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Abstract In the traveling salesman path problem, we are given a set of cities,
traveling costs between city pairs and fixed source and destination cities. The
objective is to find a minimum cost path from the source to destination visiting
all cities exactly once. In this paper, we study polyhedral and combinatorial
properties of a variant we call the traveling salesman walk problem, in which
the objective is to find a minimum cost walk from the source to destination
visiting all cities at least once. We first characterize traveling salesman walk per-
fect graphs, graphs for which the convex hull of incidence vectors of traveling
salesman walks can be described by linear inequalities. We show these graphs
have a description by way of forbidden minors and also characterize them con-
structively. We also address the asymmetric traveling salesman path problem
(ATSPP) and give a factor O(

√
n)-approximation algorithm for this problem.

Mathematics Subject Classification (2000) 68Q25 · 68R10 · 90C05 · 90C27

1 Introduction

The traveling salesman problem (TSP) is a well-studied problem in combina-
torial optimization. The books [10,15] provide a compendium of results and
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history on the problem. In this paper, we study a generalization of the problem
which has not received much attention, the traveling salesman path problem
(TSPP). Given an undirected graph G = (V, E), a cost function on the edges,
and two nodes s, t ∈ V, the TSPP is to find a Hamiltonian path from s to t visiting
all cities exactly once. Note that nodes s and t need not be distinct; however the
case s = t is equivalent to the TSP.

A common approach for studying the TSP is to use polyhedral methods. For
each traveling salesman path P, we associate a vector xP ∈ R

E, where edge
variable xP

e takes value 1 if e appears in path P and 0 otherwise. For any set
S ⊂ V, let δ(S) denote the set of edges with exactly one endpoint in S and for
a set F ⊆ E, let x(F) = ∑

e∈F xe. Then the problem of finding a min cost s–t
traveling salesman path can be captured by the following integer program:

min
∑

e∈E cexe (1)

subject to x(δ(S)) ≥ 1 if |{s, t} ∩ S| = 1 for S � V, S �= ∅ (2)

x(δ(S)) ≥ 2 if |{s, t} ∩ S| = 0 or 2 for S � V, S �= ∅ (3)

x(δ(v)) = 2 for all v ∈ V\{s, t} (4)

x(δ(s)) = x(δ(t)) = 1 if s �= t (5)

x(δ(s)) = x(δ(t)) = 2 if s = t (6)

xe ∈ {0, 1} for all e ∈ E. (7)

We obtain a linear program by replacing the integrality constraints (7) with
constraints 0 ≤ xe ≤ 1.

One problem that arises from restricting the traveling salesman route to
Hamiltonian paths is that the shortest way to visit all the vertices of G may not
be a simple path, i.e., may visit some vertices or edges multiple times. Another
problem, arising from the linear programming relaxation, is that the polytope
defined by the constraints of the linear program is not full dimensional. We
resolve these problems by relaxing the condition of visiting every vertex exactly
once and define an s–t traveling salesman walk (TSW) (or s–t walk for short) as
a walk from s to t visiting all vertices at least once possibly with multiple visits
to edges or vertices. The TSW problem asks for the minimum cost s–t traveling
salesman walk. This is equivalent to the traveling salesman path problem on
the metric completion of G, where the cost between any pair of cities is the cost
of the shortest path connecting the cities. In the case s = t, we will call an s–t
walk a graphical traveling salesman tour (following the terminology of [6]).

1.1 Notation and definitions

Let X(G, s, t) denote the set of s–t traveling salesman walks. For each walk
W ∈ X(G, s, t), we associate a vector xW ∈ R

E such that xW
e represents the

number of times edge e appears in W. We will identify a walk and the vector
which represents it. The s–t traveling salesman walk polyhedron is the convex
hull of all vectors xW with W ranging over all s–t traveling salesman walks of
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G. If s = t, the polyhedron conv(X(G, s, t)) is the graphical traveling salesman
tour polyhedron studied in [6].

Note that if xW is an s–t traveling salesman walk of G, then so is xW + 2χe for
any edge e (where χe denotes the characteristic vector for edge e). Therefore,
the traveling salesman walk polyhedron of G is an unbounded polyhedron if G
is connected.

The fractional traveling salesman walk polyhedron for a graph G with fixed
vertices s and t is defined by

P(G, s, t)=
⎧
⎨

⎩

x(δ(S)) ≥ 1 if |{s, t} ∩ S| = 1 for S � V, S �= ∅
x ∈ R

E : x(δ(S) ≥ 2 if |{s, t} ∩ S| = 0 or 2 for S � V, S �= ∅
x ≥ 0

⎫
⎬

⎭
.

Note that not all integral points in P(G, s, t) correspond to s–t traveling sales-
man walks, as shown by the following example.

Example 1.1 Consider the 6-cycle C6 with s and t at distance 3. The assignment
x∗

e = 1 for all edges e is an integral solution in P(G, s, t) but does not correspond
to an s–t traveling salesman walk.

1.2 Our results

In this paper, we address two aspects of the traveling salesman walk problem.
The first is inspired by the work of Fonlupt and Naddef which characterizes the
set of graphs for which the extreme points of the fractional graphical traveling
salesman polyhedron are graphical traveling salesman tours [6]. These graphs
are called TSP-perfect and are characterized by a list of forbidden minors. For
such graphs, the graphical TSP polyhedron and fractional graphical TSP polyhe-
dron have the same extreme points, implying that the graphical TSP polyhedron
has a known description by linear inequalities and therefore, the graphical TSP
can be solved in polynomial time.

We consider the analogous problem for the TSW problem and give a com-
plete characterization of graphs for which the extreme points of the traveling
salesman walk polyhedron correspond to traveling salesman walks. Our char-
acterization of these walk-perfect graphs is also by forbidden minors. In Sect. 3,
we give a constructive description for this set of graphs and in Sect. 4, we use
this description to prove our main theorem. In Sect. 5, we give an alternate
proof of the characterization of these graphs based on the characterization of
TSP-perfect graphs from [6].

Next, we consider approximation algorithms for traveling salesman walk
problems. For the symmetric traveling salesman walk problem, Hoogeveen [12]
studies approximation algorithms for walks on metric instances. For fixed s and
t, he gives a 5/3-approximation for the minimum cost s–t traveling salesman
walk and for fixed s (and varying endpoint), he gives a 3/2-approximation for
the minimum cost traveling salesman walk starting at s.
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We address the asymmetric version of the traveling salesman walk problem
(ATSW), in which edge costs satisfy the triangle inequality but may be asymmet-
ric (i.e. cij �= cji). For the case s = t, Frieze et al. [7] give a log n-approximation
algorithm. In Sect. 6, we use similar methods to give the first non-trivial ATSW
approximation algorithm, with approximation factor O(

√
n).

