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Goals
•Understand basics of force control, impedance, 
admittance

•Understand forces in kinematic and RBD models
•Understand some examples of force control 
•Understand some of the issues of actuation for force 
and position control in robotics (SEA, motors, 
hydraulics etc)

•Understand need for torque source (and velocity 
source)

•Keep math at minimum, develop intuition and 
understanding
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Motivation: 
Let’s discuss a few 
control concepts
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High gain position control

xxd
xm

F = −K(xm − xd)

Fe

The higher the gain, the less 
dependent on external forces and 

uncertainties!|xe| =
����
Fe

K

����

F = −Kxe
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Position control & contact
Is position control always a good choice?

Contact: Environment imposes position, Controller 
wants to impose position... what happens?
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Why high gain control 
sometimes might be a bad idea! 

[DLR: Haddadin, Albu-Schäffer, Frommberger, Rossmann, Hirzinger]
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Compliance control

Compliance is widely exploited in natural systems! 
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Compliance control

Compliance is widely exploited in natural systems! 

It can be controlled & changed!

Lots of active control!
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Compliance & Force control
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Can we use compliance and force control 
for robots and what is it useful for?

Compliance & Force control
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Can we use compliance and force control 
for robots and what is it useful for?
How to do this on complex robots?

Compliance & Force control

[SARCOS Slave arm, CLMC Lab , USC]
[Little Dog, Boston Dynamics/CLMC Lab , USC]

[Kalakrishnan, Righetti, Pastor, Schaal, IROS 11]

Tuesday, July 12, 2011



Constrained motion

Tuesday, July 12, 2011



Constrained motion
Two directions: 

Tuesday, July 12, 2011



Constrained motion
Two directions: 
• unconstrained

Tuesday, July 12, 2011



Constrained motion
Two directions: 
• unconstrained

Tuesday, July 12, 2011



Constrained motion
Two directions: 
• unconstrained
• constrained

Tuesday, July 12, 2011



Constrained motion
Two directions: 
• unconstrained
• constrained

Tuesday, July 12, 2011



Constrained motion
Two directions: 
• unconstrained
• constrained

Tuesday, July 12, 2011



Constrained motion
Two directions: 
• unconstrained
• constrained

Tuesday, July 12, 2011



Constrained motion
Two directions: 
• unconstrained
• constrained

Tuesday, July 12, 2011



Constrained motion
Two directions: 
• unconstrained
• constrained

In constrained direction 
sum of forces always zero

Tuesday, July 12, 2011



Constrained motion

Give up control over position! 

Two directions: 
• unconstrained
• constrained

In constrained direction 
sum of forces always zero

Tuesday, July 12, 2011



Constrained motion

Give up control over position! 
What remains? 

Two directions: 
• unconstrained
• constrained

In constrained direction 
sum of forces always zero

Tuesday, July 12, 2011



Constrained motion

Give up control over position! 
What remains? 
Force control!

Two directions: 
• unconstrained
• constrained

In constrained direction 
sum of forces always zero

Tuesday, July 12, 2011



Constrained motion

Give up control over position! 
What remains? 
Force control!
Interaction control!

Two directions: 
• unconstrained
• constrained

In constrained direction 
sum of forces always zero

Tuesday, July 12, 2011



Constrained motion

Give up control over position! 
What remains? 
Force control!
Interaction control!
Impedance control... 

Two directions: 
• unconstrained
• constrained

In constrained direction 
sum of forces always zero

Tuesday, July 12, 2011



Constrained motion

Give up control over position! 
What remains? 
Force control!
Interaction control!
Impedance control... 

Many ‘every day’s’ tasks involve, 
contact with environment and 
controlling force

Two directions: 
• unconstrained
• constrained

In constrained direction 
sum of forces always zero
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Interaction! Dynamics!

We are interested in what happens when 
contact conditions change ⇒ Contact dynamics! 
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Collisions...
What happens if two masses come into contact?
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70’000 frames/sec
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70’000 frames/secNo instantaneous change of 
physical quantities!
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To infinity, and beyond...

∞ Is useful as a shortcut in 
modeling, description.
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To infinity, and beyond...

∞ Is useful as a shortcut in 
modeling, description.

Infinities occurring when analyzing a system with 
the goal to design controllers means incomplete 

problem description!
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Collisions...
What about this situation?

