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Abstract

In this thesis, we give an exposition of the theory of virtual fundamental
classes in algebraic geometry introduced by K. Behrend and B. Fantechi in
[5]. We place particular emphasis on the notion of obstruction theory, which
is an essential ingredient in the construction of a virtual class. We show
how obstruction theories can be constructed using fibre sequences of stacks
coming from deformation theory. We illustrate the definitions throughout
using examples coming from fibre products of schemes.
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Chapter 1

Introduction

1.1 Expected dimensions and virtual funda-

mental classes

Virtual fundamental classes arise naturally in enumerative geometry as a
means of counting in non-transverse situations. A common problem is to
count the algebraic curves inside a projective variety Y , where the curves are
allowed to degenerate in some well-controlled way. If Y is nice enough (for
example, a Calabi-Yau 3-fold), then the space X of such curves has “expected
dimension 0”, so we expect to be able to calculate the number of such curves
as an invariant of Y . However, even when the expected dimension is 0, the
actual dimension of the moduli space X is often strictly positive, so there is
not a finite number of curves to count.

To illustrate these issues in a simpler case, consider the intersection of
the lines

Y = {[x, y, z] ∈ P2 | y = 0}
and

Zt = {[x, y, z] ∈ P2 | y = tx}
for t in a base field k. For t 6= 0,

Y ∩ Zt = {[x, y, z] ∈ P2 | y = 0 and y = tx}
= {[0, 0, 1]} ⊆ P2

whereas for t = 0

Y ∩ Zt = {[x, y, z] ∈ P2 | y = 0 and y = 0}
= {[x, y, z] ∈ P2 | y = 0}
∼= P1.
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Since Xt = Y ∩ Zt is defined by two equations in a space of dimension
2, the expected, or virtual, dimension of Xt is 2 − 2 = 0. When t = 0,
however, we get a space of dimension 1, since the two defining equations are
not independent. In this case, we can count the “generic” number of points
in the intersection X0 by counting the points in the “good” deformation Xt

for nonzero t.
The virtual fundamental class is a generalisation of the generic count-

ing idea above. If X is a scheme with expected dimension n, the virtual
fundamental class is a Chow homology class

[X]vir ∈ An(X)

of the expected dimension. If X can be deformed to a scheme X̃ of dimension
n, then the virtual fundamental class of X can be understood in terms of
the ordinary fundamental class representing the whole space of X̃. In the
example Xt = Y ∩ Zt above, the virtual fundamental class of X0 is the class
[∗] ∈ A0(P1) representing a single point.

Unfortunately, there does not always exist a deformation of X to a scheme
of the expected dimension. In such cases, we need extra data to replace the
well-behaved deformation X̃.

To motivate where such extra data might come from, consider how we
might calculate the expected dimension of a moduli space X. Assuming that
X is smooth, the dimension of X is the same as the dimension of the tangent
space TxX at a point x ∈ X. In scheme theory, we can realise the space TxX
as the set of maps x̄ : Spec(k[s]/(s2)) → X such that the diagram below
commutes.

Spec(k) Spec

(
k[s]

(s2)

)

X

x x̄

(Recall that Spec(k) is a “point scheme” over k, so a map Spec(k) → X is
the same as a point in X.) Since X is a moduli space, X has a universal
property that characterises maps Spec(k[s]/(s2))→ X in terms of the moduli
problem. We usually use this universal property to compute the expected
dimension of X.

For the example Xt = Y ∩ Zt, this plays out as follows. Since Xt is
the fibre product of Y and Zt over P2, by its universal property, a map
Spec(k[s]/(s2))→ Xt is the same as a commutative diagram as below.
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Spec

(
k[s]

(s2)

)
Y

Zt P2

Hence, the tangent space to Xt at a point x is just the fibre product of TxY
and TxZt over TxP2, which we can compute as the kernel of a map

TxY ⊕ TxZt → TxP2. (1.1.1)

For example, take x = [0, 0, 1] ∈ Xt. Then TxY = k, TxZt = k and TxP2 = k2,
and (1.1.1) is the map k2 → k2 is given by the matrix(

1 −1
0 t

)
.

For t 6= 0, the map k2 → k2 is surjective, so its kernel TxXt has dimension
2−2 = 0. For t = 0, the map k2 → k2 fails to be surjective, so the dimension
of TxXt is strictly larger than the expected dimension.

This example illustrates that we can extract the virtual dimension of a
moduli space X as follows. Using the universal property of X (for example,
that it is a fibre product) to study extensions of maps Spec(k)→ X to maps
Spec(k[s]/(s2))→ X, we write the tangent space to X at a point x as

TxX = ker(E0 → E1)

for some map of k-vector spaces E0 → E1. In the transverse setup, we expect
E0 → E1 to be surjective, so the virtual dimension is

dim[X]vir = dimE0 − dimE1.

By replacing the map Spec(k)→ Spec(k[s]/(s2)) with a more general square-
zero extension, we can probe further into the geometry of [X]vir . We discuss
this more general problem in the next section.

1.2 Deformations and obstructions

Let X be a scheme over a field k, which we think of as a moduli space of
some kind. The discussion of the previous section suggests that the extra
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data needed to define a virtual fundamental on X should come from using
the universal property of X to study the following deformation problem.

Consider a square-zero extension T → T of k-schemes (i.e. a closed
embedding defined by an ideal of square zero—see Section 3.1) and a map
f : T → X. The discussion of Section 1.1 suggests that the extra data
needed to define a virtual fundamental class for X should come from using
the universal property of X to classify maps f̄ : T → X such that the
following diagram commutes.

T T

X

f f̄

Consider again the example Xt = Y ∩Zt = Y ×P2 Zt from Section 1.1. From
the universal property, we should think of f as a commutative diagram

T Y

Zt P2

g

h i

j

and an extension f̄ of f as a commutative diagram

T Y

Zt P2

ḡ

h̄ i

j

of k-schemes. Since Y and Zt are smooth schemes over k, extensions ḡ of
g and h̄ of h exist so long as T is affine. (This is part of the definition of
smoothness for schemes—see Definition A.5.14.) The difference between the
maps i ◦ ḡ and j ◦ h̄ is an element

ob(ḡ, h̄) ∈ Hom(g∗i∗ΩP2 , J)

where J is the ideal sheaf of T in T , and Ω denotes the cotangent sheaf over k.
An extension f̄ is a choice of ḡ and h̄ such that ob(ḡ, h̄) = 0. Given arbitrary

6



ḡ and h̄, any other choices are obtained via actions of Hom(g∗ΩY , J) and
Hom(h∗ΩZt , J). Thus, the extensions f̄ are classified by pairs

(u, v) ∈ Hom(g∗ΩY , J)⊕ Hom(h∗ΩZt , J)

which map to ob(ḡ, h̄) under the difference map

Hom(g∗ΩY , J)⊕ Hom(h∗ΩZt , J)
d−→ Hom(g∗i∗ΩP2 , J). (1.2.1)

Notice that if T = Spec(k), T = Spec(k[s]/(s2)) then this recovers our
computation of the tangent space in Section 1.1.

For T non-affine, it is possible that extensions ḡ and h̄ may not exist
globally. To deal with this, we need to determine whether local choices over
affine subsets of T can be glued together to give global extensions. There is
a very elegant way to do this using the language of stacks.

First notice that we can rephrase the affine discussion above as follows.
The obstruction ob(ḡ, h̄) can be thought of as an object in a groupoid

Ob0 = [Hom(g∗i∗ΩP2 , J)/Hom(g∗ΩY , J)⊕ Hom(h∗ΩZt , J)].

The groupoid Ob0 is the category with objects Hom(h∗i∗ΩP2 , J), and with
morphisms x→ y given by

Hom(x, y) = {(u, v) ∈ Hom(g∗ΩY , J)⊕ Hom(h∗ΩZt , J) | d(u, v) = y − x},

where d is the difference map (1.2.1). As an object of Ob0, ob(T ) = ob(ḡ, h̄)
is independent up to canonical isomorphism of the choice of ḡ and h̄. The
extensions f̄ are in bijection with the set Hom(0, ob) of morphisms 0 → ob
in Ob0.

To solve the global problem, we notice that the groupoids Ob0 and ob-
structions ob glue together to give a stack

Ob = [Hom(g∗i∗ΩP2 , J)/Hom(g∗ΩY , J)⊕ Hom(h∗ΩZt , J)] (1.2.2)

and a section ob(T ) of Ob, such that the extensions f̄ of f are in bijection
with the set Hom(0, ob) of morphisms 0→ ob in Ob.

We can package this solution very efficiently as follows. Fixing f : T → X
and a sheaf J on T , we can consider stacks

ExtXt
(T, J) and Ext(T, J)

of square-zero extensions of k-schemes T → T with ideal sheaf J , with and
without extensions f̄ : T → Xt of the map f . There is a natural forgetful
map

ExtXt
(T, J)→ Ext(T, J)
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and an obstruction map

Ext(T, J)
ob−→ Ob

such that the sequence

ExtXt
(T, J)→ Ext(T, J)

ob−→ Ob

identifies ExtXt
(T, J) with the (categorical) fibre of ob over the distinguished

section 0 of Ob. This is the same information as given above, but in a form
which is very convenient to manipulate.

In general, the extra data required to construct a virtual fundamental
class on a space X assigns to every map f : T → X and every sheaf J on T
an obstruction stack Ob and a fibre sequence

ExtX(T, J)→ Ext(T, J)→ Ob.

The stack Ob should have some nice form similar to (1.2.2). In the next
section, we review some different approaches to formulating this precisely.

1.3 Three approaches to obstruction theories

and virtual classes

In this section, we discuss three popular approaches to obstruction theories
and virtual classes.

Virtual fundamental classes in algebraic geometry were first constructed
by K. Behrend and B. Fantechi in [5] and by J. Li and G. Tian in [22]. To
produce a virtual fundamental class on a moduli space X, both constructions
take as input some kind of well-behaved obstruction theory for X. In [22],
the obstruction theory is essentially an assignment of an obstruction space,
Ob, and an obstruction map, ob : Ext(T, J)→ Ob, to every scheme T , every
sheaf J and every morphism f : T → X, such that f can be extended to
a map f̄ : T → X if and only if ob(T ) = 0. These obstructions must be
functorial in f , T and J .

In [5], an obstruction theory on X is defined in terms of the cotangent
complex of X. To every morphism π : Y → S, there is an associated cotan-
gent complex LY/S of sheaves on Y , which is a good generalisation of the
cotangent sheaf to singular spaces, and can be used to compute the stack
ExtS(Y, J) of square-zero extensions of Y over S. It follows from func-
toriality and exactness properties of the cotangent complex that for every
f : T → X and every sheaf J on T , there is a canonical fibre sequence

ExtX(T, J)→ Ext(T, J)→ Ob(f ∗LX , J)
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where Ob(f ∗LX , J) is a stack constructed from the complex f ∗LX . Thus,
the cotangent complex LX gives a canonical notion of obstruction, which is
automatically functorial in f , T and J . If E is another complex of sheaves on
X and E → LX is a morphism of complexes, then we get functorial sequences
of stacks

ExtX(T, J)→ Ext(T, J)→ Ob(f ∗E, J).

These will be fibre sequences so long as the map E → LX satisfies a simple
condition on cohomology. With this as motivation, an obstruction theory is
defined to be a map E → LX of complexes of sheaves on X satisfying this
cohomology condition. If the complex E is perfect, there is a procedure for
constructing a virtual fundamental class for X.

A newer and more refined approach to virtual fundamental classes uses
the theory of derived algebraic geometry. In this setup, a virtual fundamental
class on a scheme (or Deligne-Mumford stack) X comes from a choice of
derived structure on X. The derived structure Xder is determined by a sheaf
OXder of simplicial rings on X; the “ring” part of OXder is the structure sheaf
OX of X, and the “simplicial” part of OXder is extra data that keeps track of
non-transversality. The sheaf OXder determines a K-theoretic fundamental
class

[X]K-vir = [OXder ] ∈ G0(X)

where G0(X) is the K-theory of coherent sheaves on X. If the derived exten-
sion Xder of X is quasi-smooth, the (homological) virtual fundamental class
is

[X]vir = Td(TXder)−1 ∩ τ([X]K-vir) ∈ A∗(X)

where Td(TXder) is the Todd class of the tangent complex of Xder and
τ : G0(X) → A∗(X) is the homological Chern character or Grothendieck-
Riemann-Roch transformation for X.

The procedure above gives a construction for virtual fundamental classes
which avoids the use of an obstruction theory. However, a derived structure
Xder on X still gives rise to an obstruction theory as follows. The derived
scheme Xder has a cotangent complex LXder , which is a module over the sheaf
of simplicial rings OXder . Tensoring LXder with OX gives a complex of OX-
modules E with a map E → LX . Since Xder differs from X only in the extra
derived structure, the map E → LX satisfies the cohomological condition
for an obstruction theory. This obstruction theory is perfect if and only if
Xder is quasi-smooth, in which case the associated virtual fundamental class
coincides with the one constructed from [X]K-vir .

This approach also gives a formal interpretation of the philosophy that
obstruction theories should come from studying universal properties. A de-
rived extension Xder of a moduli space X can be specified by extending the

9



moduli problem, in a more or less natural way, to classify maps T → Xder

with T a derived scheme. The cotangent complex of Xder can be computed
directly from this extended universal property, and therefore appears as a
natural obstruction theory for the original universal property of X.

For a good survey of derived algebraic geometry, see [30], and for the
rigorous foundational details, see [24] or [31].

Of course, the full power and utility of obstruction theories and virtual
classes can only be appreciated by looking at a wide variety of examples. The
original applications to Gromov-Witten theory can be found in [3] and [22].
A good survey of applications to curve counting is [27]. For an application
using derived algebraic geometry see [28].

1.4 Plan of the thesis

The main aim of this thesis is to rework obstruction theories as defined in
[5], using the stack-theoretic approach to deformation theory described in
Section 1.2. We also give the construction for virtual fundamental classes,
which is the motivation for the whole subject.

In Chapter 2, we recall some useful notions from the theory of sheaves
and stacks over a topological space or site. This framework is a convenient
way to package information which can be defined locally and satisfies a gluing
condition. Important examples include the stacks of square-zero extensions
and obstructions discussed in Section 1.2. We also introduce ringed sites,
which are a convenient setting for our later study of homological algebra.

In Chapter 3, we review the theory of square-zero extensions. We define
obstruction sequences, and demonstrate how they can be constructed from
universal properties.

In order to have a framework in which we can easily do calculations, we
recall the basics of homological algebra and derived categories in Chapter
4. We show in particular how calculations with derived categories can be
converted into calculations with stacks.

In Chapter 5, we introduce obstruction theories as complexes, and show
how they give rise to obstruction sequences. The universal example, which
makes the whole theory work, is the cotangent complex, which we also discuss
here.

In Chapter 6, we define the virtual fundamental class of a scheme X with
a perfect obstruction theory. The construction is achieved by comparing a
canonical algebraic stack over X, called the intrinsic normal cone of X, to an
algebraic stack associated to the obstruction theory. We also compute some
explicit examples of virtual classes of fibre products using the obstruction
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theories of Chapter 5.
We also include two appendices. Appendix A collects important back-

ground on algebraic geometry. In particular, we recall the basics of scheme
theory, and touch on algebraic stacks and intersection theory. Appendix B
collects some material on the cotangent complex, which is needed to deal
with some naturality issues in Chapter 5.

Throughout this thesis, we work mainly with obstruction theories and
virtual fundamental classes for schemes. In many applications, it is necessary
to work in the more general setting of Deligne-Mumford stacks. We indicate
at various points what modifications need to be made in this context.
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Chapter 2

Sheaves and stacks

In this chapter, we recall some aspects of the theory of sheaves and stacks.
Sheaves provide a way to package structures which are defined locally, such as
functions or vector fields. Stacks are 2-categorical generalisations of sheaves:
they package local structures which may have automorphisms. The ideas and
results of this chapter form the basic framework for our study of deformations
and obstructions.

2.1 Sheaves on topological spaces

In this section, we review the theory of sheaves on topological spaces. Infor-
mally, a sheaf F on a topological space X assigns to every open set U ⊆ X a
set F (U) of sections over U , and to every inclusion U ⊆ V a restriction map
F (V ) → F (U), in such a way that section s ∈ F (U) can be defined locally
by passing to an open cover {Ui} of U .

Definition 2.1.1. Let X be a topological space. Denote by Top(X) the
category with objects the open subsets of X and morphisms the inclusions
of open sets. A presheaf (of sets) on X is a functor

F : Top(X)op → Set

from the opposite category of Top(X) to the category of sets. We say that
F is a sheaf if for every open set U ⊆ X and every open cover {Ui}i∈I of U ,
the diagram

F (U)
∏
i∈I

F (Ui)
∏
i,j∈I

F (Ui ∩ Uj)
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is an equaliser. Here the two maps∏
i∈I

F (Ui)→
∏
i,j∈I

F (Ui ∩ Uj)

are given by

(si)i∈I 7→ (si|Ui∩Uj
)i,j∈I

(si)i∈I 7→ (sj|Ui∩Uj
)i,j∈I

where |Ui∩Uj
denotes image under F of one of the inclusions Ui ∩ Uj → Ui

and Ui ∩Uj → Uj. More explicitly, this means that if we have si ∈ F (Ui) for
each i, such that for each i, j ∈ I,

si|Ui∩Uj
= sj|Ui∩Uj

,

then there exists a unique section s ∈ F (U) with si = s|Ui
for each i ∈ I.

Example 2.1.2. Let X be a topological space. The sheaf of continous real-
valued functions on X is the functor CR : Top(X)op → Set taking an open
set U ⊆ X to the set CR(U) of continuous real-valued functions defined on U ,
and a morphism U ⊆ V in Top(X) to the restriction map CR(V )→ CR(U).
The sheaf axiom in this case simply states that continuous maps U → R can
be specified by choosing an open cover {Ui} and continuous maps Ui → R
which agree on the intersections Ui ∩ Uj.

More generally, we can consider presheaves and sheaves with values in
a general category A. We give the definition in the case that A admits
arbitrary products, although it can be generalised to arbitrary categories.

Definition 2.1.3. Let X be a topological space and let A be a category
admitting arbitrary (small) products. A presheaf with values in A is a functor

F : Top(X)op → A.

We say that F is a sheaf if for all open U ⊆ X and all open covers {Ui}i∈I
of U , the diagram

F (U)
∏
i∈I

F (Ui)
∏
i,j∈I

F (Ui ∩ Uj)

is an equaliser in A.

Example 2.1.4. In Example 2.1.2, the sheaf CR can be viewed as a sheaf of
R-algebras, i.e. a sheaf with values in the category R-alg of R-algebras.
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Definition 2.1.5. Let X be a topological space, and let A be a category. A
morphism of A-valued presheaves on X is a natural transformation of func-
tors Top(X)op → A. A morphism of A-valued sheaves on X is a morphism of
A-valued presheaves. We denote the corresponding categories of presheaves
and sheaves by Pr(X,A) and Sh(X,A), or Pr(X) and Sh(X) in the case
A = Set.

A very useful construction in sheaf theory is the sheaf associated to a
presheaf. Roughly speaking, given a presheaf F on X, we can associate a
sheaf sh(F ) which is in some sense the best approximation of F by a sheaf.
More precisely, we have the following theorem.

Theorem 2.1.6. Let X be a topological space. Then the inclusion functor
i : Sh(X) → Pr(X) has a left adjoint sh : Pr(X) → Sh(X). Moreover, sh
preserves finite limits.

Definition 2.1.7. The functor sh : Pr(X)→ Sh(X) is called the sheafifica-
tion functor. If F is a presheaf on X, then sh(F ) is called the sheafification
of F or the sheaf associated to F .

Theorem 2.1.6 is proved, for example, in [2], Exposé II (see Théorème
3.4 and Théorème 4.1) in the more general context of sites (see Section 2.2).
The basic idea is to define a functor

L : Pr(X)→ Pr(X)

by setting, for any presheaf F ,

(LF )(U) = lim←−
U

F (U)

where the limit is taken over all open covers U = {Ui}i∈I of U , and where
F (U) is the limit of the diagram∏

i∈I

F (Ui)
∏
i,j∈I

F (Ui ∩ Uj).

One then shows that L ◦ L(F ) is a sheaf for all presheaves F and that the
desired left adjoint is sh = L ◦ L : Pr(X)→ Sh(X).

Remark 2.1.8. Theorem 2.1.6 applies equally to sheaves with values in a
category A for many choices of A. For instance, we can define the sheaf asso-
ciated to an A-valued presheaf so long as there is a faithful limit-preserving
functor F : A → Set. This holds, for example, for familiar “algebraic” cate-
gories, such as groups, abelian groups, rings, modules, algebras over a ring,
etc.
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Definition 2.1.9. Let f : F → G be a morphism of presheaves on a topo-
logical space X. We say that f is

(1) locally injective if for all open U ⊆ X and all sections s, t ∈ F (U) with
f(s) = f(t), there exists an open cover {Ui}i∈I of U such that s|Ui

= t|Ui

for each i,

(2) locally surjective if for all open U ⊆ X and all sections s ∈ G(U), there
exists an open cover {Ui}i∈I of U and sections ti ∈ F (Ui) such that
f(ti) = s|Ui

,

(3) a local isomorphism if f is both locally injective and locally surjective.

Remark 2.1.10. If f : F → G is a morphism of sheaves, we will usually
say that f is surjective if f is locally surjective as a map of presheaves. This
agrees with category-theoretic notions of surjectivity for, say, categories of
sheaves of abelian groups or modules.

The following proposition follows easily from the construction of the
sheafification functor.

Proposition 2.1.11. Let f : F → G be morphism of presheaves. Then
sh(f) : sh(F ) → sh(G) is injective (resp. surjective, an isomorphism) if and
only if f is locally injective (resp. locally surjective, a local isomorphism).

If f : X → Y is a continuous map between topological spaces, there
are functors f∗ : Sh(X) → Sh(Y ) and f−1 : Sh(Y ) → Sh(X) called the
pushforward and pullback functors, defined as follows. The pushforward of
F is given by

(f∗F )(U) = F (f−1(U))

for all open U ⊆ Y . This defines a presheaf on Y which is easily shown to
be a sheaf. The pullback f−1F is the sheaf associated to the presheaf

Top(X)op → Set

U 7→ lim−→
f(U)⊆V

F (V ).

Proposition 2.1.12. Let f : X → Y be a continuous map between topolog-
ical spaces. Then the functor f−1 : Sh(Y ) → Sh(X) is left adjoint to the
functor f∗ : Sh(X)→ Sh(Y ). Moreover, f−1 commutes with finite limits.

Remark 2.1.13. Let X, Y and Z be topological spaces and let f : X → Y
and g : Y → Z be continuous maps. Then there are canonical isomorphisms
of functors g∗ ◦ f∗ ∼= (g ◦ f)∗ and f−1 ◦ g−1 ∼= (g ◦ f)−1.

15



If X is a topological space, F is a sheaf on X and x ∈ X is a point, the
stalk of F at x is

Fx = lim−→
x∈U

F (U)

where the colimit is taken over all open neighbourhoods U of x. We can also
define stalks for A-valued sheaves so long as the necessary colimits exist in
A. We can also view this as a special case of the pullback of a sheaf: if ∗
denotes the space with a single point, and f : ∗ → X is the map sending this
point to x ∈ X, then Sh(∗,A) = A and Fx = f−1F .

2.2 Sheaves on sites

There is a substantially more general setting than topological spaces in which
we can study sheaves. The main idea is to replace the category Top(X) with
a more general category C which retains a notion of open cover.

Definition 2.2.1 (cf. [9], Definition 2.24 and [2], Définition II.1.3). Let C be
a category and suppose that all fibre products exist in C. A (Grothendieck)
topology on C assigns to every object U ∈ Ob(C) a collection Cov(U) of
families {Ui → U}i∈I of morphisms in C, called covering families, satisfying
the following conditions.

(1) If V → U is a morphism in C and {Ui → U}i∈I is a covering family for
U , then {Ui ×U V → V }i∈I is a covering family for V .

(2) If {Ui → U}i∈I is a covering family for U and {Uij → Ui}j∈Ji is a
covering family for Ui for each i ∈ I, then the family of composites
{Uij → U}i∈I,j∈Ji is a covering family for U .

(3) If V → U is an isomorphism, then {V → U} is a covering family.

A site is a category equipped with a Grothendieck topology.

Example 2.2.2. If X is a topological space, then the category Top(X),
together with the usual notion of open cover, is a site.

The following examples are the main sites of interest in this thesis.

Example 2.2.3. Let X be a scheme. (See Appendix A, and Section A.1
in particular for a discussion of schemes.) The Zariski site of X is the site
XZar = Top(|X|) associated to the underlying topological space of X.
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Example 2.2.4. Let X be a scheme. The (small) étale site Xét of X is
defined as follows. An object of Xét is an étale map U → X from a scheme
U to X. A morphism in Xét is a commutative diagram of schemes

U V

X

with U → X and V → X étale. A covering in Xét is a family of morphisms
{fi : Ui → U}i∈I such that

U =
⋃
i∈I

fi(Ui).

The étale site Xét is similar to the Zariski site XZar , but includes multiple
covers among the “open sets”. For example, if X = Spec(k[x, x−1]) = A1

k\{0}
is the punctured affine line over a field k of characteristic 0, then the double
cover

Spec(k[y, y−1])→ Spec(k[x, x−1])

y2 ←[ x

is a covering in Xét .

Example 2.2.5. Let X be a scheme. The big étale site of X is the category
Sch/X of schemes over X, with the topology for which a family {fi : Ui →
U}i∈I is a covering if each fi : Ui → U is étale, and

U =
⋃
i∈I

fi(Ui).

The main use of the big étale site is in applying sheaf-theoretic methods to
construct spaces over X, such as total spaces of vector bundles. We discuss
this point in more detail in Section 6.1.

Definition 2.2.6. Let C be a site, and let A be a category admitting arbi-
trary small products. An A-valued presheaf on C is a functor

F : Cop → A.

