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Abstract Sea-level rise is a key driver of projected flooding risks. The design of
strategies to manage these risks often hinges on projections that inform decision-
makers about the surrounding uncertainties. Producing semi-empirical sea-level projec-
tions is difficult, for example, due to the complexity of the error structure of the
observations, such as time-varying (heteroskedastic) observation errors and autocorrela-
tion of the data-model residuals. This raises the question of how neglecting the error
structure impacts hindcasts and projections. Here, we quantify this effect on sea-level
projections and parameter distributions by using a simple semi-empirical sea-level
model. Specifically, we compare three model-fitting methods: a frequentist bootstrap as
well as a Bayesian inversion with and without considering heteroskedastic residuals. All
methods produce comparable hindcasts, but the parametric distributions and projections
differ considerably based on methodological choices. Our results show that the differ-
ences based on the methodological choices are enhanced in the upper tail projections.
For example, the Bayesian inversion accounting for heteroskedasticity increases the sea-
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level anomaly with a 1% probability of being equaled or exceeded in the year 2050 by
about 34% and about 40% in the year 2100 compared to a frequentist bootstrap. These
results indicate that neglecting known properties of the observation errors and the data-
model residuals can lead to low-biased sea-level projections.

1 Introduction

Anthropogenic greenhouse gas emissions are causing sea-level rise (SLR) (Church and
White 2006; Jevrejeva et al. 2008). Because of the impacts SLR has on coastal flood
risks (McGranahan et al. 2007; Houston 2013; Spanger-Siegfried et al. 2014), many
studies focus on resolving future sea-level projections (e.g., Rahmstorf 2007; Grinsted
et al. 2010; Church et al. 2013; Moore et al. 2013; Kopp et al. 2014, 2016). However,
many of these studies generate ranges in projections that vary from study to study
(Fig. ST 11) as they differ in methodology, model approach, and assumptions (Bakker
et al. 2016).

Routinely, sea-level projections are constructed using both process-based and semi-
empirical model approaches (e.g., Church et al. 2013; Moore et al. 2013). Process-based
models of SLR describe the system of interest in the greatest detail available and are thus
complex (Church et al. 2013). In contrast, semi-empirical models are typically simple models
that trade off completeness (i.e., physical realism) for computational speed and calibration
efficiency (e.g., Rahmstorf 2007; Grinsted et al. 2010; Moore et al. 2013). In both cases,
projections rely heavily on assumptions, e.g., about the statistical model used for model fitting
or lack of representing physical processes.

Key statistical challenges in projecting SLR include (i) the importance of interdepen-
dent (autocorrelated) data-model residuals, (ii) the representation of non-constant
(heteroskedastic) observation errors, and (iii) tail probabilities far beyond the 90%
credible interval (Von Storch 1995; Zellner and Tiao 1964; Ricciuto et al. 2008). Another
issue includes spatial aggregation of the data (see, for example, Kopp et al. 2016). In
recent years, studies have accounted for the complex error structure of the data including
the heteroskedastic nature of the observation errors (Kemp et al. 2011; Kopp et al. 2016)
because it is presumed that neglecting these properties of the observations and uncer-
tainties can potentially lead to overconfidence (e.g., Zellner and Tiao 1964; Ricciuto
et al. 2008; Donald et al. 2013). This quantitatively raises the question of how large the
effect that neglecting or assuming too simple of an error structure is on projections,
especially the upper tail projections.

Here, we quantify how explicitly accounting for autocorrelation and heteroskedastic resid-
uals affects SLR projections (especially in the upper tail). We choose to use a semi-empirical
sea-level model in our didactic analysis for two reasons: (1) calibration efficiency and (2) their
use in informing risk-and-decision analyses (for example, Heberger et al. 2009; Dalton et al.
2010; Neumann et al. 2011; Dibajnia et al. 2012; Mclnnes et al. 2013). In our analysis, we
implement a hierarchical model with a process-level model characterized by the Vermeer and
Rahmstorf (2009) sea-level model (Eq. 1) and a data-level model (Eq. 2) where we fit the
model in three different ways to the observational data (section 2). Additionally, we run the
same analysis on two simpler models to assess the robustness of the conclusions (results in the
SI). In section 3, we present the differences among the approaches, and in section 4, we discuss
how our results can inform future sea-level projections.
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2 Method
2.1 Sea-level model, observational data, and input data for projections

