
AStA Wirtsch Sozialstat Arch (2014) 8:249–267
DOI 10.1007/s11943-014-0151-8

O R I G I NALV E R Ö F F E N T LI C H U N G

Multiple Imputation: an attempt to retell
the evolutionary process

Florian Meinfelder

Received: 15 October 2014 / Accepted: 6 November 2014 / Published online: 2 December 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com 2014

Abstract Multiple Imputation describes a strategy for analyzing incomplete data that
accounts for uncertainty in the missing data by replacing (imputing) each missing
value by several ‘candidates’. The actual implementation of any Multiple Imputation
method is typically computationally expensive which is why the concept has only
really caught on around the verge of the new millennium, when the first algorithms
for Multiple Imputation had become accessible.

In this article, we are going to give a rough overview of the shortcomings of methods
for handling missing data prior to Rubin’s work in the late 1970s, and we explore
the conceptual innovations that might have lead to Multiple Imputation based on an
example, where mean imputation is the steppingstone for more advanced methods.
The general concept of Multiple Imputation is explained using a simulated trivariate
data set, and the imputation model is based on the standard Bayesian linear model, in
order to explain the method as illustrative as possible.

Keywords Missing data · Multiple Imputation

1 Introduction

Multiple Imputation (Rubin 1978, 1987) has come a long way. Initially considered as
theoretically intriguing, but almost impossible to implement, it is now widely regarded
as one of the most sophisticated and most popular ways of handling missing-data
problems. The objective of Multiple Imputation (MI) is to incorporate the uncertainty
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in the data that stems from the missing information, while at the same time using all
the information available from the observed data as efficiently as possible.

The advent of ready-to-use algorithms—at first as stand-alone software (NORM,
Schafer 1999) or as packages in R (e.g. mice, van Buuren and Oudshoorn 1999)—
but later on also in commercial software such as SAS (Raghunathan et al. 2001) or
Stata (Royston 2004) has played an important role, because the implementation of MI
algorithms in statistical standard software made the method more accessible to data
analysts. On a side note the term ‘method’ might already be too specific, as it is rather
a concept that comprises various methods which we will discuss later.

Although Multiple Imputation has become very popular, there exist methods not
based on the MI framework which yield valid inference for the analysis of incomplete
data. Some of these methods are likelihood approaches, such as the Expectation-
Maximization (EM) algorithm (Dempster et al. 1977) or Full Information Maximum
Likelihood (FIML). Other approaches are based on single imputation in combination
with variance correction via resampling methods (e.g. Rao 1996), and an overview of
these approaches is given in Münnich (2007). If (co-)variances of parameter estimates
are of interest, the Maximum Likelihood variants have to implement them into the
algorithm (e.g. supplemented EM, Meng and Rubin 1991). If the likelihood is (too)
hard to derive, an alternative is to use a Bayesian Markov Chain Monte Carlo (MCMC)
approach, such as Data Augmentation (Tanner and Wong 1987), where random draws
from the conditional predictive distribution of the missing data are performed with
interchanging random draws from the complete data posterior distribution.

The key difference between the methods listed above and Multiple Imputation is
that all of them require prior knowledge about the analysis model (i.e. the parameters
to be estimated), whereas under the MI framework the ‘imputer’ and the ‘analyst’ can
be different entities. A multiply imputed data set can be used for multiple analyses if
no so-called uncongeniality problem occurs (Meng 1994) which—loosely speaking—
means that the scope of the imputer’s model does not comprise the scope of the analyst’s
model. In this case inferences based on the multiply imputed data will be biased if the
analyst (rightfully) includes terms into his model which the imputer omitted.

The following section makes an attempt to successively derive more and more
sophisticated methods from naïve methods, and leads to stochastic components in
imputation settings which might sound counterintuitive to people whose objective in
a ‘good’ imputation is to get as close as possible to the true value—a point we will
reconsider in the final section.

Section 3 introduces a simulation design which we use to illustrate the ‘evolutio-
nary’ process behind MI, by conceptually improving step-by-step upon the previous
methods. We investigate the preliminary candidate method within a small Monte Carlo
study.

Section 4 gives an overview of the theoretical foundations which were needed
to derive the Bayesian model framework behind the MI process, and introduce the
relevant distributions for the MI method used throughout this paper (which is also a
standard method implemented in numerous MI algorithms).

In Sect. 5 we describe Rubin’s combining rules, and explain how MI analyses are
conducted in general, before we resume the Monte Carlo study from Sect. 3—this
time using Multiple Imputation as the final evolutionary step.
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Up to this point we will have neglected some crucial general assumptions regarding
the mechanism that governs the missing-data, because at first we want to explore the
concept behind MI using the easiest-to-handle (and therefore unrealistic) missingness
to convey the basic idea in principle. Section 6 deals with the introduction of the
relevant assumptions and completes the notation needed for the discussion of missing-
data problems.