We say that F is a sheaf if for any U ∈ Ob(C) and any covering family
{Ui → U}i∈I , the diagram

F (U)
∏
i∈I

F (Ui)
∏
i,j∈I

F (Ui ×U Uj)
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is an equaliser. A morphism of presheaves is a natural transformation of
functors and a morphism of sheaves is a morphism of presheaves. We denote
the corresponding categories of A-valued presheaves and sheaves by Pr(C,A)
and Sh(C,A), or Pr(C) and Sh(C) in the case A = Set.

Just as in the case of sheaves on topological spaces, if C is a “small enough”
site, then there is a left exact sheafification functor sh : Pr(C)→ Sh(C) which
is left adjoint to the inclusion Sh(C)→ Pr(C). Here “small enough” means
that there exists a small set G ⊆ Ob(C) such that every object of C has a
covering by elements of G.

Definition 2.2.7 (cf. [9], Definition 2.58). Let C be a category and let
U ∈ Ob(C). The category of objects over U is the category C/U with objects
the morphisms V → U in C, and with

HomC/U (V
f−→ U,W

g−→ U) = {h ∈ HomC(V,W ) | g ◦ h = f}.

We will often abuse notation and write V for an object V → U of C/U , with
the understanding that a particular map to U has been chosen. If C is a site,
we endow C/U with the topology in which a family {Vi → V }i∈I of morphisms
in C/U is a covering if and only if it is a covering in C. If F is a sheaf on C/U
we will often say that F is a sheaf on U .

The notion of pushforward and pullback of sheaves along continuous maps
of topological spaces can be generalised to the setting of sites as follows.

Definition 2.2.8 ([2], 4.9.1). Let C and D be sites. A morphism of sites
f : C → D is a functor f−1 : D → C satisfying

(1) for any sheaf F on C, the presheaf

f∗F = F ◦ f−1 : Dop → Set

is a sheaf, and

(2) the functor f∗ : Sh(C)→ Sh(D) has a left adjoint f−1 : Sh(D)→ Sh(C)
which commutes with finite limits.

Notice that if f : X → Y is a continuous map of topological spaces, then
we get a functor

Top(Y )→ Top(X)

U 7→ f−1(U)

which defines a morphism of sites f : Top(X) → Top(Y ) by Proposition
2.1.12. This is the motivation for defining a morphism of sites C → D to be
a functor D → C instead of a functor C → D.
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2.3 Ringed sites

In this section, we recall the definitions of ringed sites and sheaves of modules.
This theory is a natural generalisation of the theory of ringed spaces discussed
in Section A.1.

Definition 2.3.1 (cf. Definition A.1.1). A ringed site is a pair (C, A) where
C is a site and A is a sheaf of rings on C. If (C, A) and (D, B) are ringed
sites, a morphism of ringed sites f : (C, A)→ (D, B) is a pair (f, f#) where
f : C → D is a morphism of sites and f# : f−1B → A is a morphism of
sheaves of rings on C.

Remark 2.3.2. Following the perspective of Section A.1, we should think
of a ringed site (C, A) as some kind of space C, together with some functions
A on C.

The following are the main examples of interest in this thesis.

Example 2.3.3 (cf. Example 2.2.3). Let X be a scheme. The structure
sheaf OX is a sheaf of rings on the Zariski site XZar , so the pair (XZar ,OX)
is a ringed site. Every morphism of schemes f : X → Y induces a morphism
of ringed sites f : (XZar ,OX)→ (YZar ,OY ).

Example 2.3.4 (cf. Example 2.2.4). Let X be a scheme. The (small) étale
site Xét of X has a sheaf of rings OXét

given by

OXét
(U) = OU(U)

for U → X étale. So the pair (Xét ,OXét
) is a ringed site. Every morphism

of schemes f : X → Y induces a morphism of ringed sites f : (Xét ,OXét
)→

(Yét ,OYét
).

Example 2.3.5 (cf. Example 2.2.5). Let X be a scheme. The big étale site
Sch/X of X has a sheaf of rings O/X given by

O/X(U) = OU(U)

for U → X a scheme over X. So the pair (Sch/X ,O/X) is a ringed site.

Example 2.3.6. Let X be a scheme. There is a morphism of ringed sites

z : (Xét ,OXét
)→ (XZar ,OXZar

)

defined as follows. The morphism of sites z : Xét → XZar is given by the
functor z−1 : XZar → Xét which takes an open set U ⊆ X to the inclusion
map U → X. (This is indeed a morphism of sites by [2], VII.4.2.2.) The
morphism z−1 : OX → OXét

is deduced from the canonical isomorphism
OX → z∗OXét

via the adjunction between z−1 and z∗.
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Example 2.3.7. Let X be a scheme. There is a morphism of ringed sites

e : (Sch/X ,O/X)→ (Xét ,OXét
)

defined as follows. The morphism of sites e : Sch/X → Xét is given by
the functor e−1 : Xét → Sch/X which includes Xét as a full subcategory of
Sch/X . (This is indeed a morphism of sites by [2], VII.4.0.) The morphism
e−1OXét

→ O/X is deduced from the canonical isomorphism OXét
→ e∗O/X

via the adjunction between e−1 and e∗.

Definition 2.3.8. Let (C, A) be a ringed site. An A-module is a sheaf of
abelian groups M on C together with a morphism of sheaves of sets A×M →
M , such that for all U ∈ Ob(C), the map A(U) × M(U) → M(U) gives
M(U) an A(U)-module structure. If M and N are A-modules, an A-module
homomorphism f : M → N is a morphism of sheaves of abelian groups
such that for each U ∈ Ob(C), the map fU : M(U) → N(U) is an A(U)-
module homomorphism. We denote by A-mod the category of A-modules
and A-module homomorphisms.

Example 2.3.9. Let C be the site associated to the topological space with
one point. Then a sheaf A of rings on C is simply a ring, and A-mod as
defined above is the usual category of A-modules.

Let f : (C, A)→ (D, B) be a morphism of ringed sites. There is a functor

A-mod→ f∗A-mod

M 7→ f∗M.

By the adjunction between f−1 and f∗, the morphism f−1B → A induces
a morphism B → f∗A of sheaves of rings on D, so any f∗A-module has a
canonical B-module structure. Combining this with the functor above, we
get a functor

f∗ : A-mod→ B-mod.

This functor has a left adjoint given by

f ∗ : B-mod→ A-mod

M 7→ f−1M ⊗f−1B A

where the tensor product is defined below.

Definition 2.3.10. Let C be a site, let A be a sheaf of rings on C, and let M
and N be A-modules. Then tensor product of M and N is the sheaf M⊗AN
associated to the presheaf

U 7→M(U)⊗A(U) N(U).
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2.4 Stacks

In this section we discuss stacks, which are 2-categorical analogues of sheaves.
Roughly speaking, a stack F over a site C assigns to every object U ∈ Ob(C)
a category F (U) and to every morphism f : U → V in C a functor F (f) :
F (V ) → F (U). These functors are required to satisfy F (f ◦ g) ∼= F (g) ◦
F (f) up to certain well-behaved natural isomorphisms. Just as sections of a
sheaf may be glued over the covering families of C, we also enforce a gluing
condition for the objects of F (U).

We give the definitions in the special case where each category F (U) is a
groupoid, as this is a little simpler than the general case and will suffice for
our purposes. (Recall that a groupoid is a category in which every morphism
is invertible.)

First, we formalise the notion of (contravariantly) assigning groupoids
and functors to objects and morphisms of C. In what follows, if p : F → C is
a functor and U ∈ Ob(C), we write F (U) for the category with objects

Ob(F (U)) = {α ∈ Ob(C) | p(α) = U}

and morphisms

HomF (U)(α, β) =
{
f̃ ∈ HomF (α, β)

∣∣∣ p(f̃) = idU

}
.

Definition 2.4.1 (cf. [9], Definition 3.1 and Proposition 3.22). Let C be
a category. A category fibred in groupoids (or fibred category) over C is a
category F and a functor p : F → C satisfying the following conditions.

(1) For every morphism f : U → V in C, and every object β ∈ Ob(F (U)),
there exists a morphism f̃ : α→ β such that p(f̃) = f .

(2) If

U1

U2 V

f1g

f2

is a commutative diagram in C and f̃1 : α1 → β and f̃2 : α2 → β are
morphisms in F with p(f̃1) = f1 and p(f̃2) = f2 then there exists a unique
morphism g̃ : α1 → α2 such that p(g̃) = g and such that the diagram
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α1

α2 β

f̃1
g̃

f̃2

commutes.

If p : F → C and q : G → C are categories fibred in groupoids over C, a
(1-)morphism of fibred categories from F to G is a functor f : F → G such
that q ◦ f = p. If f, g : F → G are morphisms of fibred categories over C,
2-isomorphism from f to g is a natural transformation η : f → g such that
for all U ∈ Ob(C) and all α ∈ F (U), q(ηα) = idU . We denote the category of
morphisms F → G and 2-isomorphisms by Hom(F,G). We write Fib(C) for
the 2-category of categories fibred in groupoids over C, and Ho(Fib(C)) for
the associated “homotopy category” obtained by taking isomorphism classes
of 1-morphisms.

Remark 2.4.2. If p : F → C is a category fibred in groupoids over C then
F (U) is a groupoid for all U ∈ Ob(C).

Definition 2.4.3. Let p : F → C be a category fibred in groupoids over C.
A cleavage for F consists of a choice of morphism F (f)(α) → α over f for
all α ∈ Ob(F (V )) and all morphisms f : U → V in C.

Let p : F → C be a category fibred in groupoids over C. Given a cleavage
for F , and a morphism f : U → V in C, there is a functor F (f) : F (V ) →
F (U) which takes a morphism α → β in F (V ) to the unique morphism in
F (U) such that the following diagram commutes.

F (f)(α) α

F (f)(β) β

One can show that F (f) is independent (up to canonical natural isomor-
phism) of the choice of cleavage, and that we have F (g ◦ f) ∼= F (f) ◦ F (g)
whenever f : U → V and g : V → W are morphisms in C.

Remark 2.4.4. We will often write down a fibred category F over C by
specifying the categories F (U) and the functors F (f) : F (V )→ F (U) coming
from some choice of cleavage. It is usually clear from these data how to write
down the formal definition of F .
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Example 2.4.5. Let F : Cop → Set be a functor. Define a category F̃ fibred
in groupoids over C as follows. Let

Ob(F̃ ) =
∐

U∈Ob(C)

F (U)

and if U, V ∈ Ob(C) and α ∈ F (U) and β ∈ F (V ), let

HomF̃ (α, β) = {f ∈ HomC(U, V ) | F (f)(β) = α}.

There is an obvious functor p : F̃ → C which makes F̃ into a category fibred
in groupoids over C. In fact, F̃ is an example of a category fibred in sets over
C. By [9], Proposition 3.26, the construction F 7→ F̃ defines an equivalence
between the category of functors F : Cop → Set and the full subcategory of
Fib(C) spanned by the categories fibred in sets.

Let F be a category fibred in groupoids over C and let X ∈ Ob(C). Denote
by j(X) the fibred category associated to the functor j(X) = Hom(−, X).
There is a natural equivalence of groupoids

F (X) ' Hom(j(X), F ).

This result is known as the 2-Yoneda Lemma. For a proof, see [9], Section
3.6.2.

Let F → C be a category fibred in groupoids over C, and suppose we have
chosen a cleavage for F . Fix U ∈ Ob(C) and α, β ∈ F (U). Then we have a
functor, HomU(α, β), given by

(C/U)op → Set

(V
f−→ U) 7→ HomF (V )(F (f)(α), F (f)(β)).

Definition 2.4.6 (cf. [9], Definition 4.2, Definition 4.6 and Proposition 4.7).
Let C be a site and let F → C be a category fibred in groupoids over C. We
say that F is a stack (in groupoids) if the following conditions hold.

(1) For any U ∈ Ob(C) and any α, β ∈ F (U), the presheaf HomU(α, β) is a
sheaf on U .

(2) Let {fi : Ui → U}i∈I be a covering family for U ∈ Ob(C), and let
Uij = Ui ×U Uj and Uijk = Ui ×U Uj ×U Uk for all i, j, k ∈ I. Suppose
that αi ∈ Ob(F (Ui)) for each i ∈ I and that φij : F (π2)(αj)→ F (π1)(αi)
is an isomorphism in F (Uij) for each i, j ∈ I, where π1 : Uij → Ui and
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π2 : Uij → Uj are the projection maps. If, for any triple of indices
i, j, k ∈ I, we have

F (π13)(φik) = F (π12)(φij) ◦ F (π23)(φjk)

in F (Uijk), then there exists an object α ∈ F (U) and isomorphisms
ψi : F (fi)(α)→ αi in F (Ui) such that the diagram

F (π2) ◦ F (fj)(α) F (π1) ◦ F (fi)(α)

F (π2)(αj) F (π1)(αi)

F (π2)(ψj) F (π1)(ψi)

φij

in F (Uij) commutes for all i, j ∈ I.

We write St(C) for the full 2-subcategory of Fib(C) spanned by the stacks,
and Ho(St(C)) for its homotopy category.

Remark 2.4.7. In Definition 2.4.6, condition (1) states that we can glue
morphisms, while condition (2) states that we can glue objects.

Example 2.4.8. Let F : Cop → Set be a functor. Then F is a sheaf if and
only if the associated fibred category F̃ from Example 2.4.5 is a stack.

Definition 2.4.9. Let C be a site, and let f : F → G be a morphism of
fibred categories over C. We say that f is

(1) locally fully faithful if for every U ∈ Ob(C) and every α, β ∈ Ob(F (U)),
the morphism

shHomU(α, β)→ shHomU(f(α), f(β))

is an isomorphism of sheaves on C/U ,

(2) locally essentially surjective if for every U ∈ Ob(C) and every α ∈
Ob(G(U)), there exists a cover {gi : Ui → U}i∈I of U , objects βi ∈
Ob(F (Ui)) and morphisms f(βi)→ α in G lying over gi, and

(3) a local equivalence if f is both locally fully faithful and locally essentially
surjective.

Proposition 2.4.10. Let C be a site, and let f : F → G be a morphism of
stacks over C. Then f is an equivalence if and only if f is a local equivalence.
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Proof. This follows immediately from [29, Tag 04WQ] and [29, Tag 046N].

There is an analogue of the sheafification functor for stacks in groupoids,
which we recall below.

Proposition 2.4.11 (cf. [29, Tag 02ZN] and [29, Tag 04W9]). Let p : F → C
be a category fibred in groupoids over a site C. Then there exists a stack
st(F ) and a local equivalence F → st(F ), which is unique up to unique 2-
isomorphism. Moreover, if G is any stack in groupoids over C, then the
functor

HomSt(C)(st(F ), G)→ HomFib(C)(F,G)

is an equivalence of groupoids.

Corollary 2.4.12. The construction of Proposition 2.4.11 determines a func-
tor

st : Ho(Fib(C))→ Ho(St(C)).

Corollary 2.4.13. Let f : F → G be a morphism of fibred categories over a
site C. Then f is a local equivalence if and only if

st(f) : st(F )→ st(G)

is an equivalence.

Just as for sheaves, we can push fibred categories and stacks forward
along morphisms of sites. Let f : C → D be a morphism of sites given by a
functor f−1 : D → C, and let p : F → C be a fibred category (resp. stack)
over C. The pushforward of F is the category f∗F = F with

Ob(f∗F ) =
{

(U, α)
∣∣U ∈ ObD, α ∈ ObF (f−1(U))

}
,

and

Hom((U, α),(V, β))

=
{

(g, h)
∣∣ g ∈ HomD(U, V ), h ∈ HomF (α, β), p(h) = f−1(g)

}
for (U, α), (V, β) ∈ Ob f∗F . By [29, Tag 04WB] (resp. [29, Tag 04WD]), f∗F
is a fibred category (resp. stack) over D.
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2.5 Homotopy coherence for stacks

In this section, we study some of the homotopy (or 2-category) theory of
stacks and categories fibred in groupoids. In particular, we study 2-commutative
and 2-cartesian squares, and the special cases of prefibre and fibre sequences.

Throughout this section, we fix a site C.
Let K be a small category. Define a topology on the product category

C ×Kop by declaring a family {(fi, gi) : (Ui, ki)→ (U, k)}i∈I to be a covering
if {fi : Ui → U}i∈J is a covering in C, where

J = {i ∈ I | gi is an isomorphism}.

We can now make the following definition.

Definition 2.5.1. Let K be a small category. A 2-commutative diagram
of fibred categories (resp. stacks) on C of shape K is a category fibred in
groupoids (resp. a stack) over the site C ×Kop. We write Ho(Fib(C)K) and
Ho(St(C)K) in place of Ho(Fib(C ×Kop)) and Ho(St(C ×Kop)).

Remark 2.5.2. Choosing cleavages and using the ideas of [9], Section 3.1.2,
one can show that a 2-commutative diagram as defined in Definition 2.5.1
is essentially the same as a collection of morphisms and 2-isomorphisms sat-
isfying appropriate compatibility conditions. For example, if K = � is the
commutative square,

1 2

3 4

then we can equivalently define a 2-commutative diagram of fibred categories
(resp. stacks) over C of shape K to be a diagram

F G

H K

fG

fH g

h

where F , G, H and K are fibred categories (resp. stacks) over C, together
with a 2-isomorphism η : g ◦ fG → h ◦ fH . We call such a 2-commutative
diagram a 2-commutative square. A morphism of 2-commutative squares is
a diagram
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F1 G1

H1 K1

F2 G2

H2 K2

together with 2-isomorphisms making each face 2-commutative, such that
the 2-isomorphisms together satisfy a certain compatibility condition.

Remark 2.5.3. Using Definition 2.5.1, we can define 2-commutative squares
in the 2-category St(C)� = St(C ×�op) of 2-commutative squares, as well as
more complicated diagrams.

Remark 2.5.4. If K is a small category, we can extend the stackification
functor st : Ho(Fib(C))→ Ho(St(C)) to a functor

st : Ho(Fib(C)K)→ Ho(St(C)K).

We can see this in the case K = � by using the universal property of Propo-
sition 2.4.11 to chase around the various 2-isomorphisms. For general K, we
can simply apply the stackification functor for the site C ×Kop.

Definition 2.5.5. Let pG : G → C, pH : H → C and pK : K → C be
categories fibred in groupoids over C, and let g : G → K and h : H → K
be morphisms. The (2-)fibre product of G and H over K is the category
p : G×K H → C over C, with objects

Ob(G×K H) =

{
(α, β, η)

∣∣∣∣α ∈ Ob(G), β ∈ Ob(H), η : g(α)→ h(β),
pG(α) = pK(β), and pH(η) = id

}
and morphisms given as follows. If γ1 = (α1, β1, η1) and γ2 = (α2, β2, η2) are
objects in G×K H, then a morphism γ1 → γ2 is a pair

(θG, θH) ∈ HomG(α1, α2)× HomH(β1, β2)

such that the diagram below commutes.

g(α1) g(α2)

h(β1) h(β2)

g(θG)

η1 η2

h(θH)
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The functor p : G×K H → C is given on objects by

p(α, β, η) = pG(α) = pH(β)

and on morphisms by

p(θG, θH) = pG(θG) = pH(θH).

Lemma 2.5.6 (cf. [29, Tag 026G]). In the setup above, if G, H and K are
stacks, then so is G×K H.

Suppose we have a 2-commutative square

F G

H K

fG

fH g

h

(2.5.1)

of fibred categories over C. Then we get an induced morphism

F → G×K H
α 7→ (fG(α), fH(α), η(α))

(θ : α1 → α2) 7→ (fG(θ), fH(θ)).

Definition 2.5.7. We say that a square (2.5.1) of fibred categories (resp.
stacks) is 2-cartesian if the induced morphism F → G ×K H is a local
equivalence.

Remark 2.5.8. Our definition of 2-cartesian square for fibred categories is
not the usual 2-categorical definition of 2-cartesian. The 2-categorical notion
can be recovered if we require F → G ×K H to be an equivalence instead
of a local equivalence. We have chosen our definition so that the following
proposition is true.

Proposition 2.5.9. A 2-commutative square of fibred categories is 2-cartesian
if and only if its stackification is 2-cartesian.

Proof. By [29, Tag 04Y1], the stackification functor st takes 2-fibre products
to 2-fibre products. The result now follows from Corollary 2.4.13.
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For our study of deformation theory, there is a special kind of 2-commutative
square of particular interest to us. First, observe that the identity functor
idC : C → C is a stack in groupoids over C, such that every fibre category
has exactly one object and one morphism. We call this stack the point stack
over C and denote it by ∗. Every category F fibred in groupoids over C has a
unique morphism F → ∗. We say that F is locally trivial if the map F → ∗
is a local equivalence.

Definition 2.5.10. A prefibre sequence of fibred categories (resp. stacks)
over C is a 2-commutative square

F ∗̃

G H

of fibred categories (resp. stacks) such that ∗̃ is locally trivial. A fibre sequence
is a prefibre sequence which is 2-cartesian as a 2-commutative square.

We will usually abbreviate a prefibre sequence as above by

F → G→ H

and a morphism

F1 ∗̃1

G1 H1

F2 ∗̃2

G2 H2

of prefibre sequences by

F1 G1 H1

F2 G2 H2.
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Chapter 3

Square-zero extensions and
obstruction sequences

In this chapter, we review the theory of square-zero extensions of schemes.
We use the theory of stacks developed in Chapter 2 to construct some ob-
struction sequences derived from universal properties. These obstruction
sequences form the basis for constructing obstruction theories in Chapter 5.

3.1 Square-zero extensions

In this section, we recall the theory of square-zero extensions of schemes. We
begin with an algebraic version of the definition.

Definition 3.1.1. Let C be a site, and let A→ B be a morphism of sheaves
of rings on C. A square-zero extension of B over A is a surjection B → B
such that J = ker(B → B) satisfies J2 = 0.

If p : B → B is a square-zero extension of B, then the kernel J = ker(B →
B) carries a canonical B-module structure, given by

b · j = p(b)j

for all U ∈ Ob(C), b ∈ B(U) and j ∈ J(U).

Definition 3.1.2. If J is aB-module, a square-zero extension of B by J (over
A) is a square-zero extension φ : B → B together with an isomorphism of
B-modules J ∼= kerφ. We often write this as an exact sequence

0→ J → B → B → 0

of sheaves on C. A morphism of square-zero extensions is a commutative
diagram
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0 J B1 B 0

0 J B2 B 0

idJ idB

where B1 → B2 is a morphism of A-algebras. We write ExtA(B, J) for the
category of square-zero extensions of B by J over A.

Definition 3.1.3. Let S be a scheme and let π : X → S be a scheme over
S. A square-zero extension of X over S is a square-zero extension of OX
over π−1OS on the Zariski site XZar . If J is an OX-module, a square-zero
extension of X by J is a square-zero extension of OX by J . We write

ExtS(X, J) = Extπ−1OS
(OX , J).

We will always assume that a square-zero extension of a scheme X has quasi-
coherent kernel.

Remark 3.1.4. If X is a scheme over S and J is a quasi-coherent sheaf on
X, then a square-zero extension of X by J is the same as a closed embedding
X → X of S-schemes with ideal sheaf J satisfying J2 = 0. Notice, however,
that if X1 and X2 are square-zero extensions of X, then a morphism of
extensions from X1 to X2 is a morphism of schemes X2 → X1.

While square-zero extensions of schemes are defined with respect to the
Zariski topology, it is often convenient to use the étale topology instead.

Lemma 3.1.5. Let X be a scheme, and consider the map of ringed sites
z : (Xét ,OXét

) → (XZar ,OX) of Example 2.3.6. If M is a quasi-coherent
sheaf on X, then the canonical map M → z∗z

∗M is an isomorphism.

Proof. Fix a quasi-coherent sheaf M and consider the presheaf N on Xét

given by

N(U
f−→ X) = (f ∗M)(U)

for U → X étale. By [9], Theorem 4.23, quasi-coherent sheaves form a stack
(not in groupoids) over Sch for the fpqc topology, and hence for the étale
topology. In particular,

N = e∗HomX(OX ,M)

is a sheaf on Xét . Moreover, we have a natural isomorphism

Hom(N,P ) ∼= Hom(M, z∗P )

for P an OXét
-module. So z∗M ∼= N since z∗ is left adjoint to z∗. The result

now holds by inspection.
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Remark 3.1.6. It follows immediately from Lemma 3.1.5 that the functor

z∗ : QCoh(X)→ OXét
-mod

is fully faithful. Hence, we can identify quasi-coherent sheaves with sheaves
on OXét

-mod.

Proposition 3.1.7. Let π : X → S be a scheme over S, and let J be a
quasi-coherent sheaf on X. Pushing forward along z : Xét → XZar defines
an equivalence of categories

Extπ−1OSét
(OXét

, J) ' ExtS(X, J).

Sketch of proof. The inverse functor

ExtS(X, J)→ Extπ−1OSét
(OXét

, J)

is constructed as follows. An object of ExtS(X, J) is a closed embedding
X → X of S-schemes with ideal sheaf J satisfying J2 = 0. By [13], Théorème
I.8.3, the induced morphism of sites Xét → X ét is an equivalence. Identifying
X ét with Xét , we get a square-zero extension

0→ J → OX ét
→ OXét

→ 0

over π−1OSét
. It is immediate that pushing this forward to XZar gives back

the extension
0→ J → OX → OX → 0.

Conversely, if
0→ J → B → OXét

→ 0

is a square-zero extension ofOXét
over π−1OSét

restricting toXZar to a square-
zero extension X → X of S-schemes, we need to construct a natural isomor-
phism

0 J B OXét 0

0 J OX ét
OXét 0

idJ idOXét

of square-zero extensions. It is possible to reduce this to the case where
0 → J → OX ét

→ OXét
→ 0 is the trivial extension, at which point we can

construct the isomorphism using the identification on the Zariski site and
formal étaleness (see Definition A.5.14).
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Remark 3.1.8. If X is a Deligne-Mumford stack, we need to work with the
étale site Xét from the start. For schemes, we have the luxury of working
with either the Zariski or the étale topologies.

