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 Development of an effective 
HIV-1 vaccine has been 
an elusive goal for over 20 

years despite being an urgent global 
priority. The agonizingly slow progress 
is not from lack of effort, but is a 
consequence of the insidious biology 
of the virus. HIV-1 has many features 
that make vaccine development 
challenging, if not impossible [1]. 

  Obstacles to Vaccine Development

  Pessimism is based in part on the 
empirical observation that there has 
never been a confi rmed case of viral 
clearance and recovery from HIV-1 
infection, and from the mounting 
evidence that HIV-1 superinfection 
(see Glossary) is common (in other 
words, if natural infection does not 
protect against infection with other 
HIV strains, why would we expect 
vaccination to offer protection?) [2].

  The high replication error rate of 
HIV-1 is the basis for two of the greatest 
challenges in vaccine design. First, 
extreme genetic diversity makes vaccine 
antigen selection diffi cult. Second, 
the high mutation rate provides many 
opportunities for the virus to escape 
vaccine-induced immune responses. 

  In addition, HIV-1 glycoprotein 
(gp)160 can directly cause dysfunction 
of antigen-presenting cells, and HIV-1 
can infect CD4+ T cells, which cripples 
the key elements required to initiate 
the adaptive immune response to viral 
pathogens. After cells are infected, 
there are virus-specifi c mechanisms 
that disrupt the normal regulation 
of immune activation, and HIV-1 
can also become latent or infect 
immunoprivileged sites and remain 
hidden from the immune response.

  The list of barriers to vaccine 
development continues with the 
multitude of structural features 
of gp160 that evade antibody 

neutralization [3]. Therefore, an 
effective HIV-1 vaccine will need 
to induce immune responses that 
can swiftly respond to infection and 
effi ciently clear or control infection at 
very low levels of replication. To do this 
may require better vaccine adjuvants 
or delivery vehicles than are currently 
available. 

  A Novel Approach to Vaccine 
Development

  In a new study in  PLoS Medicine , 
Song et al. explore new approaches 
to enhancing vaccine-induced 
immune responses [4]. The fi eld of 
vaccine adjuvants has been rapidly 
evolving since the discovery of the 
Toll-like receptor (TLR) family 
of pattern recognition molecules 
[5]. Traditionally, adjuvants have 
been developed empirically from 
natural substances found to cause 
infl ammation. Since cytokines were 
found to be the effector molecules for 
many adjuvant effects [6], there has 
been an effort to build the optimal 
vaccine adjuvant effect one cytokine at 
a time.

  However, this approach 
underestimated the complexity and 
timing of events necessary to augment 
immune responses, and has given way 
to using specifi c TLR ligands as vaccine 
adjuvants [7]. Activating immune 
responses at this level is analogous 
to using the original empirically 
derived adjuvants, but the molecular 
mechanisms are better defi ned. In the 
current study, Song and colleagues 
have achieved an even broader effect 
by inhibiting a natural inhibitor of 
TLR and cytokine signaling. The family 
of suppressor of cytokine signaling 
(SOCS) molecules targets Janus kinases 
(JAKs) and nuclear factor-κB 
(NF-κB) pathways involved in 
transmitting signals from cytokine 
receptors and TLRs to the nucleus to 
control genes encoding mediators of 
infl ammation (Figure 1) [8].

  The authors found that small 
interfering RNA (siRNA) inhibition 

of SOCS1 in HIV-1 gp120-pulsed bone 
marrow–derived dendritic cells (DCs) 
improved the immune response to 
those DCs delivered as a carrier of 
vaccine antigen. In addition, SOCS1 
inhibition improved the adjuvant effect 
of polyinosinic:polycytidylic acid 
(polyI:C), R837, or lipopolysaccharide 
(LPS) on the DC vaccine. These 
adjuvants are recognized by TLR-3, 
TLR-7/8, or TLR-4, respectively. 
SOCS1 inhibition increased the 
magnitude of the antibody response 
and the magnitude and lytic activity 
of the CD8+ T cell response. It also 
appeared to increase the duration 
of antibody and T cell responses. 
SOCS1 inhibition increased cytokine 
production from in vitro–stimulated 
DCs and also led to increased cytokine 
production from CD4+ T cells. 