2 Walk-perfection

In this section, we introduce the notion of walk-perfection of a graph. We first
review previous work on TSP-perfect graphs. For graph G, a graphical traveling
salesman tour, or tour for short, is a connected multigraph with even degree at
every vertex. Let XTSP(G) denote the set of graphical traveling salesman tours
of G and consider the fractional graphical traveling salesman polyhedron

P(G) =
{

x ∈ R
E : x(δ(S)) ≥ 2 for S � V, S �= ∅

x ≥ 0

}

.

Properties of this polyhedron and other combinatorial results have been stud-
ied in [4–6,16,17]. Clearly, conv(XTSP(G)) ⊆ P(G); however, there are graphs
for which the inclusion is strict. A graph G is TSP-perfect if conv(XTSP(G)) =
P(G), i.e., the vertices of the polyhedron are graphical traveling salesman tours.
Note that the equality always holds for disconnected graphs G, since in this
case, both the convex hull of tours and the fractional graphical TSP polyhedron
are the empty set. Therefore, all disconnected graphs are TSP-perfect.

A minor of a graph G = (V, E) is a graph that can be obtained from G by
a sequence of edge deletions (denoted G\{e}) and edge contractions (denoted
G.e). A graph G is H minor free if G does not contain H as a minor. Fonlupt and
Naddef show that there is a forbidden minor characterization of TSP-perfect
graphs using the graphs M1, M2, M3 in Fig. 1.

Theorem 2.1 [6] A connected graph G is TSP-perfect if and only if G is [M1, M2,
M3] minor free.

We consider the analogous problem for the traveling salesman walk problem.
Let X(G, s, t) denote the set of s–t traveling salesman walks and consider the
fractional traveling salesman walk polyhedron

M MM1 2 3

Fig. 1 Excluded minors for TSP-perfect graphs
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P(G, s, t)=
⎧
⎨

⎩

x(δ(S)) ≥ 1 if |{s, t} ∩ S| = 1 for S � V, S �= ∅
x ∈ R

E : x(δ(S)) ≥ 2 if |{s, t} ∩ S| = 0 or 2 for S � V, S �= ∅
x ≥ 0

⎫
⎬

⎭
.

As with the traveling salesman problem, there are graphs for which the inclu-
sion conv(X(G, s, t)) ⊆ P(G, s, t) is strict. Our goal is to characterize graphs G
for which equality holds for any choice of s and t.

Definition 2.2 A graph G is s–t walk-perfect if P(G, s, t) = conv(X(G, s, t)) and
G is walk-perfect if it is s–t walk-perfect for all choices of s and t.

As in the case of TSP-perfection, any disconnected graph G satisfies
conv((X(G, s, t)) = P(G, s, t). Therefore, all disconnected graphs are walk-per-
fect and we focus our attention on characterizing the set of connected walk-
perfect graphs.

In Example 1.1, if all edge costs in the 6-cycle are equal to a fixed positive
value, then x∗ is an optimal solution over P(G, s, t) that does not correspond to
an s–t traveling salesman walk. This shows that C6 with s and t at distance 3
is not s–t walk-perfect and therefore, C6 is not walk-perfect. A graph is called
minimally non walk-perfect if it is not walk-perfect but all of its proper minors
are walk-perfect. Our main theorem, which we prove in the next two sections,
states that C6 is the only minimally non walk-perfect graph.

Theorem 2.3 (Main Theorem) A connected graph G is walk-perfect if and only
if G is C6 minor free.

In [6], Fonlupt and Naddef prove their main result by characterizing proper-
ties of minimally non TSP-perfect graphs, graphs which are not TSP-perfect but
all of whose minors are TSP-perfect. They show the only minimally non TSP-
perfect graphs are the graphs M1, M2, M3 in Fig. 1 and leave as an open problem
a direct characterization of TSP-perfection using the structure of [M1, M2, M3]
minor free graphs. One of the goals of our research was to address this open
problem. As an initial step, we need a proof characterizing walk-perfect graphs
which is independent of the results of Fonlupt and Naddef. We therefore include
two proofs of our main result. The first proof leads to an independent construc-
tive characterization of TSP-perfect graphs, thus settling the aforementioned
open question of Fonlupt and Naddef [14]. The second proof relies directly on
the results of Fonlupt and Naddef, but is more concise.

3 C6 Minor free graphs

In this section, we give a constructive characterization of the set of C6 minor
free graphs. We will use this characterization in the first proof of our main
theorem.
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Fig. 2 Operation �1

We first show that we can reduce our problem to the characterization of
2-connected walk-perfect graphs. Suppose G1 and G2 are connected graphs
with specified vertices s1, t1 ∈ V(G1) and s2, t2 ∈ V(G2). Let v1 ∈ V(G1) and
v2 ∈ V(G2) be chosen so that at least two of s1, s2, t1, t2 are equal to v1 or v2.
The operation �1 identifies vertices v1 and v2 to obtain graph G (see Fig. 2)
with cut vertex v. If the set {s1, s2, t1, t2}\{v1, v2} has two vertices, then relabel
these vertices by s and t. If it has one vertex, then relabel this vertex by s and
let t = v; if it has no vertices, then let s = v and t = v.

Every 1-connected graph can be built by repeated applications of operation
�1 from blocks which are either 2-connected graphs or single edges. In Lemma
4.6, we will show that walk-perfection of a graph is preserved under opera-
tion �1 and therefore, we can focus our attention on the characterization of
2-connected walk-perfect graphs.

An ear decomposition G1, G2, . . . Gm = G of a graph G is a sequence of
subgraphs starting from a simple graph G1 (a vertex, edge or cycle) such that
for each i, Gi+1 is obtained from Gi by adding an ear. The operation of adding
an ear is performed by choosing two vertices u and v (the endpoints of the ear)
from Gi and adding a path from u to v using new vertices (or no vertices if the
path is edge (u, v)). If u �= v, the ear is proper and a proper ear decomposition
is one in which every ear operation is proper. The following theorem is due to
Robbins [18].

Theorem 3.1 G is 2-connected if and only if G has a proper ear decomposition
starting from any cycle of G.

One particular ear operation is duplication of a degree-2 vertex. In such an
operation, for a vertex u of degree 2 in Gi with neighborhood N(u) = {a, b},
duplication of u results in a graph Gi+1 on vertices and edges

V(Gi+1) = V(Gi) ∪ {u′}
E(Gi+1) = E(Gi) ∪ {(a, u′), (u′, b)}).

