A String Matching Algorithm
Fast on the Average
Extended Abstractx)

by

Beate Commentz-walter
L FB 10 - Informatik
Universitaet des Saarlandes

currently:
|BM-Germany
scientific Center Heidelberg
Tiergartenstrasse 15
pu6900 Heidelberg

¢._introduction

In many information retrieval and text-editing applications
it is necessary to be able to jocate quickly some or all
occurrences of user-specified words or phrases in one OF
several arbitrary text strings. Specifically , we consider
retrieval from unformatted data, for example, 2 | ibary data
base where there is for each book a record containing the

signature, title, and abstract of book. Each such record we
call a document. A user of the data base specifies one or
several words or phrases, SO cal led keywords, describing the
information sought. The answer will be the documents which
contain all or some of the user specified keywords. It takes
too much time to scan each document of the data base for
every user seperately. Therefore, we introduce a sort of
secondary index (compare scheck lit /12/) containing keyweord
fragments. searching the index with the user specified
keywords yields a superset of the documents required. This
®) For detailed version compare lit (4). The work reported
here was dene at the Heidelberg Scientific center of
|BM-Germany. It is part of a project dealing with subjects
| ike Automatic Indexing, Clustering, and retrieval

structures of unformatted data base.

119

superset contains documents where the fragments match but
the keywords de not. These documents we want to reject.
Therefore, we scan the documents of the superset for the

user specified keywords.

Aho, Corasick lit /2/ describe an efficient algorithm doing
this job. Their algorithm first preprocesses the keywords in
time linear in the "total lengths of the keywords i. e. in
the sum of the length of the keywords. Then their algorithm
searches for the keyword occurrences in the document in time

| inear in document length (worst case).

The idea of this algorithm is based on the ideas of the
Knuth-Morris-Pratt algorithm 1it /10/ and those of finite

state machines.

If iLhere is only one keyword to search for in some document,
Boyer, Moore lit /3/ give an algorithm the preprocessing
phase of which also runs linearly and the search phase of
which s faster on the average than Aho-Corasick's

algorithm.

In the case of large alphabets the Boyer-Moore algorithm
takes time about |D|/|W| on the average to search for all
occurrences of the keyword W in document D (where 1S
denotes the length of string S).

With the modification due to Galil it /7/ the search phase
of the Boyer-Moore algorithm behaves linearly in the
document length even in the worst case. This is proved by
Knuth, Morris, Pratt lit /10/, Guibas, Odlyzko lit /8/, and
Galil it /7/.

we give an algorithm B for a set of keywords. 1ts search
phase behaves similar to the Qoyer—Moore algorithm,
subl inear on the average. It does ;ot maintain |inear
search time for the worst case. Modification to B yield
algorithm B1, which does maintain |inear search time. But
for practical purposes algorithm B is more useful. The

overhead of algorithm Bl is very high.

120

These algorithms 8 and Bl combine the idea

Aho-Corasick and Boyer-Moore algorithms,

This short paper concentrates on algorithm B

Chapter | describes the structure of the preprocessed set of

keywords.
Chapter || describes the search phase of B,
Chapter |1] describes the b}éprocessTng phase of B.

Chapter 1V considers B's running time.

Chapter V outlines the modification for B1.

Acknowledgement:

I want to to thank G. Jaeschke and G. Walch for stimulating

discussions, hints and critical remarks, M. Zoeppritz for

editing my English and R.Scherner for typing the paper.

1. _The Structure of the Preprocessed Set of Keywords

To represent some given set of keywords in a useful
consider the data structure of a trie:

A trie is a tree T such that:

1. Each node v of T, except the root r is labeled by

some character a = I(v), an element

alphabet A.

2. The root r is labeled by g, denoting the

word.

3. If the nodes v' and v" are brothers (sons of the

same node v), v' # v" then I(v') # I(v").

121

wWe say a path Viseeees v of T where Vigl is son of
v, represents the word I(vl) i(vz)...l(vm).