Example 3.1.9. Let k be a field. Then

k[t]

(t2)
→ k

together with the map

k → (t)

a 7→ at

is a square-zero extension of k over k by the k-module k. The associated
map of schemes

Spec(k)→ Spec

(
k[t]

(t2)

)
is a square-zero extension of Spec(k) over Spec(k).

Example 3.1.10. Let X = Spec(B) and S = Spec(A) be affine schemes. A
square-zero extension of X over S is the same as a square-zero extension of
B over A.

Example 3.1.11. Let X be an S-scheme and let J be a quasi-coherent sheaf
on X. The trivial extension of X by J is

OX ⊕ J → OX

where OX ⊕ J is the quasi-coherent OX-algebra with multiplication

(f1, j1)(f2, j2) = (f1f2, f1j2 + f2j1)

for f1, f2 sections of OX and j1, j2 sections of J . The corresponding closed
embedding of schemes is

X → X = SpecX(OX ⊕ J)

where SpecX is the global Spec on X defined in Section A.3.

Example 3.1.12. Let k be a field. Then

Spec

(
k[x, y]

(x2 − y3)

)
→ Spec

(
k[x, y, t]

(t2, x2 − y3 + t)

)
is a square-zero extension of the affine plane curve X = Spec(k[x, y]/(x2−y3))
by OX over the base Spec(k). This extension is not the trivial extension.
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Let X be an S-scheme. If J is a quasi-coherent sheaf on X, the groupoid
ExtS(X, J) captures the global first order deformation theory of X. As
suggested in Section 1.2, it is useful to describe how these global deformations
are built from deformations of étale opens of X. To do this, we define a
category ExtS(X, J) over Xét as follows. An object of ExtS(X, J) is a pair
(U,U) where U ∈ ObXét and U ∈ Ob ExtS(U, J |U). A morphism (U,U)→
(V, V ) in ExtS(X, J) is a pair (f, g) where f : U → V is a morphism in Xét

and

0 J |U OU ét
OUét 0

0 J |U OV ét
|U OUét 0

idJ |U g idOUét

is a morphism of square-zero extensions of OUét
over π−1OSét

. The functor
ExtS(X, J)→ Xét is the natural forgetful functor.

The following proposition is straightforward given Proposition 3.1.7.

Proposition 3.1.13. The functor ExtS(X, J)→ Xét is a stack in groupoids
over the site Xét .

Remark 3.1.14. The stacks ExtS(X, J) depend functorially on S. If X, Y
and S are schemes, π : X → Y and f : Y → S are morphisms, then for any
quasi-coherent sheaf J on X, there is forgetful a morphism

ExtY (X, J)→ ExtS(X, J)

of stacks over Xét . More generally, given a small category K, a diagram
S• : K → Sch, and a morphism X → S• from the constant diagram X,
there is an associated 2-commutative diagram of stacks on Xét .

Remark 3.1.15. The stacks ExtS(X, J) also depend functorially on J . We
will not need this functoriality explicitly, so we omit the details.

3.2 Obstruction sequences for fibre products

In this section, we introduce obstruction sequences, and derive a canonical
obstruction sequence for a fibre product of schemes.
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Definition 3.2.1. Let S be a scheme, and let f : T → X be a morphism of
S-schemes. An obstruction sequence for f with respect to a quasi-coherent
sheaf J on T is a fibre sequence

ExtX(T, J)→ ExtS(T, J)→ Ob

of stacks over Tét , where ExtX(T, J)→ ExtS(T, J) is the forgetful morphism
of Remark 3.1.14.

For the motivation behind Definition 3.2.1, see Section 1.2 in the intro-
duction.

To illustrate the utility of our stack-theoretic approach to obstructions,
consider a square

X Y

Z W

j

g f

i

of schemes over S, with X = Y ×W Z. This means that for any S-scheme T ,
we have a natural isomorphism

HomS(T,X) = HomS(T, Y )×HomS(T,W ) HomS(T, Z). (3.2.1)

It is helpful to keep the following examples in mind.

Example 3.2.2. Let f : Y → W and i : Z → W be closed embeddings.
Then the fibre product X = Y ×Z W is the (scheme-theoretic) intersection
Y ∩ Z. A concrete example is the intersection

Xt = Y ∩ Zt = Proj

(
k[x, y, z]

(y, y − tx)

)
⊆ P2

k = Proj (k[x, y, z])

from Section 1.1.

Example 3.2.3. If Z = Spec(k) is a point, then i : Z → W picks out a
(k-valued) point w ∈ W , and X = Y ×W Z is the fibre f−1(w). For instance,
take

W = Spec(k[s, t]) = A2
k

and

Y = Proj

(
k[s, t, x, y]

(tx− sy)

)
⊆ W × P1

k

35



where s and t have degree 0 and x and y have degree 1. (See Section A.3 for
a description of Proj.) There is a natural map f : Y → W induced by the
projection W × P1

k → W . The fibre over any point w 6= 0 is a single point,
whereas the fibre over 0 is

X = f−1(0) = Proj

(
k[s, t, x, y]

(tx− sy, s, t)

)
∼= Proj(k[x, y]) = P1

k.

Remark 3.2.4. The “fibre of a family” picture of Example 3.2.3 can be
generalised to describe any moduli space X where we can deform the moduli
problem to get a space of the expected dimension. For example, if X is a
moduli space of maps to a target Y , we can sometimes deform Y to get a
moduli space of the correct dimension.

Returning to the general fibre product, we can construct obstruction se-
quences for X from obstruction sequences for Y , Z and W using the universal
property (3.2.1) as follows. Suppose that h : T → X is a morphism of S-
schemes, and that for some quasi-coherent sheaf J we are given fibre sequencs
and morphisms between them as follows.

ExtY (T, J) ExtS(T, J) ObY

ExtW (T, J) ExtS(T, J) ObW

ExtZ(T, J) ExtS(T, J) ObZ

(3.2.2)

We will see in Chapter 5 that there are canonical choices of such fibre se-
quences given by the cotangent complex. To construct a fibre sequence for h
with respect to J , we note that (3.2.1) implies that the square

ExtX(T, J) ExtY (T, J)

ExtZ(T, J) ExtW (T, J)

is 2-cartesian. Hence, taking the 2-fibre product of the fibre sequences in
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(3.2.2), we get a 2-commutative square of prefibre sequences

ExtX(T, J) ExtS(T, J) Ob

ExtY (T, J) ExtS(T, J) ObY

ExtZ(T, J) ExtS(T, J) ObZ

ExtW (T, J) ExtS(T, J) ObW

(3.2.3)
where

Ob = ObY ×ObW
ObZ .

Since at each place the square is 2-cartesian, a simple, if somewhat lengthy,
calculation shows that

ExtX(T, J)→ ExtS(T, J)→ Ob (3.2.4)

is a fibre sequence. Thus, (3.2.4) is an obstruction sequence for h with respect
to J .

3.3 Obstruction sequences for mapping spaces

In this section, we construct canonical obstruction sequences for spaces of
maps from a fixed domain to a fixed target. These obstruction sequences are
the basis for producing the obstruction theories for moduli spaces of maps
used in Gromov-Witten theory. (See [3], and Section 6 of [5].)

Fix a base scheme S and schemes C and Y over S. The (relative) mapping
scheme of maps from C to Y is the scheme,

X = MapS(C, Y ),

with the universal property,

HomS(T,X) = HomS(T ×S C, Y ) (3.3.1)

for all S-schemes T . Fix an S-scheme T , a map f : T → X and a quasi-
coherent sheaf J on T . There is a morphism

ExtS(T, J)→ π∗ExtS(T ×S C, π∗J)

T 7→ T ×S C
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of stacks over Tét , where π : T ×S C → T is the natural projection. From
the universal property (3.3.1), we get a 2-cartesian square as follows.

ExtX(T, J) π∗ExtY (T ×S C, π∗J)

ExtS(T, J) π∗ExtS(T ×S C, π∗J)

(3.3.2)

Suppose we are given an obstruction sequence,

ExtY (T ×S C, π∗J)→ ExtS(T ×S C, π∗J)→ ObY ,

coming, for example, from the cotangent complex for Y . (See Section 5.3.)
Then we can extend (3.3.2) to a 2-commutative diagram,

ExtX(T, J) π∗ExtY (T ×S C, π∗J)

ExtS(T, J) π∗ExtS(T ×S C, π∗J)

∗

π∗ObY

such that each square is 2-cartesian. Hence, the outer square is 2-cartesian,
which yields an obstruction sequence

ExtX(T, J)→ ExtS(T, J)→ π∗ObY .

Remark 3.3.1. In the application to Gromov-Witten theory in [3], S is
taken to be some Artin stack of nodal curves, and C is the universal curve
over S. For this application, the above calculation still works, although the
stacks of square-zero extensions need to be interpreted in the sense of [25],
Section 2.26.
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Chapter 4

Homological algebra

In Chapter 3, we introduced obstruction sequences and derived some canon-
ical obstruction sequences for fibre products and mapping spaces. As it
stands, however, these obstruction sequences are not very useful as we have
no concrete means of doing explicit computations with them.

To resolve this issue, we take our cue from the example in Section 1.2.
The natural obstruction stack appearing there can be written

Ob = [Hom(g∗i∗ΩP2 , J)/Hom(g∗ΩY ⊕ h∗ΩZt , J)].

The data needed to perform this construction is a (two-term) complex

Hom(g∗ΩY ⊕ h∗ΩZt , J)→ Hom(g∗i∗ΩP2 , J)

of sheaves on T .
Thus, we should hope that an obstruction sequence

HomX(T, J)→ HomS(T, J)→ Ob

can be constructed using tools from homological algebra, and that calcula-
tions involving stacks can be reduced to calculations with complexes.

In this chapter, we assemble the tools needed to carry this out. The
basic objects of study are, of course, complexes, which we discuss in Section
4.1. In Section 4.2, we describe how to construct stacks and categories fibred
in groupoids from complexes of sheaves. Examining which morphisms of
complexes give rise to equivalences of stacks leads us naturally to the idea
of derived categories, which we introduce in Section 4.3. In order to control
2-commutative diagrams in the world of derived categories, we introduce
some homotopy coherence formalism in Section 4.4. Finally, in Section 4.5,
we discuss how to use homological algebra to control fibre sequences and
2-cartesian squares.
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4.1 Complexes in an abelian category

In this section, we recall the notion of complexes in an abelian category.

Definition 4.1.1 (cf. [11], Section II.5). Let A be a category. We say that
A is abelian if it satisfies the following conditions.

(1) There exists an abelian group structure on every set HomA(M,N), such
that the composition maps

HomA(N,P )× HomA(M,N)→ HomA(M,P )

are bilinear.

(2) There exists an object 0 ∈ Ob(A) such that HomA(0, 0) = 0 is the zero
group.

(3) If M,N ∈ Ob(A), then there exists an object M ⊕ N ∈ Ob(A) and
morphisms

i1 : M →M ⊕N, p1 : M ⊕N →M,

i2 : N →M ⊕N, p2 : M ⊕N → N,

such that
p1 ◦ i1 = idM , p2 ◦ i1 = 0,

p2 ◦ i2 = idN , p1 ◦ i2 = 0,

i1 ◦ p1 + i2 ◦ p2 = idM⊕N .

(4) For any morphism φ : M → N in A, there exists a sequence,

K
k−→M

i−→ I
j−→ N

c−→ C,

such that j ◦ i = φ, K is the kernel of φ, C is the cokernel of φ, and I is
both the cokernel of k and the kernel of c.

Remark 4.1.2. The key point for us is that the following categories are
abelian: abelian groups, sheaves of abelian groups, modules over a ring,
modules over a sheaf of rings. In this thesis, we always work in one of these
contexts. For ease of exposition, we will often write down morphisms in terms
of elements as if A = Ab is the category of abelian groups. For the examples
of abelian categories above, these definitions can be interpreted directly in
terms of elements of an underlying set, or sections of a sheaf. We leave it to
the interested reader to think about how the constructions we describe can
be written in purely categorical terms.
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For the remainder of this section, we fix an abelian category A.

Definition 4.1.3. A complex in A is a sequence

M = [· · · d
−2

−−→M−1 d−1

−−→M0 d0−→M1 d1−→M2 d2−→ · · · ]

of objects M i in A and morphisms di : M i →M i+1 for each i ∈ Z, such that
di+1 ◦ di = 0 for all i. We say that M is bounded below if there exists i0 ∈ Z
such that M i = 0 for all i < i0. We say that M is bounded above if there exists
i0 ∈ Z such that M i = 0 for all i > i0. If M and N are complexes, a morphism
of complexes f : M → N is a collection of morphisms f i : M i → N i for i ∈ Z,
such that the diagram below commutes.

· · · M i−1 M i M i+1 · · ·

· · · N i−1 N i N i+1 · · ·

di−1
M

f i−1

diM

f i f i+1

di−1
N diN

We denote the category of complexes in A by C(A). The full subcategories
of complexes bounded below and complexes bounded above are denoted by
C+(A) and C−(A) respectively.

Definition 4.1.4. Let M be a complex and let i ∈ Z. The ith cohomology
of M is

H i(M) =
ker di

im di−1
∈ Ob(A).

We say that M is acyclic if H i(M) = 0 for all i ∈ Z.

If f : M → N is a morphism of complexes, then there are induced maps
H i(f) : H i(M)→ H i(N) for all i ∈ Z. This determines cohomology functors

H i : C(A)→ A

for each i ∈ Z.

Definition 4.1.5. Let n ∈ Z. Let C≥n(A) (resp. C≤n(A)) denote the full
subcategory of C(A) consisting of complexes M with H i(M) = 0 for i < n
(resp. i > n). If M is any complex in A, then the truncations of M are

τ≥nM = [· · · → 0→ coker dn−1 dn−→Mn+1 dn+1

−−−→Mn+2 dn+2

−−−→ · · · ]
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and

τ≤nM = [· · · d
n−3

−−−→Mn−2 dn−2

−−−→Mn−1 dn−1

−−−→ ker dn+1 → 0→ · · · ].

This defines a pair of functors,

τ≥n : C(A)→ C≥n(A) and τ≤n : C(A)→ C≤n(A).

Ifm,n ∈ Z withm ≤ n, then we write C [m,n](A) for the category of complexes
M with M i = 0 for i < m and i > n, and we write

τ [m,n] = τ≤n ◦ τ≥m = τ≥m ◦ τ≤n.

Remark 4.1.6. If M is a complex in A and n ∈ Z, then there is a canonical
morphism M → τ≥nM which induces isomorphisms

H i(M)→ H i(τ≥nM)

for all i ≥ n. Similarly, there is a morphism τ≤nM → M inducing isomor-
phisms on cohomology in degrees ≤ n.

4.2 From complexes to stacks

Let (C, A) be a ringed site. For brevity, we write C(A) in place of C(A-mod),
and similarly for the bounded analogues. The purpose of this section is to
define a functor ch : C(A)→ Ho(St(C)), and study a few of its properties.

We build the functor ch in several stages. First, given a complex

M = [· · · → 0→M−1 d−→M0 → 0→ · · · ]

in C [−1,0](A), define a category pch(M) fibred in groupoids over C as follows.
For each U ∈ Ob(C), we set

Ob(pch(M)(U)) = M0(U)

and
Hom(u, v) = {w ∈M−1(U) | dw = v − u}

for u, v ∈ M0(U). The composition in pch(M)(U) is given by addition in
M−1(U) and the restriction functors are given on objects and morphisms by
the restriction maps for M0 and M−1 respectively. If
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M−1 M0

N−1 N0

dM

f−1 f 0

dN

is a morphism of complexes, then there is an induced morphism of fibred
categories pch(f) : pch(M)→ pch(N) given on objects and morphisms by

pch(f)(u) = f 0(u), and pch(f)(w) = f−1(w),

for u ∈ M0(U) and w ∈ M−1(U). This defines a functor pch : C [−1,0](A) →
Fib(C) from the category of complexes in degree [−1, 0] to the category of
fibred categories over C. (Here we regard Fib(C) as a category by ignoring
2-isomorphisms.)

Composing pch : C [−1,0](A)→ Fib(C) with the truncation functor τ [−1,0] :
C(A)→ C [−1,0](A) gives a functor

pch : C(A)→ Fib(C).

Applying the stackification functor st : Ho(Fib(C)) → Ho(St(C)), we get a
functor

ch = st ◦ pch : C(A)→ Ho(St(C)).

Remark 4.2.1. If
M =

[
M−1 →M0

]
is a complex in C [−1,0](A), the stack ch(M) is often called the stack quotient
of M0 by M−1 and denoted

ch(M) =
[
M0/M−1

]
.

This is the notation we have used in Section 1.2.

Proposition 4.2.2. Let (C, A) be a ringed site and let f : M → N be a
morphism in C(A). Then

(1) pch(f) is locally fully faithful if and only if H−1(f) is an isomorphism
and H0(f) is injective, and

(2) pch(f) is locally essentially surjective if and only if H0(f) is surjective.

In particular, pch(f) : pch(M) → pch(N) is a local equivalence if and only
if H0(f) and H−1(f) are isomorphisms of sheaves.
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Corollary 4.2.3. Let f : M → N be a morphism in C(A). Then ch(f) :
ch(M) → ch(N) is an equivalence if and only if H−1(f) and H0(f) are
isomorphisms.

Proof of Proposition 4.2.2. By construction of pch, we may assume without
loss of generality that M,N ∈ ObC [−1,0](A).

To prove (2), notice that H0(M) and H0(N) are the sheaves associated
to the presheaves,

U 7→ coker(M−1(U)→M0(U)) = π0pch(M)(U)

and
U 7→ coker(N−1(U)→ N0(U)) = π0pch(N)(U).

Here π0pch(M)(U) (resp. π0pch(N)(U)) denotes the set of isomorphism
classes of the groupoid pch(M)(U) (resp. pch(N)(U)). The map of presheaves,

π0pch(f) : π0pch(M)→ π0pch(N),

is locally surjective if and only if pch(f) is locally essentially surjective. Since
sheafification preserves local surjectivity, pch(f) is therefore locally essen-
tially surjective if and only if H0(f) is surjective.

To prove (1), assume first that pch(f) is locally fully faithful. Then for
every U ∈ Ob C,

H−1(M)|U = shHomU(0, 0)
H−1(f)−−−−→ shHomU(0, 0) = H−1(N)|U

is an isomorphism. So H−1(f) is an isomorphism. Moreover, since H0(M)
and H0(N) are the sheafifications of π0pch(M) and π0pch(N) respectively,
by Proposition 2.1.11, H0(f) is injective if and only if the map of presheaves

π0pch(f) : π0pch(M)→ π0pch(N)

is locally injective. This is easily seen to hold since pch(f) is locally fully
faithful.

Conversely, assume that H−1(f) is an isomorphism and H0(f) is injective.
Let U ∈ Ob(C) and let u, v ∈ Ob pch(M)(U) = M0(U). Then

Hompch(M)(U)(u, v) = {w ∈M−1(U) | u+ dMw = v}

and

Hompch(N)(U)(f
0(u), f 0(v)) = {w ∈ N−1(U) | f 0(u) + dNw = f 0(v)}.
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To show that pch(f) is locally fully faithful, it suffices to show that

Hom(u, v)→ Hom(f 0(u), f 0(v))

w 7→ f−1(w)

is a bijection.
To show injectivity, suppose that w,w′ ∈ Hom(u, v) and f−1(w) = f−1(w′).

Then dM(w − w′) = 0 so w − w′ ∈ H−1(M) and H−1(f)(w − w′) = 0. But
H−1(f) is an isomorphism, so w = w′.

To show surjectivity, let w ∈ Hom(f 0(u), f 0(v)). Then f 0(v − u) = dNw,
so

H0(f)(v − u) = 0 ∈ H0(N).

Since H0(M) → H0(N) is injective, we have v − u = 0 in H0(M). Hence,
there exists a covering {gi : Ui → U}i∈I and sections xi ∈M−1(Ui) such that
dMxi = M0(gi)(v − u). Therefore,

f−1(xi)−N−1(gi)(w) ∈ H−1(N)(Ui).

Since H−1(f) is an isomorphism, there exists yi ∈ H−1(M)(Ui) such that

N−1(gi)(w)− f−1(xi) = f−1(yi)

and hence
N−1(gi)(w) = f−1(w̃i)

where w̃i = xi + yi. Moreover, since the f−1(w̃i) glue in N−1, we can check
using the injectivity of H−1(f) that the w̃i glue in M−1 to give a section
w̃ ∈M−1(U) which satisfies dM w̃ = v − u and f−1(w̃) = w. So the map

Hompch(M)(U)(u, v)→ Hompch(N)(U)(f
0(u), f 0(v))

is surjective, which completes the proof of (1).

Remark 4.2.4. The functor ch : C(Sh(C,Ab)) → Ho(St(C)) appears in
[2], XVIII.1.4.11. There, it is noted that the stacks ch(M) naturally have
the structure of a Picard stack, i.e. a stack with a well-behaved notion of
addition. It is shown ([2], Proposition XVIII.1.4.15) that the ch defines an
equivalence between the truncated derived category D[−1,0](Sh(C,Ab)) (see
Section 4.3) and the category of Picard stacks on C. A similar result should
hold for ch : C(A) → Ho(St(C)), where Picard stacks are replaced with
an appropriately defined notion of A-linear Picard stacks. We do not need
this extra structure in this work, although it does fit well into the study of
obstruction theories.
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4.3 Derived categories

Given a ringed site (C, A) and two complexes M and N , the stacks ch(M) and
ch(N) can be equivalent even if the truncations τ [−1,0](M) and τ [−1,0](N) are
not isomorphic. This allows us to write down plenty of morphisms ch(M)→
ch(N) which do not come from morphisms M → N .

Derived categories resolve this issue as follows: while a morphism ch(M)→
ch(N) may not come from a morphism M → N in C(A), it turns out that
all the morphisms of interest to us come from morphisms M → N in the
derived category D(A).

In this section, we introduce the derived category of an abelian category.
We fix throughout an abelian category A.

Definition 4.3.1. Let f : M → N be a morphism of complexes in A. We
say that f is a quasi-isomorphism if for all i ∈ Z, the induced map

H i(f) : H i(M)→ H i(N)

is an isomorphism.

The derived category D(A) is obtained by formally inverting all quasi-
isomorphisms in C(A). More precisely, D(A) is characterised by the following
universal property.

Definition 4.3.2 (cf. [11], Definition-Theorem III.2.1). The derived category
of A is a category D(A) equipped with a functor Q : C(A)→ D(A) satisying
the following conditions.

(1) If f : A → B is a quasi-isomorphism of complexes, then Q(f) is an
isomorphism in D(A).

(2) If F : C(A)→ C is a functor such that F (f) is an isomorphism whenever
f is a quasi-isomorphism, then there exists a unique functor F̃ : D(A)→
C such that F̃ ◦Q = F .

The bounded below and bounded above derived categories D+(A) and D−(A)
are defined similarly by replacing C(A) by C+(A) and C−(A) respectively.

Remark 4.3.3. By [11], Definition-Theorem III.2.1, the pair (D(A), Q) ex-
ists and is unique up to isomorphism.

Remark 4.3.4. It follows from the definition that the objects of D(A) are
all of the form Q(M) for some M ∈ Ob(A). We will usually suppress the
functor Q and simply write M instead of Q(M) when there is no danger of
confusion.

46



Remark 4.3.5. The derived category D(A) has a much coarser notion of
isomorphism than the category C(A). To emphasise this, we will often use
the symbol ' instead of ∼= to denote isomorphism in D(A).

Remark 4.3.6. Let (C, A) be a ringed site. It follows immediately from
Definition 4.3.2 and Proposition 4.2.2 that ch : C(A)→ Ho(St(C)) descends
to a functor

ch : D(A)→ Ho(St(C))

where D(A) = D(A-mod).

The derived category D(A) posesses the following structure. If M ∈
Ob(C(A)) is a complex in A and n ∈ Z, the nth translation of M is the
complex M [n] with

M [n]i = Mn+i and diM [n] = (−1)ndn+i
M for all i ∈ Z.

If f : M → N is a morphism of complexes, we set f i[n] = f i+n for all i ∈ Z.
This defines a functor −[n] : C(A)→ C(A) for each n ∈ Z. As these functors
send quasi-isomorphisms to quasi-isomorphisms, they descend to functors

−[n] : D(A)→ D(A).

Translation functors for D+(A) and D−(A) are defined similarly.
Let f : M → N be a morphism of complexes in A. The mapping cone of

f is the complex Cone(f) given by

Cone(f)i = M i+1 ⊕N i

with differential given by

di(u, v) = (−di+1
M (u), f i+1(u) + diN(v)) for u ∈M i+1 and v ∈ N i.

(See Remark 4.1.2.) There is a canonical morphism Cone(f)→M [1], giving
a sequence

M
f−→ N → Cone(f)→M [1]

in C(A), which descends to a corresponding sequence in D(A) via the functor
Q.

Definition 4.3.7. A triangle in D(A) is a diagram of the form

M → N → P →M [1].

A morphism of triangles is a commutative diagram in D(A) as follows.
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M N P M [1]

M ′ N ′ P ′ M ′[1]

We write ∆D(A) for the corresponding category of triangles in D(A). We
say that a triangle is distinguished if it is isomorphic in ∆D(A) to a triangle
of the form

M
f−→ N → Cone(f)→M [1],

for some morphism of complexes f : M → N .

Remark 4.3.8. Let
0→M

f−→ N
g−→ P → 0

be a sequence of complexes such that g ◦ f = 0. Then there is a morphism
φ : Cone(f)→ P given by

φi : Cone(f)i = M i+1 ⊕N i → P

(u, v) 7→ gi(v).