The final section addresses advanced issues in Multiple Imputation, and discus-
ses how the algorithms which are nowadays implemented in statistical software also
underwent some evolutionary process, and how it affects today’s application of MI
routines to missing-data problems.

2 Multiple Imputation: an evolutionary approach to explain the concept

Multiple Imputation has not come out of the blue, but is—as basically everything
in science—a consequence of logical innovations. We try to recapture some of the
cognitive steps behind MI, without claiming this overview to be complete or even to
be the actual foundations of Rubin’s idea. The most sophisticated method described
in this section still leaves quite a large conceptual gap to Multiple Imputation, but
we hope our explanations will help readers to understand and appreciate the methods
behind MI which have become black boxes inside of algorithms performing the actual
imputation.

2.1 Notation

For the remainder of this article we assume a data situation, where the first k − 1 varia-
bles are completely observed, and the last of the k variables is only partially observed.
We will let i = 1, . . ., nobs denote the complete cases over all k variables, whereas
Yj ,obs (with j = 1, . . ., k) denotes the part of the data, where variable Yk is observed,
and Yj ,mis denotes the (bottom) part of the data, where Yk is missing (observations
nobs + 1, . . ., n). While capital letters are used to denote univariate or multivariate
variables, bold font upper-case letters are used to denote data matrices, and bold font
lower-case letters are used to denote data or parameter vectors (even when they are
treated as random variables in a Bayesian context). We deliberately refrain from using
X as variable names for the observed and Y as variable name for the incomplete varia-
ble, as we try to avoid the typical ‘regression jargon’ of using terms such as dependent
or endogenous variable which is not appropriate in the context of imputation mode-
ling. Moreover, algorithms based on chained equations are continuously switching the
‘roles’ of the involved variables.

2.2 Unconditional mean imputation

There is one quick and dirty way to impute missing data which most data analysts
might at least have felt tempted to apply at some point—at least for minor rates of
missing data: mean imputation.
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Fig. 1 Missing-data pattern for the trivariate data situation

Mean imputation simply means replacing missing values by the mean of the obser-
ved values of the corresponding variable, i.e. yk,imp,i = ȳk,obs , for i = nobs + 1, . . ., n.
This method will yield only unbiased point estimates for the expectational value of
Yk , and only if the data are missing in a purely random manner (in Sect. 6 we will
introduce a more sensible definition for missingness). It is obvious that (co-)variance
estimates will be biased as the (co-)variance for the imputed part is zero. Likewise,
quantile estimates are affected, depending on the percentage of missing values.

In the following we will use for illustrational purposes a small trivariate data set with
Y = [Y1, Y2, Y3] and n = 500 observations, where the last 50 % of the observations for
variable Y3 are missing. Because the observations are in random order, the missingness
in Y3 is purely random again.

We assume a data-generating process of the following functional form:

Y1 = N (μ = 8, σ 2 = 9)
Y2 = 10 − 0.5Y1 + N (0, 9)
Y3 = 5 + 0.6Y1 + 0.5Y2 + N (0, 2)

(1)

The schematic overview for the missing data pattern is given in Fig. 1.
As stated above, mean imputation is no sensible imputation method, but we want

to illustrate in detail, why almost all kinds of estimators based on mean imputation
are biased. We compare the distribution of Y3 before the bottom half was removed,
and after these values were imputed. Figure 2 shows that Y3 has become a semi-
continuous variable, with 50 % of the observations now being equal to a single value.
The sampling variance of Y3 is halved, because we imputed the missing values with a
constant.

And since (unconditional) mean imputation does not account for associations
among variables, any multivariate estimator will be biased as well. This is true, among
others, for correlations or regression model parameter estimators which can be seen
in Fig. 3.

2.3 Conditional mean imputation

The next evolutionary step would be to find a remedy for mean imputation’s lack of
variance and its blindness to associations with other variables. Regression imputation
does address these problems. Suppose

Yk,i = Y−k,i
T β + Ui = β0 + β1Y1,i + · · · + βk−1Yk−1,i + Ui
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Fig. 2 Mean imputation: histogram of Y3 before deletion and after imputation

Fig. 3 Mean imputation: bivariate scatterplot of Y1 and Y3 before deletion and after imputation

for i = 1, . . ., n, and Ui

iid∼ N (μ, σ 2). Then the method is implemented by estimating
the imputation model parameters based on the complete cases to get

̂β = (Y−k,obs
T Y−k,obs)

−1Y−k,obs
T Yk,obs ,

where Y−k,obs is the design matrix based on the complete cases. Imputations are then
simply generated by imputing missing values via regression prediction:

yk,imp,i = Y−k,mis,i
T
̂β

Unless the imputation model explains Yk perfectly, the variance of Yk will still be
biased towards zero—after all, it is a conditional mean imputation—, but at least the
part of the variance explained by the covariates will be preserved.