This word we denote by w(vm) iff vi =T, the root.

Moreover, for each node we denote its depth by

d(v) = o if v = r, the root
d({v')+1 if v son of v'
and by
d(T) = max {d(v); ve T}

we denote the depth of trie T.

Now, let K = wl,...,wr be the set of keywords on some
alphabet A which we want to search for in some document D.

Similar to Aho, Corasick lit /2/ we represent K by a trie T.
But in contrast, we base our trie T on the reversed

keywords:

Exactly for h = 1...r there is one node v of T

representing the reversed keyword th.

i.e.
w(vh) = Wh,l"""wh,;whl
where wh = wh,;whl"""wh,l
To each node we add an output function
out(v) = { W ; wh = w(v), M in K}

To this trie we add the functions, shiftl and shift2, which
map each trie node to an integer. Their purpose will become
obvious from the description of the search phase of
algorithm B. (Cempare Chapterl|):

The definition of shiftl and shift2 is based on sets of
nodes:
For each v # r of T:

122

setl(v) = {v'; w{v) is proper suffix of w(v')
i.e. w(v') = u w(v) for some
non empty word u }

and

getilv) = { v'y v' s element of setl(v)
and out(v') # @ }

Now shiftl and shift2 are defined by:

shiftli{v) = 1 if v =
min{ {k ; k = d(v')-d{v), v'
is element of setl(v)} v
vi wmin } D else
shift2(v) = I wmin if v =
min{ {k ; k = d(v')-d(v), V'
is element of set2(v)}u
L v shift2(v' 's father}? else
Let
wmax = max {!wh|; [Es 1, e
wmin = min {Iwh[; (IR R

Finally we add a function
char: A — N where

char{a) = min({d(v); 1(v) = a} fwmin + 1k 5y

Example: k = { cacbaa, acb, aba, acbab, cchab 1} , wmin = 3

123

For each node v= r --sand - point to the nodes of
setl(v) where - points to set2(v).

The two integers beside each node v denote the

functions shifti(v), shift(2)v.

ll. The Search Phase of Algorithm B for String Matching Fast
on _the Average

The input for the search phase of algorithm B is some
document D and, for some keyset K, the preprocessed trie T
and the functions out, shiftl, shift2, and char.

The output of the search phase of algorithm B is a list of
pairs (W,i) where W is a word and i is an integer
representing the occurrence of W, i.e.

(W,i) element of the output of B

i £f

124

W is a keyword of K and di-IW%+l""’dI = W,

Aho, Corasick lit /2/ also represent the set of keywaords K
by a trie T. Searching for the occurrences of any
keyword W in any document D they compare the letters of the
trie T with the letters of the document D left to right

until mismatch occurs.

| f mismatch occurs, the root is "shifted right along the
document" by a number of letters calculated from the

matching letters just scanned.

Example:
A d,
documents: a b a|a G. b C a| & b

Mismatch occurs
at d, and node Vv
as non of its
sons is labeled
by a

shift: e -
NCUCSCRINN

w(v') is the maximal praefix of some keyword, which 1is
suffix of w(v)

For detail compare lit /2/.

The Boyer-Moore algorithm lit /3/ starts putting the keyword
(only one) beneath the left end of the document. It differs
from the Aho-Corasick algorithm in that it compares the
letters of the document with the letters of the keyword from
right to left. If mismatch occurs, the keyword is shifted
right by a number of letters calculated from the matching

125

letters and the mismatch character. This right to left scan
and left to right shift yields a sublinear behaviour on the
average, lit /3/, and the |linear worst case behaviour is

easy to preserve, |it /7,8,10/.

wWe combine these ideas:
We base our trie on the reversed keywords. (et wmin denote
the minimal length of some keyword. The algorithm B starts

putting the root r of T underneath dwmin+l' Next it
"scans'" the document right to left until mismatch occurs.
{For detail compare the algorithm mentioned below).