Moreover, if for each i ∈ Z the sequence

0→M i f i−→ N i gi−→ P i → 0

is exact, then φ : Cone(f)→ P is a quasi-isomorphism. Composing φ−1 with
the morphism Cone(f)→M [1] gives a triangle

M
f−→ N

g−→ P →M [1]

in D(A). This triangle is distinguished since the diagram

M N Cone(f) M [1]

M N P M [1]

in D(A) commutes, and each vertical arrow is an isomorphism.
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Proposition 4.3.9 (cf. [11], Theorem III.4.6). Let A be an abelian category,
and let

M
f−→ N

g−→ P
h−→M [1]

be a distinguished triangle in D(A). Then the sequence

· · · → H i(M)
Hi(f)−−−→ H i(N)

Hi(g)−−−→ H i(P )
Hi(h)−−−→ H i+1(M)→ · · ·

is exact. Here we note that H i(M [1]) = H i+1(M).

Remark 4.3.10. The translation functors and distinguished triangles give
D(A) (and its bounded analogues) the structure of a triangulated category.
For a discussion of triangulated categories, see [11], Chapter IV or [17], Chap-
ter I, Section 1.

4.4 Homotopy coherence for complexes

In this section, we set up some formalism for dealing with homotopy coher-
ence of complexes. For convenience we work with the unbounded derived
category D(A). The theory for the bounded versions is identical.

To see why such a formalism is useful, suppose that we want to construct
an obstruction sequence

ExtX(T, J)→ ExtS(T, J)→ Ob (4.4.1)

by applying the functor ch to some structure defined using complexes. Recall
that a fibre sequence (4.4.1) is really a 2-commutative diagram as follows.

ExtX(T, J) ∗

ExtS(T, J) Ob

This includes a 2-isomorphism as part of the data, so to construct a fibre
sequence from objects in a derived category, we need some way of keeping
track of 2-isomorphisms. It is straightforward to check that 2-isomorphisms
of morphisms ch(M) → ch(N) correspond to chain homotopies in the sense
of [11], III.1.2. The tricky part is keeping track of these homotopies when we
pass to the derived category D(A).

There are several approaches to homotopy coherence available in the lit-
erature. A very natural approach is to use∞-categories, which keep track of
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homotopies and higher homotopies as well as objects and morphisms. In this
framework, we replace the derived category D(A) with an ∞-category D(A)
and the functor ch : D(A) → Ho(St(C)) with an ∞-functor D(A) → St(C)
to the 2-category of stacks over C. These derived∞-categories are discussed,
for example, in [23], Section 1.3.

Unfortunately, the theory of∞-categories is rather technical, and a proper
discussion would take us too far afield. There is a gentler approach to ho-
motopy coherence using the theory of model categories, which is dicussed,
for example, in [12], Chapter VIII. In model category theory, homotopy co-
herent diagrams can be described using resolutions by strictly commutative
diagrams. We use this idea and the formalism of derived categories already
at our disposal to capture the homotopy coherence we need.

If A and K are categories with A abelian, then the category AK of
diagrams of shape K in A is abelian. Hence, we can construct the derived
category D(AK), which we call the category of homotopy coherent diagrams
of shape K in D(A). There is a canonical functor D(AK) → D(A)K from
homotopy coherent diagrams to commutative diagrams in D(A).

As a special case, consider the derived category D(A�) of diagrams of
the form

M N

P Q

in A. This is formed from the category C(A�) of commutative squares of
complexes by inverting morphisms of diagrams,

M N

P Q

M̃ Ñ

P̃ Q̃

for which each vertical arrow is a quasi-isomorphism. We call an object of
D(A�) a homotopy coherent square in D(A).

Remark 4.4.1. The category of homotopy coherent diagrams D(AK) in
D(A) cannot be constructed from the category D(A) alone. Instead, we
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should think of it as extra information about homological algebra that is lost
when we pass from C(A) to D(A).

Definition 4.4.2 (cf. Definition 2.5.10). Let A be an abelian category.
The category of coherent triangles in D(A) is the full subcategory D(A)∆

of D(A�) consisting of squares

M ∗

N P

such that the complex ∗ is quasi-isomorphic to 0. We will often abuse nota-
tion and write a coherent triangle as above by

M → N → P

and a morphism of coherent triangles as follows.

M N P

M̃ Ñ P̃

Let

M ∗

N P

p

f q

g

be a coherent triangle in D(A). If ∗ = 0 as complexes, then there are induced
maps

Cone(f)→ P M → Cone(g)[−1]

M i+1 ⊕N i → P i M i → N i ⊕ P i−1

(u, v) 7→ gi(v) u 7→ (−f i(u), 0)

of complexes. For general ∗ ' 0, we get

Cone(f)
∼←− Cone(M

(f,−p)−−−→ N ⊕ ∗)→ P
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and
M → Cone(N ⊕ ∗ g+q−−→ P )[−1]

∼←− Cone(g)[−1]

which give morphisms Cone(f)→ P and M → Cone(g)[−1] in D(A).

Proposition 4.4.3. In the setup above, the map Cone(f) → P is an iso-
morphism in D(A) if and only if the map M → Cone(g)[−1] is.

Definition 4.4.4. We say that a coherent triangle in D(A) is exact if it
satisfies the equivalent conditions of Proposition 4.4.3. We write D(A)ex for
the full subcategory of D(A)∆ consisting of exact triangles.

Remark 4.4.5. In the language of [23], Proposition 4.4.3 is essentially the
assertion that the derived ∞-category of A is stable.

Let
M

f−→ N → P

be an exact triangle in D(A). Then the diagram

P
∼←− Cone(f)→M [1]

gives a triangle,

M
f−→ N → P →M [1],

in D(A). This determines a functor,

D(A)ex → ∆D(A),

from the category of exact triangles to the category of triangles in D(A). The
essential image of this functor is precisely the subcategory of distinguished
triangles.

Example 4.4.6. Let
0→M → N → P → 0

be an exact sequence of complexes. Then the associated coherent triangle,

M 0

N P

is exact. The image of this exact triangle under the functor D(A)ex →
∆D(A) is the distinguished triangle described in Remark 4.3.8.
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Example 4.4.7. Let f : M → N be a morphism of complexes. Then we
have a canonical exact triangle

M Cone(M)

N Cone(f)

f

where Cone(M) = Cone(idM) ' 0.

It is also useful to generalise the notion of exactness to arbitrary homotopy
coherent squares. One way to do this is to fall back on exact triangles as
follows. Given a homotopy coherent square,

M P

N Q

p

f q

g

there is an associated coherent triangle as follows.

M 0

N ⊕ P Q

(f,−p)
g + q

This construction preserves quasi-isomorphisms of diagrams, so defines a
functor D(A�) → D(A)∆. We say that a homotopy coherent square is
homotopy cartesian if the associated coherent triangle is exact. It is clear
from the definitions that a coherent triangle is exact if and only if it is
homotopy cartesian when considered as a homotopy coherent square.

Remark 4.4.8. Fix a small category K and let C(AK) = C(A-modK)
denote the category of commutative diagrams of complexes of A-modules.
The functor

pch : C(A)→ Fib(C)

determines a functor
pch : C(AK)→ Fib(C)K ,
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which takes a commutative diagram of complexes to the associated strictly
commutative diagram of fibred categories. Composing with st, we get a
functor,

ch : D(AK)→ Ho(St(C)K),

from homotopy coherent diagrams in D(A) to 2-commutative diagrams in
St(C).

4.5 Exactness of the functor ch

In this section, we prove an exactness result for the functor ch. The main idea
is that homotopy cartesian squares in D≥−1(A) map to 2-cartesian squares
in St(C). This is the basis for using homological methods to compute fibre
sequences of stacks.

In fact, since ch(M) depends only on τ≤0M , we can get 2-cartesian
squares of stacks from homotopy coherent squares that are not quite homo-
topy cartesian. This flexibility is very important in the study of obstruction
theories: it is the reason why a given space can have more than one obstruc-
tion theory, and hence why our formalism can capture virtual fundamental
classes which differ from the actual fundamental class.

Definition 4.5.1. Let A be an abelian category. A (−∞, 0]-left exact tri-
angle in D(A) is a coherent triangle,

M → N
g−→ P,

in D(A) such that the induced map

τ≤0M → τ≤0Cone(g)[−1]

is an isomorphism in D≤0(A). A (−∞, 0]-cartesian square in D(A) is a
homotopy coherent square in D(A) such that the associated coherent triangle
is (−∞, 0]-left exact.

Theorem 4.5.2. Let (C, A) be a ringed site, and let

M P

N Q

p

f q

g

(4.5.1)

be a homotopy coherent square in D≤0(A). Then the 2-commutative square
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ch(M) ch(P )

ch(N) ch(Q)

p

f q

g

is 2-cartesian if and only if (4.5.1) is (−∞, 0]-cartesian.

Proof. Observe that the truncation functor τ≤0 : D(A)→ D≤0(A) preserves
(−∞, 0]-cartesian squares. So we may assume without loss of generality that
M,N,P,Q ∈ ObD[−1,0](A). We need to show that the induced map

ch(M)→ ch(P )×ch(Q) ch(N)

is an equivalence of stacks. Since stackification commutes with 2-fibre prod-
ucts by Proposition 2.5.9, it suffices to show that the map

pch(M)→ pch(P )×pch(Q) pch(N)

is a local equivalence if and only if (4.5.1) is (−∞, 0]-cartesian. For U ∈
Ob(C), the groupoid (pch(P )×pch(Q) pch(N))(U) has objects{

(u, v, w) ∈ N0 ⊕ P 0 ⊕Q−1
∣∣dQw = g0(u)− q0(v)

}
and morphisms

Hom((u1, v1, w1),(u2, v2, w2))

=

(x, y) ∈ N−1 ⊕ P−1

∣∣∣∣∣∣∣
u2 − u1 = dNx

v2 − v1 = dPy

w2 − w1 = g−1(x)− q−1(y)

 .

Observe that this is precisely pch(R), where R is the complex

N−1 ⊕ P−1 N0 ⊕ P 0 ⊕Q−1 Q0

(x, y) (dNx, dPy, g
−1(x)− q−1(y))

(u, v, w) g0(u)− q0(v)− dQw.

There is an isomorphism

Cone(N ⊕ P g+q−−→ Q)[−1]→ R
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given by negating the summands N−1 and N0. The morphism of fibred
categories

pch(M)→ pch(P )×pch(Q) pch(N) ∼= pch(Cone(N ⊕ P g+q−−→ Q)[−1])

is induced by the morphism of complexes

M → Cone(N ⊕ P g+q−−→ Q)[−1]

M i → N i ⊕ P i ⊕Qi−1

u 7→ (−f i(u), pi(u), 0).

Hence, by Proposition 4.2.2, the map

pch(M)→ pch(P )×pch(Q) pch(N)

is an equivalence of stacks if and only if

τ [−1,0]M → τ [−1,0]Cone(N ⊕ P → Q)[−1]

is an isomorphism in D(A). But this is precisely the condition for the square
(4.5.1) in D≥−1(A) to be (−∞, 0]-cartesian, so we are done.

Corollary 4.5.3. Let
M → N → P (4.5.2)

be a coherent triangle in D≥−1(A). Then the prefibre sequence

ch(M)→ ch(N)→ ch(P )

is a fibre sequence if and only if (4.5.2) is (−∞, 0]-left exact.

To apply Corollary 4.5.3 in practice, we need a method for constructing
(−∞, 0]-left exact triangles. An effective way to do this is the following. Let

M → N → P

be an exact triangle in D(A). If P → Q is a morphism in D(A), we can form
a coherent triangle

M → N → Q

by composition. For reasons of homotopy coherence, this procedure is slightly
delicate: we treat it properly in Proposition 4.5.4 below. If we have a distin-
guished triangle

R→ P → Q→ R[1]

with τ≤0R ' 0, then Proposition 4.5.5 below ensures that the associated
coherent triangle is (−∞, 0]-left exact.
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Proposition 4.5.4. Let A be an abelian category. Let

M → N → P (4.5.3)

be a coherent triangle in D(A) and let P → Q be a morphism. Then there
exists a coherent triangle

M̃ → Ñ → Q

and a morphism of coherent triangles

M N P

M̃ Ñ Q

such that M → M̃ and N → Ñ are isomorphisms in D(A) and P → Q is
the given morphism. Moreover, these data are unique up to isomorphism.

We omit the proof of Proposition 4.5.4, as it is a little involved but not
terribly hard. The idea is to use cones and cylinders as in the proof of Theo-
rem III.4.4 of [11] to replace the coherent triangle (4.5.3) with an isomorphic
coherent triangle,

M̃ → Ñ → P̃ ,

for which P → Q can be represented by a morphism of complexes P̃ → Q.

Proposition 4.5.5. Let A be an abelian category, let

M → N
g−→ P (4.5.4)

be an exact triangle in D(A), and let

R→ P
h−→ Q→ R[1]

be a distinguished triangle. If τ≤0R ' 0, then the coherent triangle

M → N → Q

constructed using Proposition 4.5.4 is (−∞, 0]-left exact.

Proof. By replacing the exact triangle M → N → P with a quasi-isomorphic
one, we can assume without loss of generality that P → Q is a morphism
of complexes. We need to show that the morphism M → Cone(h ◦ g)[−1]
induces isomorphisms on cohomology in degrees ≤ 0. This factors as

M → Cone(g)[−1]→ Cone(h ◦ g)[−1],
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so, since (4.5.4) is exact, it suffices to show that the latter morphism induces
isomorphisms on cohomology in degrees ≤ 0. Notice that since τ≤0R ' 0,
the long exact sequence associated to

R→ P
h−→ Q→ R[1]

shows that H i(h) is an isomorphism for i < 0 and H0(h) is an injection. The
result now follows by diagram chasing applied to the morphism of long exact
sequences associated to the following morphism of distinguished triangles.

N P Cone(g) N [1]

N Q Cone(h ◦ g) N [1]

g

idN h idN [1]

h ◦ g

58



Chapter 5

Obstruction theories

In this chapter, we apply the tools of Chapter 4 to the study of square-zero
extensions and obstruction sequences. The key technical addition in this
chapter is the cotangent complex, which we introduce in Section 5.2. The
cotangent complex can be used to compute stacks of square-zero extensions
explicitly, and its exactness properties give us an elegant way to manipu-
late obstruction sequences. In Section 5.3, we define obstruction theories
using the cotangent complex, and characterise them in terms of obstruction
sequences.

The cotangent complex of an S-scheme X is only well-defined up to iso-
morphism in D(OX). Thus, it is essential to have versions of usual functors
for sheaves (such as pullbacks and Hom sheaves) which descend to the de-
rived category D(OX). This is a slightly delicate issue, which is dealt with
using the theory of derived functors in Section 5.1.

5.1 Derived functors

Suppose that A and B are abelian categories, and that F : C(A)→ C(B) is
a functor. In this section, we study ways in which F can induce a functor
D(A)→ D(B) between derived categories.

If F : C(A) → C(B) takes quasi-isomorphisms to quasi-isomorphisms,
then by Definition 4.3.2, F descends to a functor F : D(A) → D(B) such
that QB ◦F = F ◦QA. This is the case, for example, if F is given by applying
an exact functor A → B termwise. Many functors of interest, however, do
not preserve quasi-isomorphisms, and therefore do not descend directly to
functors D(A) → D(B). The idea of a derived functor is to take instead a
functor D(A) → D(B) which is the best possible approximation to F . We
make this precise below.
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Definition 5.1.1 (cf. [11], Definition III.6.6 and [17], Section 1.5). Let A
and B be abelian categories and let F : C+(A)→ C(B) be an exact functor.
A right derived functor for F is a functor

RF : D+(A)→ D(B)

together with a natural transformation εF : QB ◦F → RF ◦QA such that for
any functor G : D+(A)→ D(B) and any natural transformation ε : QB◦F →
G ◦QA, there exists a unique natural transformation η : RF → G such that
the following diagram commutes.

QB ◦ F RF ◦QA

G ◦QA

εF

ε
η

If F : C−(A) → C(B) is an exact functor, a left derived functor LF :
D−(A) → D(B) is defined dually by replacing + with − and reversing all
arrows.

Remark 5.1.2. It is immediate from the definition that derived functors are
unique up to unique isomorphism if they exist.

Derived functors exist for a fairly large class of functors. To construct,
say, a right derived functor for F : C+(A) → C(B), we first find a class of
objectsR inA, closed under direct sums, such that F takes acyclic complexes
in C+(R) to acyclic complexes in C(B), and such that every object of A
admits an injection into an object of R. As long as F satisfies the further
technical hypothesis that it descends to an exact functor between categories
of complexes up to homotopy, the right derived functor RF : D+(A)→ D(B)
is defined by

RF (M) = F (M̃),

where we choose a quasi-isomorphism i : M → M̃ , with M̃ ∈ C+(R). We call
M → M̃ an R-resolution of M . The natural transformation εF : QB ◦ F →
RF ◦QA is given by

(εF )M = F (i) : F (M)→ F (M̃) = RF (M).

There is an analogous construction for left derived functors, given by revers-
ing arrows. For the full details of this construction, and the proof that it
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gives a well-defined functor which satisfies the universal property of Defini-
tion 5.1.1, see [11], Theorem III.6.8 or [17], Theorem I.5.1.

As an example, consider the following class of objects in a general abelian
category A.

Definition 5.1.3. Let A be an abelian category. An object I ∈ Ob(A)
is called injective if for any injection i : M → N in A and any morphism
f : M → I, there exists a morphism g : N → I such that the diagram below
commutes.

M I

N

f

i g

Definition 5.1.4. Let A be an abelian category. We say that A has enough
injectives if for every M ∈ ObA, there exists an injective object I and an
injective map M → I.

Proposition 5.1.5 (cf. [11], Theorem III.6.12). Let A and B be abelian
categories, and let F : A → B be a left exact functor. If A has enough
injectives, then F : C+(A) → C+(B) has a right derived functor, which can
be computed using injective resolutions.

The main examples of derived functors of interest to us are left derived
pullbacks and right derived mapping complexes. We introduce these below.

Let f : (C, A)→ (C, B) be a morphism of ringed sites. Recall from Section
2.3 that we have a pullback functor

f ∗ : B-mod→ A-mod.

This has a left derived functor

Lf ∗ : D−(B)→ D−(A)

defined using flat resolutions.

Definition 5.1.6. Let (C, A) be a ringed site, and let M be an A-module.
We say that M is flat if the functor M ⊗A − : A-mod→ A-mod is exact.

LetK be a small category. A morphism of ringed sites f : (C, A)→ (D, B)
extends in a canonical way to a morphism f : (C×Kop, AK)→ (D×Kop, BK),
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where AK and BK are the sheaves corresponding to the constant diagrams
at A and B. Hence, we get a left derived functor

Lf ∗ : D−(BK)→ D−(AK).

For each k ∈ ObK, we have “evaluation at k” functors D−(BK) → D−(B)
and D−(AK)→ D−(A) such that the diagram below commutes.

D−(BK) D−(AK)

D−(A) D−(B)

Lf ∗

Lf ∗

Derived functors usually extend to homotopy coherent diagrams in this way.
The derived functor Lf ∗ is exact in the following sense.

Proposition 5.1.7. Let f : (C, A)→ (D, B) be a morphism of ringed sites,
and let

M → N → P

be an exact triangle in D−(B). Then the coherent triangle

Lf ∗M → Lf ∗N → Lf ∗P

in D−(A) is exact.

Proof. This follows immediately from the fact that f ∗ : C−(B) → C−(A)
commutes with taking cones, and takes quasi-isomorphisms between com-
plexes of flat modules to quasi-isomorphisms.

Remark 5.1.8. It follows immediately from Proposition 5.1.7 that Lf ∗ :
D−(B) → D−(A) commutes with the translation functors and takes distin-
guished triangles to distinguished triangles. This is the exactness property
for derived functors used, for example, in [11]. For our purposes, the coherent
version of exactness of Proposition 5.1.7 is important for computations with
stacks.

The following properties of Lf ∗ are useful to keep in mind.

Proposition 5.1.9. Let f : (C, A)→ (D, B) be a morphism of ringed sites.

(1) If V ∈ Ob(D) and U = f−1(V ) ∈ Ob C, then there is a natural isomor-
phism

Lf ∗(M |V ) ' Lf ∗(M)|U
for M ∈ ObD−(B).
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(2) If n ∈ Z, then there is a natural isomorphism

τ≥nLf ∗M ' τ≥nLf ∗(τ≥nM)

for M ∈ ObD−(B).

We now turn to the study of derived mapping complexes.

Definition 5.1.10. Let (C, A) be a ringed site and let M and N be A-
modules. The Hom sheaf of M and N is the A-module Hom(M,N) given
by

Hom(M,N)(U) = Hom(M |U , N |U)

for U ∈ Ob C.

Definition 5.1.11 (cf. [17], Section II.3). Let (C, A) be a ringed site. If
M,N ∈ Ob(C(A)) are complexes of A-modules, the mapping complex of M
and N is the complex of A-modules Hom•(M,N) with ith term

Homi(M,N) =
∏
j∈Z

Hom(M j, N i+j)

and differential

di((f j)j∈Z) = (f j+1 ◦ djM + (−1)i+1di+jN ◦ f j)j∈Z

for i ∈ Z.

Remark 5.1.12. There is a version of Definition 5.1.11 for more general
abelian categories which uses the abelian groups Hom(M j, N i+j) in place of
the sheaves Hom(M j, N i+j). This global mapping complex is useful for com-
puting global Ext groups, for example, whereas the local mapping complex
we use is more relevant when working with stacks.

The mapping complex defines a functor

Hom• : C(A)op × C+(A)→ C(A).

This has a right derived functor

RHom• : D(A)op ×D+(A)→ D(A)

characterised by a universal property similar to Definition 5.1.1. The con-
struction is by taking injective resolutions in the second variable and relies
on the following theorem.

63



Theorem 5.1.13 (cf. [29, Tag 01DU]). Let (C, A) be a ringed site. Then
the category A-mod has enough injectives.

Just as for Lf ∗, the derived functor RHom• has good homotopy coherence
and exactness properties. If K is a small category, then we have functors

Hom•(−,−) : C(AK
op

)op × C+(A)→ C(AK)

and
Hom•(−,−) : C(A)op × C+(AK)→ C(AK).

Since AK-mod has enough injectives by Theorem 5.1.13 applied to the ringed
site (C ×Kop, AK), we can form right derived functors

RHom•(−,−) : D(AK
op

)×D+(A)→ D(AK)

and
RHom•(−,−) : D(A)×D+(AK)→ D(AK)

by taking injective resolutions in the second factor. These are compatible
with the basic functor D(A) × D+(A) → D(A) under evaluation at each
object in K.

The following properties are straightforward and well-known.

Proposition 5.1.14. The functor RHom•(−,−) is exact in each variable in
the following sense.

(1) If
M → N → P

is an exact triangle in D+(A) and Q ∈ ObD(A), then

RHom•(Q,M)→ RHom•(Q,N)→ RHom•(Q,P )

is an exact triangle in D(A).

(2) If
M → N → P

is an exact triangle in D(A) and Q ∈ ObD+(A), then

RHom•(P,Q)→ RHom•(N,Q)→ RHom•(M,Q)

is an exact triangle in D(A).

Proposition 5.1.15. Let (C, A) be a ringed site.
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(1) If U ∈ Ob C, then there is a natural isomorphism

RHom•(M |U , N |U) ' RHom•(M,N)|U
for M ∈ ObD(A) and N ∈ ObD+(B).

(2) If m,n ∈ Z then there is a natural isomorphism

τ≤mRHom•(M,N) ' τ≤mRHom•(τ≥n−mM,N)

for M ∈ ObD(A) and N ∈ ObD≥n(A).

5.2 The cotangent complex

In this section, we give a brief introduction to the theory of cotangent com-
plexes, following the work of L. Illusie in [19]. We give a more detailed
treatment in Appendix B.

In what follows, for X a scheme, we write D(X) = D(OXét
), and Dqc(X)

for the full subcategory of D(X) of objects with quasi-coherent cohomology.
(See Remark 3.1.6.)

Let X → S be a morphism of schemes. The cotangent complex LX/S
is an object in D≤0

qc (X), which generalises the cotangent sheaf of a smooth
morphism of schemes. When restricted to smooth morphisms, the cotangent
sheaf has very good exactness properties, and can be used to classify defor-
mations. The cotangent complex keeps this good behaviour in the singular
case by including higher order terms to keep track of the singularities.

The main algebraic properties of the cotangent complex are the following.

Theorem 5.2.1. Let X → S be a morphism of schemes.

(1) We have LX/S ∈ ObD≤0
qc (X). (See [19], Corollaire II.2.3.7.)

(2) There is a canonical isomorphism H0(LX/S) ∼= ΩX/S, where ΩX/S is
the relative cotangent sheaf. If X → S is smooth, then this induces an
isomorphism LX/S ' ΩX/S in D−(X).

(3) If i : X ↪→ Y is a closed embedding of S-schemes with Y smooth over S,
then there is an isomorphism

τ≥−1LX/S ' [I/I2 → i∗ΩY/S]

where I ⊆ i−1OY is the ideal sheaf of the embedding and the map I/I2 →
i∗ΩY/S is given by differentiation. Furthermore, if i is a regular embed-
ding, then the truncation map

LX/S → τ≥−1LX/S

is an isomorphism. (See Proposition B.5.2.)
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(4) If f : X → Y is a morphism of schemes over S, then there is a canonical
exact triangle

Lf ∗LY/S → LX/S → LX/Y

in D−(X). (See Corollary B.3.3.)

Remark 5.2.2. Let π : X → S be a morphism of Deligne-Mumford stacks.
As discussed in Section A.7, we have associated étale sites Xét and Sét and
a morphism of ringed sites

π : (Xét ,OXét
)→ (Sét ,OSét

).

Thus, we can apply Illusie’s algebraic construction (Definition B.2.3) to define

LX/S = LOXét
/π−1OSét

.