Fig. 3 Vertex duplication
of a degree-2 vertex a

b

a

b

uu u’
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Fig. 4 Examples of graphs
in T

Let K5 denote the complete graph on five vertices and consider the class T
of 2-connected graphs obtained from K5 by repeated applications of the oper-
ations edge deletion, edge contraction, and duplication of degree-2 vertices.
We show that this set of graphs is exactly the set of 2-connected graphs not
containing a C6 minor.

Theorem 3.2 A 2-connected graph G is C6 minor free if and only if G ∈ T .

Proof Since K5 does not contain a 6-cycle and the size of the largest cycle can-
not increase under edge deletion, contraction, or vertex duplication, no graph
in T contains a C6 minor.

Conversely, suppose G is 2-connected and C6 minor free. We will show G ∈ T
by showing that there is an ear decomposition of G starting with a minor of K5
such that each ear operation corresponds to edge addition or vertex duplica-
tion of a degree-2 vertex. By Theorem 3.1, G has a proper ear decomposition
G1, G2, . . . Gm = G and we can choose the initial graph G1 in the decompo-
sition to be the largest cycle Ck = {v1, v2, . . . vk} in G (k ≤ 5 by assumption).
The edges (vi, vi+1) for i = 1, 2, . . . k − 1 and (vk, v1) will be called cycle edges
and the edges (vi, vj) with j �= i − 1, i + 1(mod k) will be called chords. If there
are j − 1 induced chords in G between vertices v1, v2, . . . vk, let Gj denote the
cycle v1, v2, . . . vk together with all induced chords and let a, b ∈ {v1, . . . vk} be
the two vertices that are endpoints for the next ear operation. Because we have
already included all chords, the next ear cannot be edge (a, b). Also, note that
the length of the longest path between a and b in Gj is at least 
k

2 �, so if the
next ear is a path of length at least 3, then it would create a cycle of length at
least 
k

2 � + 3 > k (since k ≤ 5), a contradiction to our choice of k. Therefore, it
must be a path of length 2 which consists of an additional vertex u′ and edges
(a, u′), (u′, b). Now, if (a, b) is a cycle edge in Ck, then the longest path from a
to b has length k − 1, so adding an ear of length 2 would create a k + 1 cycle,
a contradiction. Therefore, (a, b) cannot be a cycle edge (but a and b may be
connected by a chord). Since k ≤ 5, a and b have a common neighbor, say u.

Claim: degGj(u) = 2, i.e., the neighborhood of u in Gj is NGj(u) = {a, b}.
Otherwise, let w ∈ NGj(u)\{a, b}. Since k ≤ 5, w must also be adjacent to either a
or b, say a. Then the cycle formed by concatenating the path (w, u), (u, a), (a, u′),
(u′, b) and the path from b to w (along G1, but not through a) has length at least
k + 1, which is a contradiction (see Fig. 5).

Therefore, u has degree 2 in Gj and the operation of adding vertex u′ and
edges (a, u′), (u′, b) corresponds to vertex duplication of u. Note that since
(Gj\{u}) ∪ {u′} = Gj, the same argument shows we cannot add a path p of
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Fig. 5 Forbidden adjacencies
in the ear operation

a

uu

a b b

w

u’ u’

any length from either u or u′ to any other vertex in Gj\{a, b}. Similarly, we

cannot add a path p of any length between u and u′ (denoted u
p→ u′), since

the cycle formed by concatenating the path (a, u), u
p→ u′, (u′, b) and the path

of k − 2 cycle edges from b to a has length at least k + 1 (see Fig. 5). Therefore,
neither u nor u′ can be chosen as endpoints of the next ear. This implies we
must always use vertices among {v1, v2, . . . vk} as ear endpoints and each ear
operation corresponds to duplicating a vertex. Since G1 is a minor of K5, it
follows that G ∈ T . ��

This theorem gives us a constructive characterization of the set of 2-
connected C6 minor free graphs. Note that the proof of Theorem 3.2 also shows
the following.

Corollary 3.3 Suppose G ∈ T is obtained from K5 by a sequence of edge dele-
tions, contractions and degree-2 vertex duplications. Then first performing all
edge deletions and contractions followed by any permutation of the degree-2
vertex duplications also results in graph G.

From this corollary, if graph G ∈ T has two specified vertices s and t which
result from the duplication of a degree-2 vertex u, then we can reorder the
vertex duplications so that the duplication of u to obtain s and t comes first in
the ordering and all other vertex duplications follow. Otherwise, if s and t do not
result from the duplication of a degree-2 vertex, we can assume that s and t are
vertices in the initial subgraph of K5 to which the operations of edge deletion,
edge contraction, and degree-2 vertex duplication are performed to obtain G.

4 Characterization of walk-perfect graphs

In this section, we will show that C6 is the only forbidden minor in the set of 2-
connected traveling salesman walk-perfect graphs. Since graph G has specified
vertices s and t, we first define the notion of a labeled minor of a graph. The oper-
ation of edge deletion remains the same as for unlabeled graphs. For the opera-
tion of edge contraction, if an edge e is chosen for edge contraction, the resulting
vertex from the contraction receives the labels of both endpoints of e, with pos-
sibly both labels s and t. In the case s and t label the same vertex in the resulting
graph, an s–t traveling salesman walk is a graphical traveling salesman tour.

We first show that walk-perfection is preserved under the labeled minor
operations; the proof is modeled on Fonlupt and Naddef’s [6] proof that TSP-
perfection is preserved under the minor operations.
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Lemma 4.1 Any connected labeled minor of a connected walk-perfect graph is
walk-perfect.

Proof Suppose a connected graph G has specified vertices s, t ∈ V(G) and sup-
pose G is s–t walk-perfect. We show that if deletion of an edge e results in a
connected graph, then the minor G\{e} is s–t walk-perfect. Since G\{e} is con-
nected, P(G\{e}, s, t) is nonempty. Then let y be an extreme point of P(G\{e}, s, t)
and let

xf =
{

yf if f ∈ E \ {e},
0 if f = e.

Since y is an extreme point of P(G \ {e}, s, t) and since x has one more variable
and one more linearly independent tight constraint than y, x is an extreme point
in P(G, s, t). By s–t walk-perfection of G, x is an s–t traveling salesman walk in
G, and since x does not use edge e, y is an s–t traveling salesman walk in G \ {e}.
Thus, G\{e} is s–t walk-perfect.

