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Abstract
This paper is concerned with the problem of the fault detection for switched T-S fuzzy
systems with actuator faults. The system faults and unknown disturbances are
considered to be in a finite frequency domain. An effective fault detection filter is
designed to measure the fault sensitivity and disturbance robustness. By using
Parseval’s theorem and S-procedure, a new finite frequency method of fault detection
for switched T-S fuzzy systems is formulated. Sufficient linear matrix inequalities (LMIs)
conditions are proposed to design the fault detection filter, which can guarantee the
finite frequency H– and H∞ performance. The effectiveness of the given finite
frequency method for switched T-S fuzzy systems is illustrated through two numerical
simulation examples.

Keywords: fault detection; filter; finite frequency; switched T-S fuzzy systems;
Parseval’s theorem

1 Introduction
Due to the more increasing demand for reliability and safety in industrial control pro-
cesses, the issue of fault detection is required in various kinds of practical complex sys-
tems. The controlled problems are relative to sensors, actuators, controlled hardware, of
course, also including the controlled process and so on. However, for the malfunctioning
of the sensors and actuators, deterioration of plant equipment or the ageing of controller
hardware, faults are developed. In order to ensure the safety and reliability of the con-
trolled systems, the fault detection problem was proposed.

Nowadays, for the increasing demand for reliability and safety in industrial processes,
fault detection problem has attracted more and more attention. Many more fault detec-
tion approaches have been proposed for different systems, designing fault detection filters
to monitor systems; see e.g. [–]. The objectives of fault detection filter designing can be
defined as (i) detecting faults as soon as possible, (ii) avoiding false alarms for uncontrolled
inputs signals like disturbance. Among these results, various optimization methods have
been proposed, such as the mixed H/H∞ [] optimization method and the H–/H∞ [, ]
optimization method, where the H– index can measure the maximum influence of a fault
on the residual signal and the H∞ index [] can measure the minimum of the disturbance
on the residual signal. Besides, there is a method to deal with the first one index in []: a
weighting matrix is introduced to transform the H– constraint into a H∞ constraint. How-
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ever, it is not easy to select appropriate weights and the additional weights will increase
the complexity of fault detection systems.

The Takagi-Sugeno (T-S) fuzzy model has witnessed great progress since it is an effec-
tive tool in approximating most complex nonlinear systems [–]. In [], a new indirect
adaptive switching fuzzy control method is proposed for fuzzy dynamical systems based
on T-S multiple models. Further, the method in [] is extended to a class of unknown non-
linear systems with a new robust adaptive multiple model-based fuzzy control scheme. In
[, ], the problem of fault detection are investigated for T-S fuzzy systems by translat-
ing the FD performance requirements over a finite frequency range into an H∞ tracking
problem. References [, ] proposed the FD method for uncertain fuzzy systems based
on the delta operator approach. In [, ], the fault detection problems are considered for
T-S fuzzy systems in finite frequency domain. The fault detection and isolation problem
is investigated in [, ].

In another study, by using generalized the Kalman-Yakubovic-Popov (GKYP) lemma []
and Parselval’s theorem [], some fault detection methods with less conservatism com-
pared to full frequency domain approaches have been developed for linear time-invariant
systems [, ], singular systems [, ], T-S fuzzy systems [, , , ], switched sys-
tems [–], Markovian jump systems [], and so on. In [], a fault detection filter
design method is presented for switched fuzzy systems with average dwell time. However,
there is no result on fault detection in a finite frequency domain for switched T-S fuzzy
systems [–].

In this paper, the problem of fault detection for a class of switched T-S fuzzy systems in
finite frequency domain is addressed. We consider the finite frequency H– performance
and H∞ performance, which can better detect the fault of the control systems and re-
duce the effect of disturbance by using the finite frequency domain approach. Then a new
bounded real lemma (BRL) is obtained. Based on the new BRL, the sufficient conditions for
designing the filter which can guarantee the H– and H∞ performances are given in terms
of solving a set of LMIs. Compared to the existing FD method in the full frequency do-
main [], the designed filter is more sensitive to the fault signal and more robust against
disturbances due to the introduced additional slack matrix variable. Finally, numerical
simulation examples are given to show the effectiveness of the proposed finite frequency
fault detection.

The sections of this paper are organized as follows. In Section , the preliminary and
problem statement of fault detection filter are presented. The fault detection filter per-
formance analysis and design conditions are proposed in Section . The fault detection
threshold is given in Section , and in Section  numerical simulation examples are given.

Notation The symmetric terms in a symmetric matrix are denoted by ∗. For a matrix P,
its complex conjugate transpose is denoted by P∗, and He(P) = P + P∗.

2 Preliminaries and problem statement
2.1 System description
The switched T-S fuzzy model is described by fuzzy IF-THEN rules, which locally rep-
resent linear input-output relations of nonlinear systems. Let us consider the following
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switched T-S fuzzy systems model:

ẋ(t) = Aσ (h)x(t) + Bdσ (h)d(t) + Bσ (h)f (t),

y(t) = Cσ (h)x(t) + Ddσ (h)d(t), ()

where x(t) ∈ Rn is the state, y(t) ∈ Rq is the measured output, d(t) ∈ Rd is the disturbance
input, f (t) ∈ Rf represents the actuator fault signal, the piecewise constant function σ (t) is
the switch signal, and σ (t) = i ∈ N = {, , . . . , r} means the ith subsystem is active, Aσ (h) =
∑r

j= hjAσ j(t), Bdσ (h), Cdσ (h), Ddσ (h) are similar to Adσ (h). The z(t), . . . , zs(t) are premise
variables and μjk (j = , . . . , s, k = , . . . , q) are fuzzy sets, s is the number of IF-THEN rules,
and q is the number of premise variables and

hj
(
z(t)

)
=

μj(z(t))
∑s

j= μj(z(t))
, μj

(
z(t)

)
=

q∏

k=

μjk
(
zk(t)

)
;

μjk(zk(t)) is the grade of the membership of zk(t) in μjk . For all t we have

hj
(
z(t)

)≤ , j = , . . . , s,
s∑

j=

hj
(
z(t)

)
= .