In [3], Gromov-Witten invariants are defined using an obstruction theory for
a morphism π : X → S, where S is the Artin stack of nodal curves and
X is some stack of maps from the universal curve over S to a fixed target
variety. In order to carry out such constructions properly, it is necessary to
have a theory of cotangent complexes valid for morphisms of Artin stacks.
Fortunately, such cotangent complexes have been defined rigorously by M.
Olsson in [26]. There is also an approach through derived algebraic geometry
(in much greater generality), which can be found, for example, in [24].

For our purposes, the whole point of cotangent complexes is the following
result relating LX/S to square-zero extensions of X over S.

Theorem 5.2.3 (cf. Theorem B.4.1 and [19], Theorem III.1.2.3). Let π :
X → S be a morphism of schemes, and let J be a quasi-coherent sheaf on
X. Then there is an equivalence

ch(RHom•(LX/S, J [1])) ' ExtS(X, J)

of stacks over Xét .

Remark 5.2.4. The equivalence of Theorem 5.2.3 is natural in S in a very
precise way. By the arguments of Section B.3, any diagram of schemes S•
of shape K with a morphism X → S• gives rise to a homotopy coherent
diagram

LX/S• ∈ ObD
(
OKop

Xét

)
giving the appropriate cotangent complex at each place. Hence we have a
2-commutative diagram

ch(RHom•(LX/S• , J [1])) ∈ Ob Ho(St(C)K).
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By Remark B.4.2, the equivalence of Theorem 5.2.3 extends to an equivalence
of 2-commutative diagrams

ch(RHom•(LX/S• , J [1])) ' ExtS•(X, J)

where ExtS•(X, J) is the 2-commutative diagram obtained from the forgetful
morphisms of Remark 3.1.14.

5.3 Obstruction theories

Throughout this section, we fix a scheme S and an S-scheme X.

Definition 5.3.1. An obstruction theory for X over S is an object E ∈
Ob(D≤0

qc (X)), together with a morphism φ : E → LX/S such that

(1) the morphism H0(φ) : H0(E)→ H0(LX/S) is an isomorphism of sheaves,
and

(2) the morphism H−1(φ) : H−1(E)→ H−1(LX/S) is a surjection of sheaves.

Remark 5.3.2. Let φ : E → LX/S be a morphism in Dqc(X), and let
Cone(φ) be a mapping cone of φ. From the long exact sequence associated
to the distinguished triangle

E → LX/S → Cone(φ)→ E[1]

we see that E is an obstruction theory if and only if τ≥−1(Cone(φ)) ' 0.

Example 5.3.3. The trivial obstruction theory is the identity map LX/S →
LX/S.

Obstruction theories are algebraic structures which control obstruction
sequences of maps to X in the sense of Definition 3.2.1. Recall that an
obstruction sequence for a morphism f : T → X relative to a quasi-coherent
sheaf J consists of an obstruction stack Ob on T and a fibre sequence

ExtX(T, J)→ ExtS(T, J)→ Ob.

The cotangent complex gives a universal choice of obstruction sequence as
follows. Recall from Theorem 5.2.1, (4) that there is an exact triangle

Lf ∗LX/S → LT/S → LT/X

67



in D(T ). Hence, by Proposition 5.1.14 and Corollary 4.5.3, we get a fibre
sequence

ch(RHom•(LT/X , J [1]))→ ch(RHom•(LT/S,J [1]))

→ ch(RHom•(Lf ∗LX/S, J [1]))

of stacks over Tét . Applying Theorem 5.2.3 and Remark 5.2.4 to interpret
the first two terms, this yields an obstruction sequence

ExtX(T, J)→ ExtS(T, J)
ob−→ ch(RHom•(Lf ∗LX/S, J [1])).

Now suppose that φ : E → LX/S is a morphism in D≤0
qc (X). Using

Proposition 4.5.4, we obtain a well-defined coherent triangle

Lf ∗E → LT/S → LT/X

and hence a prefibre sequence

ExtX(T, J)→ ExtS(T, J)
obE−−→ ch(RHom•(Lf ∗E, J [1]).

Theorem 5.3.4 (cf. [5], Theorem 4.5). Let φ : E → LX/S be a morphism
in D≤0

qc (X). Then E is an obstruction theory for X if and only if for all
schemes T , all morphisms f : T → X and all quasi-coherent sheaves J on
T , the prefibre sequence

ExtX(T, J)→ ExtS(T, J)
obE−−→ ch(RHom•(f ∗E, J [1])) (5.3.1)

is a fibre sequence.

Proof. Let Cone(φ) denote the mapping cone of φ. By Remark 5.3.2, φ :
E → LX/S is an obstruction theory if and only if τ≥−1Cone(φ) ' 0.

Suppse that τ≥−1Cone(φ) ' 0. Then for any T , f and J , we have a
distinguished triangle

RHom•(Lf ∗Cone(φ),J [1])→ RHom•(Lf ∗LX/S, J [1])

→ RHom•(Lf ∗E, J [1])→ RHom•(Lf ∗Cone(φ), J [1])[1]

in D(T ), and

τ≤0RHom•(Lf ∗Cone(φ), J [1]) ' τ≤0RHom•(τ≥−1Lf ∗Cone(φ), J [1])

' τ≤0RHom•(τ≥−1Lf ∗τ≥−1Cone(φ), J [1])

' 0
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by Propositions 5.1.9 and 5.1.15. So by Proposition 4.5.5 and Corollary 4.5.3,
(5.3.1) is a fibre sequence.

Conversely, suppose that (5.3.1) is a fibre sequence for all T , f and J . By
Corollary 4.5.3, the coherent triangle

RHom•(Lf ∗LT/X , J [1])→ RHom•(Lf ∗LT/S, J [1])→ RHom•(Lf ∗E, J [1])

is (−∞, 0]-left exact. Setting T = X and f = idX , this implies that

0→ RHom•(LX/S, J [1])→ RHom•(E, J [1])

is (−∞, 0]-left exact, which is equivalent to

τ≤0RHom•(Cone(φ), J [1]) ' 0.

Hence,

Hom(H0(Cone(φ)), H0(Cone(φ)))

=
(
τ≤−1RHom•(Cone(φ), H0(Cone(φ))[1])

)
[−1]

' 0,

so H0(Cone(φ)) = 0, and

Hom(H−1(Cone(φ)), H−1(Cone(φ)))

= τ≤0RHom•(Cone(φ), H−1(Cone(φ))[1])

' 0,

so H−1(Cone(φ)) = 0. Hence τ≥−1Cone(φ) ' 0 so E → LX/S is an obstruc-
tion theory.

Remark 5.3.5. If X is a Deligne-Mumford stack instead of a scheme, we
cannot set T = X in the proof of Theorem 5.3.4. Since the statement is local
in the étale topology, we can take T to be an étale cover of X by a scheme,
and leave the rest of the proof unchanged.

5.4 Obstruction theories for fibre products

In this section, we compute some explicit examples of obstruction theories
on fibre products, based on the obstruction sequences of Section 3.2.
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Fix a scheme S and consider a diagram of schemes

X Y

Z W

j

g f

i

with X = Y ×W Z. Starting from obstruction sequences for Y , Z and W , in
Section 3.2 we constructed an obstruction sequence

ExtX(T, J)→ ExtS(T, J)→ Ob

for a given h : T → X and given quasi-coherent sheaf J on T . Take the
obstruction sequences for Y , Z and W to be given by the trivial obstruction
theories, so that, in the notation of Section 3.2, we have

ObY = ch(RHom•(h∗j∗LY/S, J [1])),

ObZ = ch(RHom•(h∗g∗LZ/S, J [1])),

ObW = ch(RHom•(h∗g∗i∗LW/S, J [1])),

where for brevity we write h∗ in place of Lh∗ and so on. Using the functorial-
ity of the cotangent complex (see Section B.3), we have canonical morphisms
of fibre sequences as in (3.2.2). So we get an obstruction sequence

ExtX(T, J)→ ExtS(T, J)→ Ob,

where
Ob = ObY ×ObW

ObZ .

Let

E = Cone(g∗i∗LW/S
(f∗,−i∗)−−−−−→ j∗LY/S ⊕ g∗LZ/S) (5.4.1)

where

g∗i∗LW/S g∗LZ/S

j∗LY/S LX/S

i∗

f ∗ (5.4.2)

is the canonical homotopy coherent square constructed using the methods of
Section B.3. Note that the square
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RHom•(h∗E, J [1]) RHom•(j∗LY/S, J [1])

RHom•(g∗LZ/S, J [1]) RHom•(g∗i∗LW/S, J [1])

is homotopy cartesian, and therefore

ch(RHom•(h∗E, J [1])) ' Ob

by Theorem 4.5.2. Using the homotopy coherent diagram (5.4.2), we get a
morphism E → LX/S. This induces a homotopy coherent diagram

LT/X LT/S h∗E

LT/Y LT/S h∗j∗LY/S

LT/Z LT/S h∗g∗LZ/S

LT/W LT/S h∗g∗i∗LW/S

(5.4.3)

where the top row is the coherent triangle of Proposition 4.5.4. Applying
ch(RHom•(−, J [1])) to (5.4.3) gives (3.2.3). In particular, the prefibre se-
quence

ExtX(T, J)→ ExtS(T, J)→ ch(RHom•(h∗E, J [1]))

induced by E → LX/S is a fibre sequence. Applying Theorem 5.3.4, we get
the following result.

Proposition 5.4.1. The map E → LX/S is an obstruction theory for the
fibre product X = Y ×W Z.

So far, we have constructed the obstruction theory E → LX/S abstractly
in terms of cotangent complexes. It is often convenient to have a more explicit
description.

Assme now that Y and W are smooth over S and that i : Z → W
is a regular embedding. In this case, Theorem 5.2.1, (3), gives us explicit
representatives the cotangent complexes of Y , Z and W . We can use these,
or more precisely the more refined statements in Section B.5, to compute the
complex E and the truncation E → τ≥−1LX/S.
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Proposition 5.4.2. Under the hypotheses above, let I ⊆ i−1OW and J ⊆
j−1OY be the ideal sheaves of the closed embeddings i : Z → W and j : X →
Y . Then there is a morphism of homotopy coherent squares

g∗i∗LW/S g∗LZ/S

j∗LY/S LX/S

[0→ g∗i∗ΩW/S] [g∗I/I2 → g∗i∗ΩW/S]

[0→ j∗ΩY/S] [J/J2 → j∗ΩY/S]

(5.4.4)

such that

g∗i∗LW/S → [0→ g∗i∗ΩW/S], j∗LY/S → [0→ j∗ΩY/S],

g∗LZ/S → [g∗I/I2 → g∗ΩZ/S], τ≥−1LX/S → [J/J2 → j∗ΩY/S]
(5.4.5)

are isomorphisms in D(X).

Proof. Recall from Section B.3 that the homotopy coherent diagram

g∗i∗LW/S g∗LZ/S

j∗LY/S LX/S

(5.4.6)

is constructed as follows. Consider the diagram

B• =

g−1i−1OW g−1OZ

j−1OY OX ,

regarded as a sheaf of rings over the site Xét ×Kop, where K is the square
(B.3.1). Writing π : X → S for the structure map, the square (5.4.6) is the
image of LB•/π−1OS

under the functor D(B•)→ D(OX�) given by (B.3.3).
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We have a surjection φ : C• → B• of diagrams of π−1OS-algebras, where

C• =

g−1i−1OW g−1i−1OW

j−1OY j−1OY .

The kernel of φ is the diagram

I• =

0 g−1I

0 J ,

so by Theorem B.5.1, we have a morphism

LB•/π−1OS
→ [I•/I

2
• → ΩC•/π−1OS

⊗B•], (5.4.7)

where
[I•/I

2
• → ΩC•/π−1OS

⊗B•]
is the diagram below.

[0→ g−1i−1ΩW/S] [g−1I/I2 → g−1i∗ΩW/S]

[0→ j−1ΩY/S] [J/J2 → j∗ΩY/S]

The image of (5.4.7) under the functor D(B•) → D(OX�) is the desired
morphism of diagrams (5.4.4). It follows immediately from the construction
and Proposition B.5.2 that the maps (5.4.5) are isomorphisms in D(X).

Corollary 5.4.3. Suppose that W and Y are smooth over S and that i :
Z → W is a regular embedding. Then there is a commutative diagram in
D(X),

E [g∗I/I2 → j∗ΩY/S]

LX/S [J/J2 → j∗ΩY/S],

(5.4.8)
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such that the morphisms

E → [g∗I/I2 → j∗ΩY/S], τ≥−1LX/S → [J/J2 → j∗ΩY/S] (5.4.9)

are isomorphisms.

Proof. The morphism (5.4.4) of Proposition 5.4.2 induces a commutative
diagram

E C

LX/S [J/J2 → j∗ΩY/S]

(5.4.10)

where

C = Cone([0→ g∗i∗ΩW/S]→ [g∗I/I2 → j∗ΩY/S ⊕ g∗i∗ΩW/S]).

But there is an exact sequence of complexes

0→ [0→ g∗i∗ΩW/S]→ [g∗I/I2 → j∗ΩY/S ⊕ g∗i∗ΩW/S]

→ [g∗I/I2 → j∗ΩW/S]→ 0,

so
C ' [g∗I/I2 → j∗ΩW/S].

Combining this with (5.4.10), we get a diagram of the form (5.4.8) as required.
Since the maps (5.4.5) are isomorphisms, it follows directly that the maps
(5.4.9) are isomorphisms as well.

Example 5.4.4 (Self-intersection). Let W be a smooth variety over k and
let X be a smooth subvariety of W of codimension d. Then we have

X = X ×W X

as schemes so Proposition 5.4.1 gives an obstruction theory E → LX on
X. Since X is smooth, it follows from Proposition A.5.10 that the inclusion
X → W is a regular embedding of codimension d, so the obstruction theory
E → LX can be computed using Corollary 5.4.3. Explicitly, we have

E = [I/I2 0−→ ΩX ]→ [0→ ΩX ] = LX ,

where I is the ideal sheaf of X in W .
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Example 5.4.5. As a special case of Example 5.4.4, consider the self-intersection

X = X ×P2 X,

where

X = P1 = Proj(k[x, z]) = Proj

(
k[x, y, z]

(y)

)
⊆ P2 = Proj(k[x, y, z]).

(This is precisely the intersection X0 = Y ∩ Z0 of Section 1.1 and Example
3.2.2.) In this case, I/I2 is the quasi-coherent sheaf associated to the graded
k[x, z]-module

(x2)

(x2)2
∼= k[x, z] · v,

where the generator v has degree 1, and ΩX is the quasi-coherent sheaf
associated to the graded k[x, z]-module

k[x, z] · (zdx− xdz) ∼= k[x, z] · w,

where the generator w has degree 2. So the obstruction theory E → LX is

[O(−1)
0−→ O(−2)]→ [0→ O(−2)].

Example 5.4.6 (Fibre of a map between smooth schemes). Let Y and W be
smooth schemes over k and let f : Y → W be a morphism. If w : Spec(k)→
W is any k-point in W , then the fibre of f over w is the k-scheme

X = Y ×W Spec(k) = f−1(w).

Since W is smooth, every map from a point to W is a regular embedding.
So the obstruction theory E → LX of Proposition 5.4.1 is given by

E = [g∗I/I2 → j∗ΩY ]→ [J/J2 → j∗ΩY ] = τ≥−1LX ,

where g : X → Spec(k) and j : X → Y are the projection maps and I is the
ideal sheaf of the closed embedding w. A simple computation shows that the
morphism I/I2 → w∗ΩW is an isomorphism. Hence, the obstruction theory
E is

E = [j∗f ∗ΩW → j∗ΩY ]→ [J/J2 → j∗ΩY ]

where the differential of E is obtained from the usual pullback map f ∗ΩW →
ΩY by applying j∗.
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Example 5.4.7. As a concrete case of Example 5.4.6, consider the fibre

X = P1 = Proj(k[x, y])

of the map

f : Y = Proj

(
k[s, t, x, y]

(tx− sy)

)
→ Spec(k[s, t]) = W

of Example 3.2.3 over the point 0 ∈ W = A2. The sheaf j∗f ∗ΩW is the
quasi-coherent sheaf on X associated to the graded module

j∗f ∗ΩW = k[x, y]ds⊕ k[x, y]d, t

where ds and dt have degree 0. The sheaf j∗ΩY is the quasi-coherent sheaf
associated to

j∗ΩY = k[x, y]w ⊕ k[x, y]v,

where w has degree −1 and v has degree 2. So the obstruction theory E is
the complex [

O⊕2 → O(1)⊕O(−2)
]
.

given in terms of graded modules by

k[x, y]ds⊕ k[x, y]dt→ k[x, y]w ⊕ k[x, y]v

ds 7→ xw

dt 7→ yw.
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Chapter 6

Virtual fundamental classes

The main point of this chapter is to define and give examples of virtual
fundamental classes associated to perfect obstruction theories.

Let X be a scheme over a base scheme S, and let E → LX/S be a perfect
obstruction theory for X. (See Definition 6.3.1.) By Theorem 5.3.4, for any
S-scheme T and any morphism f : T → X, there is a fibre sequence

ExtX(T,OT )→ ExtS(T,OT )→ ch((Lf ∗E)∨[1]),

where
(Lf ∗E)∨ = RHom•(Lf ∗E,OT ).

In the special case where T = X and f : X → X is the identity, this gives
us a fibre sequence

ExtX(X,OX)→ ExtS(X,OX)→ ch(E∨[1]) (6.0.1)

of stacks over Xét .
If Y → X is a scheme over X, then there is a sheaf of sections

(XZar)op → Set

U 7→ HomX(U, Y )

of Y over Xét . Similarly, if Y → X is an algebraic stack over X (see Section
A.7), then there is an associated stack of sections over Xét . In Section 6.2,
we show that for S locally Noetherian and X locally of finite type over S,
the fibre sequence (6.0.1) can be obtained from a fibre sequence,

X → NX/S → Ob, (6.0.2)

of algebraic stacks over X by taking stacks of sections. Over S, this means
that we have a 2-cartesian square
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X X

NX/S Ob

of algebraic S-stacks. So the obstruction theory E tells us to regard X as the
intersection of the stack NX/S with a given section of the obstruction stack
Ob. Since the virtual fundamental class [X]vir is supposed to capture the
behaviour of X when we deform to a transverse setup, it is not unreasonable
to define [X]vir by computing this intersection in by first “deforming” to a
transverse intersection. (We make precise the meaning of “deforming” in
Section 6.3—see Remark 6.3.4 in particular.)

This construction gives a well-behaved virtual fundamental class so long
as X itself is smooth over S. In general, to obtain good functoriality prop-
erties for the virtual classes, it is necessary to replace the stack NX/S with a
refinement CX/S, called the intrinsic normal cone of X over S.

In Section 6.1, we descibe the methods behind the construction of the
sequence (6.0.2). In Section 6.2 we study the geometry of the stack NX/S and
define its refinement CX/S. In Section 6.3, we give the construction for virtual
fundamental classes and describe some simple techniques for calculating them
in special cases. In Section 6.4, we compute examples of virtual fundamental
classes using the obstruction theories constructed in Section 5.4.

6.1 Schemes, sheaves and algebraic stacks

Let X be a scheme. An X-scheme Y determines a functor

j(Y ) :
(
Sch/X

)op → Set

Z 7→ HomX(Z, Y ).

The functor j(Y ) is called the functor of points of Y over X. If we endow
the category Sch/X with the étale topology, then j(Y ) is a sheaf. Thus, we
have a functor

j : Sch/X → Sh(Sch/X),

which is fully faithful by the Yoneda Lemma. Hence, we can regard schemes
over X as certain sheaves over the big étale site Sch/X .

This point of view has many advantages. For example, it is often easier
and more natural to specify a scheme Y by its functor of points than by
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writing down a locally ringed space (|Y |,OY ). We did this, for example, to
define mapping spaces in Section 3.3.

As a further example, consider the global Spec functor of Section A.3. Let
X be a scheme and let A be a quasi-coherent sheaf of OX-algebras, which
we regard as a sheaf on Xét via Remark 3.1.6. The scheme SpecX(A) is the
X-scheme Y with functor of points

j(Y ) :
(
Sch/X

)op → Set

(f : Z → X) 7→ HomOZ-alg(f ∗A,OZ),

where
f ∗A = f−1A⊗f−1OX

OZ ,

and where we have dropped the notation OXét
in favour of OX for the sake

of readability.
We can also describe this construction using morphisms of ringed sites.

Endowing Sch/X with the étale topology, recall from Example 2.3.7 that we
have a morphism of ringed sites

e : (Sch/X ,O/X)→ (Xét ,OXét
).

If Y = SpecX(A) for some quasi-coherent sheaf of OX-algebras A, then j(Y )
is the sheaf Hom

j(Y ) = HomO/X-alg(e∗A,O/X),

where

HomO/X-alg(e∗A,O/X)(Z) = HomO/X |Z-alg(e∗A|Z ,O/X |Z).

The morphism e : (Sch/X ,O/X) → (Xét ,OX) also captures the rela-
tionship between X-schemes and their sheaves of sections over Xét . More
precisely, if Y is an X-scheme, then e∗j(Y ) is the sheaf

e∗j(Y ) : (XZar)op → Set

U 7→ j(Y )(e−1U) = HomX(U, Y ).

So e∗j(Y ) is the sheaf of sections of Y .

Example 6.1.1. Let E be a vector bundle on X, viewed as a locally free
sheaf of finite rank. (See Section A.2.) The total space of E is the X-scheme

E = SpecX(SymOX
(E∨))
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where E∨ = Hom(E,OX). The functor of points of E is

j(E) = HomO/X-alg(e∗SymOX
(E∨),O/X)

= HomO/X-mod(e∗(E∨),O/X)

= e∗E.

More explicitly,
j(E)(U) = (f ∗E)(U)

for f : U → X an object of Sch/X . The sheaf of sections of the X-scheme E
is

e∗e
∗E ∼= E.

Example 6.1.2. Let M be a quasi-coherent sheaf on X. The abelian cone
of M is the X-scheme

SpecX(SymOX
(M)).

The associated sheaf on Sch/X is

Hom(e∗M,O/X) = (e∗M)∨.

Suppose that S is a scheme and X is an S-scheme. In Section 6.2, we
are interested in the intrinsic normal sheaf NX/S of X over S. This is an
algebraic stack over X such that the “sheaf of sections”

e∗NX/S = ch((LX/S)∨[1]) ' ExtS(X,OX)

is the stack on Xét of square-zero extensions of X by OX . We construct
NX/S using the following generalisation of the abelian cone construction of
Example 6.1.2.

Proposition 6.1.3 (cf. [5], Proposition 2.4). Let X be a scheme and let
M ∈ ObD≤0

qc (OX). If H0(M) and H−1(M) are coherent sheaves on X, then

ch((Le∗M)∨[1])

is an algebraic X-stack, satisfying

e∗ch((Le∗M)∨[1]) ' ch(M∨[1]).

Proof. The claim that ch((Le∗M)∨[1]) is an algebraic stack is [5], Proposition
2.4. We do not strictly need the claim about e∗, so we omit the proof.
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6.2 The intrinsic normal cone

In this section, we recall from [5] the definitions and main properties of the
intrinsic normal sheaf and intrinsic normal cone of a scheme X. Throughout
this section, we restrict to the situation where X is locally of finite type over
a locally Noetherian scheme S. (See Section A.5.)

Definition 6.2.1 (cf. [5], Definition 3.6). Let S be a locally Noetherian
scheme, and let X be an S-scheme locally of finite type. The intrinsic normal
sheaf of X over S is the stack

NX/S = ch((Le∗LX/S)∨[1]).

Remark 6.2.2. By [19], Corollaire II.2.3.7, LX/S has coherent cohomology
under our hypotheses on X and S. So, by Proposition 6.1.3, NX/S is an
algebraic stack over X, with

e∗NX/S ' ch((LX/S)∨[1]) ' ExtS(X,OX).

Suppose for the moment that there exists a closed embedding f : X → Y
of X into a smooth S-scheme Y . By Theorem 5.2.1, (3), we have

τ≥−1LX/S ' [I/I2 → f ∗ΩY/S],

where I ⊆ f−1OY is the ideal sheaf of the embedding f . Since Y is smooth
over S, f ∗ΩY/S is locally free, and hence flat. So

NX/S = ch(τ≤0RHom•(Le∗LX/S,O/X [1]))

= ch(τ≤0RHom•([e∗I/I2 → e∗f ∗ΩY/S],O/X [1])).

Notice that we have a distinguished triangle

RHom•([e∗I/I2 → e∗f ∗ΩY/S],O/X [1])→ RHom•(e∗f ∗ΩY/S,O/X [1])

→ RHom•(e∗I/I2,O/X [1])→ RHom•([e∗I/I2 → e∗f ∗ΩY/S],O/X [1])[1].

Using the associated long exact sequence and the fact that Hom•(e∗f ∗ΩY/S,−)
takes quasi-isomorphisms to quasi-isomorphisms, we find that

τ≤0RHom•([e∗I/I2 → e∗f ∗ΩY/S],O/X [1])

' Hom•([e∗I/I2 → e∗f ∗ΩY/S],O/X [1])

=
[(
e∗f ∗ΩY/S

)∨ → (
e∗I/I2

)∨]
.
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Recall that the normal sheaf of X in Y is the X-scheme

NX/Y = SpecX
(
SymOX

(I/I2)
)
.

The tangent bundle of Y over S is the Y -scheme

TY/S = SpecY
(
SymOY

(ΩY/S)
)
,

which pulls back along f to the X-scheme

f ∗TY/S = SpecX
(
SymOX

(f ∗ΩY/S)
)
.

By Example 6.1.2, the sheaves on Sch/X represented by NX/S and f ∗TY/S
are (e∗I/I2)

∨
and

(
e∗f ∗ΩY/S

)∨
. In particular, f ∗TX/Y is a group scheme over

Y acting on NX/S via the map f ∗TY/S → NX/S, and we have

NX/S = ch
([(

e∗f ∗ΩY/S

)∨ → (
e∗I/I2

)∨])
=
[
NX/Y /f

∗TY/S
]
.