As described above, we adopt a semi-empirical model that predicts SLR on an annual time-
step (Vermeer and Rahmstorf 2009):

SH(1)/5(t) = o(T~To) + b x 5T(1)/5(t), (1)

where « is the sensitivity of the rate of SLR to temperature, T is the global mean surface air
temperature, 7, is the temperature when the sea-level anomaly equals zero, b is a constant
corresponding to a rapid response term, H is the global mean sea-level, and ¢ is time. We
slightly expand on the model-fitting setup by including the initial value of SLR, H, as an
uncertain parameter (prior bounds based on measurement error; Church and White 2006). We
use the global mean sea-level estimates, based on tide-gauge observations, of Church and
White (2006). The sea-level anomalies are referenced to the average sea level from the 1980 to
2000 period. We use historical temperature anomalies (with respect to the twentieth century;
Smith et al. 2008) for the model-fitting process. When the model is used in SLR projection
mode, we use global-mean surface air temperature anomalies based on the CNRM-CMS5
simulation of the RCP 8.5 scenario (Meinshausen et al. 2011; Riahi et al. 2011) as obtained
from the CMIPS model output archive (http://cmip-pcmdi.llnl.gov/cmip5/). As in Vermeer and
Rahmstorf (2009), we apply the same smoothing process to estimate the rate of temperature.

2.2 Analyzed model-fitting methods

We compare parameter estimates and the SLR projections based on three model-fitting methods:
a Bootstrap method (Solow 1985), a Bayesian method assuming homoskedastic errors, and a
Bayesian method accounting for the time dependent (heteroskedastic) nature of the observation
errors (details of the three methods are in the SI) (Zellner and Tiao 1964; Gilks 1997). The
methods are described in detail in the SI. Here, we provide a brief overview. The methods
approximate the observation dataset as the sum of the model output plus a residual term:

Yt = f(@,t) + R, (2)
N ——  ~~
observations model residuals
0 = (Oé, TOa HOa b)a (3)

~—~
model parameters

where the f{6,2) (or H(?)) defines the portion of global mean sea-level related to temperature by
the semi-empirical model and y; describe the noisy observations including the variability not
explained by the semi-empirical model and the observational error. The model error accounts
for effects such as unresolved internal variability or other structural errors. The observational
error (often also referred to as measurement error) is the difference between a measured value
(i.e., estimated global mean sea-level anomalies) and the true value. The residuals are the sum
of the model error w; and observational error &

Rt = Ww; + &, (4)
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Wi =p X Wi + 6, (5)
U/zml 2
wo~N (0, 1_p2>, 5~N(0,0%p,), €~N(0,02). (6)
Therefore, W = (wq, ..., wy) is a time series from a multivariate normal distribution with

variance 04y, and the correlation structure given by the first-order autoregressive parameter p
(this model is also recognized as AR1). The observational errors are given by the global mean
sea-level data. In principle, they should be treated as correlated (see, for example, the Church
and White (2006) analysis). However, for simplicity, we approximate the observational errors
as uncorrelated.

Following the Bootstrap method implemented in Lempert et al. (2012), we fit the model
according to the least absolute residual method and approximate the data-model residuals
using a first-order autoregressive model assuming homoskedastic observational errors. The
resulting residuals are superimposed to the original fit. Parameters are then re-estimated from
the Bootstrap realizations. This method estimates parameters without the use of priors. For the
two Bayesian methods, we estimate the posterior density using a Markov Chain Monte Carlo
method and the Metropolis Hastings algorithm (Metropolis et al. 1953; Zellner and Tiao 1964;
Hastings 1970; Gilks 1997; Vihola 2012). Both Bayesian methods approximate the residuals
as normally distributed with zero mean. The homoskedastic method and the Bootstrap method
assume the variance of the observational errors 052 to be constant in time, whereas the
heteroskedastic method accounts for the time-varying observational error (Fig. 1). All three
methods retain the autocorrelation structure of the residuals (Fig. 1). The Bootstrap method
approximates the autoregression coefficient p with the most likely value, while the Bayesian
methods account for uncertainty in the autocorrelation (as well as in the white noise variance
0%gy)- All three methods use the same annual mean temperature and sea-level data covering
the time period of 1880 to 2002.