254 F. Meinfelder

For our trivariate data example the (Gaussian) kernel density plots of the complete
(before the bottom 50 % were removed) and the regression-imputed Y3 only hints at
this problem, as can be seen in Fig. 4. Even the bivariate scatterplot of Y1 and Y3 with
the partially regression-imputed values is misleading, because the second covariate Y2

disguises that the imputed part of Y3 is a deterministic function of Y1 and Y2. Looking at
these graphical diagnostics might lead to the misconception that the imputed data ‘mix’
well with the observed data, but Fig. 5 reveals the inherent weaknesses of regression
imputation in this trivariate data situation by changing the perspective until we can
see that the imputed data can be found in a plane. The graphical diagnostics confirm
the presumed shortcomings of regression imputation, and it has become obvious that
any imputation algorithm that is purely deterministic will yield biased inferences if
the underlying imputation model does not fit the incomplete data perfectly (which is
almost a given in any empirical data situation).

Therefore, the next step on our imaginary evolutionary ladder is conceptually a big
one: The deliberate introduction of randomness.

2.4 Stochastic regression imputation

The invention of this method is a direct consequence of the observed weaknesses of the
regression imputation approach. In order to avoid too strong associations, a stochastic
component is added to the predicted values which yields

yk,imp,i = y−k,mis,i
T
̂β + ũi ,

where ũi is a random draw from a N (0, σ̂ 2) distribution with

σ̂ 2 = 1

nobs − k

nobs
∑

i=1

(

yk,obs,i − ŷk,obs,i
)2

,

Fig. 4 Regression imputation: univariate kernel density of Y3 and two-dimensional scatterplot for Y1
and Y3
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Fig. 5 Regression imputation: three-dimensional scatterplot from two different angles (imputed values in
dark grey)

with ŷk,obs,i = y−k,obs,i
T
̂β. Note that this can also be directly expressed as a random

draw of the form

yk,imp,i ∼ N
(

y−k,mis,i
T
̂β, σ̂ 2

)

. (2)

The univariate kernel density plot and three-dimensional scatterplot which revealed
the problems of regression imputation now look inconspicuous, as we can see in
Fig. 6, where the same angle was used that illustrated the perfect dependency in
Fig. 5. Since this method looks like a sensitive approach for handling missing data
without any obvious weaknesses, we will investigate stochastic regression imputation
further within a simulation study.

3 A little Monte Carlo study based on stochastic regression imputation

3.1 Setup

The purpose of this Monte Carlo study is to examine whether or not stochastic regres-
sion generally yields unbiased inferences. It is centered around the trivariate data set
introduced in Sect. 2. As quantities of interest of our analysis serve the expectational
value of Y3, and the regression parameters of the data-generating model for Y3. Since

μ3 = E(Y3) = 5 + 0.6 · E(Y1) + 0.5 · E(Y2) = 12.8,

we get as true values for our four quantities of interest

θ = [μ3, β0, β1, β2]T = [12.8, 5, 0.6, 0.5]T .
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Fig. 6 Stochastic regression imputation: univariate kernel density and three-dimensional scatterplot

Table 1 Overview of results from MC study

C(μ3) b(μ̂3) C(β0) b(̂β0) C(β1) b(̂β1) C(β2) b(̂β2)

BD 0.94 − 0.00 0.94 − 0.02 0.94 0.00 0.93 0.00
CC 0.95 − 0.00 0.95 − 0.03 0.95 0.00 0.94 0.00
SR 0.87 − 0.01 0.78 − 0.03 0.77 0.00 0.79 0.00

We compare stochastic regression (SR) with inferences based on the data before
50 % of Y3 were deleted (before deletion—BD), and with the complete cases (CC), i.e.
after deletion, but before imputation. This method is also known as listwise deletion,
and yields unbiased (but inefficient) estimators, if the missingness is purely random.

3.2 Results

We expect for both methods (CC and SR) unbiased estimates, but we control for the
bias b(̂θ ) anyway (the deviation of the parameter from its estimator, averaged over the
1000 MC cylces), and we also include results for the BD situation as benchmark. The
focus, however, is on the coverage rate C(θ ) (with α = 0.05) as diagnostic to evaluate
stochastic regression, i.e the proportion of the 1000 MC cycles, where the calculated
95 % confidence intervals around ̂θ covered the true parameter θ .