Now, for the edge contraction operation, if G is connected, then G.e is con-
nected, so for any vertices s and t, P(G.e, s, t) is nonempty. Let y be an extreme
point of P(G.e, s, t) and let

xf =
{

yf if f ∈ E \ {e},
0 if f = e.

Consider cuts δ(W′) of G containing e such that s and t are on the same side of
the cut and let α = min x(δ(W′)). Similarly, consider cuts δ(W′′) of G containing
e such that s and t fall on different sides of the cut and let β = min x(δ(W′′)).
Now, let

xf =
{

yf if f ∈ E \ {e},
max{0, 2 − α, 1 − β} if f = e.

(8)

Note that x ∈ P(G, s, t) since any cut δ(W′) containing e that does not separate
s and t satisfies x(δ(W′)) ≥ 2, any cut δ(W′′) containing e that separates s and t
satisfies x(δ(W′′)) ≥ 1, and any cut not containing e is also a cut in G.e.

Let θ(x) and θ(y) denote the set of tight constraints for x and y. By possibly
taking complements, we can assume any tight constraint C in θ(y) does not
contain the vertex resulting from contraction of edge e. Then C is also a tight
constraint for x. Since any tight edge constraint for y is also tight for x, it follows
that x is defined by θ(y) and

xe = 0 if α ≥ 2 and β ≥ 1

x(δ(W
′
)) = 2 if α < 2 and 2 − α ≥ 1 − β

x(δ(W
′′
)) = 1 if β < 1 and 1 − β ≥ 2 − α,
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where W
′ = arg min x(δ(W′)) and W

′′ = arg min x(δ(W′′)). Since x has one more
variable and one more linearly independent tight constraint, it is an extreme
point of P(G, s, t) and therefore an s–t traveling salesman walk in G (by s–t
walk-perfection of P(G, s, t)). Therefore, y is an s–t traveling salesman walk in
G.e, implying G.f is s–t walk-perfect. ��

We first prove walk-perfection for graph K5 by enumerating the extreme
points of the fractional walk polyhedron using the program polymake [8]. We
check that for each extreme point, the degree of every vertex v �∈ {s, t} is even
and the degrees of s and t are odd (see [14] for a complete enumeration of
extreme points). Since these conditions are satisfied, all of the extreme points
correspond to s–t traveling salesman walks and the lemma follows.

Lemma 4.2 K5 is walk-perfect.

We give a second proof of this result in Sect. 5 using the characterization of
TSP-perfect graphs. However, it is important to note that we have verified this
lemma independently of the TSP-perfect graph characterization, as we would
like a proof of our main theorem which is independent of this result.

Note that if G is a connected graph, then the fractional s–t walk polyhedron
P(G, s, t) is full dimensional (otherwise, P(G, s, t) is empty). The following the-
orem from [9] (which we restate in our context) gives a condition for showing
the extreme points of polyhedron P(G, s, t) are integral.

Theorem 4.3 [9] Let G be a connected graph and let P = {x : Ax ≤ b} be any
polyhedron with X(G, s, t) ⊂ P. Then P = conv(X(G, s, t)) if for any non-zero
cost function c, we can show that there exists an inequality in {Ax ≤ b} satisfied
at equality by all optimal solutions to min{cx : x ∈ X(G, s, t)} whenever this
minimum is finite.

We use this theorem to show that walk-perfection is preserved under dupli-
cation of degree-2 vertices. Let G be a C6 minor free graph, let s, t ∈ V(G), and
consider the ear decomposition of G in Theorem 3.2. If s and t are obtained by
duplicating a vertex u, then by Corollary 3.3, we can reorder the vertex dupli-
cations so that the operation of duplicating u to obtain s and t comes first in the
ordering and all other vertex duplications follow. In this case, the sequence of
ear operations gives graphs G1, G2, . . . Gk = G, where Gi+1 is obtained from
Gi by an edge addition for i < j, Gj+1 is obtained from Gj by duplicating u to
obtain s and t and Gi+1 is obtained from Gi by a degree-2 vertex duplication
for i > j. Otherwise, if s and t are not obtained by duplicating the same vertex,
we can choose the first graph G1 to be the largest cycle containing s and t and
no subsequent vertex duplication relabels a new vertex as s or t. We first show
that for i > j and for fixed s, t ∈ V(Gi), if Gi is s–t walk-perfect, then Gi+1 is
also s–t walk-perfect.

Lemma 4.4 For fixed s, t ∈ V(G), suppose G is s–t walk-perfect and contains a
vertex u of degree 2 with N(u) = {a, b} (possibly u = s or u = t). Then the graph
G′ = (V ∪ {u′}, E ∪ {(a, u′), (u′, b)}) is also s–t walk-perfect.
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Proof For any cost function c on G′, consider the set P of minimum cost s–t
traveling salesman walks in G′. If c has a negative component then the optimum
is not finite, so we can assume that c is nonnegative. We show that there is an
inequality of the fractional s–t walk polyhedron satisfied at equality by all s–t
traveling salesman walks in P . If c does not satisfy the triangle inequality, then
there is an edge (i, j) such that cij > cik + ckj and in all optimal solutions, xij ≥ 0
is a tight inequality.

Now, let c be a cost function satisfying the triangle inequality on G′, let
I = N(a) ∩ N(b) denote the set of vertices in G′ adjacent to both a and b, and
for any proper subset S, let f (S) = 1 if |S ∩ {s, t}| = 1, f (S) = 2 otherwise. By
abuse of notation, we will use f (u) to denote f ({u}). ��
Case 1 caw + cwb > cav + cvb for some v, w ∈ I.

If the inequality x(δ(w)) ≥ f (w) is not tight for all optimal solutions x ∈ P ,
there exists an optimal traveling salesman walk x∗ such that x∗(δ(w)) > f (w).
In this case, we show one of the non-negativity constraints xaw ≥ 0 or xwb ≥ 0
is tight for all x ∈ P . If x∗

aw ≥ 1, x∗
wb ≥ 1, decreasing both values by 1 and

increasing x∗
av, x∗

vb by 1 results in a s–t traveling salesman walk of strictly smaller
cost (since degree parity is preserved at every vertex and no vertex is discon-
nected), a contradiction to the optimality of x∗. Therefore, it must be the case
that one of x∗

aw or x∗
wb is zero, say x∗

aw = 0. Then x∗
wb ≥ 3 (since x∗(δ(w)) > f (w)

and the degrees of s and t are odd). Since another traveling salesman walk is
obtained by decreasing x∗

wb by 2, the optimality of x∗ implies cwb = 0. Now,
caw > cav + cvb = cav + cvb + cwb, so no optimal s–t traveling salesman walk
uses edge (a, w), implying inequality xaw ≥ 0 is tight for all x ∈ P .