2.3 Method implementation

We implement a hierarchal model with a process-level model characterized by Eq. 1 and a
data-level model characterized by Eq. 2. The Bayesian methods use uniform prior distributions
for the physical model parameters (6, including «, Ty, H, b) and the statistical model
parameters (o agr; and p) (Table 1). In the Bayesian (homoskedastic) approach, the observation
errors are set to zero (merging the model error and observational error into one term) to
represent the homoskedastic assumption. In the heteroskedastic Bayesian approach, the errors
are set to the reported values (Zellner and Tiao 1964). We use 2:10* (Bootstrap), 5-10°
(homoskedastic Bayesian), and 3-10° (heteroskedastic Bayesian) iterations. For the Bayesian
methods, we remove a 2% initial “burn-in” from the Markov chains (Gilks 1997). Addition-
ally, we thin the chains in the Bayesian methods to subsets of 2:10* for the analysis. To assess
convergence, we use (i) visual inspection and (ii) the potential scale reduction factor (Gelman
and Rubin 1992; Gilks 1997). Furthermore, we test the sea-level hindcasts from each method
for reliability based on the reliability diagram and surprise index (see SI for details). A
reliability diagram is a graph of the observed frequency (or the fraction of observations) that
is covered by the hindcast credible interval versus the forecast probability. The surprise index
is the deviation between the observed frequency and the forecast probability. The hindcasts
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Fig. 1 Stochastic properties of the model residuals and observational errors in the global mean sea-level record.
a Displays the residuals (observations—best-fit model simulation derived by differential evolution optimization).
b Shows the observational errors are time-dependent. ¢ Displays the autocorrelation coefficient for the residuals.
When the vertical lines at the time lags exceed the dashed blue line (95% significance), then the residuals are
considered to be statistically autocorrelated

and projections display the 90% confidence interval (Bootstrap) and the 90% credible interval
(Bayesian methods) for comparison to other sea-level studies (comparison shown in Fig. SI.
11; for simplicity, we refer to these intervals as credible intervals in the remainder of this
paper). The main conclusions are not sensitive to the random seed applied (tested with five
seeds for each method) and not sensitive to the choice of SLR model applied (analysis run with
Rahmstorf (2007) and the Grinsted et al. (2010) model; details shown in the SI).

3 Results
3.1 Stochastic structure of sea-level observations

Accounting for the stochastic structure of sea-level observations can be important in
hindcasting and projecting sea level (see Fig. 1). Sea-level observation errors vary through
time (Fig. 1b). For example, the error estimates of global sea level generally decrease with time
due to effects of improved measurement techniques and more frequent observations. By
specifying the heteroskedastic observation error, the model-fitting method can account for
years when measurements are less or more certain. Moreover, sea-level residuals are
autocorrelated because deviations from the main trend often impact sea-level anomalies in
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Table 1 Prior uniform distributions and fitted median, mode, and 99% estimates for model and statistical
parameters