Recall from Definition A.5.6 that NX/Y has a canonical closed subscheme

CX/Y = SpecX

(⊕
n≥0

In/In+1

)
,

called the normal cone of X in Y . By [5], Lemma 3.2, CX/Y is invariant
under the action of f ∗TX/Y on NX/Y , so we get a closed substack

CX/S =
[
CX/Y /f

∗TY/S
]
⊆ NX/S.

In general, X may not admit a closed embedding into a smooth S-scheme
Y . However, since we are assuming that X is locally of finite type over S, it
is immediate from Definition A.5.2 that there exists a (Zariski) open cover
{Ui}i∈I of X and closed embeddings fi : Ui → Yi for some smooth S-schemes
Yi. (In fact, we can take each Yi to be an affine space over an open subset of
S.) So we can apply the above analysis locally on X to conclude that NX/S

is an algebraic X-stack satisfying

NX/S|Ui
=
[
NUi/Yi/f

∗TYi/S
]

with closed substacks CUi/S ⊆ NX/S|Ui
for each i ∈ I. The following theorem

ensures that the stacks CUi/S glue to give a globally defined substack CX/S ⊆
NX/S.
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Theorem 6.2.3 (cf. [5], Corollary 3.9). Let X be a scheme locally of finite
type over a locally Noetherian scheme S. Then there exists a unique closed
substack CX/S of NX/S such that for any open set U ⊆ X and any closed
embedding f : U → Y with Y a smooth S-scheme, we have

CX/S|U =
[
NU/Y /f

∗TU/Y
]

as substacks of NX/S|U = NU/S.

Definition 6.2.4. The X-stack CX/S of Theorem 6.2.3 is called the intrinsic
normal cone of X over S.

The following result follows immediately from Definition 6.2.4 and well-
known properties of normal cones.

Theorem 6.2.5 (cf. [5], Theorem 3.11). Let S be a locally Noetherian scheme
of pure dimension n. Then CX/S is n-dimensional as an algebraic stack.

Example 6.2.6. Suppose that X → S is smooth. Then LX/S = ΩX/S, so

NX/S = ch([(e∗ΩX/S)∨ → 0]) = [0/TX/S].

If S = Spec(k) for k a field, then every k-point of NX/S is a k-point x of
X, with automorphism group equal to the tangent space TxX to X at x. In
this case, NX/S has dimension 0 since there is a dimX-dimensional space of
points, each with a dimX-dimensional automorphism group.

6.3 Virtual fundamental classes

In this section, we describe how a virtual fundamental class can be con-
structed from a perfect obstruction theory. For the purposes of this section,
we assume that S is a smooth scheme of finite type of dimenison n over a
ground field k and that X is a connected scheme, separated and of finite type
over S. We first recall the definition of a perfect obstruction theory.

Definition 6.3.1 (cf. [5], Definition 5.1). Let X be an S-scheme. We say
that an obstruction theory E → LX/S is perfect if there exists an étale
cover {Ui}i∈I of X and complexes [E−1

i → E0
i ] of vector bundles such that

E|Ui
' [E−1

i → E0
i ] for each i ∈ I. If E is perfect, the rank of E is the Euler

characteristic
rankE = rankE0

i − rankE−1
i .
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Remark 6.3.2. If E → LX/S is a perfect obstruction theory, by Remark 6.3.6
it is convenient to have vector bundles E−1 and E0 and a map E−1 → E0

such that E ' [E−1 → E0] globally on X. In fact, Lemma 2.5 of [4] ensures
that such global resolutions exist for all perfect obstruction theories on X
where S = Spec(C) and X is a quasi-projective over S.

Let φ : E → LX/S be a perfect obstruction theory on X, and write

Ob = ch((Le∗E)∨).

By Proposition 6.1.3, Ob is an algebraic X-stack. Since φ is an obstruction
theory, by [5], Proposition 2.6, the induced map NX/S → Ob is a closed
embedding. Hence, we have a closed embedding

CX/S ↪→ NX/S ↪→ Ob.

Since S is smooth of dimension n, by Theorem 6.2.3, CX/S is an Artin stack
of pure dimension n, and thus defines a Chow homology class

[CX/S] ∈ An(Ob).

At this point, we want to define the virtual fundamental class [X]vir by
intersecting the class [CX/S] with the zero section of Ob. One way to make
this precise is the following.

Since the obstruction theory E is perfect, we can cover X with étale
neighbourhoods U such that E|U ∼= [E−1 → E0] for some vector bundles
E−1 and E0 on U . So

Ob|U ' ch((Le∗[E−1 → E0])∨) ' [(E−1)∨/(E0)∨],

where (E−1)∨ and (E0)∨ are the dual vector bundles of E−1 and E0 respec-
tively. Hence, the stack Ob is a vector bundle stack in the sense of [5],
Definition 1.9, of rank

rank Ob = rank(E−1)∨ − rank(E0)∨ = rankE−1 − rankE0 = − rankE,

where rankE is defined as in Definition 5.3.1. In particular, the morphism
p : Ob→ X is flat of relative dimension − rankE, so for all i ∈ Z we have a
pullback morphism

p∗ : Ai(X)→ Ai−rankE(Ob).

Since X is a scheme, by [21], Proposition 3.5.5 and Proposition 4.3.2, p∗ is
an isomorphism for all i ∈ Z.
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Definition 6.3.3. Let φ : E → LX/S be a perfect obstruction theory for X
over S. The virtual fundamental class of X with respect to E is the Chow
homology class

[X]vir = (p∗)−1([CX/S]) ∈ An+rankE(X).

The virtual dimension of X is the dimension n+ rankE of the class [X]vir.

Remark 6.3.4. According to Definition 6.3.3, to compute [X]vir we first
replace the cycle [CX/S] with a rationally equivalent cycle of the form∑

i

mip
∗[Yi] =

∑
i

mi[Yi ×X Ob],

for some mi ∈ Z and some integral closed subschemes Yi of X. (See Section
A.6.) Each substack Yi×X Ob intersects the zero section of Ob transversely
in the scheme Yi, and

[X]vir =
∑
i

mi[Yi].

Thus, the virtual fundamental class [X]vir is the result of deforming the
intersection of CX/S with the zero section of Ob to a transverse intersection
via rational equivalence.

Remark 6.3.5. One reason for using CX/S instead of NX/S in Definition
6.3.3 is the following. In [5], Proposition 5.10, it is shown that given a
sufficiently nice morphism of schemes (or Deligne-Mumford stacks) f : X →
Y , together with compatible perfect obstruction theories on X and Y , the
virtual fundamental classes are related by

[X]vir = f ![Y ]vir ,

where f ! : A∗(Y ) → A∗(X) is a homomorphism obtained by combining
Gysin homomorphisms and flat pullbacks. This result, which is important
in applications to Gromov-Witten theory, for example, relies on the use of
CX/S instead of NX/S.

Remark 6.3.6. A perfect obstruction theory E is required to be locally
isomorphic in Dqc(X) to a two term complex of vector bundles. In the
special case that E is globally isomorphic to such a complex,

E ' [E−1 → E0],

we can avoid working with Chow groups for Artin stacks as follows. There
is a smooth surjection

r : (E−1)∨ → Ob ' [(E−1)∨/(E0)∨]
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of relative dimension rankE0, from which we can form a closed subscheme

C = (E−1)∨ ×Ob CX/S

of (E−1)∨. We then have a commutative diagram,

(E−1)∨ Ob

X

r

q p

so the flat pullbacks satisfy r∗p∗ = q∗. Hence,

[X]vir = (p∗)−1[CX/S] = (q∗)−1r∗[CX/S] = (q∗)−1[C],

where the last equality follows by definition of flat pullback. Hence, we can
compute [X]vir working entirely with the vector bundle (E−1)∨ and the closed
subscheme C.

Remark 6.3.7 (cf. [5], Proposition 5.6). Suppose now that X is smooth
over S and that E is a perfect obstruction theory for X over S. In this case

H0(E) = H0(LX/S) = ΩX/S

is a vector bundle on X, so the coherent sheaf H−1(E) is also a vector bundle
on X. In what follows, we denote its dual H−1(E)∨ = H0(E∨[1]) by Ob. We
claim that in this case the virtual fundamental class is

[X]vir = e(Ob) ∩ [X],

where e(Ob) = crank Ob(Ob) is the top Chern class of the vector bundle Ob,
as defined in [10], Section 3.2, and [X] is the usual fundamental class of X.
By [10], Proposition 3.3, it suffices to show that

[X]vir = (q∗)−1[0],

where q : Ob → X is the projection and [0] ∈ AdimX(Ob) is the class
represented by the zero section. To see this, we first show that the quotient
map Ob → Ob is flat of relative dimension dimS − dimX, and that the
diagram

CX/S X

Ob Ob

(6.3.1)
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is 2-cartesian, where X includes into Ob as the zero section. Notice that it
suffices to check both claims étale locally on X. Since E is perfect, there
exists an open cover {Ui}i∈I of X and two term complexes of vector bundles

[E−1
i

di−→ E0
i ] on Ui such that

E|Ui
' [E−1

i

di−→ E0
i ].

Since ΩX/S is a vector bundle, by possibly refining this cover, we can assume
that Ui is affine and ΩX/S|Ui

is a free OUi
-module for each i. Fixing i ∈ I,

there exists a section ΩX/S|Ui
→ E0

i of the map E0
i → H0(E0

i ) = ΩX/S|Ui
.

This defines a quasi-isomorphism

[Ob∨|Ui

0−→ ΩX/S|Ui
]→ [E−1

i → E0
i ]

and hence an equivalence of stacks

Ob|Ui
→ [Ob/TX/S]|Ui

.

So r : Ob|Ui
→ Ob|Ui

is flat of relative dimension − rankTX/S = dimS −
dimX. Moreover, we have a 2-commutative diagram

CX/S|Ui
[0/TX/S]|Ui X

Ob|Ui
[Ob/TX/S]|Ui Ob|Ui

,

where the morphism CX/S|Ui
→ [0/TX/S]|Ui

is an equivalence since X is
smooth. Moreover, the square on the right is 2-cartesian, so (6.3.1) is 2-
cartesian. So we have

r∗[0] = [CX/S] ∈ An(Ob).

Hence, the commutative diagram

Ob Ob

X

r

p q

gives

[X]vir = (p∗)−1[CX/S] = (q∗)−1(r∗)−1[CX/S] = (q∗)−1[0] = e(Ob) ∩ [X]

as claimed. Notice that in this case, the virtual dimension of X is

dim[X]vir = dimX − rank Ob.
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6.4 Examples

In this section, we compute some examples of virtual fundamental classes.

Example 6.4.1. LetX any scheme over S. Recall that the trivial obstruction
theory is the identity map LX/S → LX/S. If X is smooth over S then this
obstruction theory is perfect, and the associated virtual fundamental class is
the usual fundamental class of X.

Example 6.4.2. Consider the self-intersection of a smooth subvariety X of
a smooth variety W over k, with the obstruction theory,

E = [I/I2 0−→ ΩX ]→ [0→ ΩX ] = LX ,

of Example 5.4.4. Since the embedding of a smooth subvariety into a smooth
variety is always regular, I/I2 is a vector bundle, so E is a perfect obstruction
theory. Since X is smooth, we can use Remark 6.3.7 to compute the virtual
fundamental class [X]vir . The obstruction bundle,

Ob = H−1(E)∨ =
(
I/I2

)∨
= NX/W ,

is the normal bundle of X in W . So

[X]vir = e
(
NX/W

)
∩ [X]

is the Euler class of the normal bundle of X in W . The virtual dimension is
2 dimX − dimW .

Example 6.4.3. As a special case, consider the self-intersection

X = X ×P2 X,

where

X = P1 = Proj(k[x, z]) = Proj

(
k[x, y, z]

(y)

)
⊆ P2 = Proj(k[x, y, z])

as in Example 5.4.5. The normal bundle of X in P2 is

NX/W = O(1),

so the virtual fundamental class is the class,

[X]vir = e(O(1)) ∩ P1 = [∗] ∈ A0(X),

represented by a point in X = P1.
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Example 6.4.4. Let f : Y → W be a morphism of smooth k-schemes, and
let X = f−1(w) be the fibre over a k-point of W . As shown in Example 5.4.6,
we have an obstruction theory

E = [j∗f ∗ΩW → j∗ΩY ]→ [J/J2 → j∗ΩY ] = LX .

Since Y and W are smooth, ΩY and ΩW are vector bundles, so E is perfect.
By Remark 6.3.6, the virtual fundamental class of X is the class

[X]vir = (q∗)−1([CX/Y ]) ∈ A∗(X),

where q : j∗f ∗TW → X is the projection, and

CX/Y = SpecX

(⊕
n≥0

Jn/Jn+1

)
is the normal cone of X in Y .

Example 6.4.5. As a special case, consider the fibre

X = P1 = Proj(k[x, y])

of the family

Proj

(
k[s, t, x, y]

(tx− sy)

)
→ Spec(k[s, t])

of Examples 5.4.6 and 5.4.7. In this case, the total space of j∗f ∗TW is

j∗f ∗TW = SpecX(k[x, y, ds, dt]),

where k[x, y, ds, dt] denotes the quasi-coherent sheaf of OX-algebras associ-
ated to the graded k[x, y]-algebra k[x, y, ds, dt], where ds and dt have degree
0. The normal cone CX/Y is the subscheme

CX/Y = SpecX

(
k[x, y, ds, dt]

(xdt− yds)

)
⊆ j∗f ∗TW .

We have a globally defined rational function

r =
xdt− yds

x

on the total space j∗f ∗TW , which gives a rational equivalence

[CX/Y ] =

[
SpecX

(
k[x, y, ds, dt]

(x)

)]
= q∗[∗]

between CX/Y and the pullback of a point in X = P1. Hence,

[X]vir = (q∗)−1([CX/Y ]) = [∗] ∈ A0(P1).
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Appendix A

Algebraic geometry

In this appendix, we review some of the basic objects and constructions in
algebraic geometry. The main objects of study are schemes and algebraic
structures defined on them such as quasi-coherent sheaves. We also touch on
intersection theory and algebraic stacks.

A.1 Schemes

Let k be an algebraically closed field, and let f1, f2, . . . , fm ∈ k[x1, . . . , xn] be
polynomials over k. The affine variety defined by f1, . . . , fm is

X = {x ∈ kn | fi(x) = 0, i = 1, 2, . . . ,m}.

To the affine variety X, we can associate a ring k[X], called the coordinate
ring of X as follows. Intuitively, k[X] is the ring of polynomial functions
restricted to X. We can obtain this as the quotient ring,

k[X] =
k[x1, x2, . . . , xn]

I(X)
,

where
I(X) = {f ∈ k[x1, . . . , xn] | f(x) = 0 for all x ∈ X}.

By Hilbert’s Nullstellensatz, we have

I(X) =
√

(f1, f2, . . . , fm)

where (f1, . . . , fm) is the ideal generated by the fi and
√
J denotes the radical

of an ideal J ⊆ k[x1, . . . , xn]. So the coordinate ring of X is

k[X] =
k[x1, . . . , xn]√

(f1, . . . , fm)
.
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It is a beautiful fact from classical algebraic geometry that all information
about the affine variety X (up to polynomial changes of coordinates) is cap-
tured by the k-algebra k[X] (up to isomorphism). To summarise, we have a
correspondence {

Affine varieties
over k

}
↔
{

finitely generated
reduced k-algebras

}
where we recall that a ring A is reduced if it has no nonzero nilpotent ele-
ments.

The main aim of scheme theory is to extend the notion of affine variety
to give a geometric interpretation of all commutative rings, not just reduced
rings which are finitely generated algebras over an algebraically closed field.
This is not such an unnatural thing to do. For example, in the setup above,
there is another ring floating around in addition to k[X], namely

k[x1, . . . , xn]

(f1, . . . , fm)
.

This possibly non-reduced ring contains information about the equations
fi(x) = 0 used to describe X which may not be captured simply by looking
at their solution set over k. For example, if we consider the equation x2 = 0
in one variable x, the corresponding affine variety is X = {0} ⊆ k, with
coordinate ring k[X] = k[x]/(x) = k. Geometrically, the affine variety given
by this equation is simply a point, while the corresponding affine scheme
associated to the ring k[x]/(x2) can be thought of as a “first order neigh-
bourhood” of 0 ∈ k. Such non-reduced schemes play a pivotal role in our
study of deformations and obstructions.

Given a ring A, we want to define some kind of space Spec(A) so that the
elements of A act in some sense like functions on Spec(A). More precisely,
Spec(A) will be a ringed space in the following sense.

Definition A.1.1. A ringed space is a pair X = (|X|,OX) where |X| is a
topological space and OX is a sheaf of rings on |X|. If X = (|X|,OX) and
Y = (|Y |,OY ) are ringed spaces, a morphism of ringed spaces f : X → Y is
a continuous map |f | : |X| → |Y | together with a morphism f# : |f |−1OY →
OX of sheaves of rings on |X| (or equivalently, a morphism f# : OY → |f |∗OX
of sheaves of rings on |Y |).

If X = (|X|,OX), is a ringed space, we will often write X instead of |X|
where no confusion is likely to arise. Similarly, if f = (|f |, f#) : X → Y is a
morphism of ringed spaces, we will often write f in place of |f |.

91



Example A.1.2. Let X be a smooth manifold. Then (|X|,OX) is a ringed
space, where |X| is the underlying topological manifold of X and OX is the
sheaf of smooth real-valued functions on X. If f : X → Y is a smooth map
between smooth manifolds, then there is an induced map f : (|X|,OX) →
(|Y |,OY ) of ringed spaces, with |f | : |X| → |Y | given by the map f and
f# : f−1OY → OX given by f#(α) = α ◦ f for any (local) smooth function
α on Y .

Let A be a ring. We define a ringed space Spec(A) as follows. First, as a
set, we have

Spec(A) = {p ⊆ A | p is a prime ideal in A}.

To ease notation, we will often distinguish between prime ideals of A and
points in Spec(A). If x ∈ Spec(A), we denote the corresponding prime ideal
by px, and if p is a prime ideal in A, we denote the corresponding point in
Spec(A) by [p]. For each f ∈ A, set

D(f) = {x ∈ Spec(A) | f /∈ px}.

As a topological space, Spec(A) has basis {D(f) | f ∈ A} for the open sets.
This topology on Spec(A) is called the Zariski topology. Notice that we have
D(f) ⊆ D(g) if and only if

√
(f) ⊆

√
(g). The structure sheaf OSpec(A) on

Spec(A) is determined by

OSpec(A)(D(f)) = Af ,

where Af = A[f−1] is the localisation of A obtained by formally inverting
f . Notice that this is well-defined, since whenever D(f) = D(g), we have√

(f) =
√

(g), so there is a canonical isomorphism Af ∼= Ag. If D(f) ⊆
D(g), the restriction map OSpec(A)(D(g)) → OSpec(A)(D(f)) is the unique
ring homomorphism Ag → Af such that the diagram

A

Ag Af

commutes, where the homomorphisms A→ Af and A→ Ag are the natural
localisation maps. This defines a ringed space Spec(A).

Definition A.1.3. An affine scheme is a ringed space X which is isomorphic
to Spec(A) for some commutative ring A.
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Example A.1.4. Let k be a field. Then the affine scheme Spec(k) is a point,
and the structure sheaf assigns the ring k to that point.

Example A.1.5. Let k be a field. Then the affine scheme Spec(k[t]/(t2)) is
a point, and the structure sheaf assings the ring k[t]/(t2) to that point.

Example A.1.6. Let A be any ring, and let A[x1, . . . , xn] be a polynomial
ring in n variables over A. The scheme An

A = Spec(A[x1, . . . , xn]) is called
n-dimensional affine space or affine n-space over A.

Before we give the definition of morphism between affine schemes, first
notice that if φ : A → B is a ring homomorphism, then there is an induced
map

Spec(φ) : Spec(B)→ Spec(A)

[p] 7→ [φ−1(p)].

Note that Spec(φ) is continuous since Spec(φ)−1(D(f)) = D(φ(f)) for all
f ∈ A. Moreover, if f ∈ A, there is a unique homomorphism Af → Bφ(f)

such that the diagram

A B

Af Bφ(f)

φ

commutes. These homomorphisms define a morphism Spec(φ)# : OSpec(A) →
Spec(φ)∗OSpec(B) of sheaves of rings on Spec(A), and hence a morphism
Spec(φ) : Spec(B) → Spec(A) of ringed spaces. The definition below is
cooked up so that the morphisms of affine schemes Spec(B) → Spec(A) are
precisely the morphisms of ringed spaces of the form Spec(φ) for some ring
homomorphism φ : A→ B.

If x ∈ X = Spec(A), then the stalk OX,x of the structure sheaf of X
at x can be identified with the localisation Apx of A at the prime ideal px.
This is a local ring with maximal ideal mx = pxApx . If φ : A → B is a ring
homomorphism, then the induced map

f = Spec(φ) : Y = Spec(B)→ X = Spec(A)

induces ring homomorphisms

f#
y : OX,f(y) → OY,y,
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such that
f#
y (mf(y)) ⊆ my

for all y ∈ Y . (We call such homomorphisms between local rings local ring
homomorphisms.) This motivates the following definition.

Definition A.1.7. A locally ringed space is a ringed space X = (|X|,OX)
such the stalk OX,x of the structure sheaf at x is a local ring for all x ∈ |X|.
If X and Y are locally ringed spaces, a morphism of locally ringed spaces
f : X → Y is a morphism of ringed spaces such that, for all x ∈ X, the
induced homomorphism OY,f(x) → OX,x is a local ring homomorphism.

Example A.1.8. Let X be a smooth manifold. Then the ringed space
associated to X in Example A.1.2 is a locally ringed space. If X and Y
are smooth manifolds, the construction of Example A.1.2 gives a bijection
between the set of smooth maps X → Y and the set of morphisms X → Y
of locally ringed spaces.

If X and Y are affine schemes, we define a morphism of affine schemes
f : X → Y to be a morphism of locally ringed spaces.

Proposition A.1.9 (cf. [8], Theorem I-40 and Corollary I-41). Let A and
B be commutative rings. Then the map

Spec : Hom(A,B)→ Hom(Spec(B), Spec(A))

is a bijection. Hence, the category Aff of affine schemes is equivalent to the
opposite category CRop of the category CR of commutative rings.

Definition A.1.10. A locally ringed space X is a scheme if there exists an
open cover {Ui}i∈I of X such that each Ui is an affine scheme. A morphism
of schemes is a morphism of locally ringed spaces. We denote the category
of schemes by Sch.

Example A.1.11. Let X = Spec(A) be an affine scheme, and let f ∈ A.
Then the locally ringed space D(f) is isomorphic to Spec(Af ) and is therefore
an affine scheme.

Example A.1.12. More generally, let X be a scheme. Since X has a basis
for the open sets consisting of affine schemes, every open subset of X is a
scheme.

Just as varieties are defined relative to some base field, there is a notion
of schemes defined over a fixed base scheme S.
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Definition A.1.13. Let S be a scheme. The category of schemes over S is
the category Sch/S with

Ob(Sch/S) = {X → S a morphism of schemes}

and
Hom(X

πX−→ S, Y
πY−→ S) = {f : X → Y | πY ◦ f = πX}.

We often write X instead of X → S for an object of Sch/S, and implicitly
assume that a map to S has been chosen. We refer to objects of Sch/S as
schemes over S or S-schemes. In the special case that S = Spec(A) is affine,
we also refer to S-schemes as A-schemes, and write Sch/A in place of Sch/S.

Example A.1.14. Let A and B be rings. Then the structure of an A-scheme
on Spec(B) is the same as an A-algebra structure on B.

Example A.1.15. More generally, if A is a ring and X is a scheme, an A-
scheme structure on X is the same as an A-algebra structure on the structure
sheaf OX .

All fibre products exist in the category of schemes. These are easiest
to describe in the affine case: if X = Spec(A), Y = Spec(B) and Z =
Spec(C), and X → Z, Y → Z are morphisms of schemes corresponding to
ring homomorphisms C → A and C → B, then

X ×Z Y = Spec(A⊗C B).

More generally, suppose that X, Y and Z are schemes and f : X → Z and g :
Y → Z are morphisms. Let {Zi}i∈I be an open cover of Z by affine schemes,
and for each i ∈ I, let {Xj}j∈Ji and {Yk}k∈Ki

be open covers of f−1(Zi) and
g−1(Zi) by affine schemes. Then the affine schemes {Xj ×Zi

Yk}i∈I,j∈Ji,k∈Ki

form an open cover for X ×Z Y . For more details on this construction, see
[8], Section I.3.1.

A.2 Sheaves of modules

In this section we recall the theory of sheaves of modules over a scheme
X. These include locally free sheaves, which play the role of vector bundles
over X in algebraic geometry, and more general objects called quasi-coherent
sheaves. We start with the following general setting.

Definition A.2.1 (cf. Definition 2.3.8). Let X be a topological space and
let A be a sheaf of rings on X. An A-module is a sheaf M of abelian groups
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on X, together with a morphism A×M →M of sheaves on X giving M(U)
the structure of an A(U)-module for each open set U ⊆ X. If M and N
are A-modules, an A-module homomorphism from M to N is a morphism
φ : M → N of sheaves of abelian groups such that each map φU is an A(U)-
module homomorphism. We denote the category of A-modules by A-mod.

Definition A.2.2. Let X be a topological space, let A be a sheaf of rings
on X and let M , N and P be A-modules.

(1) The direct sum M ⊕N of M and N is the sheaf

U 7→M(U)⊕N(U).

(2) The tensor product M ⊗ N of M and N is the sheaf associated to the
presheaf

U 7→M(U)⊗A(U) N(U).

(3) The Hom sheaf Hom(M,N) of M and N is the sheaf

U 7→ HomA|U (M |U , N |U).

(4) If M ⊆ N is a submodule (subsheaf with inherited operations), then the
quotient N/M is the sheaf associated to the presheaf

U 7→ N(U)/M(U).