Case 2 cav + cvb = caw + cwb for all v, w ∈ I.

Case 2.1 cav or cvb = 0 for some v ∈ I\{s, t}.
Without loss of generality, let cvb = 0. Then any s–t traveling salesman
walk in G = G′\v can be extended by edge (v, b) (traversed twice) to
an s–t traveling salesman walk in G′ of the same cost. Conversely, since
cav = cav + cvb = caw + cwb for all w ∈ I, w �= v, any s–t traveling salesman
walk x in G′ can be converted into an s–t traveling salesman walk y in G of
the same cost as follows. Choose some w ∈ I\v and let yaw = xaw +xav and
ywb = xwb +xav. Since the parity of degrees at all vertices remain the same
and the costs of solutions x and y are the same, the optimal s–t traveling
salesman walks in G and the optimal s–t traveling salesman walks in G′
have the same cost. Now, since G = G′\{v} is s–t walk-perfect, there exists
some constraint that is tight for all optimal s–t traveling salesman walks
in G. If this is a non-negativity constraint ye ≥ 0, then constraint xe ≥ 0 is
also tight for all optimal s–t traveling salesman walks x in G′. Otherwise,
it is a cut constraint C and we can assume without loss of generality that
b ∈ C. Then constraint C′ = C ∪ {v} is tight for every x ∈ P .

Case 2.2 cav, cvb > 0 for all v ∈ I\{s, t}.
We claim that for v ∈ I\{s, t}, any optimal integral solution x∗ satisfies
x∗(δ(v)) = f (v) = 2. To prove this, assume x∗(δ(v)) ≥ 3. If x∗

av or x∗
vb ≥ 3,
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decreasing x∗ by 2 on this edge yields another integral solution of strictly
smaller cost, contradicting minimality of x∗. Since x∗(δ(v)) is even for
v ∈ I\{s, t}, we must have x∗

av = x∗
vb = 2. For any other vertex w ∈ I\v,

either x∗
aw ≥ 1 or x∗

wb ≥ 1, say x∗
aw ≥ 1. Then by decreasing x∗

aw, x∗
av, x∗

vb by
1 and increasing x∗

wb by 1, we obtain another s–t traveling salesman walk of
strictly smaller cost, again a contradiction. Therefore, x∗(δ(v)) = f (v) = 2
for all v ∈ I\{s, t}. ��
We have shown that performing vertex duplication on G to obtain a new ver-

tex not labelled s or t preserves s–t walk-perfection of G. Now, we show walk-
perfection is also preserved under vertex duplication when the two resulting ver-
tices are relabeled s and t. Consider the ear decomposition G1, G2, . . . Gk = G
discussed above, where Gi+1 is obtained from Gi by an edge addition for i < j
and Gj+1 is obtained from Gj by duplicating u to obtain s and t.

Lemma 4.5 If Gj is walk-perfect and Gj+1 is obtained from Gj by duplicating
vertex u to obtain s and t, then Gj+1 is also walk-perfect.

Proof By construction of the ear decomposition, Gj is obtained from the cycle
G1 by edge additions and therefore, has no other vertex duplications (i.e., is a
subgraph of the graph in Fig. 6). Note that this graph is a subgraph of K5 and is
therefore walk-perfect.

Case 1 cas + csb > cat + ctb or cas + csb < cat + ctb
The analysis of Case 1 in Lemma 4.4 gives a tight constraint for this case.

Case 2 cas + csb = cat + ctb.

Case 2.1 One of cas, csb, cat or ctb equals 0.
Without loss of generality, let csb = 0. For ŝ = b and t̂ = t, any ŝ–̂t
traveling salesman walk in G = G′\s can be extended by edge (s, b) to
an s–t traveling salesman walk in G′ of the same cost. Conversely, since
cas = cas + csb = caw + cwb for all w �= s, any s–t traveling salesman walk
x in G′ can be converted into an ŝ–̂t traveling salesman walk y in G of
the same cost as follows. Choose w ∈ I\s and let yaw = xaw + xas and
ywb = xwb + xas. Since the parity of degrees at all vertices remain the
same except at vertex ŝ = b and the costs of solutions x and y are the
same, the optimal ŝ–̂t traveling salesman walks in G and the optimal s–t
traveling salesman walks in G′ have the same cost. Now, since G = G′\{s}
is walk-perfect, there exists some constraint that is tight for all optimal ŝ–̂t

Fig. 6 u is duplicated
to obtain s and t

s

tu

aa b b
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traveling salesman walks in G. If this is a non-negativity constraint ye ≥ 0,
then constraint xe ≥ 0 is also tight for all optimal s–t traveling salesman
walks x in G′. Otherwise, it is a cut constraint C and we can assume without
loss of generality that b ∈ C. Then constraint C′ = C∪{s} is tight for every
x ∈ P .

Case 2.2 cas, csb, cat, ctb > 0.
If cas = cat (and therefore csb = ctb), then let F be the graph with verti-
ces V(F) = G′\{s, t} ∪ {u} and edges E(F) = E(G′) ∪ {(a, u), (u, b)}. Let
yau = x∗

as + x∗
at and yub = x∗

sb + x∗
tb and ye = xe for all other edges e.

Then y is a traveling salesman tour on F with cost at most the cost of
x∗ in G′. Also, any optimal traveling salesman tour on F can be con-
verted to an s–t traveling salesman walk x in F of smaller cost by letting
xas = yau, xat = 0, xsb = xtb = yub/2 if yau, yub are both even (and there-
fore equal to 2, by optimality of y) and xas = yau, xat = xsb = 0, xtb = yub
if yau, yub are both odd. This shows minimum s–t traveling salesman walks
in G′ and minimum traveling salesman tours in F have the same cost and
since F � G is walk-perfect, there is a constraint that is tight for all optimal
traveling salesman tours of F. If this is a non-negativity constraint ye ≥ 0,
then xe ≥ 0 is also tight for all x ∈ P . Otherwise the tight constraint is a
cut constraint C and we can assume without loss of generality that u ∈ C.
Then C′ = C\{u} ∪ {s, t} is a tight constraint for all x ∈ P .
Therefore, cas �= cat and csb �= ctb. If the inequality x(δ(s)) ≥ f (s) = 1 is
not tight for all x ∈ P , let x∗ be an optimal solution with x∗(δ(s)) > 1.
Since deg(s) is odd and x∗

as, x∗
sb < 3 (by optimality of x∗), we can assume

x∗
as = 2, x∗

sb = 1. Then cas < cat and csb > ctb (otherwise, decreasing x∗
as

by 2 and increasing x∗
at by 2 gives a solution of strictly smaller cost). If

deg(t) = 3, we have the following cases.