Parameter Sym. Units Prior  Prior Bootstrap Homoskedastic Heteroskedastic
min. max. Bayesian Bayesian
Sea-level rise o4 myr °C 0 2 Med. 0.0032 0.0026 0.0019
sensitivity Mode 0.32 0.003 0.002
99% 0.0043  0.004 0.006
Equilibrium T, m -3 2 Med. —054  —0.62 -0.79
temp. Mode —048  —0.58 —0.59
99% —043  —0.41 -027
Initial sea-level ~H, m —0.168 —0.125 Med. —0.154  —0.156 —0.156
anomaly Mode —0.155  —0.155 -0.16
99% —0.147  —0.14 -0.129
Rapid response b m-°C! ! 1 Med. 0.01 0.007 0.011
term Mode —0.012  0.008 0.012
99% 0019  0.025 0.039
Lag-1 P - 099 099 Med. - 0.75 0.83
autoregression Mode 0.64 0.73 0.99
coefficient 99% — 0.94 0.99
White noise Gari M 0 1 Med. 0.0049  0.0049 #
standard error Mode 0.0049  0.005 *
99%  0.0055  0.0058 *

*The standard error is not depicted because observational error is separate from the model error, whereas the
standard error in the Bootstrap and homoskedastic Bayesian methods defines model and observational error as
one term

the following years (Fig. lc; the importance of autocorrelation representation is tested by
performing a perfect model experiment in the SI, Fig. SI. 1). For example, the climate system
is known for its many multi-year oscillations (such as the El Nifo-Southern Oscillation
(ENSO); Boening et al. 2012; Cazenave et al. 2012) that can cause long-term deviations of
the observations from the long-term global sea-level trend (Rietbroek et al. 2016). These multi-
year oscillations are often not well represented in the models, leading to structural model
errors. Testing the observations and the model residuals for these properties is important,
because they can impact the choice of the model-fitting method, parameter estimates, and
projections.

3.2 Model evaluation and parameter uncertainty

The considered methods produce similar hindcasts and reliability diagrams, but different
parameter distributions (Figs. 2 and 3; (nb: median fits are shown in Fig. SI. 10)). The
methods predict well at low to intermediate credible intervals, yet perform relatively
poorly at the high credible intervals (i.e., >90% credible level; the SI describes simple
tests and results of investigating potential causes for poor performance, Fig. SI. 1-3)
(Fig. 2b). Despite the arguably poor performance, each method produces a small average
deviation from perfect reliability; this concept is known as the surprise index (Fig. 2b).
The average surprise index for the Bootstrap, homoskedastic Bayesian, and
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Fig. 2 Comparison of sea-level rise hindcasts and projections and the reliability diagram. a, ¢, d Display the
90% credible interval for each method along with the synthesized observations (points) and their associated
measurement error (Church and White 2006). The color ramp from /ight green to dark blue represents accounting
for more known observational properties (Bootstrap to homoskedastic Bayesian to heteroskedastic Bayesian). b
The reliability diagram analyzes the hindcast credible intervals produced from each method from 10 to 100% in
increments of 10. If the method produces perfectly reliable credible intervals, then the points will plot on a 1:1
line (displayed as a dashed line) representing neither over—nor—underconfidence. b The subplot zooms in on
the credible intervals from 90 to 100%

heteroskedastic Bayesian methods are 2—7%. Choosing different methods causes differ-
ences in the estimated modes and tails of the model parameters (Fig. 3; Table 1). As we
account for more known observational properties (i.e., moving from Bootstrap to
homoskedastic Bayesian to heteroskedastic Bayesian), the distributions widen, the modes
shift, and the tail areas increase for each parameter (Fig. 3; Table 1).