(5) If f : M → N is an A-module homomorphism, the kernel ker(f) of f is
the sheaf

U 7→ ker(fU : M(U)→ N(U)).

(6) If f : M → N is an A-module homomorphism, the image im(f) of f is
the sheaf associated to the presheaf

U 7→ im(fU : M(U)→ N(U)).

(7) If f : M → N is an A-module homomorphism, the cokernel coker(f) of
f is the sheaf associated to the presheaf

U 7→ coker(fU : M(U)→ N(U)).

This is canonically isomorphic to quotient N/ im(f).
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(8) A sequence

M
f−→ N

g−→ P

is exact if im(f) = ker(g).

Remark A.2.3. All the sheaves in the definition above carry natural A-
module structures, and satisfy the usual universal properties from commuta-
tive algebra.

Let X = Spec(A) be an affine scheme. If M is an A-module, there is an
associated OX-module M̃ with

M̃(D(f)) = Mf = M ⊗A Af

for all f ∈ A. The sheaf M̃ is the basic example of a quasi-coherent sheaf.

Definition A.2.4. Let X be a scheme. A quasi-coherent sheaf is an OX-
module such that there is an open cover {Ui}i∈I of X by affine schemes
Ui = Spec(Ai) and Ai-modules Mi such that M |Ui

∼= M̃i for each i ∈ I.
We denote by QCoh(X) the full subcategory of OX-mod spanned by the
quasi-coherent sheaves.

Remark A.2.5. One can check that the functor M 7→ M̃ commutes with
all the operations of Definition A.2.2. Thus, in particular, the subcategory
QCoh(X) ⊆ OX-mod is closed under all these operations.

Proposition A.2.6 (cf. [18], Proposition II.5.4). Let X be a scheme, and
let M be an OX-module. Then M is quasi-coherent if and only if for every
affine open subset U = Spec(A) ⊆ X there exists an A-module M0 such that
M |U ∼= M̃0.

Corollary A.2.7 (cf. [18], Corollary II.5.5). Let A be a ring. The construc-
tion M 7→ M̃ defines an equivalence of categories

A-mod ' QCoh(Spec(A)).

Let f : X → Y be a morphism of schemes. Then pushing forwards
sheaves of abelian groups gives a functor f∗ : OX-mod→ OY -mod, where,
for M an OX-module, the OY -module structure on f∗M is inherited from
the f∗OX-module structure via the homomorphism f# : OY → f∗OX . This
functor has a left adjoint f ∗ : OY -mod→ OX-mod given by

f ∗M = f−1M ⊗f−1OY
OX
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for all OY -modules M . For any f , the functor f ∗ preserves quasi-coherence,
and under certain finiteness assumptions, (such as X Noetherian: see [18],
Proposition II.5.8), the pushforward f∗ also preserves quasi-coherence.

Let X be a scheme. There is special class of quasi-coherent sheaves on X
called locally free sheaves.

Definition A.2.8. An OX-module E is called free (of rank n) if it is iso-
morphic to an n-fold direct sum O⊕nX of the OX-module OX for some n ≥ 0.
We say that E is locally free (of rank n) if there is an open cover {Ui} of
X such that E|Ui

is free (of rank n) for each i. We also refer to locally free
sheaves as vector bundles.

If f : X → Y is a morphism of schemes and E is a locally free sheaf of
rank n on Y , then f ∗E is a locally free sheaf of rank n on X.

A.3 Functors for constructing schemes

In this section, we look at modifications of the functor Spec : CR → Sch,
which take in algebraic objects and produce schemes which are not necessarily
affine. There are two main ideas: constructing schemes over S from quasi-
coherentOS-algebras, and constructing projective schemes from graded rings.
We start with some preliminaries on algebras over a scheme.

Definition A.3.1. Let S be a scheme. A quasi-coherent OS-algebra is a sheaf
B of rings on S together with a map OS → B such that B is quasi-coherent
as an OS-module. We denote by QCohalg(S) the category of quasi-coherent
OS-algebras.

Just as for modules, if A is any ring, there is a functor

(−)∼ : A-alg→ QCohalg(Spec(A))

which takes an A-algebra B to the quasi-coherent sheaf B̃ with the natural
ring structure. Again, this functor is an equivalence of categories.

Let S be a scheme. There is a fully faithful functor

SpecS : QCohalg(S)→ Sch/S.

We can describe this functor as follows. If S = Spec(A) is affine, and B
is an A-algebra, then SpecS(B̃) = Spec(B), with the map to S given by
the homomorphism A → B. In general, if S is any scheme and B is a
quasi-coherent OS-algebra, we can obtain SpecS(B) by taking an open cover
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{Ui}i∈I of S by affine open subschemes Ui and gluing together the Ui-schemes
SpecUi

(B|Ui
). For more details, see [15], Section 1.3. For a discussion of an

alternative approach, see [8], Section I.3.3.
Our next functor takes as input graded rings. We recall the definition

below.

Definition A.3.2. A Z-graded ring is a ring A together with a decomposi-
tion,

A =
⊕
n∈Z

An,

of A as a direct sum of abelian subgroups such that AmAn ⊆ Am+n for all
m,n ∈ Z. We say that A is non-negatively graded, or simply a graded ring,
if An = 0 for all n < 0.

There is a construction, Proj, taking graded rings to schemes defined as
follows. Given a graded ring A, n ≥ 0, we call an element f ∈ A homogeneous
(of degree n) if f ∈ An for some n. If we fix a homogeneous element f ∈ An,
the localisation Af = A[f−1] has a natural Z-grading with

(Af )m =
∑
k≥0

f−kAm+kn

for all m ∈ Z. If f is homogeneous of degree n > 0, we can form the
affine scheme Spec((Af )0). The scheme Proj(A) can be obtained by gluing
together the schemes Spec((Af )0) for each in a natural way. There is a natural
structure map Proj(A) → Spec(A0), coming from the ring homomorphisms
A0 → (Af )0. For more details, see [18], Proposition 2.5, or [8], Section III.2.1.

There is a global version of Proj, just as there is a global version of the
functor Spec. If A is a ring, a graded A-algebra is a graded ring B together
with a ring homomorphism A → B0. More generally, if S is a scheme, a
quasi-coherent graded OS-algebra is a quasi-coherent OS-algebra B together
with decomposition

B =
⊕
n≥0

Bn

of B as a direct sum of (necessarily quasi-coherent) OS-modules such that
B(U) is a ring for each open U ⊆ S. We denote by QCohgralg(S) the
category of quasi-coherent graded OS-algebras. Just as with other quasi-
coherent objects, there is an equivalence of categories

(−)∼ : QCohgralg(Spec(A)) ' A-gralg

for any ring A, where A-gralg denotes the category of graded A-algebras. We
can define a construction ProjS taking quasi-coherentOS-algebras to schemes
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over S as follows. If S = Spec(A) is affine, then we set ProjS(B̃) = Proj(B)
for B a graded A-algebra, with structure map Proj(B) → Spec(B0) →
Spec(A). For general S, we choose an open cover {Ui}i∈I of S by affine
open subsets Ui and glue together the Ui-schemes ProjUi

(B|Ui
) to obtain

ProjS(B). For more details, see [8], Section III.2.3 or [15], Section 3.1.

Example A.3.3. Let A be a ring. Projective n-space over A is the A-scheme

PnA = Proj(A[x0, x1, . . . , xn])

where A[x0, x2, . . . , xn] has the grading with xi homogeneous of degree 1 for
each i.

Example A.3.4. More generally, let S be any scheme. Projective n-space
over S is the S-scheme

PnS = Proj(OS[x1, x1, . . . , xn]).

Just as there is a correspondence between A-modules and quasi-coherent
sheaves on Spec(A) for any ring A, there is a correspondence between graded
A-modules and quasi-coherent sheaves on Proj(A) for any graded ring A.

Definition A.3.5. Let A =
⊕

n∈ZAn be a Z-graded ring. A graded A-
module is an A-module M together with a decomposition,

M =
⊕
n∈Z

Mn,

of M into subgroups such that AmMn ⊆ Mm+n for all m,n ∈ Z. If M and
N are graded A-modules, a graded A-module homomorphism from M to N
is an A-module homomorphism f : M → N such that f(Mn) ⊆ Nn for all
n ∈ Z. We denote by A-grmod the category of graded A-modules.

Let A be a (positively) graded ring and let M be a graded A-module.
We can associate a quasi-coherent sheaf M̃ on Proj(A) as follows. For each
homogeneous element f ∈ A of positive degree, there is a natural grading on
the Af -module Mf = M ⊗AAf so that (Mf )0 is an (Af )0-module. The sheaf
M̃ is obtained by gluing together the quasi-coherent sheaves (M̃f )0 over the
affine open subsets Spec((Af )0). This defines a functor

(−)∼ : A-grmod→ QCoh(Proj(A)).

Remark A.3.6. This functor enjoys all the exactness properties of the anal-
ogous functor for Spec (since localisation and taking graded pieces are exact),
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but unlike the functor for Spec, it is not an equivalence of categories. In fact,
if M is a graded A-module, then for any n0 ∈ Z, we have a graded A-module

M≥n0 =
⊕
n≥n0

Mn.

It is an immediate consequence of the construction above that the map
M̃≥n0 → M̃ induced by the inclusion M≥n0 →M is an isomorphism.

Example A.3.7. Let A be a graded ring. For any k ∈ Z, let A(k) be
free graded A-module generated by a single generator in degree −k, so that
A(k)n = An+k for all n ∈ Z. We denote by O(k) the quasi-coherent sheaf
Ã(k) on Proj(A). This is an example of a locally free sheaf of rank 1.

Example A.3.8. Let A be a ring and n ∈ Z. The sheaf O(−1) on PnA is
called the tautological line bundle.

A.4 The cotangent sheaf

In this section, we will review the theory of Kähler differentials of rings and
cotangent sheaves of schemes.

Definition A.4.1. Let A be a ring, let B be an A-algebra and let M be a
B-module. An A-derivation from B to M is an A-linear map ∂ : B → M
such that

∂(b1b2) = b1∂(b2) + b2∂(b1)

for all b1, b2 ∈ B. We denote the set of A-derivations from B to M by
DerA(B,M).

Remark A.4.2. With A, B and M as above, we have a ring structure on
the A-module B ⊕M with product given by

(b1,m1)(b2,m2) = (b1b2, b1m2 + b2m1).

The projection map B ⊕M → B is an A-algebra homomorphism. If we let
HomA/−/B(B,B ⊕M) be the set of A-algebra homomorphisms B → B ⊕M
such that the composite B → B⊕M → B is the identity map, then there is
a canonical isomorphism

DerA(B,M) ∼= HomA/−/B(B,B ⊕M).
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Observe that if f : M → N is a morphism of B-modules, then there is a
function

DerA(B,M)→ DerA(B,N)

∂ 7→ f ◦ ∂.

Thus, we have a functor

DerA(B,−) : B-mod→ Set.

Proposition A.4.3. Let A be a ring and let B be an A-algebra. Then there
exists a B-module ΩB/A and a natural isomorphism

HomB(ΩB/A,M) ∼= DerA(B,M)

for M a B-module.

Proof. An explicit construction is given in [7], Chapter 16.

The module ΩB/A is called the module of Kähler differentials of B over
A. From the universal property of ΩB/A, there is a universal derivation
d = dB : B → ΩB/A associated to the identity map ΩB/A → ΩB/A. We will
often refer to this derivation as the derivative map, and for b ∈ B we call
db ∈ ΩB/A the derivative of b.

Suppose that we have a commutative diagram of rings as shown below.

A B

A′ B′

φA φB

Then there is an A-derivation dB′ ◦ φB : B → ΩB′/A′ , which induces a B-
module homomorphism ΩB/A → ΩB′/A′ .

Now let X be a topological space, and let A → B be a morphism of
sheaves of rings on X. Then for any open sets U, V ⊆ X with U ⊆ V ,
the restriction maps A(V ) → A(U) and B(V ) → B(U) induce a map
ΩB(V )/A(V ) → ΩB(U)/A(U).

Definition A.4.4. Let X be a topological space, and let A be a sheaf of
rings on X. If B is an A-algebra, the module of Kähler differentials of B
over A is the sheaf associated to the presheaf

U 7→ ΩB(U)/A(U).

This has a canonical B-module structure induced by the B(U)-module struc-
ture on ΩB(U)/A(U) for each open U ⊆ X.
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Definition A.4.5. Let S be a scheme and let π : X → S be a scheme over
S. The cotangent sheaf of X over S is the OX-module

ΩX = ΩX/S = ΩOX/π−1OS
.

Proposition A.4.6. Let S be a scheme and let X be a scheme over S.
Then ΩX/S is a quasi-coherent sheaf. More precisely, if X = Spec(B) and
S = Spec(A), then

ΩX/S
∼= Ω̃B/A

is the OX-module associated to the B-module ΩB/A.

Example A.4.7. Let A be a ring and let B = A[x1, . . . , xn] be a polynomial
ring over A. Then

ΩB/A = Bdx1 ⊕Bdx2 ⊕ . . .⊕Bdxn

is a free B-module with basis {dx1, . . . , dxn}.

Example A.4.8. More generally, if M is an A-module and B = SymA(M)
is the symmetric algebra of M , then

ΩB/A
∼= M ⊗A B.

The main tool for computing the modules ΩB/A is the following.

Proposition A.4.9 (cf. [7], Propositions 16.2 and 16.3). Let A → B → C
be morphisms of rings. Then there is an exact sequence C-modules

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0.

Moreover, if B → C is surjective with kernel I, then ΩC/B = 0 and we have
an exact sequence of C-modules,

I/I2 → ΩB/A ⊗B C → ΩC/A → 0,

where the map I/I2 → ΩB/A ⊗B C is induced by the derivative map d : I →
ΩB/A.

A.5 Properties of schemes and morphisms

In this section, we collect a glossary of properties of schemes and morphisms
between them.
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Definition A.5.1. Let X be a scheme. We say that X is locally Noetherian
if there is an open cover {Ui = Spec(Ai)}i∈I of X by affine open subsets such
that each ring Ai is Noetherian. We say that X is Noetherian if we can find
such a cover with I a finite set.

Definition A.5.2. Let f : X → Y be a morphism of schemes. We say that
f is locally of finite type, or that X is locally of finite type over S, if there
exists an open cover {Vi = Spec(Ai)} of Y by affine schemes, and for each
i an open cover {Uij = Spec(Bij)} of f−1(Vi) by affine schemes, such that
each Bij is a finitely generated Ai-algebra. We say that f is locally of finite
presentation if each Bij is a finitely presented Ai-algebra. We say that f is
of finite type if each f−1(Vi) can be covered by finitely many Ui with Bij

finitely generated over Ai.

Definition A.5.3. A morphism f : X → Y is an open immersion if f is a
homeomorphism of X with a Zariski open subset of Y , and the induced map
f−1OY → OX is an isomorphism.

Definition A.5.4. Let i : X → Y be a morphism of schemes. We say that
i is a closed embedding (or closed immersion) if i is a homeomorphism onto
a closed subset of Y and the map i−1OY → OX is a surjection of sheaves
on Y . If i : X → Y is a closed embedding, we often refer to X as a closed
subscheme of Y .

Let i : X ↪→ Y be a closed embedding of schemes. The kernel I of the
map OY → i∗OX is a quasi-coherent sheaf on Y called the ideal sheaf of the
embedding i. To ease notation, we also write I for the i−1OY -module i−1I
on X and call this the ideal sheaf where there is no danger of confusion. The
sheaf I/I2 = i∗(I) is a quasi-coherent sheaf on X, called the conormal sheaf
of X in Y .

Example A.5.5. Let X = Spec(B) and Y = Spec(A) be affine schemes.
Then a closed embedding i : X → Y is the same thing as a surjective ring
homomorphism φ : A → B. If I = ker(φ), then the ideal sheaf of i is the
quasi-coherent sheaf Ĩ on Y . The conormal sheaf of X in Y is

i∗(Ĩ) = (I/I2)∼ ∈ Ob(QCoh(X)).

The following plays a very important role in this work. A good reference
(albeit with slightly different language) is [16], Section 16.1. Let i : X → Y
be a closed embedding of schemes with ideal sheaf I. There are associated
quasi-coherent sheaves of OX-algebras

SymOX
(I/I2)
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and ⊕
n≥0

i∗(In) =
⊕
n≥0

In/In+1.

Here the symmetric algebra functor is obtained by taking symmetric algebras
over open subsets and taking the associated sheaf. For affine schemes S =
Spec(A), it agrees with the symmetric algebra functor for A-modules.

Definition A.5.6. Let i : X → Y be a closed embedding of schemes with
ideal sheaf I. The normal sheaf of X in Y is the X-scheme

NX/Y = SpecX
(
SymOX

(I/I2)
)
.

The normal cone of X in Y is the X-scheme

CX/Y = SpecX

(⊕
n≥0

In/In+1

)
.

Observe that the multiplication maps

Symn
OX

(I/I2)→ In/In+1

induce a surjection of OX-algebras

SymOX
(I/I2)→

⊕
n≥0

In/In+1,

which gives a closed embedding of X-schemes

CX/Y ↪→ NX/Y .

Definition A.5.7 (cf. [16], Définition 0.15.1.7). Let A be a ring. We say
that a sequence (fj)1≤j≤d of elements fj ∈ A is regular if for each n, the
image of fj in

A

(f1, . . . , fj−1)

is a not zero or a zero divisor.

Definition A.5.8 (cf. [16], Définition 16.9.2). Let i : X → Y be a closed
embedding of schemes with ideal sheaf I. We say that i is a regular embedding
(of codimension d) if there exist affine open subsets Ui = Spec(Ai) of Y with
i(X) ⊆

⋃
i Ui, such that, for each i, the ideal sheaf I|Ui

⊆ OUi
corresponds

to an ideal (f1, . . . , fd) ⊆ Ai generated by a regular sequence (fj)1≤j≤d in Ai.
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Remark A.5.9. We can interpret Definition A.5.8 as follows: a closed sub-
scheme X of Y is regularly embedded of codimension d if it can be locally
defined by d independent equations.

Proposition A.5.10. Let i : X → Y be a closed embedding of schemes with
ideal sheaf I. If i is a regular embedding of codimension d then

(1) I is of finite type, i.e. there is an open cover {Ui = Spec(Ai)} of Y by
affine open sets such that I|Ui

corresponds to a finitely generated ideal in
Ai,

(2) the conormal sheaf I/I2 is a locally free OX-module of rank d, and

(3) CX/Y = NX/Y .

The converse holds so long as Y is locally Noetherian.

Proof. This follows from [16] Corollaire 16.9.4 and Proposition 16.9.10.

The following is the analogue of the Hausdorff condition in the category
of schemes.

Definition A.5.11. Let f : X → S be a morphism of schemes. We say that
f is separated if the diagonal map

∆ : X → X ×S X

is a closed embedding.

We now introduce the notion of flatness of morphisms of schemes. This
homological condition captures the intuitive notion of a map with continu-
ously varying fibres. Recall that a module M over a ring A is called flat if
the functor

M ⊗A − : A-mod→ A-mod

is exact.

Definition A.5.12. Let f : X → Y be a morphism of schemes. We say that
f is flat if for every x ∈ X, OX,x is a flat OY,f(x)-module.

Example A.5.13. Let A → B be a homomorphism of rings. Then the
induced map Spec(B)→ Spec(A) is flat if and only if B is a flat A-module.

Definition A.5.14 (cf. [16], Définition 17.1.1). Let f : X → Y be a mor-
phism of schemes. We say that f is formally smooth (resp. formally étale) if
for any commutative diagram of solid arrows
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Z X

Z̄ Y

where Z̄ is an affine scheme and Z is a closed subscheme of Z̄ with nilpotent
ideal sheaf, there exists a (resp. there exists a unique) dashed arrow such
that the diagram commutes.

Definition A.5.15 (cf. [16], Définition 17.3.1). Let f : X → Y be a mor-
phism of schemes. We say that f is smooth (resp. étale) if f is formally
smooth (resp. formally étale) and locally of finite presentation.

Proposition A.5.16. Let f : X → Y be a smooth (resp. étale) morphism
of schemes. Then f is flat and the relative cotangent sheaf ΩX/Y is a vector
bundle (resp. ΩX/Y = 0).

A.6 Intersection theory

In this section we recall some of the basics of intersection theory on schemes
and stacks. In what follows, all schemes are separated and of finite type over
a fixed base field k.

The main idea of intersection theory is to associate to a sequence of
abelian groups {Ap(X)}p∈Z≥0

to a scheme X, called Chow (homology) groups,
such that the elements of Ap(X) are related to the p-dimensional subvarieties
of X. These groups are functorial for several classes of well-behaved mor-
phisms in a compatible way. We first need a few preliminaries on integral
schemes and dimension.

Definition A.6.1. Let W be a topological space. We say that W is irre-
ducible if for any nonempty open sets U and V in W , the intersection U ∩ V
is nonempty.

Definition A.6.2. Let X be a topological space. The (combinatorial) di-
mension of X is

dimX = sup

{
n

∣∣∣∣ ∅ ( W0 ( W1 ( · · · ( Wn

is a chain of irreducible closed subspaces of X

}
.

If Y ⊆ X is an irreducible closed subset, the codimension of Y in X is

codim(Y,X) = sup

{
n

∣∣∣∣ Y ( W0 ( W1 ( · · · ( Wn

is a chain of irreducible closed subspaces of X

}
.
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Proposition A.6.3 ([14], Proposition I.2.). Let X be a scheme. Then the
map

x 7→ {x}
is a bijection from points of X to irreducible closed subsets of X.

Definition A.6.4. Let W be a scheme. We say that W is irreducible if the
underlying topological space |W | is irreducible. We say that W is reduced if
for every point w ∈ W , the local ring OW,w has no nilpotent elements. We
say that W is integral if W is both reduced and irreducible.

Remark A.6.5. Let X be a scheme, and let |W | be an irreducible closed
subset of X. Then there is a unique integral closed subscheme W of X
with underlying topological space |W |. In the case where X = Spec(A) is
affine, the irreducible closed subset |W | corresponds to a point w ∈ X by
Proposition A.6.3, which in turn corresponds to a prime ideal p in A, and
we set W = Spec(A/p). The general case is obtained by gluing the results
of this construction along affine open subsets of X.

Definition A.6.6 (cf. [10], Section 1.3). Let k be a field and let X be a
scheme of finite type over k. If p ∈ Z≥0, the group of p-cycles in X is the
free abelian group Zp(X) generated by the integral closed subschemes of X
of dimension p. We write

Z∗(X) =
⊕
p∈Z≥0

Zp(X).

The Chow homology group Ap(X) is obtained by taking the quotient of
Zp(X) with respect to a suitable equivalence relation, which we describe as
follows.

Let Y be an integral scheme. By Proposition A.6.3, there exists a unique
generic point y ∈ Y such that Y = {y}. It follows that the local ring OY,y
has a unique prime ideal. Since Y is integral, OY,y is an integral domain, so
{0} ⊆ OY,y is the unique prime ideal, and OY,y is a field. We denote this
field by R(Y ) and call it the field of rational functions on Y .

Example A.6.7. Let k be a field. Then the scheme P1
k is integral. The field

of rational functions on P1
k is R(P1

k) = k(x), the field of rational functions in
one variable over k.

Let Y be a scheme, and let W be an integral closed subscheme of Y .
Write OY,W for the local ring OY,w where w is the unique point in Y such

that {w} = W . If Y is integral, then

R(Y ) = Frac(OY,W ),
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where Frac(OY,W ) is the field of fractions of the integral domain OY,W . So
if r ∈ R(Y )∗ is a nonzero rational function on Y , then there exist elements
f, g ∈ OY,W with r = f/g. If W is of codimension 1 in Y , the order of r at
W is defined as

ordW (r) = lOY,W

(
OY,W
(f)

)
− lOY,W

(
OY,W
(g)

)
,

where lA(M) denotes the length of the A-module M . By the results of [10],
Section A.3, this gives a well-defined abelian group homomorphism

ordW : R(Y )∗ → Z.

If Y is an integral scheme of finite type over k of dimension p + 1 and r ∈
R(Y )∗, the divisor of r is

div(r) =
∑
W

ordW (r)[W ] ∈ Zp(Y ).

Definition A.6.8. Let X be a scheme of finite type over a field k, let p ∈ Z≥0

and let α, β ∈ Zp(X). We say that α and β are rationally equivalent if there
exist finitely many integral closed subschemes Yi of X and rational functions
ri ∈ R(Yi)

∗, such that

β − α =
∑
i

div(ri),

where we identify div(ri) with a cycle in Zp(X) via the natural inclusion
Zp(Yi) → Zp(X). The pth Chow homology group of X is the group Zp(X)
modulo rational equivalence. We write

A∗(X) =
⊕
p∈Z≥0

Ap(X).

Definition A.6.9. Let X be a scheme of finite type over a field k. The
irreducible components of X are the maximal irreducible closed subsets of
X. The fundamental cycle of X is

[X] =
∑
i

mi[Xi] ∈ Z∗(X)

where the sum is over irreducible components Xi of X, and for each i,

mi = lOX,Xi
(OX,Xi

)

is the length of the local ring OX,Xi
as a module over itself. Since X is of

finite type over k, the underlying topological space of X is Noetherian, so
this is a finite sum by [14], 0.2.2.5. The fundamental class of X is the image

[X] ∈ A∗(X).
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If Y is a closed subscheme of a scheme X, then we can regard the fun-
damental cycle and fundamental class of Y as elements [Y ] ∈ Z∗(X) and
[Y ] ∈ A∗(X).

Let f : X → Y be a flat morphism of schemes of finite type over k. We
say that f has relative dimension n if for every irreducible component Yi of
Y , we have

dim f−1(Yi) = dimYi + n.