Case 2.2.i x∗
at ≥ 1, x∗

tb ≥ 1. In this case, decreasing x∗
as by 2 gives an s–t

traveling salesman walk of strictly smaller cost, a contradiction.

Case 2.2.ii One of x∗
at, x∗

tb is zero and the other is at least 3. Then subtract-
ing 2 from the edge of value at least 3 gives an s–t traveling salesman walk
of strictly smaller cost, again a contradiction.
Since deg(t) is odd, it must be the case that x∗

as = 2, x∗
sb = 1 and deg(t) = 1.

Now, consider the support graph H = {e ∈ E(V(G′)\{s, t}) : x∗
e > 0} and

let x∗
H denote the restriction of x∗ to this graph. The remaining cases are

the following.

Case 2.2.iii x∗
at = 1, x∗

tb = 0. In this case, x∗
H contains an Eulerian walk

from a to b in H since x∗
H(w) is even for all w ∈ H\{a, b} and odd for w = a

or b. Therefore, H is connected and a traveling salesman walk of strictly
smaller cost can be obtained from x∗ by decreasing x∗

as by 2.

Case 2.2.iv x∗
at = 0, x∗

tb = 1. If H is connected, the same argument in Case
2.2.iii gives a traveling salesman walk of strictly smaller cost, so we can
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assume H is not connected. Let C be the component of H containing a
(note that b �∈ C) and let C′ = C ∪ {s}. For any edge e = (i, j) ∈ E(G) with
i ∈ C, j �∈ C, let qs

ij (qt
ij) denote the shortest path in x∗ from i to a together

with edges (a, s), (s, b) (edges (a, t), (t, b)) and the shortest path in x∗ from
b to j. The cost of edge e = (i, j) must be at least the cost of path qs

ij (which
is equal to the cost of path qt

ij); otherwise, by replacing path qs
ij by edge

(i, j), we do not disconnect any vertices of the graph (since Gj is a subset
of the graph in Fig. 6) while preserving the degree parity at every vertex,
which yields an s–t traveling salesman walk of strictly smaller cost.
We claim x(δ(C′)) = 1 for every x ∈ P . Otherwise, if x∗(δ(C′)) ≥ 2 for
some x∗ ∈ P , then s ∈ C′, t �∈ C′ implies x∗(δ(C′)) ≥ 3. One of x∗

sb, x∗
at

must be zero, say x∗
at = 0 (otherwise, if x∗

sb, x∗
at ≥ 1, then decreasing both

of these by 1 and increasing x∗
as, x∗

tb by 1 gives an s–t traveling salesman
walk of strictly smaller cost). Now, consider edges (k1, l1), (k2, l2), (k3, l3)
(possibly including multiple copies of the same edge) crossing C′ in path
x∗. By rerouting x∗

k1l1
, x∗

k2l2
and x∗

k3l3
along the paths qs

k1l1
, qs

k2l2
and qs

k3l3
(or keeping x∗

ki,li
if (ki, li) = (s, b)), we obtain an s–t traveling salesman

walk y of smaller or equal cost with either yas ≥ 3 or ysb ≥ 3 (if x∗
sb = 0,

then reroute along the paths qt
k1l1

, qt
k2l2

and qt
k3l3

). Now, by decreasing this
value by 2, we obtain an s–t traveling salesman walk of strictly smaller
cost, a contradiction. Therefore, x(δ(C′)) = 1 for every x ∈ P . ��

We now show that walk perfection for any graph can be reduced to walk-
perfection of its blocks.

Lemma 4.6 s–t walk-perfection is preserved under operation �1.

Proof Suppose vertices v1 and v2 in connected graphs G1 and G2 are identified
to obtain graph G and let s, t ∈ V(G). Consider the labeled minor H1 obtained
by contracting G2 to a single vertex in G. The result is graph G1 where vertex v1
has label s if s ∈ V(G2), label t if t ∈ V(G2), labels s and t if s, t ∈ V(G2) and is
unlabeled if s, t ∈ V(G1)\{v1}. Similarly, consider labeled minor H2 obtained by
contracting G1. Since s–t walk-perfection is preserved under connected labeled
minors, if G is s–t walk-perfect, then so are H1 and H2.

Conversely, suppose H1 and H2 are s–t walk-perfect, let X(G, s, t) denote the
set of optimal s–t traveling salesman walks in G, and let x ∈ X(G, s, t). Then
optimality and degree parity constraints imply that x is the union of two optimal
s–t traveling salesman walks in labeled minors H1 and H2. For any non-zero
cost function c, the restriction of c to one of H1 or H2 must be non-zero; with-
out loss of generality, assume c restricted to H1 is non-zero. By Theorem 4.3,
there is a constraint C in P(H1) which is tight for all optimal traveling salesman
tours in H1. If constraint C is a non-negativity constraint xe ≥ 0, then this edge
constraint is tight for all x ∈ XTSP(H1). Otherwise, we can assume constraint
C is a cut constraint with v1 �∈ C; in this case, C is a tight constraint for all
x ∈ XTSP(G). ��
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Now, any 1-connected graph is C6 minor free if and only if can be built by
repeated applications of �1 from blocks which are C6 minor free. Therefore,
our main theorem follows from Lemmas 4.2, 4.4, 4.5, and 4.6.

Theorem 2.3 A connected graph G is walk-perfect if and only if G has no C6
minor.

5 Connection with TSP-perfection

In this section, we establish a connection between walk-perfection and TSP-per-
fection. Using this connection and the characterization of TSP-perfect graphs,
we give a second proof of the characterization of walk-perfect graphs.

If graph G is walk-perfect, then it is also TSP-perfect, since by choosing s = t,
s–t walk-perfection corresponds to TSP-perfection. We would like a condition
in the reverse direction, i.e., a sufficient condition for walk-perfection based on
TSP-perfection. For graph G = (V, E) and vertices s, t ∈ V, let Gs,t(3) denote
the graph obtained from G by adding a 3-edge ear between s and t (see Fig. 7).

V(Gs,t(3)) = V(G) ∪ {u, v} (u, v �∈ V(G))

E(Gs,t(3)) = E ∪ {(s, u), (u, v), (v, t)}.

Consider the fractional TSP polyhedron

P(Gs,t(3)) =
{

x ∈ R
|E| : x(δ(S)) ≥ 2 for S � V(Gs,t(3)), S �= ∅

x ≥ 0 for all e ∈ E(Gs,t(3))

}

.