‘Com
plete

’

v2 v1

v2 v1ls

2+’1’ = 3 states

3 states

ls

Need relative position

Fs = Kls

|Fs| =

�
|K(∆x− l0)|, if ∆x < l0
0, otherwise

v2

F2

∆t

Fmax <∞How to describe and 
control interaction?
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Two questions:

•How to characterize & control 
dynamics of interaction

•How to control forces?
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Control 101: 
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How/where can force be 
controlled?
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Ḟ = kvv̇ =
1
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F

v =
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How/where can force be 
controlled?

Input output-relations of ideal mechanical elements:

Ḟ = kvv̇ =
1
m

F

v =
�

1
m

Fdt F =
�

kvdt

Energy storage ⇔ states in eqs.

Input/Output ⇔ Causality 
Input can be non-differentiable (e.g. steps) output can’t

InputOutput
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Answer:

Force can be controlled by controlling 
expansion of a ‘spring-like-element’, i.e. 

imposing velocity on a ‘spring’

vi
FoḞ = kv

F =
�

kvdt
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What is a force sensor?

-> Spring

This is the dual to the force control problem!
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Interaction dynamics
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Constrained motion
Two directions: 
- constrained
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Constrained motion
Two directions: 
- constrained

- unconstrained

Force control task against 
stiff surface

No work done in either direction!

What is the mechanical work done 
by robot on environment?

F(t)

x(t)

Frictionless positioning task
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Constrained motion

And now?
• Friction
• Not completely stiff 

environment
F(t)

v(t)
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Constrained motion

And now?
• Friction
• Not completely stiff 

environment
F(t)

v(t)

Position and force control if dW=0 
are two boundary cases
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Work...
Is there a systematic way to look at 
interaction of subsystems:

• What connections are possible?
• What quantities can imposed? 
• How to describe ‘interaction’?
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Work...
Is there a systematic way to look at 
interaction of subsystems:

• What connections are possible?
• What quantities can imposed? 
• How to describe ‘interaction’?

Energy flow - 
instantaneous Work
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Examples: Flow/effort variables
In any system two conjugate variables 

describe energy flow
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Examples: Flow/effort variables

Effort Flow

Electricity
Voltage (diff. el. 

potential)
Electrical 
Current

Mechanics Force Velocity

Fluids Fluid Pressure Fluid flow

Gases Air Pressure Air flow
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Impedance & Admittance

Input-output relations:

Dynamic relationship between F/E
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Impedance & Admittance

Input-output relations:

Dynamic relationship between F/E

v̇ =
1
m

F

v =
�

1
m

Fdt

Input Output
Effort Flow Admittance
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Input-output relations:

Dynamic relationship between F/E

Admittance

Impedance
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Impedance & Admittance

Admittance: Flow storage
Impedance: Effort storage

Input-output relations:

Dynamic relationship between F/E

Admittance

Impedance
v̇ =

1
m

F

v =
�

1
m

Fdt

Ḟ = kv

F =
�

kvdt

Input Output
Effort Flow Admittance
Flow Effort Impedance
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v(s)

Linear Impedance:
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Z(s) =
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Linear Impedance/Admittance

Z(s) =
F (s)
v(s)

Linear Impedance:

Spring:

Spring-mass-damper:

Mass:

Ms + D +
1
s
K

K
1
s

Ms

Linear Admittance: A(s) =
v(s)
F (s)
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Linear Impedance/Admittance

Z(s) =
F (s)
v(s)

Linear Impedance:

Spring:

Spring-mass-damper:

Mass:

Ms + D +
1
s
K

K
1
s

Ms

Linear Admittance:
1

Z(s)A(s) =
v(s)
F (s)
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Linear Impedance/Admittance

Z(s) =
F (s)
v(s)

Linear Impedance:

Spring:

Spring-mass-damper:

Mass:

Ms + D +
1
s
K

K
1
s

Ms

Linear Admittance:
1

Z(s)A(s) =
v(s)
F (s)

In a nonlinear system 
Admittance is NOT inverse of 

Impedance
Tuesday, July 12, 2011
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Example: series springs
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Example: series springs

Force balance: FΣ = F1 + F2
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Example: series springs

Force balance:

Acceleration:

FΣ = F1 + F2

ẍ =
FΣ

m
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Example: series springs

Force balance:

Acceleration:

FΣ = F1 + F2

ẍ =
FΣ

m
m→ 0
[Ideal spring]

Tuesday, July 12, 2011



Example: series springs

Force balance:

Acceleration:

FΣ = F1 + F2
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Example: series springs

Force balance:

Acceleration:

FΣ = F1 + F2

ẍ =
FΣ

m
m→ 0 !!!![Ideal spring]∞
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“Hogan’s rule”

N. Hogan: “Impedance Control: An Approach to Manipulation: Part I —Theory”, 
Journal of Dynamic Systems, Measurement, and Control 1985
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“Hogan’s rule”
Imposes position!

N. Hogan: “Impedance Control: An Approach to Manipulation: Part I —Theory”, 
Journal of Dynamic Systems, Measurement, and Control 1985

Tuesday, July 12, 2011



“Hogan’s rule”
Imposes position!

N. Hogan: “Impedance Control: An Approach to Manipulation: Part I —Theory”, 
Journal of Dynamic Systems, Measurement, and Control 1985

Input position 
(velocity), output force 
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“Hogan’s rule”

How can this be achieved? Let’s see...

Imposes position!

N. Hogan: “Impedance Control: An Approach to Manipulation: Part I —Theory”, 
Journal of Dynamic Systems, Measurement, and Control 1985

Input position 
(velocity), output force 
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Need torque source!

m1

I1

I2

I3
m2 m3

τ2

q2

q1
τ1
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Torque/force source!!!
Fundamental need for torque source

Z(s)
v ττdes

[ideal/controlled torque source]
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Z(s)
v ττdes
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Endeffector
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Endeffector
If the world has inertial 

behavior and robot has inertial 
behavior, need a compliant 
element to ensure stable 
contact/controllability of 

contacts

IA A
τ
v

τ
v

M
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Endeffector
If the world has inertial 

behavior and robot has inertial 
behavior, need a compliant 
element to ensure stable 
contact/controllability of 

contacts

IA A
τ
v

τ
v

M

Soft: low inertia, high compliance
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Soft outside, stiff inside
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A versatile robot

Two important consequences:
• Robot needs (somewhat) soft interface
• Robot needs controllable torque sources

The stiffer the actuation system 
the higher the bandwidth:

Soft outside, stiff inside

Soft: low inertia, high compliance
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Interaction control

If we can control impedance, can control energy 
exchange during interaction / Work being done... 
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Interaction control

If we can control impedance, can control energy 
exchange during interaction / Work being done... 

⇒ Impedance control!!! Interaction control!!!
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Interaction Control
Impedance feedback control

Tuesday, July 12, 2011



Interaction Control
Impedance feedback control

Mr

Tuesday, July 12, 2011



Interaction Control
Impedance feedback control

Mr

Tuesday, July 12, 2011



Interaction Control
Impedance feedback control

Fm

Mr

Tuesday, July 12, 2011



Interaction Control
Impedance feedback control

Fm

Mr

Tuesday, July 12, 2011



Interaction Control
Impedance feedback control

Fm

Mr

Tuesday, July 12, 2011



Interaction Control
Impedance feedback control

Fi

Fm

Mr

Tuesday, July 12, 2011



Interaction Control
Impedance feedback control

MdDesired:

Fi

Fm

Mr

Tuesday, July 12, 2011



Interaction Control
Impedance feedback control

MdDesired:

Fi

Fm

Newton’s law:

Mr

Tuesday, July 12, 2011



Interaction Control
Impedance feedback control
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FΣ = Mrẍ‘Real’:Fi

FΣ

Fm

solve for Motor force

Newton’s law:

Mr

Tuesday, July 12, 2011



Interaction Control
Impedance feedback control

FΣ = Fm + Fi
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ẍ =
Fi

Md
Expected acceleration: 
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Interaction Control
Impedance feedback control

FΣ = Fm + Fi

Fm = Fi
Mr

Md
− Fi

Fi = MdẍMdDesired:

ẍ =
Fi

Md
Expected acceleration: 

FΣ = Mrẍ‘Real’:

Idea: a force should lead to certain acceleration, control acceleration to be the one expected by monitoring 
interaction force and adding whatever force is needed to accelerate in accordance with desired impedance

Fi

FΣ

Fm ⇒
solve for Motor force

Newton’s law:

Mr
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Interaction Control
Impedance feedback control

x0

F = Ks(x0 − x)

F = Kd(v0 − v)

Desired mass plus desired 
spring damper
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FΣ = Mrẍ‘Real’:

Tuesday, July 12, 2011



Interaction Control
Impedance feedback control

x0

F = Ks(x0 − x)

F = Kd(v0 − v)

Desired mass plus desired 
spring damper

FΣ = Fm + Fi
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Interaction Control
Impedance feedback control

x0

F = Ks(x0 − x)

F = Kd(v0 − v)

Desired mass plus desired 
spring damper

FΣ = Fm + Fi

ẍ =
Fi

Md

Expected 
acceleration: 

FΣ = Mrẍ‘Real’:

solve for Motor force

Fm = Fi
MrK
Md

(xo − x)− Fi
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Impedance control
Spring-mass-damper, articulated system

q̈ = J−1ẍ
map endeffector accelerations in joint accelerations
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map endeffector accelerations in joint accelerations
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Impedance control
Spring-mass-damper, articulated system

Des. Force ⇒ acceleration ⇒ joint space ⇒ torques

Spring

Damper

Mass applied ext. force

q̈ = J−1ẍ
map endeffector accelerations in joint accelerations

gravity and Coriolis
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Indirect force control

x0

F = Ks(x0 − x)

F = Kd(v0 − v)

PD control law:

Virtual trajectory

What about environment stiffness???

Control of interation force by ... 
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Stability issues
[Colgate 88, Hogan 05]
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Force control of multibody/
articulated systems

Tuesday, July 12, 2011



Rigid body dynamics

Tuesday, July 12, 2011



Rigid body dynamics

[from Kljuno 2010]
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distribution) 
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I3
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Rigid body dynamics

•Mass
• Inertia (‘form’, i.e. mass 
distribution) 

• Joints (constraints)

Mq̈ + C(q, q̇) + G(q) = τ

m1

I1

I2

I3
m2 m3

τ2

q2

q1
τ1

q3
τ3
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Rigid body dynamics

•Mass
• Inertia (‘form’, i.e. mass 
distribution) 

• Joints (constraints)

Mq̈ + C(q, q̇) + G(q) = τ

m1

I1

I2

I3
m2 m3

Cf. Marco Hutter’s lecture 
Tomorrow: applications

τ2

q2

q1
τ1

q3
τ3
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Kinematic chain
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Joint coordinates: q =
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Joint coordinates: q =
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Joint coordinates: q =
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Kinematic chain

m1

I1

I2

I3
m2 m3

τ2

q2

q1
τ1

x

y

Joint coordinates: q =




q1

q2

q3





r =
�

x
y

�

q = T−1(r)

r = T (q)

Endeffector 
coordinates:

r

Forward kinematics:

Inverse kinematics:
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Forces and torques
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Relationship of force and torque in an articulated robot
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Forces and torques

m1

I1

I2

I3
m2 m3

τ2

q2

q1
τ1

Relationship of force and torque in an articulated robot

F

τ =




τ1

τ2

τ3



 F =
�

Fx

Fy

�
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Principle of  Virtual Work
(Virtual) work - must be the same in both 

coordinate systems
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FT Jδθ = τT δθ

FT J = τT

τ = JT F
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coordinate systems

rewrite scalar product:

Use  definition of Jacobian J =
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Forces and RBD

Need for torque source!

Chain of rigid bodies: are is still admittances...

The only thing that changes are added constraints on 
possible motions ⇒ reduction of DOF
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Jacobian transpose force control
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Jacobian transpose force control

We can use the Jacobian transpose law to:

τ = JT F
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Jacobian transpose force control

We can use the Jacobian transpose law to:
• control endeffector forces
• emulate ‘virtual elements’
• endeffector impedance control
• ...