3.3 Comparison of low probability sea-level estimates

The choice of model-fitting method and associated parameter uncertainty considerably impacts
the probability density functions, and especially the upper tail-area estimates, of the SLR
projections (Figs. 2 and 4). The projected 90% probability ranges in 2050 differ by up to
0.11 m; Bootstrap (0.23-0.33 m), homoskedastic Bayesian (0.19-0.32 m), to heteroskedastic
Bayesian (0.14-0.35 m) (Fig. 2c). Depending on the choice of model-fitting method, the
projected sea-level anomaly with a 1% (1072) probability of being equaled or exceeded in the
year 2050 (compared to the 1980-2000 period) varies from 0.35 to 0.46 m (Fig. 4¢). The
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Fig. 3 Marginal probability density functions of the estimated model and statistical parameters. Shown are ()
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coefficient (e). The dashed lines are the prior parameter distribution used in the Bayesian methods. The prior
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heteroskedastic Bayesian method gives a roughly 34% larger sea-level anomaly (associated
with the 1% probability) in the year 2050 compared to the sea-level anomaly produced by the
Bootstrap method. In 2100, the sea-level anomaly produced by the heteroskedastic Bayesian
method with a 1% probability of being equaled or exceeded (1.49 m) differs from the
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Fig. 4 Projections for global mean sea-level rise in 2050 (a, ¢, e) and 2100 (b, d, f) determined for the different
methods presented as the probability density function (a, b), the cumulative density function (¢, d), and the
survival function (e, f). The horizontal dashed lines in the survival function represent the 1% 1072 probability
used in example studies to design sea-level rise adaptation strategies (IWR 2011; Houston 2013)

Bootstrap method sea-level anomaly (1.07 m) by 0.42 m; this difference corresponds to a 40%
increase (Fig. 4f).

The differences in the SLR projections and parameter distributions can be traced back to
assumptions embedded in the model-fitting methods. The Bootstrap method neglects uncer-
tainty in the autocorrelation coefficient, neglects the heteroskedastic nature of the observational
errors, and is not informed by priors. The homoskedastic Bayesian method still neglects the
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heteroskedastic nature of the observational errors, but accounts for uncertainty about the
autocorrelation coefficient. Lastly, the heteroskedastic Bayesian method best represents the
error structure as it accounts for the heteroskedastic nature of the observation errors and
uncertainty about the autocorrelation coefficient.

4 Discussion and conclusion

Semi-empirical SLR models have been used to project sea-level changes (e.g., Rahmstorf 2007,
Grinsted et al. 2010; Church et al. 2013; Moore et al. 2013) and inform risk-and-decision analysis
(e.g., Heberger et al. 2009; Dalton et al. 2010; Neumann et al. 2011; Dibajnia et al. 2012; McInnes
etal. 2013). Here, we present results using a simple sea-level model (i.e., sea level responds only
to changes in temperature) to quantify the effects of neglecting known observational properties
(i.e., autocorrelated and heteroskedastic residuals). We have chosen a simple (and therefore
transparent) framework to demonstrate how neglecting such properties leads to overconfident
projections, which can impact how sea-level projections inform risk-and-decision analyses.

The performance of the model-fitting methods could be further analyzed using methods
other than reliability diagrams and surprise indices (e.g., Brier 1950; Runge et al. 2016). Given
the poor performance at the low probability estimates, extending the temperature and sea-level
data with paleo-reconstructions (Hegerl et al. 2006; Kopp et al. 2016) could potentially improve
underconfidence in the upper tails (the SI details this effect using a perfect model experiment,
Fig. SI. 2). Additionally, this study could be extended to assess the impacts of neglecting error
structure has on historical extremes or particular regions and comparing the results to previous
studies (e.g., Kopp et al. 2014 and Menendez et al. 2009). Lastly, this study is silent on the
impacts of measurement error in temperatures and only considers a single sea-level and
temperature reconstruction to isolate the effects of autocorrelated and heteroskedastic residuals.
Using different reconstructions and accounting for temperature measurement error would
impact estimated parameters and projection probabilities (the SI details the impact different
temperature scenarios have on probabilistic projections; Fig. SI. 12 and 13) (Kopp et al. 2016).

Given the caveats, we show that projections are overconfident when the process model
neglects autocorrelation and accounts for too simple of an error structure. By considering known
observational properties (i.e., heteroskedastic and autocorrelated data-model residuals), the
parameter distributions widen and the upper tails increase. Moreover, we show that these effects
are enhanced in the upper tail projections. For example, accounting for known observational
properties increase the projected sea-level anomaly with a 1% probability of being equaled or
exceeded in the year 2050 and the year 2100 (compared to the 1980-2000 period) by roughly 34
and 40%, respectively. This assessment demonstrates how neglecting known properties of the
residuals can lead to low-biased sea-level projections and associated flood risk estimates.
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