The corresponding switched fuzzy subsystem matrices are denoted by given fuzzy ma-
trices Ai(h), Bdi(h), Bfi(h), Ci(h), Ddi(h), Dfi(h) (i ∈ N ). The frequencies of d(t) and f (t)
reside in a known finite frequency set �, which is defined as

� :=

⎧
⎪⎨

⎪⎩

{ω ∈ R : |ω| ≤ �l,�l ≥ } (LF),
{ω ∈ R : � ≤ ω ≤ �,� ≤ �} (MF),
{ω ∈ R : |ω| ≥ �h,�h ≥ } (HF).

()

Remark  Switched nonlinear systems can be found in various domains [], such as
mobile robots, network control systems, automotive, dc converters, and so on. Recently,
some results have been proposed for switched nonlinear systems based on the T-S fuzzy
model [, ].

Assumption  There exists a switching function σ (t) such that the system () with d(t) = 
and f (t) =  is admissible.

Definition  For any t > t ≥ , let N(t, t) denote the number of switchings of σ (t) over
(t, t). If N(t, t) ≤ N + (t – t)/T holds for T > , N ≥ , then T is called the average
dwell time.

2.2 Fault detection filter
In order to detect the actuator fault, the following fault detection filter is introduced:

ẋf (t) = Af σ (h)xf (t) + Bf σ (h)y(t),

r(t) = Cf σ (h)xf (t), ()
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where xf (t) ∈ Rn is the filter state, y(t) ∈ Rq is the measured output, r(t) ∈ Rd is the fil-
ter output, the piecewise continuous function σ (t) is the switching signal, and σ (t) = i ∈
N = {, , . . . , r} means the ith subsystem is active, and the switched fuzzy system matrices
Af σ (h) =

∑r
j= hjAf σ j(t), and Bf σ (h), Cf σ (h) are similar to be Af σ (h).

Augmenting the model of system () to include the states of (), we obtain the following
system:

η̇(t) = Āσ (h)η(t) + B̄dσ (h)d(t) + B̄σ (h)f (t),

r(t) = C̄σ (h)η(t), ()

where

Āσ (h) =

[
Aσ (h) 

Bf σ (h)Cσ (h) Af σ (h)

]

, B̄dσ (h) =

[
Bdσ (h)

Bf σ (h)Ddσ (h)

]

,

B̄σ (h) =

[
Bσ (h)



]

, C̄σ =

[


C∗
f σ (h)

]∗
, η(t) =

[
x(t)
xf (t)

]

.

2.3 Problem statement
In practice, for some systems, the main effects of disturbances and faults occupy differ-
ent frequency domains. Particularly, fault signals usually emerge in the low frequency do-
main, for example, the constant struck fault just belongs to the low frequency domain
[]. Meanwhile, the disturbances are always in the high frequency such as high frequency
noise.

Remark  For an incipient signal, the fault information is always contained within a low
frequency band as the fault development is slow. For the type fault signal, a FD filter design
typically requires a high fault sensitivity in a low frequency range.

As mentioned earlier, in this paper, we assume that faults are low frequency signals,
while disturbances reside in the high frequency domain. Consider the following two finite
frequency ranges for frequency ω in disturbance d(t) and fault f (t):

�d :=
{
ω ∈ R : |ω| ≥ �h,�h ≥ 

}
, ()

�f :=
{
ω ∈ R : |ω| ≤ �l,�l ≥ 

}
. ()

Denote by F(f (t)) the Fourier transformation of f (t).

Definition  The system () has the finite frequency H∞ index bound γ , if the inequality

∫ ∞


e–αtr∗(t)r(t) dt ≤ γ 

∫ ∞


d∗(t)d(t) dt ()

holds for all solutions of () with d(t) ∈ L such that
∫ ∞


τ (w + �h)(w – �h)η(ω)η̇(ω) dω >  ()

under the zero initial condition.
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Definition  The system () has the finite frequency H– index bound β , if the inequality

∫ ∞


r∗(t)r(t) dt ≥ β

∫ ∞


e–αt f ∗(t)f (t) dt ()

holds for all solutions of () with f (t) ∈ L such that

∫ ∞


–τ (w + �l)(w – �l)η(ω)η̇(ω) dω >  ()

under the zero initial condition.

In this paper, an H–/H∞ fault detection filter is designed to be sensitive to both fault
and disturbance, and to guarantee that the augmented model () is asymptotically stable.
To this end, considering the frequency characterizations of d(t) and f (t), the finite fre-
quency FD problem can be formulated as follows: Given three scalars α, γ , and β , under
the condition that the filter () is stable, solve the following optimization problem:

maxβ

s.t. (), ().
()

Remark  In the optimization problem (), condition () is a H∞ performance constraint
where γ denotes the worst case criterion for the effects of the disturbance d(t) on the
residual r(t) and condition () is a H– performance constraint where β is a measurement
of the fault sensitivity in the worst case from faults f (t) to the residual r(t).

2.4 Preliminaries
Lemma  [] (Finsler’s lemma) Let x ∈ Rn, Q ∈ Rn×n, and U ∈ Rn×m. The following state-
ments are equivalent:

(i) x∗Qx < , ∀U∗x = , x �= ,
(ii) ∃Y ∈ Rm×n : Q + UY + Y ∗U∗ < .

Lemma  [] The switched T-S fuzzy system () is said to be globally uniformly asymptot-
ically stable with average dwell time T > T∗ = lnμ

α
, if there exist Lyapunov functions Vi(x(t)),

∀i ∈ , , . . . , r, such that

Vi
(
x(tk)

)≤ μVj
(
x(tk)

)
, tk is the switching point,

V̇i
(
x(t)

)≤ –αVi
(
x(t)

)
.

