ϕ(τ ; q)]= �2
0

[
d2

dτ 2
+ 1

]
ϕ(τ ; q), (7)

with the property

L[C1 cos(τ ) + C2 sin(τ )]= 0, (8)

where C1 and C2 are constants, and q ∈[ 0, 1] is the
homotopy parameter.
On the basis (4), we define a nonlinear operator

N[ϕ(τ ; q),�(q)]= (
1+ϕ(τ ; q)2

) (
�(q)

d2ϕ(τ ; q)
dτ 2

ϕ(τ ; q)
)

×
(
2ϕ(τ ; q)�(q)

d2ϕ(τ ; q)
dτ 2

)

+ (1 − λ2 + ϕ(τ ; q)2)ϕ(τ ; q)3. (9)

Let � denote a nonzero auxiliary parameter; we con-
struct the zero-order deformation equation

(1−q)L[ϕ(τ ; q)−V0(τ )]=q�N[ϕ(τ ; q),�(q)] , q∈[0, 1]
(10)

such that

ϕ(0; q) = A,
∂ϕ(τ ; q)

∂τ
|τ=0 = 0. (11)

When the parameter q increases from 0 to 1, the solu-
tion ϕ(τ ; q) varies from V0(τ ) to V (τ ), and �(q) varies
from �0 to �. Assume that ϕ(τ ; q) and �(q) are analytic
in q ∈[ 0, 1] and can be expanded in the Maclaurin series
of q as follows:

V (τ ) = V0(τ ) +
∞∑
j=0

Vj(τ )qj, � = �0 +
∞∑
j=0

�jqj,

(12)

where

Vm(τ ) = ∂mϕ(τ ; q)
m! ∂qm

|q=0, (13)

�m = ∂m�(q)
m! ∂qm

|q=0 . (14)

Notice that Vm(τ ) and �m contain the auxiliary param-
eter �, which has influence on their convergence regions.
Assume that � is properly chosen such that all of these

Maclaurin series are convergent at q = 1. Hence, at q = 1,
we have

V (τ ) = V0(τ ) +
∞∑
j=0

Vj(τ ), � = �0 +
∞∑
j=0

�j. (15)

Differentiating the zero-order deformation (10) and (11)
m times with respect to the embedding parameter q, then
dividing them bym!, and finally setting q = 0, we have the
so-calledm-th order deformation equation

L[Vm(τ ) − χmVm−1(τ )]=�Rm(V0,�0, . . . ,Vm−1,�m−1),

Vm(0) = 0,V
′
m(0) = 0,m ≥ 1, (16)

where

Rm(V0,�0, . . . ,Vm−1,�m−1) = ∂m−1N[ϕ(τ ; q),�(q)]
(m − 1)! ∂qm−1

× |q=0 . (17)

Note that Vm and �m−1 are all unknown; however,
we have only (16) for Vm. Thus, an additional algebraic
equation is required for determining�m−1. It is found that
the right-hand side of the m-th order deformation (16) is
expressed by

Rm(V0,�0, . . . ,Vm−1,�m−1) =
ψ(m)∑
k=0

cm,k(�m−1)

× cos((2k + 1)τ ),
(18)

where cm,k is a coefficient and ψ(m) is a positive integer
dependent on orderm.
To avoid the secular term τ cos(τ ) appearing in Vm, we

must force the coefficient of cos(τ ) to be equal to zero.
Thus, coefficient cm,0 must be enforced to be zero so that
this provides with the additional algebraic equation for
determining �m−1.
Therefore, it is easy to gain the solution of (16)

Vm(τ ) = χmVm−1(τ ) + �

�2
0

ψ(m)∑
j=1

cm,j(�m−1)

1 − (2j + 1)2

× cos((2j + 1)τ ) + C1 cos(τ ) + C2 sin(τ ),
(19)

whereC1 andC2 are two coefficients and to be determined
by conditions Vm(0) = 0 and V ′

m(0) = 0.
Thus, the N-th order approximation can be given by

V (τ ) ≈ V0(τ ) +
N∑
j=0

Vj(τ ) (20)

and

� ≈ SN = �0 +
N∑
j=0

�j. (21)
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Convergence
Theorem 1. If the solution series V0(τ ) + ∑∞

m=1 Vm(τ )

and �0 + ∑∞
j=1 �m are convergent, then they must be the

exact solution of Equation (4).