The following lemma relates the extreme points of the fractional traveling
salesman walk polyhedron P(G, s, t) with the extreme points of the fractional
traveling salesman polyhedron P(Gs,t(3)).

Lemma 5.1 If x ∈ R
|E| is an extreme point of P(G, s, t), then x′ = (x, 1, 1, 1) ∈

R
|E(Gs,t(3))| is an extreme point of P(Gs,t(3)), where the three additional variables

correspond to edges (s, u), (u, v), and (v, t).

Proof Let x be an extreme point of P(G, s, t). Then it is tight for m = |E| of the
constraints in P(G, s, t). We will show that the point x′ = (x, 1, 1, 1) is the unique

Fig. 7 Graph Gs,t(3)

G

t

s
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solution to a set of m + 3 inequalities involving edges E(Gs,t(3)) and therefore
is an extreme point P(Gs,t(3)).

First, we show the m tight constraints for x in P(G, s, t) generate m tight
constraints for x′ in P(Gs,t(3)). Each tight constraint x(δ(S)) = f (S) in P(G, s, t)
gives rise to a tight constraint x′(δ(S′)) = 2 in P(Gs,t(3)) with

S′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S ∪ {u, v} if s, t ∈ S
S′ = S ∪ {u} if s ∈ S, t ∈ S
S′ = S ∪ {v} if s ∈ S, t ∈ S
S′ = S if s, t ∈ S.

This gives m tight constraints for x′ in P(Gs,t(3)). Consider these constraints
together with the following three inequalities:

x(δ(V)) = xsu + xvt ≥ 2

x(δ(V ∪ {u})) = xuv + xvt ≥ 2

x(δ(V ∪ {v})) = xsu + xuv ≥ 2.

The unique solution on edges (s, u), (u, v), (v, t) satisfying the last three inequal-
ities at equality is xsu = xuv = xvt = 1. Furthermore, since x is the unique
solution to the m tight constraints in P(G, s, t), it follows that x′ = (x, 1, 1, 1) is
the unique solution to the m + 3 tight constraints in P(Gs,t(3)) and therefore, x′
is a extreme point of P(Gs,t(3)). ��
Lemma 5.2 If Gs,t(3) is TSP-perfect, then G is s–t walk-perfect. If Gs,t(3) is
TSP-perfect for every choice of s and t, then G is walk-perfect.

Proof By Lemma 5.1, if x is an extreme point of P(G, s, t), then (x, 1, 1, 1) is
an extreme point of P(Gs,t(3)). Since Gs,t(3) is TSP-perfect, the extreme point
(x, 1, 1, 1) is a tour of Gs,t(3), which corresponds to an s–t traveling salesman
walk in G together with the three edges (s, u), (u, v), and (v, t). Thus, the extreme
point x corresponds to an s–t traveling salesman walk, implying G is s–t walk-
perfect. If this holds for every choice of s and t, G is walk-perfect. ��
Claim 5.3 For any i ∈ {1, 2, 3} and any edge e ∈ Mi, Mi \ {e} contains C6 as a
minor.

Proof This follows by inspection of Fig. 1. ��
Theorem 5.4 If G is C6 minor free, then Gs,t(3) is [M1, M2, M3] minor free for
any choice of s and t.

Proof The theorem is clearly true if s = t, so we can assume s �= t. Sup-
pose Gs,t(3) contains Mi (i = 1, 2, or 3) as a minor and label the edges of Gs,t(3)

according to whether they are contracted, deleted, or unchanged in the sequence
of minor operations to obtain Mi. Consider the 3-path (s, u), (u, v), (v, t). None
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of these edges can be marked for deletion, since this would imply G contains
an Mi minor, and therefore a C6 minor. If any of these edges is unchanged,
then after performing the minor operations to obtain Mi, deleting this edge
would leave a C6 minor which must have been contained in G, a contradiction.
Therefore, all 3 edges (s, u), (u, v), (v, t) must be marked for contraction.

Note that since edge contractions and edge deletions can be performed in
any order, we can perform the contraction of edges (s, u), (u, v), (v, t) as the final
three steps in the sequence of minor operations. Consider the graph at this
stage, with only the three edge contractions remaining and let G′ denote the
subgraph of G with all minor operations on E(G) carried out. At this stage,
if edges (s, u), (u, v), (v, t) are contracted in graph G′ ∪ {(s, u), (u, v), (v, t)}, the
result is graph Mi. Note that the contraction cannot result in any multi-edges.
Now, since all vertices in Mi have degree at most 3 and no multi-edges arise from
the contraction of (s, u), (u, v), (v, t), one of s or t (say t) satisfies degG′(t) ≤ 1
in G′. Let e be the edge adjacent to t in G′ if degG′(t) = 1, and let e be an
arbitrary edge in G′ if degG′(t) = 0. Then vertex t has degree 0 in G′\{e} and
degree 1 in graph (G′\{e}) ∪ {(s, u), (u, v), (v, t)} and therefore, any C6 minor in
the graph (G′\{e}) ∪ {(s, u), (u, v), (v, t)} cannot contain vertices t, u, or v. By
Lemma 5.3, deleting edge e from G′ results in a graph with a C6 minor and since
this C6 minor does not contain any of t, u, or v, it is also a minor of graph G, a
contradiction. ��

Note that since K5 is C6 minor free, this provides a second proof for the
walk-perfection of K5, which can be shown by computational methods (see
Sect. 4).

Corollary 5.5 K5 is walk-perfect.

6 Asymmetric traveling salesman path problem

In this section, we consider the traveling salesman path problem from the
perspective of approximation algorithms. For the graphical traveling salesman
problem on graphs with symmetric edge costs satisfying the triangle inequality,
Christofides [3] gave a 3/2-approximation algorithm; despite many attempts to
find a better approximation guarantee, improving this factor has remained an
open problem for almost thirty years. For the more general traveling salesman
walk problem, Hoogeveen [12] studies approximation algorithms for walks on
metric instances with symmetric edge costs. For fixed s and t, he gives a 5/3-
approximation for the minimum cost s–t traveling salesman walk and for fixed
s (and varying endpoint), he gives a 3/2-approximation for the minimum cost
traveling salesman walk starting at s. An alternate proof for the 5/3-approxi-
mation algorithm for two fixed endpoints is due to Vempala [19] and approxi-
mations for other variants of this problem can be found in [1,11].