Assuming we have just scanned the matching document letters

di—m+1""’di and a mismatch occured at letter di—m we
then shift the trie root right by some number of letters 5
calculated from the document letters d. .,...d..

The search phase of algorithm B in detail:
Initial phase:
Ve root r (v is the "present” node of T)

i ¢~ wmin (i points to the document letter
above the nodes of depth 1 .)

e=0 (j indicates the depth of the

present node v.-)

while i £ length document do

Scan phase:
begin
while there is some son v' of v labeled by di—j do

begin

Vo— v!
i T
output: (W,i) for each W of out(v)
end
shift phase:
begin

= A S(V’di—j)

126

j =20
end end

where S(v, d J.) is the length of the shift defined by

|-
S(v,d; ;) = min(max(shiftl(v), char(di_j)—j—l),

J
shift2(v)).
Example:
document: l e e b | s

mismatch
pccurs at v

chiati(e] 4

d (v)

2

S{e,v) = 2

<::j/possﬂ

yle match

127

Obviously, each pair (wW,i) found by B represents some
occurrence of the keyword W. So it remains to show, that B

finds each occurrence cof some keyword in the document D.

Due to the construction of B's search phase it is sufficient

to show that no shift is too long.

. A R : ;
i e di-j+1""’di = wt (v) for some v of T implies
there is no i' such that:
L RN i e Sl di—j>
and 2.) di'—|w|+1""’di' - W

for some keyword W.

Due to the construction of 5<V'di-j> this is easy to show.

Il. The Preprocessing Phase of Algorithm B

The input of the preprocessing phase of B is the set of
keywords K = {wl""’wr}‘ lts output is the trie T of
the reversed keywords and the functions out, shiftl, shift2,

and char.

wWwe shall show that the time wused by the preprocessing phase
is linear in the total length of the keywords i.e. in the
sum of the lengths of the keywords wl,...,wr.
cbviously, the time of computing the trie T and the
functions out and char is linear in the total length of the
keywords. 't remains to analyse the computation of shiftl

and shift2.

Consider some function on T's nodes:

f(v') = v where w(v) is maximal
proper suffix of w(v') in T.
This function coincides with the failure function of

Aho-Corasick's pattern matching machine.

128

The inversion of f is given by
setl'(v) = {v';f(v') = v]

obviously setl'(v) is subset of scetl(v). Moreover it
contains the nodes v' of setl(v) where d(v')-d(v) is
minimal. Hence due to lit /2/ the computation of shiftl is
linear in the total length of the keywords.

The computation of shift2 can be done analogusly using

set2'(v)= {v'; v' is element of setl'(v) and out{v') 207 «

1V. _The Average and Worst Case Behavior of the Search

Phases of Algorithm B

The running time of the search phase of algorithm B splits
into two parts; the running time to perform the scan phase
and the running time to perform the computation of the shift

S(v, di-j) whenever necessary.

The total running time for the scan and shift phases s
linear in the total number of character comparisons. Hence
we measure the speed of algorithm B by the number of

character inspections which are performed.

As in the Boyer-Moore algorithm it /3/: | f the size of the
alphabet A is large, the search phase needs to inspect only
about |D|/wmin letters of the document on the average.

uUnfortunately, the search phase of algorithm B can perform
[D] x wmax letter comparisons in the worst case.

Notice, the search phase of the usual Boyer-Moore algorithm
with changes due to Galil lit /7/, lit /8/ and lit /10/ does
at most c|D| letter comparisons in the worst case.

Wwe did some experimental runs of algorithem B to get an
estimate of its average behavior. Our experiments are based
on 100 titles of English and German bocks on Computer
Science and related subjects.These titles are our documents.

For the alphabet we took:

ALP = ABCDEFGHI JKLM NOPQRSTUVWXYZO
1234567 89 and blank.

From the set of titles we choose sets of strings to function

as keyword sets.

The number of keywords in a set was to be : 2,4,8,16,32,64.