Table 1 displays the results we get after 1000 MC cycles. As expected, bias is not an
issue for any method, but while the coverages for the complete cases (and, of course,
for the before-deletion-data) look good, the stochastic regression imputation yields
coverages well below the expected 0.95 for all four parameters. But what causes this
undercoverage? To answer this question we have to examine the imputation model
parameters. For instance, the imputation model parameter vector for our last cycle was
[β0, β1, β2, σ 2]T = [4.75046, 0.62470, 0.49283, 2.00014]T . The problem of stochastic
regression is that these are just parameter estimates based not even on a complete
sample but on Yobs. Had we known and used the true parameter vector [5, 0.6, 0.5, 2]T ,
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stochastic regression imputation would have yielded approximately correct coverage
rates.

Apparently, we have to additionally account for randomness in the imputation
model parameters, and this leads us to the Bayesian framework behind Multiple Im-
putation.

4 Drawing parameters from a distribution—the Bayesian framework of MI

4.1 Observed-data posterior and posterior predictive distribution

Without going into detail about Bayesian inference, an important aspect is that pa-
rameters are considered to be random variables. Suppose some current data Y are
given. Future observations Y ∗ are then drawn from the so-called posterior predictive
distribution

f (Y ∗|Y ) =
∫

θ

f (Y ∗|θ )f (θ |Y )dθ , (3)

where the second part of the integral denotes the posterior distribution of the parameter
θ given the current data. If we now replace ‘future’ by ‘missing’, and ‘current’ by
‘observed’, and if we treat the data as one multivariate random variable Y that consists
of an observed and a missing part, i.e. Y = (Yobs , Ymis), we can rewrite (3) as

f (Ymis |Yobs) =
∫

ψ

f (Ymis |ψ , Yobs)f (ψ |Yobs)dψ (4)

which is referred to as the posterior predictive distribution of the missing data given
the observed data. By applying MC integration techniques we can realize draws from
this distribution by alternately drawing from the observed-data posterior f (ψ |Yobs),
and the conditional predictive distribution of the missing data (given the observed
data) f (Ymis |ψ , Yobs). At this stage we have deliberately omitted an important aspect
(and, in turn, an important implicit assumption): The mechanism that governs the
missingness. We will deal with this complex in detail in Sect. 6.

4.2 The Bayesian linear model

How do the above formulas relate to our findings from the stochastic regression MC
study? As a core problem of the method we identified the usage of an imputation
model based on estimators for the parameters of the imputation model. While we
cannot know the true imputation model parameters, we can account for the uncertainty
regarding our knowledge by drawing these parameters from a distribution. So instead
of working with ̂β and σ̂ 2, we make a random draw for ψ |Yobs , where ψ = [β, σ 2]T .
Since the joint observed-data posterior distribution is not available in closed form, we
decompose it and get

f (ψ |Yobs) = f (σ 2|Yobs)f (β|σ 2, Yobs).
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Applying the standard Bayesian linear model with an uninformative prior f (ψ) ∝
σ−2, we obtain

σ 2|Yobs ∼
(

y3,obs − ŷ3,obs

)T (

y3,obs − ŷ3,obs

)

χ2
nobs−3

(5)

and

β|σ 2, Yobs ∼ N3
(

Y−3,obŝβ, (Y−3,obs
T Y−3,obs)

−1σ 2
)

, (6)

We implement (5) and (6) within an imputation algorithm by drawing σ 2 first
from a scaled-inverse χ2-distribution, and subsequently drawing β from the trivariate
Normal distribution, with the random draw for σ 2 as part of the variance for β. These
two steps together form the so-called posterior step, i.e. a draw from the observed-data
posterior f (ψ |Yobs).

4.3 Generating imputations

The draw from the conditional predictive distribution of the missing data
f (Ymis |ψ , Yobs) is virtually identical with (2), except that now the imputation mo-
del parameters are the draws from the observed-data posterior(s). Plugging in the
random draws for β and σ 2 thus yields

y3,imp|β, σ 2, y1, y2, y3,obs ∼ N (Y−3,misβ, σ 2). (7)

While this is conceptually another big evolutionary step towards MI, this method
will not improve upon the results we got for the coverages using stochastic regression
imputation. We need one more ingredient to utilize the additionally created variation.

5 Multiple Imputation in a nutshell

Donald B. Rubin’s outrageous idea was to replace a missing value by several candida-
tes. The final evolutionary step was made in the 1970s while he was working at the US
Census Bureau and the concept was first published within a technical report in 1977.
Scheuren (2005) provides a good overview of the ‘early days’, when imputation was
referred to as ‘allocation’, and describes the beginnings of Multiple Imputation.

