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Introduction
This tutorial introduces belief propagation in the context of factor 

graphs and demonstrates its use in a simple model of stereo 
matching used in computer vision.

It assumes knowledge of probability and some familiarity with 
MRFs (Markov random fields), but no familiarity with factor 
graphs is assumed.

Based on a tutorial presented at Sixth Canadian Conference on 
Computer and Robot Vision (CRV 2009). Kelowna, British 
Columbia. May 2009.

Feedback is welcome: please send it to coughlan@ski.org
Updated versions will be available at
http://www.ski.org/Rehab/Coughlan_lab/General/TutorialsandReference.html
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What is belief propagation (BP)?

Technique invented in 1982 
[Pearl] to calculate marginals in 
Bayes nets.

Also works with MRFs, graphical 
models, factor graphs.

Exact in some cases, but 
approximate for most 
problems.

Can be used to estimate 
marginals, or to estimate most 
likely states (e.g. MAP).
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MRFs, graphical models, factor 
graphs

Common property: joint probability of many 
variables factors into little pieces.

The factors (f, g, F, G, etc.) are called potentials.

Probability domain

Energy (log prob.)
domain
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Factors

In general factors are not probabilities 
themselves – they are functions that 
determine all probabilities.

However, in special cases (Markov chain, 
Bayes net) they can be interpreted as 
conditional probabilities.

Non-negative (except in log domain), but 
don’t need to normalize to 1.
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Bayes net example
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MRF example
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Factor graph example

Each box denotes a factor (interaction) 
among the variables it connects to:

f g

w x y z

h
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Marginals vs. maximizer

Marginals: find

Maximizer: find

Both are computationally difficult: if state space 
of all xi has S possible states, then O(SN)
calculations required (exhaustive addition/ 
exhaustive search)!
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One solution: BP
BP provides exact solution when there 

are no loops in graph! (E.g. chain, tree.)
Equivalent to dynamic programming/ 

Viterbi in these cases.
Otherwise, “loopy” BP provides 

approximate (but often good) solution.

Alternatives: graph cuts, MCMC/ 
simulated annealing, etc.
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Overview of BP

Overview: iterative process in which 
neighboring variables “talk” to each 
other, passing messages such as:

“I (variable x3) think that you (variable x2) 
belong in these states with various 
likelihoods…”
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Overview of BP, con’t

After enough iterations, this series of 
conversations is likely to converge to a 
consensus that determines the marginal 
probabilities of all the variables.

Estimated marginal probabilities are 
called beliefs.

BP algorithm: update messages until 
convergence, then calculate beliefs.
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Common case: pairwise MRF
Pairwise MRF (graphical model) – has just 

unary and pairwise factors:

Here gi(.) are the unary factors,
fij(.,.) are the pairwise factors, 
and the second product is over neighboring 

pairs of nodes (variables), such that i<j (i.e. 
don’t count a pair of variables twice).
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General case: factor graph
BP also formulated for factor graphs, 

which may have interactions higher-
order than pairwise. See [Kschischang
et al] for details.

This tutorial will only describe BP for 
pairwise MRF.
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Messages
Message from node i to node j: 
mij(xj)

Messages are similar to 
likelihoods: non-negative, 
don’t have to sum to 1.

A high value of mij(xj) means 
that node i “believes” the 
marginal value P(xj) to be 
high.

Usually initialize all messages 
to 1 (uniform), or random 
positive values.
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Message update
To update message from i to j, consider 

all messages flowing into i (except for 
message from j):

node q

⇒node i node j
mnew

ij(xj )

node p mold
pi(xi )

mold
qi(xi )
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Message update
The messiest equation in this tutorial:

Messages (and unary) factor on RHS 
multiply like independent likelihoods   

update equation has this form:
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Message update
Note: given a pair of neighboring nodes, there is 

only one pairwise interaction but messages 
flow in both directions. Define pairwise
potential so that we can use the message 
update equation in both directions (from i to j
and from j to i) without problems:

By the way, this isn’t the same as assuming a 
symmetric potential, i.e. 
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Message normalization

In practice one usually normalizes the 
messages to sum to 1, so that 

Useful for numerical stability (otherwise 
overflow/ underflow likely to occur after 
enough message updates)
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Update schedule
Synchronous: update all messages in parallel
Asynchronous: update one message at a time
With luck, messages will converge after enough updates.

Which schedule to choose?
For a chain, asynchronous is most efficient for a serial 

computer (up and down chain once guarantees 
convergence). Similar procedure for a tree.

For a grid (e.g. stereo on pixel lattice), people often 
sweep in an “up-down-left-right fashion” [Tappen & 
Freeman].