Lemma  [] If there exist functions f (t) and g(t) satisfying

ḟ (t) ≤ –αf (t) + mg(t),

where α and m are constant, then

f (t) ≤ e–α(t–t)f (t) + m
∫ t

t

e–α(t–s)g(s) ds.
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3 Main results
In this section, the fault detection filter in the finite frequency design for switched T-S
fuzzy systems problem which is formulated in the previous section based on an LMI ap-
proach will be solved. Four subsections will be given to illustrate this problem. The first
two subsections give the sufficient conditions for () and (), the third one gives the suffi-
cient conditions for (S.). Finally, we give the sufficient condition to guarantee the stability
of the developed filter.

3.1 Finite frequency performance analysis
In this subsection, we assume that the fault detection filter parameters in () are known,
and the proposed the sufficient condition such that the filter error system () satisfies
these two specifications () and (). Then we propose the theorems to obtain the filter
which guarantee () and () based on the previous theorems.

Lemma  For any signal η(t) residing in a known finite frequency set � defined in (), if
there exist a symmetric matrix P and a symmetric positive definite matrix Q, then

∫ ∞


ϑ∗(t)�dϑ(t) dt =

∫ ∞


ϑ∗(t)( ⊗ P + � ⊗ Q)ϑ(t) dt ≥ , ()

where ϑ(t) =
[ η̇(t)

η(t)
]
, �d = ( ⊗ P + � ⊗ Q),  =

[  
 

]
and � is defined in Table .

Proof Assume that η(t) resides in the high frequency range, {ω ∈ R : (ω+�h)(ω–�h) ≥ },
then from Table , � =

[  
 –�

h

]
. We obtain

∫ ∞


ϑ∗(t)( ⊗ P + � ⊗ Q)ϑ(t) dt

=
∫ ∞



[
He

(
η̇∗(t)Pη(t)

)
+ η̇∗(t)Qη̇(t) – � 

h η∗(t)Qη(t)
]

dt. ()

By Parseval’s theorem [], we have

∫ ∞


η̇∗(t)Qη̇(t) dt

=
∫ ∞


tr
[
η̇(t)η̇∗(t)Q

]
dt = tr

[∫ ∞


η̇(t)η̇∗(t) dt

]

Q

= tr

[


π

∫ ∞

–∞

(
jωη(ω)

)(
–jωη∗(ω)

)
dω

]

Q = tr

[


π

∫ ∞

–∞
ωη(ω)η∗(ω) dω

]

Q, ()

where η(ω) is the Fourier transform of η(t). In a similar way,

∫ ∞


He

(
η̇∗(t)Pη(t)

)
dt = 

Table 1 Values � for different frequency ranges [21]

ω ≤ �l (LF) �1 ≤ ω ≤ �2 (MF) ω ≥ �h (HF)

�
[ –1 0

0 �2
l

] [
–1 j

�1+�2
2

–j
�1+�2

2 –�1�2

] [ 1 0
0 –�2

h

]
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and
∫ ∞


–� 

h η∗(t)Qη(t) dt = tr

[


π

∫ ∞

–∞
–� 

h η(ω)η∗(ω) dω

]

Q.

Thus, considering the fact that (ω + �h)(ω – �h) ≥  and Q > , () yields

∫ ∞


ϑ∗(t)( ⊗ P + � ⊗ Q)ϑ(t) dt

= tr

[


π

∫ ∞

–∞
(ω + �h)(ω – �h)η(ω)η∗(ω) dω

]

Q ≥ . ()

For other frequency range cases, similar conclusions can be obtained. The proof is com-
pleted. �

.. Inequality condition for finite frequency H∞ performance
As is well known the disturbances usually are high frequency signals in practice. So, in this
paper the disturbances are assumed to belong to the following high frequency domain:

� =
{
ω ∈ R : |ω| ≥ �h,�h ≥ 

}
. ()

Set f (t) = , the filter error system () becomes

η̇(t) = Āσ (h)η(t) + B̄dσ (h)d(t),

r(t) = C̄σ (h)η(t). ()

Theorem  For a given scalar α > , γ > , the high-frequency H∞ performance () is guar-
anteed for system (), if there exist symmetric positive definite matrices Pd

i , Qd , symmetric
matrices Pd , a matrix Vdi, i = , . . . , r, and a scalar μ such that for a switching signal with
average dwell time satisfying T > T∗ = lnμ

α

�di(h) + �di(h) + �di(h) < , ()

�di(h) ≥ , ()

Pd
i ≤ μPd

j , i �= j, ()

where

�di(h) =

[
Āi(h) B̄di(h)

I 

]∗
( ⊗ Pd + � ⊗ Qd)

[
Āi(h) B̄di(h)

I 

]

,

�di(h) =

[
C̄i(h) 

 I

]∗ [
I 
 –γ I

][
C̄i(h) 

 I

]

,  =

[
 
 

]

,

�di(h) =

[
Āi(h) B̄di(h)

I 

]∗ [
 Pd

i

Pd
i αPd

i

][
Āi(h) B̄di(h)

I 

]

,

with the full column rank matrix U satisfying Ē∗U = .