The idea was way ahead of its time, as Bayesian inference was frowned upon by
the majority of statisticians, computing power for the implementation of the needed
algorithms was scarce, and statistical analysis software could not handle the idea of
using several versions of a data set for analysis purposes (and neither could most of
his contemporaries). In Rubin (1987) he derived most of the theoretical proofs for the
formulas needed for the application of MI, and in the same year the first edition of the
standard compendium ‘Statistical Analysis with Missing Data’ was published (Little
and Rubin 1987).

As mentioned in the introduction, the advent of computing power in combination
with flexible algorithms to perform MI played a key role in the proliferation of the
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Fig. 7 Multiply imputed data
(M = 3)

method. However, the analysis of the multiply imputed data posed another problem,
because the combination of the analysis results still requires some work on the ana-
lyst’s behalf. Nowadays, MI standard analyses such as generalized linear regression or
standard hypothesis tests are implemented in most of the statistical software packages
(e.g. Stata, SPSS), and they are also integral part of some MI R packages e.g. mi, (Su
et al. 2011).

In the following we will present a general form of what has now become known as
Rubin’s Combining Rules, see e.g. Rässler et al. (2007).

5.1 Rubin’s combining rules

Suppose we have carried out the steps from (5), (5) and (7) M > 1 times, and we have
now M different data sets at our disposal which are identical for Yobs , but (can) differ
for Ymis . Figure 7 illustrates this data situation. If we let θ now define the parameter
vector of our analysis model, we can use the technique of iterated expectations to show
that

E(θ |Yobs) = E(E[θ |Yobs , Ymis]|Yobs). (8)

The averaging of the M posterior expectations over the missing data can be estimated
by averaging our estimates for θ from the M different data sets.

From (8) we thus get

̂θMI = 1

M

M
∑

m=1

̂θ (m), (9)

which is referred to as the MI estimator for θ . The variance of ̂θMI is defined as

V (̂θMI ) = E(V [θ |Yobs , Ymis]|Yobs) + V (E[θ |Yobs , Ymis]|Yobs). (10)
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Fig. 8 Running M separate analyses (M = 3)

This is actually the decomposed variance consisting of a within-component (the first
term) and a between-component (the second term). Estimating this total variance term
yields

T = W + (1 + M−1)B =
= 1

M

M
∑

m=1

̂V
(

θ̂ (m)
)

+ (1 + M−1) 1
M−1

M
∑

m=1

(

̂θ (m) − ̂θMI

)2 (11)

which is the average of the sampling variances of ̂θ (m) plus the sampling variance
of the M estimators. The term (1 + M−1) is required as a correction for M < ∞.
This means we carry out an MI analysis by extracting the estimator for our quantity
of interest θ and the corresponding sampling variance for each of the M imputed
data sets independently (as shown in Fig. 8), before we apply the combining rules to
get the necessary variance correction. Via a Satterthwaite approximation (Rubin and
Schenker 1986) it can be shown that

(̂θMI − θ )/
√

T ∼ tν (12)

with ν = (M − 1)
(

1 + W
(1+M−1)B

)2
degrees of freedom.

This ANOVA decomposition allows us to create various measures, the most im-
portant one is the fraction of missing information

γ = r + 2/(ν + 3)

1 + r
, with r =

(

1 + M−1
)

B

W
.
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Table 2 MC study results for MI

C(μ3) R(μ3) C(β0) R(β0) C(β1) R(β1) C(β2) R(β2)

BD 0.94 0.41 0.94 1.09 0.95 0.09 0.95 0.08
CC 0.93 0.57 0.95 1.54 0.95 0.13 0.94 0.12
MI 0.93 0.47 0.93 1.50 0.94 0.13 0.93 0.11

An asymptotically identical result is given by λ = (1+M−1)B
T

which is more intuitive:
The larger the share of the between variance in the total variance, the less we apparently
know about the parameter we are estimating based on the incomplete data set.

5.2 Complementing the MC study

We rerun the simulation study from Sect. 3, but this time we impute the missing values
in Y3 multiply (M = 10), each time using the three random draw steps described in
(5), (6) and (7). As described above, we apply Rubin’s combining rules to the 10
imputations, and calculate the 95 % CI’s based on the tν distribution. Since the previous
results confirmed that none of the methods produces any substantial bias, we replace
the bias diagnostic with the average CI width R(θ ) which is the difference of the
97.5 % quantile and 2.5 % quantile for the distribution of ̂θ , averaged over the 1000
Monte Carlo cycles Table 2 .