  The pattern of increased cytokine 
production was broad and included 
proinfl ammatory cytokines, as well as 
cytokines traditionally associated with 
polarized T helper cell (Th)1 or Th2 
responses. Importantly, in vivo delivery 
of plasmid DNA expressing the SOCS1 
siRNA, together with a plasmid DNA 
vaccine encoding a modifi ed HIV-1 
envelope (Env) protein, improved 
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Env-specifi c immune responses in 
mice, particularly when the polyI:C or 
the R837 adjuvant was administered 
following immunization. 

  Implications of the Approach

  We maintain a tenuous balance 
between adequate control of pathogens 
or neoplasms and excessive chronic 
infl ammation (e.g., autoimmune 
diseases) and uncontrolled 
proliferation (e.g., lymphoma) of 
our immune system. There are more 
pathways and receptors devoted to 
controlling the immune response than 
to inducing immune responses. It is 

critical for health maintenance to have 
a highly evolved process for turning 
off immune responses when there 
are so many infl ammatory challenges. 
Therefore, it is not surprising that 
enhancing immune responses by 
removing inhibition may be more 
potent than the typical adjuvant 
concept of actively stimulating immune 
responses. This has been noted before 
when evaluating the adjuvant effects 
of cytokines [9]. Song and colleagues’ 
study has shown the potential to 
broadly augment immune activation 
triggered by vaccine antigens and a 
variety of adjuvants. Their approach 

allows the antigen-presenting cell 
to determine the composition and 
kinetics of effector molecules and 
the co-stimulation needed for the 
development of potent adaptive 
immune responses. 

  Before considering this approach 
for clinical use, it will be important 
to determine whether the immune 
response enhancement seen in mice 
can be achieved in higher-order 
animals such as nonhuman primates. 
The safety of this approach will need to 
be more fully defi ned in species other 
than mice. It will be important to show 
that SOCS inhibition is temporary, 
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 Figure 1.  SOCS “Silencing” Enhances the Adjuvant Effect of TLR Ligands
   Substances common in viral pathogens (substances such as single-stranded RNA [ssRNA] and double-stranded RNA [dsRNA]) or in bacteria (substances 
such as endotoxin) are recognized by TLRs as pathogen-associated molecular patterns. When the TLRs are triggered, a series of signaling events occur 
that is simplifi ed and schematized in this fi gure. These events lead to infl ammation and activation of innate and adaptive immune responses. SOCS 
family members are also activated, and serve as an internal control to diminish the intensity and duration of infl ammation. In the left-hand panel, 
R837 mimics ssRNA as a ligand for TLR-7, and initiates signaling through the MyD88 pathway, eventually resulting in the release of NF-κB and in the 
upregulation of SOCS1 and many genes involved in infl ammation. PolyI:C is a synthetic mimic of dsRNA and triggers TLR-3-associated JAK/signal 
transduction and activator-of-transcription (STAT) signaling through TIR domain-containing adapter-inducing interferon (TRIF), activation of interferon 
regulatory factor (IRF)-3, and increased production of type 1 interferon. LPS can activate both pathways. SOCS1 specifi cally interferes with JAK2 and may 
also inhibit a step between MyD88 and NF-κB release into the nucleus, although this is controversial. This balanced internal feedback mechanism results 
in a controlled infl ammatory process with adjuvant and antiviral effects. When SOCS1 production is blocked by siRNA (right-hand panel), the control
of the infl ammatory process is temporarily lost, leading to a greater adjuvant and antiviral response that appears to improve vaccine-induced immune 
responses. 
  (Illustration: Giovanni Maki) 
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and that normal regulation of immune 
responses is maintained following the 
vaccination. This may require long-
term evaluation in multiple species 
to assure there is not excessive or 
prolonged infl ammation. Identifying 

pharmacological inhibitors of SOCS 
family members may provide a more 
temporally controlled approach 
for releasing the inhibition of TLR 
and cytokine signaling, and provide 
an additional safeguard against 

the theoretical risk of chronic 
infl ammation. As the authors suggest, 
waking up the immune system by 
inhibiting the inhibitors may have 
therapeutic benefi ts in some settings. 