He et al. Advances in Difference Equations  (2016) 2016:62 Page 8 of 24

Proof First, choosing a Lyapunov functional candidate of the form

V (t) = η∗(t)Pd
σ (t)η(t) = ξ ∗(t)

[
Pd

σ 
 

]

ξ (t)

= ξ ∗(t)

[
Āσ (h) B̄dσ (h)

I 

]∗ [
 
 Pd

σ

][
Āσ (h) B̄dσ (h)

I 

]

ξ (t), ()

then the derivative of V (t) along () satisfies

V̇ (t) = η̇∗(t)Pd
σ η(t) + η∗(t)Pd

σ η̇(t)

= η∗(t)(Ā∗
σ (h)

(
Pd

σ + Pd
σ Āσ (t)

)
η(t)

+ d∗(t)B̄∗
dσ (Pd

σ η(t) + η∗(t)Pd
σ (h)B̄dσ (h)d(t)

= ξ ∗(t)

[
Āσ (h) B̄dσ (h)

I 

]∗ [
 Pd

σ

Pd
σ 

][
Āσ (h) B̄dσ (h)

I 

]

ξ (t). ()

Second, from system (), we have

r∗(t)r(t) – γ d∗(t)d(t)

= ξ ∗(t)

[
Cσ (h)∗Cσ (h) 

 –γ I

]

ξ (t)

= ξ ∗(t)

[
C̄σ (h) 

 I

]∗ [
I 
 –γ I

][
C̄σ (h) 

 I

]

ξ (t). ()

Third, we let  = t < t < · · · < tk < · · · , k = , . . . , denote the switching point, and we
suppose that the ikth subsystem is active when i ∈ [tk , tk+). From () we have

ξ ∗(t)
(
�dik (h) + �dik (h) + �dik (h)

)
ξ (t)

= ξ ∗(t)

([
Āi(h) B̄di(h)

I 

]∗ [
 Pd

i

Pd
i 

][
Āi(h) B̄di(h)

I 

]

+

[
Āi(h) B̄di(h)

I 

]∗ [
 
 αPd

i

][
Āi(h) B̄di(h)

I 

]

+

[
C̄i(h) 

 I

]∗ [
I 
 –γ I

][
C̄i(h) 

 I

])

ξ (t)

+ ξ ∗(t)

([
Āi(h) B̄di(h)

I 

]∗
( ⊗ Pd + � ⊗ Qd)

[
Āi(h) B̄di(h)

I 

])

ξ (t)

= V̇ik (t) + αVik (t) + �ik + eN(,t)Inμϑ∗
ik �dϑik < , ()

where

ϑik = e–N(,)Inμ/

[
η̇(t)
η(t)

]

=

[
ẋik (t)
xik (t)

]

()
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and

�dik(h) = r∗
ik (t)rik (t) – γ d∗(t)d(t), ()

�dik(h) = η∗(t)( ⊗ Pdi + � ⊗ Qd)η(t), ()

�d = ( ⊗ Pdi + � ⊗ Qd). ()

Set η(tk+) = ηik+ (tk+), the state of the switched system can be expressed as

η(t) =
∞∑

k=

(
ηik (t)

(
u(t – tk) – u(t – tk+)

))
, t ∈ [,∞). ()

We have ϑ(t) = [(χ̇ (t))∗, (χ (t))∗]∗. Considering (),

χ (t) =
∞∑

k=

(
e– k lnμ

 ηik (t)
(
u(t – tk) – u(t – tk+)

))
, t ∈ [,∞). ()

Obviously, χ (t) is also in the frequency range �d and asymptotically stable. In addition,
from ()

χ̇ (t) =
∞∑

k=

{
e– k lnμ

 η̇ik (t)
(
u(t – tk) – u(t – tk+)

)

+ e– k lnμ
 ηik (t)

(
δ(t – tk) – δ(t – tk+)

)}
, t ∈ [,∞), ()

where δ(t) is the unit pulse signal. Therefore, by Lemma , we have

∫ ∞


ϑ∗(s)�dϑ(s) ds ≥ . ()

From Lemma , we have

Vik (t) – e–α(t–tk )Vik (tk) +
∫ t

tk

e–α(t–s)(�ik (s) + eN(,t)Inμϑ∗
ik �dϑik

)
ds < . ()

Besides, from (), we have

Vik (tk) ≤ μVik–

(
t–
k
)
. ()

Then we can obtain the following formula with (), ():

Vik (t) ≤ μe–α(t–tk )Vik–

(
t–
k
)

–
∫ t

tk

e–α(t–s)(�ik (s)

+ eN(,t)Inμϑ∗
ik �dϑik

)
ds

≤ μN(,t)e–αtVi () – μN(,t)
∫ t


e–α(t–s)(�ik (s)

+ eN(,t)Inμϑ∗
ik �dϑik

)
ds
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– · · · – μ
∫ t

tk

e–α(t–s)(�ik (s) + eN(,t)Inμϑ∗
ik �dϑik

)
ds

= e–α(t–tk )+N(,t) lnμVi () –
∫ t


e–α(t–s)+N(s,t) lnμ

(
�σ (s)(s)

+ eN(,t)Inμϑ∗
ik �dϑik

)
ds. ()

Considering the zero initial condition and Vik (t) > , () implies

∫ t


e–α(t–s)+N(s,t) lnμ

(
�σ (s)(s) + eN(,t)Inμϑ∗

ik �dϑik
)

ds ≤ , ()

and multiplying both sides of () by e–N(,t) lnμ we have

∫ t


e–α(t–s)–N(,s) lnμr∗

ik (s)rik (s) ds ≤
∫ t


e–α(t–s)–N(,s) lnμ

(
γ d∗(s)d(s)

– eN(,t)Inμϑ∗
ik �dϑik

)
ds. ()

Because of the fact that N(, s) ≤ s
T < α = s

T∗ and T∗ = lnμ

α
, we have N(, s) lnμ < αs and

() implies

∫ t


e–α(t–s)–αsr∗

ik (s)rik (s) ds ≤
∫ t


e–α(t–s)(γ d∗(s)d(s) – ϑ∗

ik �dϑik
)

ds. ()

Integrating () from t =  to t = ∞
∫ ∞



(∫ t


e–α(t–s)–αsr∗

ik (s)rik (s) ds
)

dt

≤
∫ ∞



(∫ t


e–α(t–s)(γ d∗(s)d(s) + ϑ∗

ik �dϑik
)

ds
)

dt, ()

(∫ ∞


e–αsr∗

ik (s)rik (s) ds
)(∫ ∞

s
e–α(t–s) dt

)