Proof. Since the solution series

V0(τ ) +
∞∑

m=1
Vm(τ ) (22)

is convergent, we have

lim
m→∞Vm(τ ) = 0. (23)

Using the left-hand side of high-order deformation
equations, we have

∞∑
m=1

[
Vm(τ ) − χmVm−1(τ )

] = 0. (24)

Then, we have

�

∞∑
m=1

Rm(V0,�0, . . . ,Vm−1,�m−1) = 0. (25)

Since h �= 0, then the above equation gives
∞∑

m=1
Rm(V0,�0, . . . ,Vm−1,�m−1) = 0. (26)

Let

ε(τ ; q) = N[ϕ(τ ; q),�(q)] (27)

be denoted as the residual error. The residual error at q =
1 can be expanded by a Taylor series at q = 0 to give

ε(τ ; 1) =
∞∑

m=0

∂mN[ϕ(τ ; q),�(q)]
m! ∂qm

|q=0 . (28)

Now, from (26) and (28), we have

ε(τ ; 1) = N[V (τ ),�]= 0. (29)

This ends the proof.

The � is a function of �. In accordance with the �-curve
of �, we can find the valid region of �.

Results and discussion
Under the initial conditions mentioned in the previous
section, (1) has the exact frequency [13]

ωE = π

2

∫ 1

0

Adx√
A2 (

1 − x2
) − 2λ

(√
1 + A2 − √

1 + A2x2
) .

(30)

Figure 1 �-curves. Solid line, (λ, A) = (0.95, 1.05). Dash
line, (λ, A) = (0.95, 1).

Then, we have

�E = ω2
E . (31)

We determine �m−1 by the analytic approach men-
tioned above; thus, form = 1, we have

�0 = 1 ±
√

(36 + 30A2)λ2

6 + 5A2 . (32)

Since an increase in the amplitude A results in increas-
ing� as discussed earlier in the ‘Introduction’ section, the
negative sign in the equation mentioned above should be
selected, i.e.,

�0 = 1 −
√

(36 + 30A2)λ2

6 + 5A2 . (33)

Table 1 The SN for (λ,A, �) = (0.95, 1,−0.5)
N SN |SN−SN−1|

|SN |
8 0.2804601095 2.1657 × 10−3

9 0.2801173977 1.2234 × 10−3

10 0.2797319807 1.2178 × 10−3

11 0.2794830922 8.9053 × 10−4

12 0.2792183694 9.4808 × 10−4

13 0.2790302341 6.7424 × 10−4

14 0.2788380047 6.8939 × 10−4

15 0.2786915081 5.2565 × 10−4
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Figure 2 �-curves. Solid line, (λ, A) = (0.5, 2.05). Dash line,
(λ, A) = (0.5, 2).

Also, form = 2, we have

�1= 1
64

A4λ2(−654A2λ2+1, 100A2−636 + 475A4)

γ
�,

(34)

γ =−150A4λ2 − 360A2λ2 − 216λ2 + 450A4

+ 125A6 + 540A2 (35)

+ (
36λ2 − 60A2 + 30A2λ2 − 25A4 − 36

)
√

(36 + 30A2)λ2. (36)

Note that the obtained results contain the auxiliary
parameter �. It is found that convergence regions of the
approximation series are dependent upon � [6]. For exam-
ple, we consider the cases of (λ,A) = (0.95, 1) and
(λ,A) = (0.95, 1.05). We can plot the �-� curve to deter-
mine the so-called valid region of �, as shown in Figure 1.
Figure 1 indicates that the valid regions of � for (λ,A) =
(0.95, 1) and (λ,A) = (0.95, 1.05) are −0.7 < � < 0 and
−0.6 < � < 0, respectively. For (λ,A, �) = (0.95, 1,−0.5),
we have the result � = 0.2786915081 as shown in Table 1.