Choosing a good schedule requires some 
experimentation
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Belief read-out
Once messages have converged, use belief read-out 

equation:

If you normalize belief then it approximates the marginal 
probability. (Approximation exact when no loops.)

Note: another belief equation available for pairwise
beliefs, i.e. estimates of pairwise marginal 
distributions. See [Bishop 2006].
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Computational complexity

The main cost is the message update 
equation, which is O(S2) for each pair of 
variables.

Much better than brute-force complexity 
O(SN).
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Sum-product vs. max-product

The standard BP we just described is 
called sum-product (from message 
update equation), and is used to 
estimate marginals.

A simple variant, called max-product (or 
max-sum in log domain), is used to 
estimate the state configuration with 
maximum probability.
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Max-product

Message update same as before, except that 
sum is replaced by max:

Belief equation same as before, but beliefs no 
longer estimate marginals. Instead, they are 
scoring functions whose maxima point to 
most likely states.
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Max-sum

This is what max-product becomes in log 
domain: products become sums, and 
messages can be positive or negative.

Note: in practice, beliefs are often 
“normalized” to avoid underflow/ 
overflow, e.g. by uniformly shifting them 
so that lowest belief value is 0.
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Example: MRF stereo

Let r or s denote 2D image coordinates (x,y).
Unknown disparity field D(x,y)=D(r).
Smoothness prior:
where                                  sums over all 

neighboring pixels.
Often the penalty                           is used

instead of                  for greater robustness.
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Likelihood function

Let m denote the matching error across the 
entire left and right images, i.e.

Simple likelihood function:

Assume conditional independence across 
image:
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Posterior and inference

Posterior: P(D | m) = P(D) P(m|D) / P(m)

Posterior has unary and pairwise factors.

Sum-product BP estimates marginals
P(Dr | m) at each pixel r.
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Sample results
Tsukuba images from Middlebury stereo database
(http://vision.middlebury.edu/stereo/ )

Left                           Right

Original images in color, but our simple model uses 
grayscale versions
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Sample results

Message update schedule: “left-right-up-
down”

“Left” means an entire sweep that updates 
messages from all pixels to their left 
neighbors, etc.

One iteration consists of a sweep left, then 
right, then up, then down.
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Sample results

Winning disparities shown by grayscale 
levels (lighter pixels have higher estimated 
disparity)

Before BP (i.e. disparities estimated solely by 
unary potentials):
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Sample results

First iteration: disparities shown after
left,                right,               up,              down sweeps

Noticeable “streaking” after left and right sweeps, mostly 
erased by up sweep.
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Sample results
Subsequent iterations:

2                     3                   4                5

… 20
Note:
Little change after first few iterations.
Model can be improved to give better results 
-- this is just a simple example to illustrate BP.
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Complications and “gotchas”
1.) Ties: suppose there are two state 

configurations that are equally probable. BP 
beliefs will show ties between the two 
solutions; how to recover both globally 
consistent solutions? 
Solution: back-tracking [Bishop]

2.) If messages oscillate instead of converge 
damp them with “momentum” [Murphy et al]



36

Speed-ups
Binary variables: use log ratios [Mackay]
Distance transform and multi-scale 

[Felzenszwalb & Huttenlocher]
Sparse forward-backward [Pal et al]
Dynamic quantization of state space [Coughlan 

& Shen]
Higher-order factors with linear interactions 

[Potetz and Lee]
GPU [Brunton et al]
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Extensions/variations

Factor graph BP: higher-order factors 
(cliques) [Kschiang et al]

Particles for continuous variables: non-
parametric BP [Sudderth et al]

Top m solutions [Yanover & Weiss]
Tree reweighted BP [Wainwright et al]
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Connections

Variational formulation/ connection with 
statistical physics: Bethe free energy, 
Kikuchi, comparison with mean field 
[Yedidia]

Model of neurodynamics [Ott & Stoop]
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Advantages

Extremely general: you can apply BP to any 
graphical model with any form of potentials –
even higher-order than pairwise!

Useful for marginals or maximum probability 
solution

Exact when there are no loops
Easy to program
Easy to parallelize
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Disadvantages

Other methods may be more accurate, 
faster and/or less memory-intensive in 
some domains [Szeliski et al].

For instance, graph cuts are faster than 
BP for stereo, and give slightly better 
results.
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Perspective
But [Meltzer et al]: better to improve model than 

to improve the optimization technique: 

“As can be seen, the global minimum of the 
energy function does not solve many of the 
problems in the BP or Graph Cuts solutions. 
This suggests that the problem is not in the 
optimization algorithm but rather in the 
energy function. A promising problem for 
future research is to learn better energy 
functions from ground truth data.”
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Thanks to
Dr. Ender Tekin and Dr. Huiying Shen

View of Lake Okanagan (about 10 miles from Kelowna)
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