≤
(∫ ∞



(
γ d∗(s)d(s) – ϑ∗

ik �dϑik
)

ds
)(∫ ∞

s
e–α(t–s) dt

)

; ()

() implies

∫ ∞


e–αtr∗(t)r(t) dt ≤ γ 

∫ ∞


d∗(t)d(t) dt –

∫ ∞


ϑ∗

ik �dϑik dt. ()

Because of the premise lemma, Lemma , we have

∫ ∞


ϑ∗

ik �dϑik dt ≥ . ()

So, we obtain
∫ ∞


e–αtr∗(t)r(t) dt ≤ γ 

∫ ∞


d∗(t)d(t) dt. ()

The proof is completed. �
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.. Inequality condition for low-frequency H– performance
Just as mentioned previously, on the contrary, the fault signals usually emerge in the low
frequency domain where disturbances usually are high frequency signals. Therefore, in
this paper, we assume that the fault signals belong to the following low frequency range:

� =
{
ω ∈ R : |ω| ≤ �l,�l ≥ 

}
. ()

Set d(t) = , the filter error system () becomes

η̇(t) = Āσ (h)η(t) + B̄σ (h)f (t),

r(t) = C̄σ (h)η(t). ()

Theorem  For a given scalar α >  β > , the finite frequency weighted H– performance
() is satisfied for system (), if there exist symmetric positive definite matrices Pf

i , Qfi,
symmetric matrices Pfi, matrices Vfi, i = , . . . , N , and scalar μ such that switching signal
with average dwell time satisfying T > T∗ = lnμ

α

�fi(h) + �f i(h) + �f i(h) < , ()

�fi(h) ≥ , ()

Pd
i ≤ μPd

j , i �= j, ()

where

�fi(h) =

[
Āi(h) B̄i(h)

I 

]∗
( ⊗ Pd + � ⊗ Qd)

[
Āi(h) B̄i(h)

I 

]

,  =

[
 
 

]

,

�f i(h) =

[
C̄i(h) 

 I

]∗ [
I 
 –γ I

][
C̄i(h) 

 I

]

,

�f i(h) =

[
Āi(h) B̄i(h)

I 

]∗ [
 Pd

i

Pd
i αPd

i

][
Āi(h) B̄i(h)

I 

]

.

Proof Theorem  is proposed by using a similar method to Theorem . �

3.2 Fault detection filter design conditions
In the preliminaries, Theorems ,  provide finite frequency performance analysis condi-
tions when the filter parameters are known. However, the parameters of the filter () are
unknown. In the following, we will develop some decoupling techniques to transform the
conditions in Theorems ,  into LMIs conditions to obtain the fault detection filter gains.

.. Fault detection filter for low-frequency H– performance
The next theorem provides fault detection filter design conditions under which the finite
frequency performance () can be guaranteed based on Theorem .

Theorem  Considering the switched T-S fuzzy system (). For a given positive scalar α,
β , there exists a fault detection filter in the form of (), such that the filter error system ()
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with d(t) =  satisfies the finite frequency performance () when ω belongs to () if there
exist matrices

Pf
i =

[
Pf 

i 
 Pf 

i

]

> , Qf =

[
Q

f Q
f

Q
f

∗ Q
f

]

> , ()

Pf =

[
P

f 
 P

f

]

, i = , . . . , r, ()

the matrices Âfi(h), B̂fi(h), Cfi(h), Mf i, Mf i, Mf , Zf i, Zf i, Zf , and N , i = , . . . , r and
scalar μ > , ς such that the following inequalities hold:

ς
i – CfiT < , i = , . . . , r, ()

Pf
i ≤ μPf

j , i �= j, ()
⎡

⎢
⎣

�ij �ij �ij

∗ �ij �ij

∗ ∗ �ij

⎤

⎥
⎦ < , ()

where

T ∈ �n, ‖T‖ = ς ,

�ij =

[
–Q

f – He(Zf i) –Q
f – Ni – Mf i

∗

∗ –Q
f – He(Ni)

]

,

�ij =

[
Pf

i + P
f + Zf iAij + B̂fijCij – Z∗

f i Âfij – M∗
f i

Mf iAij + B̂fijCij – N∗
i Pf

i + P
f + Âfij – N∗

i

]

,

�ij =

[
Zf iBij + Z∗

f iBij

Mf iBij + B̂ij

]

,

�ij =

[
� 

l Q
f + He(Zf iAij + B̂fijCij) (� 

l Q
f + Âfij + A∗

ijM∗
f i + C∗

ij B̂∗
fij)

∗ � 
l Q

f + He(Âfij) – ς
i I

]

,

�ij =

[
Zf iBij – A∗

ijZ∗
f iBij – C∗

ij B̂∗
fijBij

Mf iBij – Â∗
fijBij

]

,

�ij = βI – He(BijZf iBij).

Then Afij = N–
i Âfij, Bfij = N–

i B̂fij, and Cfij are the parameters of the filter ().

Proof Considering Theorem , from (), we have

[
Āi(h) B̄i(h)

I 

]∗ [
–Qf Pf

i + Pf

∗ αPf
i + � 

l Qf

][
Āi(h) B̄i(h)

I 

]

+

[
C̄i(h) 

 I

]∗ [
–I 
 βI

][
C̄i(h) 

 I

]

< . ()
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By setting

� =

⎡

⎢
⎣

–Qf Pf
i + Pf 

∗ (αPf
i + � 

l Qf ) – C̄∗
fi(h)C̄fi(h) 

∗ ∗ βI

⎤

⎥
⎦ ()

() can be rewritten as

Si
∗�Si < , ()

where Si =
[

Āi(h) B̄i(h)
I 
 I

]

. Then applying Lemma , () is equivalent to

� + He(YfiSi) < , ()

where Si = [–I Āi(h) B̄i(h)], SiSi = , and Yfi can be set as [Y ∗
f i Y ∗

f i –Y ∗
f iB̄i(h)]∗, which is

an additional matrix as introduced by Lemma .
The following inequality is obtained from ():