Table 2 Comparison of the 15th-order approximations of
HAMwith the exact solutions for λ = 0.95
A HAM Exact |HAM−Exact|

|Exact|
0.1 0.05393 0.05353 7.4727 × 10−3

1 0.27869 0.27074 2.8505 × 10−2

10 0.89466 0.88047 1.5858 × 10−2

100 0.98957 0.98791 1.6760 × 10−3

Also, we consider the cases of (λ,A) = (0.5, 2) and
(λ,A) = (0.5, 2.05). We can plot the �-� curve to deter-
mine the so-called valid region of �, as shown in Figure 2.
Figure 2 indicates that the valid regions of � for (λ,A) =
(0.5, 2) and (λ,A) = (0.5, 2.05) are −0.11 < � < 0.01 and
−0.1 < � < 0.01, respectively.
For a proper value of � chosen in the above-mentioned

valid region, the 15th-order approximations of HAM are
compared with the exact value given by (31) for the differ-
ent amplitudes shown in Tables 2 and 3.

Homotopy-Pade technique
There exist some techniques to improve the convergence
rate of a given series by HAM. Among these techniques,
the so-called Pade technique is widely applied. The so-
called homotopy-Pade technique was suggested by the
means of combining the Pade technique with HAM [6].
For a given series

�M(q) =
M∑
j=0

�jqj, (37)

the corresponding [ k, n] Pade approximate is expressed by

�k+n(q) = Ak,n(q)
Bk,n(q)

=
∑k

j=0 ajqj

1 + ∑n
j=1 bjqj

, (38)

where aj and bj are determined by the coefficients �j,
(j = 0, 1, . . . , n + k). Setting q = 1 provides the [ k, n]
homotopy-Pade approximation

�[k,n] = �k+n(1) =
n+k∑
j=0

�j = Ak,n(1)
Bk,n(1)

=
∑k

j=0 aj
1 + ∑n

j=1 bj
,

(39)

which accelerates the convergence rate of the solution
series of HAM.We have applied the homotopy-Pade tech-
nique to accelerate the convergence rate of Mth-order
approximations of HAM.
The approximations of homotopy-Pade technique are

compared with the exact value given by (31) for different
amplitudes shown in Table 4. The comparisons indicate
that, even for a rather large amplitude, the homotopy anal-
ysis method provides efficient frequency approximations
for the oscillation with strong nonlinearity.

Table 3 Comparison of the 15th-order approximations of
HAMwith the exact solutions for λ = 0.5
A HAM Exact |HAM−Exact|

|Exact|
0.1 0.50206 0.50186 4.0368 × 10−4

1 0.62614 0.61806 1.3070 × 10−2

10 0.94501 0.93722 8.3119 × 10−3

100 0.99451 0.99363 8.8912 × 10−4
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Table 4 Comparison of the exact solution with the
approximation of the homotopy-Pade technique for
λ = 0.5

A = 0.1 A = 0.4 A = 1 A = 4
�[1,1]
�E

1.00041 1.00593 1.0282 1.01942

�[2,2]
�E

1.00013 1.00229 1.01228 1.01794

�[3,3]
�E

1.00012 1.00250 1.01327 1.01755

�[4,4]
�E

1.00014 1.00265 1.01097 1.01758

�[5,5]
�E

1.00013 1.00220 1.01048 1.01750

�[6,6]
�E

1.00010 1.00139 1.00948 1.01739

�[7,7]
�E

1.00010 1.00122 1.00863 1.01734

Conclusions
We have applied HAM to the oscillation of a mass
attached to a stretched elastic wire to obtain analytic
approximations of the frequency of its limit cycles.
According to the obtained results from the previous
section, HAM could give efficient frequency approxima-
tions for the oscillation with strong nonlinearity. The
results obtained with HAM are in excellent agreement
with the exact solutions.
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