While the coverages now get close to the expected value of 0.95, the gain in
efficiency expressed by R(θ ) is very different for the expectational value of Y3 on the
one hand and the regression parameters on the other hand. While the average CI width
for μ3 is considerably smaller for the MI CI’s (in spite of the added between variance)
than the complete cases counterpart, we cannot find the same increase in efficiency
for the regression parameters. The reason for this can be mathematically proven, and
is well documented (see e.g. von Hippel 2007), but it also makes intuitively sense: A
data situation with missing values for the ‘dependent’variable ‘Y’and observed values
for the covariates ‘X’ is identical to a hypothetical situation, where predictions based
on some given vectors of covariates are made. But this does not add any additional
information to the model (it would be nice, if it did...). It is exactly the same situation
for a data analysis, where we have only missing values in ‘Y’ (here: Y3).

But what happens if we ‘reverse’ the analysis model and declare Y1 as the ‘depen-
dent’ variable, i.e. Y1,i = γ0 + γ1Y2,i + γ2Y3,i + Vi , with Vi ∼ N (0, τ 2)? This mimics
a data situation, where one of the covariates (again: Y3) has missing values. Calculation
of the new true model parameters is slightly tedious, but based on the data generating
model from 1 it can be shown that the covariance matrix of Y = [Y1, Y2, Y3] is given
by

Σ =
⎛

⎝

9.00 − 4.500 3.1500
− 4.50 11.250 2.9250
3.15 2.925 5.3525

⎞

⎠,

and thus we can derive the new true model parameters

γ =
⎛

⎝

γ0

γ1

γ2

⎞

⎠ =
⎛

⎝

− 0.1742160
− 0.6445993
0.9407666

⎞

⎠.
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Table 3 MC study results for the ‘reversed’ analysis model

C(γ0) R(γ0) C(γ1) R(γ1) C(γ2) R(γ2)

BD 0.95 1.75 0.94 0.10 0.95 0.15
CC 0.94 2.48 0.96 0.14 0.95 0.21
MI 0.93 2.13 0.94 0.12 0.94 0.18

Re-analysing the data from the MC study now yields the results displayed in Table 3.
For all three estimators the average MI CI width is almost exactly half-way in between
the average CI width for the before deletion and the complete cases data situation. The
reason for this gain in efficiency is that now the associations between Y1,mis and Y2,mis

are utilized in the multiply imputed data.
This small simulation study demonstrates that Multiple Imputation leads in general

to more efficient inference, compared to inference based on the complete cases, but
there are exceptions to the rule, whenever the estimator based on the imputed data
does not use more information to estimate the model than the complete-case estimator.

6 Relevant assumptions and theoretical concepts

So far we have not dealt yet with one important aspect of incomplete data: What
governs the process of missingness? A neat ‘trick’ to describe the missing-data me-
chanism is to introduce an additional response indicator R variable (see e.g. Little and
Rubin 2002) which is defined as

Ri,j =
{

1, if Yi,j is observed.
0, if Yi,j is missing.

for i = 1, . . ., n and j = 1, . . ., k.
Thus, the joint distribution of Y and R is given by

f (Y , R|θ , ξ ) = f (Y |θ )f (R|Y , ξ , θ ), (θ , ξ ) ∈ Ωθ ,ξ

The observed-data posterior f (ψ |Yobs) from (4) is itself based on the observed-data
likelihood f (Yobs |ψ) Therefore, the completely denoted observed-data likelihood is
defined as

f (Yobs , R|θ , ξ ) = L(θ |Yobs , R, ξ ) =
∫

f (Yobs , Ymis , R|θ , ξ )dYmis

=
∫

f (Yobs , Ymis |θ )f (R|Yobs , Ymis , ξ , θ )dYmis , (13)

where ξ are unknown parameters pertaining to the missing-data mechanism.

6.1 Missingness mechanisms and ignorability

The now famous classification of missing-data mechanisms was first described by
(Rubin 1976), when he introduced the terms missing at random and observed at ran-
dom, and was refined into its final version by Little and Rubin (1987). If we assume
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that ξ and θ are independent, i.e. from a Bayesian perspective the prior distribu-
tion f (θ , ξ ) = f (θ )f (ξ ), we can write f (R|Y , θ , ξ ) = f (R|Y , ξ ). This assumptions
is called distinctness in the missing-data literature (see e.g. van Buuren 2012).

The first of three levels of missing-data mechanisms which we described above as
‘purely random’ is actually labeled as Missing Completely at Random (MCAR), and
means that the missing-data mechanism only depends on the unknown parameters
ξ , i.e.

f (R|Yobs , Ymis , ξ ) = f (R|ξ ). (14)

This missing-data mechanism typically only occurs in missing-by-design data situa-
tions, such as matrix sampling in questionnaires.