⎡

⎢
⎣

–Qf – He(Yf i) Pf
i + Pf + Yf iĀi(h) – Y ∗

f i

∗ αPf
i + � 

l Qf + He(Yf iĀi)(h) – C̄∗
i (h)C̄i(h)

∗ ∗
Yf iB̄i(h) + Y ∗

f iB̄i(h)
Yf iB̄i(h) – Ā∗

i (h)Y ∗
f iB̄i(h)

βI – He(B̄i(h)∗Yf iB̄i(h))

⎤

⎥
⎦ < . ()

We can see that the block (, ) in () is nonlinear for C̄∗
i (h)C̄i(h) = diag{, C∗

fi(h)Cfi(h)},
so we refer to [] and introduce another constraint () which can guarantee

C∗
fiCfi > ςI. ()

So, the block (, ) in () can be replaced by αPf
i + � 

l Qf + He(Yf iĀi(h)) – diag{,ςI}.
Next, we suppose Yi, Yi, Yi have the following forms:

Yf i =

[
Zf i Ni

Mf i Ni

]

, Yf i =

[
Zf i Ni

Mf i Ni

]

, Yf i =

[
Zf i Ni

Mf i Ni

]

. ()

Further,

YfjiĀi(h) =

[
ZfjiAi(h) + B̂fi(h)Ci(h) Âfi(h)
MfjiAi(h) + B̂fi(h)Ci(h) Âfi(h)

]

, ()

YfjiB̄i(h) =

[
ZfjiBi(h)
MfjiBi(h)

]

, i = , . . . , r, j = , , , ()

B̄∗
i (h)Yf iB̄i(h) = B∗

i (h)Zf iBi(h). ()
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After the defuzzification, we obtain

⎡

⎢
⎣

�ij �ij �ij

∗ �ij �ij

∗ ∗ �ij

⎤

⎥
⎦ < , ()

where

T ∈ �n, ‖T‖ = ς ,

�ij =

[
–Q

f – He(Zf i) –Q
f – Ni – Mf i

∗

∗ –Q
f – He(Ni)

]

,

�ij =

[
Pf

i + P
f + Zf iAij + B̂fijCij – Z∗

f i Âfij – M∗
f i

Mf iAij + B̂fijCij – N∗
i Pf

i + P
f + Âfij – N∗

i

]

,

�ij =

[
Zf iBij + Z∗

f iBij

Mf iBij + B̂ij

]

,

�ij =

[
� 

l Q
f + He(Zf iAij + B̂fijCij) � 

l Q
f + Âfij + A∗

ijM∗
f i + C∗

ij B̂∗
fij

∗ � 
l Q

f + He(Âfij) – ς
i I

]

,

�ij =

[
Zf iBij – A∗

ijZ∗
f iBij – C∗

ij B̂∗
fijBij

Mf iBij – Â∗
fijBij

]

,

�ij = βI – He(BijZf iBij).

Then Afij = N–
i Âfij, Bfij = N–

i B̂fij, and Cfij are the parameters of the filter (). Then, ap-
plying (), (), (), (), and () to (), we get ().

The proof is completed. �

.. Fault detection filter for high-frequency H∞ performance
This subsection provides fault detection filter design conditions under which the finite
frequency performance () can be guaranteed.

Theorem  Consider the switched T-S fuzzy system (). For a given positive scalar α, γ ,
there exists a fault detection filter in the form of (), such that the filter error system () with
f (t) =  satisfies the finite frequency performance () when ω belongs to () if there exist
matrices

Pd
i =

[
Pd

i 
 Pd

i

]

> , Qd =

[
Q

d Q
d

Q
d

∗ Q
d

]

> , ()

Pd =

[
P

d 
 P

d

]

, i = , . . . , r, ()

the matrices Âfi(h), B̂fi(h), Cfi(h), Mdi, Mdi, Zdi, Zdi, and N , i = , . . . , r, and a scalar μ > 
such that the following inequalities hold:

Pd
i ≤ μPd

j , i �= j, ()
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⎡

⎢
⎢
⎢
⎣

�ij �i �ij 
∗ �ij �ij �ij

∗ ∗ �ij 
∗ ∗ ∗ �ij

⎤

⎥
⎥
⎥
⎦

< , ()

where

�ij =

[
Q

di – He(Zdi) Q
di – Ni – Mdi

∗

∗ Q
di – He(Ni)

]

,

�ij =

[
ZdiBdij + B̂fijDdij

MdiBdij + B̂fijDdij

]

,

�ij =

[
Pd

i + P
di + ZdiAij + B̂fijCij – Z∗

di Âfij – M∗
di

MdiAij + B̂fijCij – N∗
i Pd

i + P
di + Âfij – N∗

i

]

,

�ij =

[
αPd

i – � 
h Q

di + He(ZdiAij + B̂fijCij) –� 
h Q

di + Âfij + A∗
ijM∗

di + C∗
ij B̂∗

fij

∗ αPd
i – � 

h Q
di + He(Âfij)

]

,

�ij =

[
ZdiBdij + B̂fijDdij

MdiBdij + B̂fijDdij

]

,

�ij = [ Cfij ]∗,

�ij = –γ I,

�ij = –I.

Then Afij = N–
i Âfij, Bfij = N–

i B̂fij, and Cfij are the parameters of the filter ().

Proof Theorem  is proved by using a similar method to Theorem . �

3.3 Stability condition (S.3)
Considering the performance (S.), because of Assumption , we only have to provide
some conditions to guarantee the stability of fault detection filter ().