In this section, we give an approximation algorithm for the asymmetric trav-
eling salesman path problem (ATSPP). In this problem, we have fixed vertices
s and t in a graph G = (V, A) with directed arcs and possibly asymmetric arc
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costs. The objective is to find a minimum cost directed Hamiltonian path from
s to t. For the case s = t, Frieze et al. gave a log2 n-approximation algorithm
for the asymmetric traveling salesman tour problem, which was subsequently
improved by Bläser [2] to 0.999 log2 n and by Kaplan et al. [13] to 0.842 log2 n.

The ATSW problem is to find a minimum cost directed walk from s to t that
visits all vertices at least once. This problem is equivalent to finding a minimum
cost directed Hamiltonian path from s to t in the metric completion of graph
G. Therefore, we focus our attention on complete graphs satisfying the triangle
inequality and assume we are given such an instance in our approximation algo-
rithm. Our results are stated for the ATSPP, but apply to the ATSW problem
by replacing each arc (i, j) in the solution with a shortest directed path in the
graph from i to j.

In the following example, we show that there are graphs for which the cost of
the optimal asymmetric traveling salesman tour can be arbitrarily higher than
that of the optimal asymmetric traveling salesman path. Thus, an α-approxima-
tion algorithm for the asymmetric traveling salesman tour problem does not
immediately yield an α-approximation for the ATSPP.

Example 6.1 Figure 8 shows an instance for which the value of the minimum
cost tour is arbitrarily higher than the value of the minimum cost s–t traveling
salesman path. For this graph, arc (t, s) has arbitrarily high cost cts = α, solid
directed arcs have cost 1 and all remaining arcs have costs determined by metric
completion. The minimum cost s–t path has value 10 and the minimum cost tour
has value α + 10.

However, using a technique based on recursively building the asymmetric
s–t traveling salesman path, we prove that there is an O(

√
n)-approximation

algorithm for the ATSPP.

6.1 Path/cycle covers

An s–t-path/cycle cover in a directed graph G is a directed path from s to t
together with a collection of directed cycles such that every vertex in V is con-
tained in exactly one of these subgraphs. In particular, this implies the path
and cycles must be disjoint and cover all vertices V(G). Note that the value
of the minimum s–t-path/cycle cover on G is a lower bound on the minimum
cost asymmetric traveling salesman path in G. We first show that we can find a
minimum s–t path/cycle cover for G efficiently via a reduction to the minimum
cost perfect matching problem.

Fig. 8 Example showing an
α-approximation algorithm
for the ATSP does not give an
α-approximation for the
ATSPP

α

s

t
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Construct bipartite graph G′ by including two copies of each vertex v ∈
V \ {s, t}; call these copies v and v′. For each pair i, j ∈ V\{s, t}, assign cost cij to
arc (i, j′). Now, include vertices s and t′ and for all i ∈ V \ {s, t}, assign cost csi to
arc (s, i′) and cit to arc (i, t′).

Lemma 6.2 The cost of a minimum cost perfect matching in G′ is equal to the
cost of a minimum s–t-path/cycle cover in G.

Proof Let d−(v) and d+(v) denote the indegree and outdegree of vertex v
respectively. An s–t-path/cycle cover is a subgraph of G in which vertices s and t
satisfy d+(s) = d−(t) = 1 and d−(s) = d+(t) = 0, and every vertex v ∈ V \ {s, t}
satisfies d−(v) = d+(v) = 1. We first show that every s–t-path/cycle cover of G
corresponds to a matching in G′ with the same cost. For every directed arc (i, j)
in the s–t-path/cycle cover, include arc (i, j′) in the matching. Since every vertex
in i ∈ V \ {s, t} has in-degree 1 and out-degree 1, both i and i′ are matched in
G′ and since s has out-degree 1 and t has in-degree 1, s and t are also matched.
Thus, there is a minimum cost perfect matching with the same cost as the s–t-
path/cycle cover. Conversely, a minimum cost perfect matching in G′ yields a
s–t-path/cycle cover in G with the same cost; for every arc (i, j′) in the matching,
include arc (i, j) in the path/cycle cover. ��

6.2 O(
√

n)-approximation

The first step of the algorithm is to find a minimum cost s–t-path/cycle cover. If
this subgraph contains at least

√
n cycles, then let V′ ⊂ V be the set of vertices

in the path together with one vertex from each cycle and let G′ be the graph
induced by the vertices in V′ (note that |V′| ≤ n − √

n). We then recurse on the
graph G′. Such a recursion can occur at most

√
n times. When we reach a stage

in which the path/cycle cover returns fewer than
√

n cycles, then we attach each
cycle to the path resulting in a single s–t path.

This attachment operation proceeds as follows. For each cycle, pick an arbi-
trary vertex v in the cycle. The current s–t path contains an arc (a, b) such that
in an optimal s–t traveling salesman path −→p , vertex v falls after a and before
b. To see why this is true, label all vertices in the current s–t path that appear
after v in −→p by 1 and label all vertices that appear before v in −→p by 0. Then s
has label 0 and t has label 1 and therefore, there is some arc (a, b) such that a
has label 0 and b has label 1. Although we do not know which arc will satisfy
the desired property, we can test all consecutive vertices along the s–t path and
choose a and b to minimize the length of the sum of the two arcs (a, v) and
(v, b). Then by connecting vertex v to the s–t path by adding these two arcs, the
cost incurred is at most OPT (see Fig. 9).

Since there are at most k ≤ √
n cycles, the total cost of adding all these arcs

is at most
√

n · OPT. In the final step, we have an s–t-path on a subset of the
vertices and we expand each vertex that represented a cycle at some stage of
the algorithm by replacing the vertex with a complete traversal of that cycle. If
a vertex v is visited multiple times in the result, then let (i, v) and (v, j) be two
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Fig. 9 Attaching the cycles to
the path

s ta b

v

arcs in the solution. Since the graph is assumed to be a complete directed graph
satisfying the triangle inequality, we can shortcut the solution by including arc
(i, j) and deleting arcs (i, v) and (v, j). Repeating this procedure until every ver-
tex is visited exactly once results in a directed s–t traveling salesman path. ��

ATSPP-Approx(G)

1. Find a minimum cost s–t path/cycle cover C for G.
(i) If C has less than

√
n cycles, then attach the cycles to the s–t path and

let S be the resulting path.
(ii) Else if C has more than

√
n cycles, then let V′ be the set of vertices

in the s–t path plus one representative vertex from each cycle. Run
ATSPP-Approx(G′) for G′ = (V′, A(V′)).

2. For each vertex that represents a cycle in S, expand the cycle while travers-
ing the path, shortcutting arcs through vertices which are visited multiple
times.
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