A slightly more restrictive version is called missing at random (MAR), which is
somewhat misleading, as the missingness mechanism is only conditionally on the
observed part of Y independent, such that

f (R|Yobs , Ymis , ξ ) = f (R|Yobs , ξ ). (15)

A frequently used example for this mechanism is that we have missing values for ‘in-
come’, and that older people have a higher propensity of refusing to answer a question
about it (e.g. for fear of burglary). If ‘income’ and ‘age’ are positively correlated, an
estimator of the average income based on the complete cases would be biased towards
zero, but conditioning on the variable ‘age’ makes the missingness random again.

If, however, the propensity of refusing to answer the income question depends on
‘income’ itself (e.g. because high-income earners are more afraid of burglary), i.e.
the missing-data mechanism depends on Ymis as well, the missing-data mechanism
is labeled Missing Not at Random (MNAR), and cannot be (completely) ‘healed’.
Inference based on incomplete data with an MNAR mechanism will be biased.

The observed-data likelihood under ignorability requires the MAR as well as the
distinctness assumption, and allows us to split (13) into two components, such that

L(θ , ξ |Y , R) =
∫

f (Yobs , Ymis |θ )f (R|Yobs , Ymis , ξ , θ )dYmis = f (R|Yobs , ξ )L(θ |Yobs),

where the first part describes the model for the missing-data mechanism (which is
usually not relevant for the analysis), and the second part is the observed-data li-
kelihood under ignorability that leads to the observed-data posterior that features in
(4).

Some researchers claim that they do not use MI, because of its “unrealistic assumpti-
ons” , but while MAR might be in some data situations debatable, it is—without access
to auxiliary information—a necessary assumption for any method applied to analy-
zing incomplete data (even using complete-case analysis is a ‘method’, and it requires
the stronger MCAR assumption to get only unbiased, but not efficient estimators).
MAR or distinctness cannot be tested (we can only test against MCAR), which is why
we have to make these assumptions, but even if ignorability does not hold (because
the mechanism is MNAR), wrongfully assuming it and applying MI will still yield
less biased estimators (e.g. because ‘income’ can be partially explained by ‘age’) than
using the complete cases.
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7 Discussion

Stochastic regression and multiple imputation share the concept of introducing ran-
domness in order to preserve the actual data structure, unlike regression imputation
which tries to retrieve each missing value with the highest possible precision. Unfor-
tunately, this is a valid approach if the imputation model fits the data perfectly—but as
soon as some stochastic component is involved, trying to predict each missing value
rather than to preserve distributions (and to account for missingness-related additional
uncertainty) will yield biased inferences. But the hypothetical situation of a perfect
imputation model might explain why some researchers have tried to evaluate imputa-
tion methods using cross-validation schemes (typically based on so-called ‘hitrates’)
which are suited for classification tasks but not for inferential statistical analysis with
missing data.

One unresolved issue is our differentiating usage of imputation model parameters
ψ , and the parameters pertaining to the data-generating model θ . This distinction is
sometimes omitted in the literature, and again, some sort of evolutionary process might
be one of the reasons behind it.

To the best of our knowledge, the first working stand-alone MI software was NORM
by Joseph Schafer, and the underlying algorithms are described in detail in Schafer
(1997). Like virtually all of the algorithms described in the early publications during
the 1980’s and early 1990’s, NORM assumes a multivariate joint distribution for the
data. By modeling the whole data jointly, usually no distinction between ψ and θ has
to be made, because the joint (e.g. the multivariate normal in NORM) distribution
governs the analysis, and all variables in the data are part of the imputation mo-
del. While these algorithms are mathematically elegant, the implementation becomes
computationally challenging for data sets with many variables, and the assumed joint
distribution which is used for the data model can not be sustained if the variables have
different measurement levels. Approaches to adapt to mixed scale-type data, while
preserving the benefits of this so-called joint modeling (JM) approach, still encounter
dimensionality problems in data sets with many variables (e.g. the ‘mix’ algorithm by
Schafer 2010). One solution for this problem is to model each variable conditionally
on (all the) other variables. Incidentally, this is also what we have implemented in
Sect. 3. The benefit is straightforward: We can model each variable separately using
the link function f (y) of the corresponding generalized linear model. For instance,
a Bayesian version of the binomial logit model can be used to model dichotomous
variables, or, as demonstrated in the MC study, a linear model for continuous data.
The basic idea to implement this approach into an algorithm is to use the concept
of chained or switching regressions, where each variable is modeled on all the other
variables, i.e. imputations are conditional and univariate. The first algorithm to adapt
this idea has been Multivariate Imputation by Chained Equations (MICE, van Buuren
and Oudshoorn 1999), and meanwhile, most MI algorithms are based on this concept
(e.g. IVEware, Raghunathan et al. 2002). Even most of the major statistical software
packages like Stata (StataCorp LP 2013) feature MI algorithms based on these fully
conditional specification (FCS) models. A comprehensive overview can be found in
van Buuren (2012).
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But FCS comes at a prize: Modeling conditionally means that we do not know
whether or not the joint distribution actually exists, or if we encounter an incompatible
Gibbs problem (see Rubin 2003), although so far no empirical application has been
published, where incompatibility had caused problems. Additionally, FCS algorithms
can handle incomplete high-dimensional data, but the imputation model might have to
be reduced. This brings us back to the distinction between ψ and θ , and the problem of
uncongeniality which we briefly addressed in the introductory section:The evolution of
more sophisticated and flexible MI algorithms in combination with easier accessability
has brought higher demands to the functionalities of MI algorithms, and sometimes
the imputer’s model no longer can anticipate (or incorporate) every analysis which
might be carried out at a later stage on the incomplete data.