Theorem  For a given positive scalar α, the fault detection filter in the form of () is stable
with average dwell time T > T∗ = lnμ

α
, if there exist matrices Pi =

[ P
i 
 P

i

]
> , i = , . . . , r,

matrices Âfij, B̂fij, Cfij, Mi, Mi, Zi, Zi, and N , i = , . . . , r, and a scalar μ >  such that the
following inequalities hold:

Pi ≤ μPj, i �= j, ()
⎡

⎢
⎣

�ij �ij �ij

∗ �ij �ij

∗ ∗ �ij

⎤

⎥
⎦ < , ()

where

�ij =

[
–He(Zi) –Ni – Mi

∗

∗ –He(Ni)

]

,
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�ij =

[
P

i + ZiAij + B̂fijCij – Z∗
i Âfij – M∗

i

MiAij + B̂fijCij – N∗
i P

i + Âfij – N∗
i

]

,

�ij =

[
αP

i + He(ZiAij + B̂fijCij) Âfij + A∗
ijM∗

i + C∗
ij B̂∗

fij

∗ αP
i + He(Âfij)

]

.

So Afij = N–
i Âfij, Bfij = N–

i B̂fij, and Cfij are the parameters of the filter ().

Proof First, with a similar method to the one used in proving Theorem , we have

Pd
i ≤ μPd

j , i �= j, ()
⎡

⎢
⎣

�i �i �i

∗ �i �i

∗ ∗ �i

⎤

⎥
⎦≤ , ()

where

�i =

[
Q

di – He(Zdi) Q
di – Ni – Mdi

∗

∗ Q
di – He(Ni)

]

,

�i =

[
ZdiBdi(h) + B̂fi(h)Ddi(h)
MdiBdi(h) + B̂fi(h)Ddi(h)

]

,

�i =

[
P

di + ZdiAi(h) + B̂fi(h)Ci(h) – Z∗
di Âfi(h) – M∗

di
MdiAi(h) + B̂fi(h)Ci(h) – N∗

i P
di + Âfi(h) – N∗

i

]

,

�i =

[
–� 

h Q
di + He(ZdiAi(h) + B̂fi(h)Ci(h))

∗
� 

h Q
di + Âfi(h) + A∗

i (h)M∗
di + C∗

i (h)B̂∗
fi(h)

–� 
h Q

di + He(Âfi(h))

]

,

�i =

[
ZdiBdi(h) + B̂fi(h)Ddi(h)
MdiBdi(h) + B̂fi(h)Ddi(h)

]

,

�i = –γ I.

Equation () is equivalent to

V̇ (t) = η̇∗(t)Pσ η(t) + η∗(t)Pσ η̇(t)

= η∗(t)
(
Ā∗

σ (h)Pσ + Pσ Āσ (h)
)
η(t)

= η∗(t)

[
Āσ (h)

I

]∗ [
 Pσ

Pσ 

][
Āσ (h)

I

]

η(t), ()

Vi ≤ μVj, i �= j, ()
[

Āi(h)
I

]∗ [
 Pi

∗ αPi

][
Āi(h)

I

]

< . ()
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Next, from () and () we can obtain

V̇i(t) + αVi(t) = η(t)∗
[

Āi(h)
I

]∗ [
 Pi

∗ αPi

][
Āi(h)

I

]

η(t) <  ()

and

Vik (t) ≤ μe–α(t–tk )Vik–

(
t–
k
)

≤ e–(α–lnμ/T)Vi (t). ()

Obviously, we have

V (t) ≥ a
∥
∥η̃(t)

∥
∥, V () ≤ b

∥
∥η̃()

∥
∥. ()

So we obtain

∥
∥η̃(t)

∥
∥ ≤ /aV (t) ≤ /ae–(α–Inμ/T)V (t) ≤ B/ae–(α–Inμ/T)∥∥η̃()

∥
∥. ()

After the defuzzification, Afij = N–
i Âfij, Bfij = N–

i B̂fij, and Cfij are the parameters of the
filter ().

Therefore, with Lemma  the filter () is stable. �

3.4 FD filter parameters
Now, based on Theorems , , and , when γ , α, and μ are given, we can derive the FD
filter parameters by solving the optimization problem ():

maxβ

s.t. (), (), (), (), (), (), (), (), (), (), ().
()

We have Afij = N–
i Âfij, Bfij = N–

i B̂fij.
Then the filters which we need are defined by the gain matrices Afij, Bfij, Cfij.

4 Detection threshold design
The next step is to evaluate the residual signal and compare it with some threshold value to
detect the fault in the system. In this section, the threshold for detecting faults is designed
and the detection logic unit is based on the results proposed in [].

The evaluation function based on the RMS energy of the residual signal is used in this
paper. So we have

Jr(t) = ‖r‖rms :=

√

t

∫ t


rT (τ )r(τ ) dτ . ()

The threshold Jth is obtained by

Jth = sup
f (t)=,d(t)∈L,

Jr(t). ()
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Finally the occurrence of a fault can be detected by the following logic rule:

Jr > Jth ⇒ alarm, ()

Jr ≤ Jth ⇒ no faults. ()

Remark  A new fault detection scheme has been developed for switched T-S fuzzy sys-
tems such that the generated residual is designed to be sensitive to fault signals for the
faulty cases, while it is robust against the disturbances for the fault-free case. Since the
fault signals and disturbance inputs are considered to be in a finite frequency domain, an
additional slack matrix variable Q in Lemma  has been introduced to reduce the conser-
vatism. Therefore, compared to the method [] in the full frequency domain, it is shown
that the generated residuals are more sensitive to fault signals and more robust against the
disturbances, and hence, the faults are easier to detect. However, it should be pointed out
that the LMIs solved in () could be very complex, which may make the computation very
costly. The degree of complexity depends on the dimensions of the considered systems,
the number of switching modes, and the number of IF-THEN rules in T-S fuzzy systems.

5 Example
In this section, two examples are presented to illustrate the effectiveness of the fault de-
tection filter design method proposed in this paper.

Example  Consider the switched T-S fuzzy system () with the following parameters:
Region :
Subsystems :

A =

[
–. 

–. –.

]

, B =

[
–.

–.

]

, C =

[


–

]

,

Bd =

[
.
.

]

, Dd = [].