The length of a keyword in a set was to be : 3,5,7,9,11

For each possible pair of number and length we choose four

sets of keywords.For each keywordset and the 100 titles the

average number of references to a document letter by

algorithm B is computed.

For each pair of number and length of keywords we take the

average on the four different keyword probes. In the figure

below this mean value is plotted against the Jiength of the

kevwords for each different number of keywords. In addition,

we indicate the average number of references to a document

for each probe by a dot for number of keywords = 4 and by a

circle for number of keywords = 16.

The results of the experiments show that the average

behavior of algorithm B is sublinear.

For experimental results of other versions of algorithm B

compare lit /4/.

130

Exgerimential Resul ts:

09
of 1
07
0%

05

a4

number of words
of the keywordset

average number of references to a document letter

i é 3 3 B]

length of the keywords

V. _The Construction of Algorithm B1,

Linear for the Worst Case

Algorithm BL differs from B in “remembering" the document
letters already scanned. As "memory" it uses the trie T and
some additienal functions.

For detailed description compare it /&/.

Because of this "memory" the search phase of Bl behaves
linear in the worst case. Moreover, on the average it is
probably faster than B. Of course we have to pay a price for
this improvement: Some constant increase in time and space
needed for the overhead of preprocessing and search phases
Anyway, Bl's preprocessing phase remains |inear in the total
length of keywords. The proof is based on it /11/.

131

Literature:

/1/ Aho, A.V., Hopcraft, J. E.and Ul Iman J.D.
"The Design and Analysis of ComputeraAlgorithms"
Addison-Wesley Publ. Comp. Read. Mass.

/2/ Aho, A.V. and Corasick, M.
"Efficient String Matching: An Aid to Bibliographic
Search"
Com. ACM, June 75, Vol. 18, No. b

/3/ Boyer, R.S. and Moore, J.S.
"A Fast String Searching Algorithm"
Com. of the ACM, Vol. 20, No. 10, 1977, 262-272

/4/ Commentz-Walter, B.
"A String Matching Algorithm Fast on the Average"
Scientific Center Heidelberg, Technical Report, in

print.

/5/ Fagin, R., Nievergelt, J., Pippenger, N. and Strong,
HisiRs
"Extendible Hashing - A Fast Access Method for Dynamic
Files"
IBM, Research Rep. RJ 2305, 19878 (San Jose)

/6/ Galil, Z.
"Saving Space in Fast String-Matching"
IBM, Reseach Rep., RC 6670, 1977 (Yorktown Heights)

/7/ Galil, Z.
"Oon Improving the worst Case Running Time of
Boyer-Moore String Matching Algorithm"
Automata, Languages and Programming, 5th Colloguium
EATCS, July 1978

132

/8/ Guibas, L.J. and O0dlyzko, A.M.
"pA New Proof of the Linearity of the Boyer-Moore String
Searching Algorithms"
Proceedings 18th Annual I|EEE Symposium on Foundations

of Computer Science, 1977

/9/ Guibas, L.J., McCreight, E.M., Plass, M.F. and Roberts,
ol R
“A new Representatiop for Linear Lists"
gth Annual ACM Symposium on Theory of Computing, 1877

/10/ Knuth, D.E., Morris Jr., J.H. and Pratt, Moo B
iFast Pattern Matching in Strings”
SIAM J. on Computing, Vol. 6, No. 2, 1377, 323-350
/11/ McCreight, E.M.
“A Space Economical Suffix Tree Construction Algorithm"
Journal of the ACM, Vol. 23, No. 2, 1876, 262-272
/12/5check, H.-J.
"The Reference String Indexing Method" Proceedings
information System Methodelogy, Venice 1978 Lecture
Notes in Comp. Sc. 65 Springer Heidelberg 1976
/13/ Weiner, P.
" inear Pattern Matching Algorithm"
Proceedings 1l4th Annual |EEE Symposium in Sswitching and
Automata Theory, 1973, 1-11