  The struggle to develop a preventive 
vaccine for HIV-1 has taught us much 
of what we know about immunology, 
and will continue to have benefi ts at 
the conceptual level and for antiviral 
vaccine development in general. HIV-1 
vaccine development will be facilitated 
by innovative approaches to vaccine 
formulation and delivery such as SOCS 
“silencing” that improve the kinetics, 
the magnitude, and the composition of 
immune responses. However, ultimate 
success will depend on the design of 
vaccine antigens that can elicit the 
right antibody and T cell specifi city 
to achieve virus neutralization and 
clearance. � 

  gp120:  The extracellular portion of the 
HIV-1 Env glycoprotein responsible for 
binding to CD4+ and co-receptors.

   gp120-pulsed bone marrow–derived 
dendritic cells:  Dendritic cells are key 
antigen-presenting cells that in this 
case were derived from mouse bone 
marrow and expanded with interleukin-
4 and granulocyte/monocyte colony 
stimulating factor in vitro before 
treatment with gp120.

   gp160:  Full length HIV-1 Env 
glycoprotein of 160 kD molecular weight 
responsible for attachment to and entry 
into target cells.

   IRF-3:  Transcription factor, interferon 
regulatory factor-3.

   JAKs:  JAKs associate with cytokine 
receptors, and are important for tyrosine 
phosphorylation of the receptor, of each 
other, and of signal transduction and 
activator-of-transcription molecules that 
participate in the signaling cascade from 
the cytokine receptors to the nucleus.

   LPS:  Lipopolysaccharide is analogous to 
endotoxin derived from Gram-negative 
bacteria. 

   MyD88:  Myeloid differentiation factor 88.

   NF- κ B: Transcription factor, nuclear 
factor-κB. 

   PAMP:  Pathogen-associated molecular 
pattern.

   PolyI:C:  Polyinosinic:polycytidylic acid is 
a synthetic molecule that mimics double-
stranded RNA. 

   R837:  {1-(2-methyl propyl)-1H-
imidazo[4,5-c]quinolin 4-amine} is a TLR-7 
and TLR-8 ligand.

   siRNA inhibition:  Small interfering RNAs 
are approximately 22 nucleotide-long 
RNA molecules that effi ciently inhibit 
translation of their complementary 
mRNA.

   STAT:  Signal transduction and activator-
of-transcription molecules associate in 
dimers after phosphorylation by JAKs, 
translocate to the nucleus, and promote 
transcription of selected genes.

   Superinfection:  Infection with a strain 
of HIV-1 that is genetically distinct from 
the HIV-1 present in a person with a 
stable immune response to the original 
infection. 

   Th1 response:  A T helper 1 response 
implies a polarized CD4+ T cell response 
with dominant expression of interferon-γ.
In mice, this is associated with a 
predominant IgG2a antibody isotype 
response.

   Th2 response:  A T helper 2 response 
implies a polarized CD4+ T cell response 
with dominant expression of interleukin-
4, interleukin-5, interleukin-9, and 
interleukin-13. In mice, this is associated 
with a predominant IgG1 antibody 
isotype response.

   TIR:  A cytoplasmic signaling domain 
on TLRs, Toll/interleukin-1 receptor–
resistance domain.

   TLR-3:  Toll-like receptor 3 recognizes 
double-stranded RNA including the 
synthetic molecule polyI:C.

   TLR-4:  Toll-like receptor 4 recognizes LPS.

   TLR-7/8:  Toll-like receptors 7 and 8 
recognize single-stranded RNA and some 
other ligands such as imiquimod and 
resiquimod.

   Toll-like receptor:  Family of proteins 
homologous to the  Drosophila Toll 
receptor, found to have the capacity to 
recognize molecular patterns associated 
with pathogens. 

   TRIF:  TIR domain-containing adapter-
inducing interferon, also called TICAM-1 
(Toll-IL-1 receptor homology domain-
containing adapter molecule).  
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