If f : X → Y is flat of relative dimension n, then, for all p ∈ Z≥0, we have
an induced map

f ∗ : Zp(Y )→ Zp+n(X),

given by
f ∗([W ]) = [f−1(W )]

for all integral closed subschemes of Y . By [10], Lemma 1.7.1 and Theorem
1.7, f ∗ descends to a homomorphism

f ∗ : Ap(Y )→ Ap+n(X)

such that f ∗[W ] = [f−1(W )] for all closed subschemes W of Y .

A.7 Algebraic stacks

In this section, we review some aspects of the theory of algebraic stacks.
An algebraic stack is a generalisation of a scheme in which points can have

automorphisms. A rich source of examples is the theory of moduli spaces.
For a moduli space X, the points of X classify some geometric objects,
such as algebraic curves or vector bundles. Very often these objects have
automorphisms, so it is natural (and often essential) to keep track of these
automorphisms in the space X.

The formal definition of algebraic stack begins as follows. Fix a base
scheme S. Endowing Sch/S with the étale topology (see Example 2.2.5), the
Yoneda embedding j : Sch → Sh(Sch/S) identifies the category of schemes
over S with a full subcategory of the category of sheaves on Sch/S, consisting
of sheaves with a particularly nice local form. To define algebraic stack,
we introduce potential automorphisms by replacing sheaves with stacks in
groupoids.

We give a minimalist definition of algebraic stacks below. Note that
for simplicity we have dropped a number of conditions usually found in the
literature.
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Definition A.7.1 (cf. [6], Definition 4.6, [1], Definition 5.1 and [29, Tag
026O]). Let X be a stack over Sch/S with the étale topology. We say that
X is algebraic or Artin if X satisfies the following conditions.

(1) The diagonal map X → X ×X is representable by algebraic spaces.

(2) There exists a scheme U and a smooth surjective morphism of stacks
U → X.

We say that X is Deligne-Mumford if there exists a scheme U and an étale
surjective morphism U → X.

Definition A.7.1 requires a few words of explanation. An algebraic space
is a mild generalisation of a scheme. Roughly, an algebraic space over S is
a well-behaved sheaf on Sch/S which admits an étale surjective map from
a scheme. For a full treatment, see [20]. We say that a morphism X → Y
of stacks on Sch/S is representable by algebraic spaces if for every morphism
U → Y with U (the sheaf represented by) a scheme, the 2-fibre product
U ×Y X is an algebraic space. We say that a morphism U → X is smooth
surjective (resp. étale surjective) if for every morphism V → X with V a
scheme, the 2-fibre product U ×X V → V is smooth surjective (resp. étale
surjective).

Remark A.7.2. Some authors use different conventions to ours when defin-
ing algebraic stacks. The variations include restricting the site Sch/S to the
subcategory of locally Noetherian schemes, and endowing Sch/S with a finer
topology, such as the fppf or fpqc topologies. The 2-category of algebraic
stacks thus obtained is usually independent of these choices.

Remark A.7.3. Let X be a Deligne-Mumford stack. The existence of an
étale surjection U → X with U a scheme implies that the points of X have
only finite automorphism groups. If X is merely an Artin stack, then the au-
tomorphism groups of X may be finite dimensional smooth algebraic spaces.

Remark A.7.4. Let X be a Deligne-Mumford stack. Since there exists an
étale surjective U → X with U a scheme, we can define the étale site of
X as the category Xét of schemes together with étale morphisms to X with
an appropriate topology. Using Xét , we can generalise many concepts from
scheme theory (such as quasi-coherent sheaves, vector bundles, cotangent
sheaves, cotangent complexes, etc.) to Deligne-Mumford stacks. Artin stacks
are somewhat trickier to work with, as they do not in general have a well-
behaved étale site.
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Example A.7.5 (cf. [6], Example 4.8). Let X be an S-scheme and let G
be a group scheme over S (i.e. a scheme together with a group structure on
the functor of points) acting on X. The quotient stack [X/G] is the stack
associated to the fibred category [X/G]0 over Sch/S with

Ob[X/G]0(U) = X(U)

and
Hom(x, y) = {g ∈ G(U) | gx = y}

for U ∈ Ob Sch and x, y ∈ X(U). If G is a finite group, then [X/G] is a
Deligne-Mumford stack. More generally, if G is a smooth group scheme over
S, then [X/G] is an Artin stack.

In Section 6.3, it is useful to have an extension of the intersection theory of
Section A.6 to algebraic stacks. In [21], A.Kresch constructs Chow homology
groups ([21], Definition 2.1.11) Ap(X) for p ∈ Z and X an Artin stack of finite
type over a base field k, and flat pullbacks ([21], Section 2.2)f ∗ : Ap(Y ) →
Ap+n(X) for f : X → Y a flat morphism of algebraic stacks of relative
dimension n ∈ Z. Here we note that a morphism f : X → Y of algebraic
stacks is flat of relative dimension n if there exists a smooth surjective map
g : U → X with U a scheme such that g has relative dimension m and
f ◦ g : U → Y is flat of relative dimension m+ n.

Remark A.7.6. Unlike for schemes, the Chow homology groups Ap(X) of
an algebraic stack X do not necessarily vanish for p < 0, and we can have
morphisms which are flat of negative relative dimension.
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Appendix B

The cotangent complex

In this appendix, we review Illusie’s theory of cotangent complexes on ringed
sites. We recall the definition and main properties, and give explicit descrip-
tions of many of the maps used in this thesis. The main purpose of including
this appendix is to see that the cotangent complex has some stronger func-
toriality properties than those explicitly stated in [19].

B.1 Simplicial algebra

In this section, we recall the theory of simplicial objects in a category D. Of
particular interest to us are the case where D is an abelian category, and the
case where D = Sh(C,CR) is the category of sheaves of commutative rings
on a site C.

In what follows, let ∆ be the category with objects the totally ordered
sets [0, n] = {0, 1, 2, . . . , n} for n ∈ Z≥0, and morphisms the order-preserving
maps.

Definition B.1.1. Let D be a category. The category of simplicial objects
in D is the category sD of functors

X : ∆op → D

and natural transformations between them. If X is a simplicial object in D,
we often denote the object X([0, n]) by Xn.

Remark B.1.2. Let D be a category. There is a fully faithful functor D →
sD which takes an object A of D to the constant functor

K(A, 0) : ∆op → D
[0, n] 7→ A.

When there is no danger of confusion, we write A in place of K(A, 0).
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Definition B.1.3. Let n ∈ Z≥0. For each i ∈ [0, n], the ith coface map is

di : [0, n− 1]→ [0, n]

k 7→

{
k, if k < i,

k + 1, if k ≥ i,

and the ith codegeneracy map is

si : [0, n+ 1]→ [0, n]

k 7→

{
k, if k ≤ i,

k − 1, if k > i.

If X is a simplicial object in a category D, di and si induce maps

di = X(di) : Xn → Xn−1

and
si = X(si) : Xn → Xn+1

called the face and degeneracy maps of X.

It is elementary and well-known that the coface and codegeneracy maps
generate the category ∆. It follows that to define a simplicial object X in D,
it suffices to define objects Xn and maps di : Xn → Xn−1 and si : Xn → Xn+1

satisfying appropriate relations. If X and Y are simplicial objects in D, a
morphism f : X → Y consists of a collection {fn : Xn → Yn}n∈Z≥0

of
morphisms in D, which commute with the face and degeneracy maps of X
and Y .

We now consider the case where D = A is an abelian category. In this
case, there is an intimate connection between simplicial objects in A and
complexes in A.

Remark B.1.4. The notion of complex introduced in Section 4.1 is some-
times called a cochain complex. A chain complex in A is a sequence

M = [· · · ∂2−→M1
∂1−→M0

∂0−→M−1
∂−1−−→M−2

∂−2−−→ · · · ],

where Mi ∈ Ob(A) and ∂i◦∂i−1 = 0 for all i ∈ Z. We can regard any cochain
complex M as a chain complex by setting

Mi = M−i and ∂i = d−i

for all i ∈ Z. When working with chain complexes instead of cochain com-
plexes, we also write C≤n(A) and C≥n(A) in place of C≥−n(A) and C≤−n(A)
respectively.
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Let M be a simplicial object in A. The normalised chain complex of M
is the chain complex N(M) with nth term

N(M)n =
n−1⋂
i=0

ker di

and differential
∂n = (−1)ndn : N(M)n → N(M)n−1

where di : Mn → Mn−1 is the ith boundary map for M . The relations in
∆ ensure that ∂n ◦ ∂n+1 = 0, so N(M) is indeed a chain complex. This
construction defines a functor,

N : sA → C≥0(A),

from simplicial objects in A to chain complexes in A. The key result is the
following.

Theorem B.1.5 (Dold-Kan correspondence). The functor N : sA → C≥0(A)
is an equivalence of categories.

A reference for this result in the case that A = Ab is the category of
abelian groups is [12], Corollary III.2.3. The proof in the general case is
identical.

Example B.1.6. Let M be any object in A. By Remark B.1.2, we can think
of M as a constant simplicial object, which we also denote by M . In this
case, the normalised chain complex of M is

[· · · → 0→M → 0→ · · · ],

with M placed in degree 0.

For the remainder of this section, we fix a site C.
The advantage of working with simplicial objects is that they provide

us with a reasonable generalisation of complexes that works in non-abelian
settings. Of particular interest to us is the category sSh(C,CR) of simpli-
cial sheaves of rings over C. For brevity, we will write sCR(C) in place of
sSh(C,CR), and we will call its objects simplicial rings over C.

Definition B.1.7. Let A be a simplicial ring over C, and let n ∈ Z≥0. The
nth homotopy sheaf of A is the sheaf of abelian groups

πn(A) = Hn(N(A)),
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where N(A) is the normalised chain complex of the simplicial sheaf of abelian
groups underlying A. We say that a morphism f : A→ B of simplicial rings
on C is a weak equivalence if the induced map πn(f) : πn(A) → πn(B) is an
isomorphism for all n ∈ Z≥0.

Remark B.1.8. Let A be a simplicial ring over C, and denote by ∂n :
N(A)n → N(A)n−1 the differential of the normalised chain complex N(A).
Then

ker ∂0 = N(A)0 = A0

and im ∂1 is a sheaf of ideals in A0, so

π0(A) =
ker ∂0

im ∂1

naturally has the structure of a sheaf of rings. It is immediate that if f :
A→ B is a morphism of simplicial rings over C, then π0(f) : π0(A)→ π0(B)
is a morphism of sheaves of rings on C.

Definition B.1.9. Let A be a simplicial ring over C. An A-module is a
simplicial abelian group M over C together with a morphism A×M →M of
simplicial sheaves, such that for each n ∈ Z≥0 the induced map An ×Mn →
Mn gives Mn the structure of an An-module. If M and N are A-modules, a
morphism of A-modules is a morphism f : M → N of simplicial sheaves of
abelian groups such each fn : Mn → Nn is a morphism of An-modules. We
denote the category of A-modules by A-mod.

Remark B.1.10. If A is a sheaf of rings on C, then there is a canonical
equivalence of categories

sA-mod ' K(A, 0)-mod,

where K(A, 0) denotes the constant simplicial ring given by A.

B.2 The cotangent complex

In this section, we recall Illusie’s definition of the cotangent complex of a
morphism of sheaves of rings on a site C. Roughly, if A is a sheaf of rings,
the cotangent complex of an A-algebra B is the left derived functor of the
module of Kähler differentials introduced in Section A.4. It is constructed
by taking a simplicial resolution of B by free A-algebras and taking Kähler
differentials termwise. It will be useful to introduce free simplicial resolutions
in the following general setting.
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Definition B.2.1. Let C be a site and let A be a simplicial ring over C. An
A-algebra is a simplicial ring B over C together with a morphism A → B.
We say that B is termwise free if for each n ∈ Z≥0, there exists a sheaf Fn
on C and an isomorphism of An-algebras

Bn
∼= An[Fn],

where An[Fn] is the free An-algebra generated by the sheaf Fn. If B is any
A-algebra, a free resolution of B is weak equivalence B̃ → B, such that B̃ is
a termwise free A-algebra.

Proposition B.2.2. Let C be a site and let A be a simplicial ring over C.
Then every A-algebra has a free resolution.

Let C be a site and let A→ B be a morphism of sheaves of rings on C. If
B̃ → B is a free resolution of B over A (considered as a constant simplicial
ring) then we can form the B̃-module ΩB̃/A of Kähler differentials, given by(

ΩB̃/A

)
n

= ΩBn/A.

Tensoring with B gives a simplicial B-module

ΩB̃/A ⊗B̃ B.

Definition B.2.3. The cotangent complex of B over A is the normalised
chain complex

LB/A = N(ΩB̃/A ⊗B̃ B).

The following proposition shows that as an object in D(B), LB/A is in-

dependent of the choice of free resolution B̃.

Proposition B.2.4. Let A → B be a morphism of sheaves of rings over a
site C. If B̃1 → B and B̃2 → B are free resolutions of B, then there is a
canonical isomorphism

N(ΩB̃1/A
⊗B̃1

B)→ N(ΩB̃2/A
⊗B̃2

B)

in D(B).

Remark B.2.5. Let A → B be a morphism of rings on a site C. It follows
from Proposition A.4.9 that there is a canonical isomorphism

H0(LB/A)→ ΩB/A.
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Definition B.2.6. Let π : X → S be a morphism of schemes. The cotangent
complex of X over S is

LX/S = LOX/π−1OS
,

where LOX/π−1OS
is the cotangent complex of OX over π−1OS on the Zariski

site XZar .

Remark B.2.7. The cotangent complex of schemes is defined using the
Zariski site XZar . If LXét/Sét

denotes the cotangent complex of OXét
over

π−1OSét
on Xét , then there is a canonical map z∗LX/S → LXét/Sét

where
z : (Xét ,OXét

) → (XZar ,OX) is the morphism of ringed sites of Example
2.3.6. It follows from [19], Chapitre III, Proposition 3.1.1 that this map is
an isomorphism in D(OXét

). We will not usually distinguish between LX/S
and LXét/Sét

.

B.3 Functoriality and exactness

In this section we study the functoriality and exactness properties of the
cotangent complex. For our purposes, we need somewhat stronger coherence
properties than are stated in [19], which is the main motivation for including
this Appendix.

A full treatment of these coherence properties is beyond the scope of
this work. For a detailed account using ∞-categories, see [23], Section 8.3.
For our purposes, it will suffice to use the homotopy coherence formalism
introduced in Section 4.4.

Let C be a site, and let K be a small category. As in Section 2.5, define
a topology on the product category C ×Kop by declaring a family {(fi, gi) :
(Ui, ki) → (U, k)}i∈I to be a covering if {fi : Ui → U}i∈J is a covering in C,
where

J = {i ∈ I | gi is an isomorphism}.
Then for any category D, there is a canonical equivalence of categories

Sh(C,D)K ' Sh(C ×Kop,D).

In particular, if A• → B• is a morphism of diagrams of sheaves of rings on
C, then we can consider the cotangent complex

LB•/A• ∈ ObD(B•).

This object is constructed by taking free resolutions of sheaves of rings on C
at each place in the diagram to obtain a commutative diagram of simplicial
rings, then taking modules of Kähler differentials at each place. The following
proposition is clear from the construction.
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Proposition B.3.1. In the setup above, for each k ∈ ObK, the “evaluation
at k” functor,

D(B•)→ D(Bk),

takes LB•/A• to LBk/Ak
.

Consider the special case where K is the commutative square below.

1 2

3 4

(B.3.1)

Then a morphism A• → B• of diagrams of shape K is a commutative diagram
of sheaves of rings as follows.

A1 A2

A3 A4

B1 B2

B3 B4

A B•-module is a commutative diagram

M1 M2

M3 M4,

(B.3.2)

where each Mi is a Bi-module, and each Mi → Mj is a homomorphism of
Bi-modules. There is a right exact functor B•-mod → B-mod� to the
category of commutative squares in B-mod, which takes a diagram above
to the diagram

M1 ⊗B1 B4 M2 ⊗B2 B4

M3 ⊗B3 B4 M4.
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This has a left derived functor,

D(B•)→ D(B�
4 ), (B.3.3)

defined via flat resolutions. The image of LB•/A• under this functor is a
homotopy coherent diagram

LB1/A1

L
⊗B1B4 LB2/A2

L
⊗B2B4

LB3/A3

L
⊗B3B4

LB4/A4 ,

where
L
⊗ denotes the left derived functor of tensor product.

As a special case, suppose we have morphisms of rings A→ B → C over
C. Then the diagram

A B

A B

B B

C C

gives a homotopy coherent square as follows.

LB/A
L
⊗BC LB/B

L
⊗BC

LC/A LC/B

Since we plainly have LB/B = ΩB/B = 0, this gives a coherent triangle

LB/A
L
⊗BC → LC/A → LC/B

in D(C).

Proposition B.3.2 (cf. [19], II.2.1.2.1). The coherent triangle

LB/A
L
⊗BC → LC/A → LC/B

is exact.
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Corollary B.3.3. Let X
f−→ Y → S be morphisms of schemes. Then there

is a canonical exact triangle,

Lf ∗LX/S → LY/S → LY/X ,

in D(Y ).

B.4 Application to deformation theory

In this section, we recall the key points in the proof of the following theorem.

Theorem B.4.1 (cf. [19] Théorème III.1.2.3 and [25], Theorem A.7). Let C
be a site, let A→ B be a morphism of rings over C and let J be a B-module.
Then there is a natural equivalence

ch(RHom•(LB/A, J [1])) ' ExtA(B, J)

of stacks on C. Here ExtA(B, J) denotes the stack of square-zero extensions
of B by J over A.

Sketch of proof. The proof is in two main steps.
The first step is to construct a natural equivalence

ch(RHom•(Ω, J [1])) ' Ext(Ω, J)

for Ω a complex of B-modules and J a B-module. Here Ext(Ω, J) is the
stack of extensions

0→ J → Ω̃→ Ω→ 0

of Ω by J . This equivalence is constructed in two stages. First, we construct
a natural map

pch(Hom•(Ω, I[1]))→ Ext(Ω, I)

for any B-module I. This takes a morphism of complexes Ω→ I[1] (a section
of pch(Hom•(Ω, I[1]))) to the extension with

Ω̃ = Ω×I[1] [I → I].

A morphism of sections f and g of pch(Hom•(Ω, I[1])) can be identified with
a morphism of complexes Ω → [I → I], which determines a morphism of
extensions

Ω×I[1],f [I → I]→ Ω×I[1],g [I → I].

The induced morphism of stacks,

ch(Hom•(Ω, I[1]))→ Ext(Ω, I),
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is fully faithful in general, and an equivalence for I injective. Now choose an
injective resolution J̃ for J and write

[I−1 → I0] = τ≤0(J̃ [1]).

Then
ch(RHom•(Ω, J [1])) = ch(Hom•(Ω, [I−1 → I0])).

We have a 2-commutative square

ch(Hom•(Ω, I−1[1])) ch(Hom•(Ω, I0[1]))

Ext(Ω, I−1) Ext(Ω, I0)

where the left and right vertical arrows are an equivalence and fully faithful
respectively. Hence, we get an equivalence from the fibre of the top row (over
the zero section of Hom•(Ω, I−1)) to the fibre of the bottom row (over the
trivial extension). But the fibre of the bottom row is simply

Ext(Ω, J)

and, from the exact triangle

Hom•(Ω, [I−1 → I0])→ Hom•(Ω, I−1[1])→ Hom•(Ω, I0[1]),

the fibre of the top row is

ch(Hom•(Ω, [I−1 → I0])) = ch(RHom•(Ω, J [1]))

by Corollary 4.5.3. Thus we have an equivalence

ch(RHom•(Ω, J [1])) ' Ext(Ω, J)

as claimed.
The second step of the proof is to construct a natural equivalence

ExtA(B, J)→ Ext(LB/A, J).

Fix a free resolution B̃ → B of B over A. Given a square-zero extension

0→ J → C → B → 0

of B, we get a square-zero extension

0→ J → C ×B B̃ → B̃ → 0,
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of B̃, where we regard J as a constant simplicial B-module. Since B̃ is
termwise free over A, by Proposition A.4.9, we get an exact sequence

0→ J → ΩC×BB̃/A
⊗ B̃ → ΩB̃/A → 0.

Tensoring with B gives an exact sequence

0→ J → ΩC×BB̃/A
⊗B → ΩB̃/A ⊗B̃ B → 0

since ΩB̃/A is a (termwise) flat B̃-module. Taking normalised chain complexes
gives an extension

0→ J → N(ΩC×BB̃/A
⊗B)→ LB/A → 0,

which gives a section of Ext(LB/A, J).
To construct the inverse equivalence, take an extension

0→ J → Ω̃0 → ΩB̃/A ⊗B̃ B → 0

corresponding via the Dold-Kan correspondence (Theorem B.1.5) to an ex-
tension of LB/A by J . Pulling back under the map ΩB̃/A → ΩB̃/A⊗B̃ B gives
an extension

0→ J → Ω̃→ ΩB̃/A → 0

and hence a square-zero extension

0→ J → B̃ ⊕ Ω̃→ B̃ ⊕ ΩB̃/A → 0

of simplicial A-algebras. Pulling back under the homomorphism

B̃
(id,d)−−−→ B̃ ⊕ ΩB̃/A,

where d denotes the universal derivation, we get a square-zero extension

0→ J → C̃ → ΩB̃/A → B̃ → 0,

where
C̃ = B̃ ⊕ Ω̃×B̃⊕ΩB̃/A

B̃.

Taking π0, this gives a square-zero extension

0→ J → C → B → 0

with C = π0(C̃).
Thus we have the desired natural equivalence

ch(RHom•(LB/A, J [1])) ' Ext(LB/A, J) ' ExtA(B, J).
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Remark B.4.2. The equivalence of Theorem B.4.1 is natural in A, B and
J . We can make precise the naturality in A as follows. Given a fixed ring B
on C, we have an object

LB/A• ∈ D(BK)

for any diagram A• of rings on C of shape K and any morphism A• → B.
This gives a 2-commutative diagram of stacks

ch(RHom•(LB/A• , J [1])) ∈ Ob Ho(St(C)Kop

)

for any B-module J . Following through the proof of Theorem B.4.1, we get
an equivalence

ch(RHom•(LB/A• , J [1])) ' ExtA•(B, J),

where ExtA•(B, J) is the strictly commutative diagram of stacks obtained
from the forgetful maps. The naturality in B and J is similar.

B.5 Truncated cotangent complexes of schemes

In this section, we describe a computation of the truncated cotangent com-
plex τ≥−1LX/S of a morphism of schemes X → S.

The main algebraic result is the following.

Theorem B.5.1 (cf. [19], Corollaire III.1.2.9.1). Let C be a site and let
A→ B → C be morphisms of sheaves of rings on C. If B → C is surjective
with kernel I ⊆ B, then there is a canonical morphism

LC/A → [I/I2 → ΩB/A ⊗B C].

Moreover, if the natural map LB/A → ΩB/A is an isomorphism and ΩB/A is
a flat B-module, then the above map induces an isomorphism

τ≥−1LC/A → [I/I2 → ΩB/A ⊗B C]

in D(C).

Sketch of proof. We recall the construction of the morphism

LC/A → [I/I2 → ΩB/A ⊗B C].

Form the square-zero extension

0→ I/I2 → B/I2 → C → 0
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of C by I/I2. Using the proof of Theorem B.4.1, this induces an exact
sequence

0→ I/I2 → N(ΩD/A ⊗D C)→ LC/A → 0

of complexes of C-modules, where D is the simplicial ring

D = B/I2 ×C C̃

for some free resolution C̃ → C of C. Thus, we have a quasi-isomorphism

Cone(I/I2 → N(ΩD/A ⊗D C))→ LC/A.

The commutative diagram

I/I2 D

I/I2 B

C

induces a commutative diagram of complexes

I/I2 N(ΩD/A ⊗D C)

I/I2 ΩB/A ⊗B C.

Thus, we get a morphism

Cone(I/I2 → N(ΩD/A ⊗D C))→ Cone(I/I2 → ΩB/A ⊗B C),

which gives the desired morphism

LC/A → [I/I2 → ΩB/A ⊗B C].

Proposition B.5.2 (cf. [19], Corollaire III.3.1.3 and Corollaire III.3.2.7).
Let S be a scheme and let i : X → Y be a closed embedding of S-schemes with
ideal sheaf I ⊆ i−1OY . If Y is smooth over S, then there is an isomorphism

τ≥−1LX/S ' [I/I2 → i∗ΩY/S]

in D(X). If i is a regular embedding, then this gives an isomorphism

LX/S ' [I/I2 → i∗ΩY/S].
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[31] B. Toën and G. Vezzosi. Homotopical algebraic geometry II: geometric
stacks and applications. Number 902 in Memoirs of the American Math-
ematical Society. American Mathematical Society, Providence, 2008.

128

http://stacks.math.columbia.edu
http://stacks.math.columbia.edu

	Introduction
	Expected dimensions and virtual fundamental classes
	Deformations and obstructions
	Three approaches to obstruction theories and virtual classes
	Plan of the thesis

	Sheaves and stacks
	Sheaves on topological spaces
	Sheaves on sites
	Ringed sites
	Stacks
	Homotopy coherence for stacks

	Square-zero extensions and obstruction sequences
	Square-zero extensions
	Obstruction sequences for fibre products
	Obstruction sequences for mapping spaces

	Homological algebra
	Complexes in an abelian category
	From complexes to stacks
	Derived categories
	Homotopy coherence for complexes
	Exactness of the functor ch

	Obstruction theories
	Derived functors
	The cotangent complex
	Obstruction theories
	Obstruction theories for fibre products

	Virtual fundamental classes
	Schemes, sheaves and algebraic stacks
	The intrinsic normal cone
	Virtual fundamental classes
	Examples

	Algebraic geometry
	Schemes
	Sheaves of modules
	Functors for constructing schemes
	The cotangent sheaf
	Properties of schemes and morphisms
	Intersection theory
	Algebraic stacks

	The cotangent complex
	Simplicial algebra
	The cotangent complex
	Functoriality and exactness
	Application to deformation theory
	Truncated cotangent complexes of schemes