One general answer to imputing large-scale data is the introduction of MI algo-
rithms based on data-mining procedures such as CART (Burgette and Reiter 2010), or
the usage of model selection methods (e.g. Koller-Meinfelder 2009). However, in both
cases the imputation model is a compromise of automatically including the variables
into the imputation model which jointly explain the incomplete variable itself (and/or
the missingness for this variable) reasonably well. Such non-tailored MI solutions
can cause problems for sophisticated analyses. For instance, Bernardini Papalia et al.
(2013) analyze small area estimation situations, where the fraction of missing infor-
mation γ is high, and the usually suggested ‘M = 5’ imputations lead to inefficient
standard errors, because the efficiency of an estimator based on a finite number of
imputations relative to the fully efficient infinite-M imputation estimator is given by
RE = (

1 + γ

M

)−1/2
(see Rubin 1987).

While new challenges have occurred in missing-data related research, the evolution
of Multiple Imputation has helped to develop a general perception for the problems
missing data can inflict on statistical inference, and the development of powerful
algorithms has triggered the search for ever more complicated tasks to which the
concept could be applied to.

MI example

We want to illustrate the application of Rubin’s combining rules by using a little hypo-
thetical example: Suppose we have monthly income information (in thousand Euros)
for 4 men and 5 women, where the income information was missing for observation
one and three of the female subgroup, and thus multiply (m = 3) imputed: The analysis
objective is to investigate if men have a higher average income than women, and the-
refore a test against the null hypothesis H0 : μwomen − μmen ≤ 0 is conducted. We run

Table 4 Hypothetical example: income of five women and four men (imputations in bold font)

Observation number 1 2 3 4 5

Income men 2.50 4.90 3.60 2.80 –
Income women (m=1) 1.80 3.90 4.20 3.20 2.40
Income women (m=2) 2.60 3.90 4.00 3.20 2.40
Income women (m=3) 2.70 3.90 4.30 3.20 2.40
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Table 5 Results for the 3 independent analyses

x̄2 D = x̄1 − x̄2 s2
x2

̂V (D)

3.100 0.350 1.010 0.482
3.220 0.230 0.532 0.359
3.300 0.150 0.635 0.385

an unpaired t test assuming unknown, but equal variances, where t = (x̄1−x̄2)−(μ1−μ2)

S12

√

1
n1

+ 1
n2

and S12 =
√

(n1−1)s2
x1

(n2−1)s2
x2

n1+n2−2 . For the men we get μ̂men = x̄1 = 3.45 and s2
x1

= 1.15.
The results for the three imputed versions for women and the combined results are gi-
ven in Table 5. Note that the estimator for our quantity of interest is ̂θ = D = x̄1 − x̄2,

and that its sampling variance is defined as ̂V (D) = S2
12

(

1
n1

+ 1
n2

)

.

The MI estimator is given by DMI = 1
3

∑3
m=1 D(m) = 0.243, and the within

and between variance are given by W = 1
3

∑3
m=1

̂V (D)(m) = 0.408, and B =
1

3−1

∑3
m=1

(

D(m) − DMI
)2 = 0.010. The total variance according to (11) yields T =

0.422, and the degrees of freedom according to (12) yield ν = 1950.1 which ma-
kes the statistic virtually normally distributed for all practical purposes, and we get
t = 0.243−0√

0.422
= 0.374 which means that we cannot reject the null for any meaningful

α.
In this example, the total variance T is completely dominated by the within variance,

because the 3 imputations yield comparatively similar results.
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