Subsystems :

A =

[
–. 

–. –.

]

, B =

[
–.

–.

]

, C =

[
–.
.

]

,

Bd =

[
–.
–.

]

, Dd = [].

Region :
Subsystems :

A =

[
– .
–. –.

]

, B =

[
–.
–.

]

, C =

[


–

]

,

Bd =

[
.

–.

]

, Dd = [].
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Subsystems :

A =

[
– .
– –.

]

, B =

[
–.

–.

]

, C =

[
.


]

,

Bd =

[
.
.

]

, Dd = [].

Choose μ = ., α = .. Then using the method proposed in this paper, the gain matrices
of the fault detection filter are as follows.

Region :
Subsystems :

Af  =

[
–. .
. –.

]

, Bf  =

[
.
.

]

, Cf  =

[
.
.

]

.

Subsystems :

Af  =

[
–. –.
–. –.

]

, Bf  =

[
–.
–.

]

, Cf  =

[
.
.

]

.

Region :
Subsystems :

Af  =

[
–. .
. –.

]

, Bf  =

[
.
.

]

, Cf  =

[
.
–.

]

.

Subsystems :

Af  =

[
–. –.
–. –.

]

, Bf  =

[
–.
–.

]

, Cf  =

[
.
.

]

.

In a simulation, for t ∈ [, ], the disturbance is chosen as d(t) =  cos(π t), and the
fault occurs from  s to  s and satisfies f (t) =  for  < t < . The switch signal with
average dell time T∗ = lnμ

α
= . is shown in Figure .

Figure 1 Switching signal. The period t of
switching signal by finite frequency approach.
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Figure 2 Response of filtering r for Example 1.
Residual response r(t) by finite frequency approach.

Figure 3 Jr(t) (blue) and Jth (red) for Example 1.
Residual evaluation Jr (t) by finite frequency
approach (blue) and residual evaluation Jth by finite
frequency approach (red).

Then we apply the proposed finite frequency method to a switched T-S fuzzy system
(). The residual r(t) of the FD filter and the corresponding residual evaluations Jr(t) are
shown in Figures  and . The fault threshold is set as Jth = .. It is clear that the residual
r(t) in Figure  generated by proposed method is sensitive to the fault and robust against
the disturbance, and according to () and (), the residual evaluation function Jr(t) in
Figure  indicates that the fault is detected at approximately t = . s.

Example  To further illustrate the proposed results, we apply the proposed FD method
to a chemical process example []. We consider a continuous stirred tank reactor where
an irreversible process occurs. For each type of operation, the mathematical model for the
process takes the form

ĊA =
Fσ

V
(CAσ – CA) – ke–E/RTR CA,

ṪR =
Fσ

V
(TAσ – TA) +

–�H
ρcp

ke–E/RTR CA +
Qσ

ρcpV
, ()

where CA denotes the concentration of the species A, TR denoted the temperature of the
reactor, Qσ is the heat removed from the reactor, V is the volume of the reactor, k, E,
�H are the pre-exponential constant, the activation energy, and enthalpy of the reaction,
cp and ρ are the heat capacity and fluid density in the reactor and σ (t) ∈ {, } is a discrete
variable. The values of all process parameters can be found in [].
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By using the method in [], we can rewrite () in the form of system () with following
parameters:

Af  =

[
–. × – . × –

. –. × –

]

, Af  =

[
–. . × –

. –.

]

,

Af  =

[
–. . × –

. –.

]

,

Af  =

[
–. ∗ e– . × –

. –.

]

,

B = B = B = B = Bd = Bd = Bd = Bd = B =

[
. × –



]

,

C = C = C = C = C = [ ], D = D = D = D = .

To ensure the system stability, it is assumed that the output feedback controller u =
Ky(t) has been designed beforehand. By using the common Lyapunov function method
and solving LMIs, we can obtain the controller parameters as K = –.. Therefore,
the closed-loop system with the fault is in the following form:

ẋ(t) =
(
Aσ (h) + BKC

)
x(t) + Bdσ (h)d(t) + Bσ (h)f (t),

y(t) = Cx(t). ()

Then using the method proposed in this paper, for given γ = . and choosing the same
parameters μ and T∗ as Example , we obtain the gain matrices of the fault detection filter:

Af  =

[
–. –.
. –.

]

, Af  =

[
. –.
. –.

]

,

Af  =

[
–. .
. –.

]

, Af  =

[
–. .
. –.

]

,

Bf  =

[
–.
.

]

, Bf  =

[
.

–.

]

,

Bf  =

[
–.
–.

]

, Bf  =

[
.

–.

]

,

Cf  = [. –.], Cf  = [. .],

Cf  = [. –.], Cf  = [. –.],

and the optimal value on fault sensitivity performance index is β = ..
In simulation, the switching signal is chosen the same as Example . The fault is set as

f (t) =  occurring after t =  s, and the disturbance is set as d(t) =  sin(t).
The simulations are shown in Figures  and . It is clear that the residual r(t) in Figure 

generated by proposed method is sensitive to a fault and robust against the disturbance,
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Figure 4 Response of filtering r for Example 2.
Residual response r(t) by finite frequency approach.

Figure 5 Jr(t) (blue) and Jth (red) for Example 2.
Residual evaluation Jr (t) by finite frequency
approach (blue) and residual evaluation Jth by finite
frequency approach (red).

and according to () and (), the residual evaluation function Jr(t) in Figure  indicates
that the fault is detected at approximately t = . s.

6 Conclusions
In this paper, we have studied the fault detection problem for switched T-S fuzzy systems
in finite frequency. Based on Parseval’s lemma and S-procedure, we have obtained some
sufficient conditions which ensure that the augmented filter system has the H– fault affec-
tion level, the H∞ disturbance attention level, and we have stability. The fault detection
filter design conditions have been derived in terms of solving a set of LMIs. Two numerical
examples have been provided to demonstrate the effectiveness of the proposed method.
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