Example: Virtual model control (Pratt 2001)

τ = JT F
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Virtual model control

[Semini, 2010]
[Boaventura et al, 2011]
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Virtual model control

[Pratt et al, 2001]

[Semini, 2010]
[Boaventura et al, 2011]
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implementation
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Virtual model 
implementation

1) Virtual spring law

2) Jacobian for one of the attachement 
points (Jacobian between attachement points)

3) use jacobian transpose to derive torques

F = Ks(x1 − x2 − l0)

J

τ = JTF

[ 4) Use close loop force control ]
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Example: Virtual spring

• Hydraulic actuation: flow control
• Closed loop torque control
• Virtual springs 
•  ⇒ Jacobian transpose

[Boaventura, Buchli, Frigerio, Semini]

HyQ Leg - C. Semini
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HyQ Leg - C. Semini
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Results

[Boaventura, Buchli, Frigerio, Semini]
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Can emulate non-linear springs, muscle models, etc etc!
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2-link leg: Jacobian
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2-link leg: Jacobian

[Semini 2010 PhD Thesis]
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2-link leg: Jacobian

[Semini 2010 PhD Thesis]

J =
∂r
∂q
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What hardware to implement a torque source?
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What HW for force control
What hardware to implement a torque source?

Electrical:
- Gear head (speed/ruggedness)
- Bandwidth
+ Commercial availability

Hydraulic:
+ rugged
+ simple to control
+ simple mechanics
+ distributed power generation
+ high velocity / high force
- limited commercial availability 
of small elements
- energy efficiency

Pneumatics:
+ simple mechanics
+ commercial availability
- hard to control

Marco Hutter & 
Claudio Semini

Piezo, Polymers, Shape memory alloy, carbon nano tubes???
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Force control needs compliance

Force can be controlled by controlling 
expansion of a ‘spring-like-element’, i.e. 

imposing velocity on a ‘spring’

vi
Fo
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Force control needs compliance

Force can be controlled by controlling 
expansion of a ‘spring-like-element’, i.e. 

imposing velocity on a ‘spring’

vi
Fo

Where is the 
spring???
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Where is the ‘spring’?
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Where is the ‘spring’?
Electrical motors: Gears, shaft...
Hydraulics: Oil compression, flexible hoses
SEA: added spring dominates

[Harmonic drive]

[Hoerbiger]
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Where is the ‘spring’?
Electrical motors: Gears, shaft...
Hydraulics: Oil compression, flexible hoses
SEA: added spring dominates

[Harmonic drive]

[Yobotics e-SEA]

[Hoerbiger]
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Closed loop force control

[Pratt et al, 2002]
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Closed loop force control

[Pratt et al, 2002]Ḟ ≈ u
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Ḟ ≈ u
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Closed loop force control

[Pratt et al, 2002]

u = −KFe

Ḟ ≈ u
u = −K(Fa − Fd)

⇒ velocity setpoint for the motor
Ḟ ≈ v

Impedance

Ḟ = kv

This control law is independent of the technology of 
the ‘motor’ and ‘spring’!
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SEA: Force control over soft spring

[Robinson et al, 1999]

Series Elastic Actuator Development for a 
Biomimetic Walking Robot
David W. Robinson, Jerry E. Pratt, Daniel J. Paluska, and Gill A. Pratt

F = Ks(xm − xL)
Ḟ = Ks(ẋm − ẋL)

Design and Analysis of Series Elasticity in Closed-loop Actuator Force Control
David William Robinson

Tuesday, July 12, 2011



SEA: Force control over soft spring

[Robinson et al, 1999]

Series Elastic Actuator Development for a 
Biomimetic Walking Robot
David W. Robinson, Jerry E. Pratt, Daniel J. Paluska, and Gill A. Pratt

F = Ks(xm − xL)
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SEA: Force control over soft spring

[Robinson et al, 1999]

Series Elastic Actuator Development for a 
Biomimetic Walking Robot
David W. Robinson, Jerry E. Pratt, Daniel J. Paluska, and Gill A. Pratt

F = Ks(xm − xL)
Ḟ = Ks(ẋm − ẋL)

Design and Analysis of Series Elasticity in Closed-loop Actuator Force Control
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Design and Analysis of Series Elasticity in Closed-loop Actuator Force Control
David William Robinson

Spring constant = 
Gain of plant

Tuesday, July 12, 2011



SEA: Force control over soft spring

[Pratt et al, 2002]

[Robinson et al, 1999]

Series Elastic Actuator Development for a 
Biomimetic Walking Robot
David W. Robinson, Jerry E. Pratt, Daniel J. Paluska, and Gill A. Pratt

F = Ks(xm − xL)
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Passive vs Active
Pros/Cons of active/passive compliance

Take away: PD pos control == Spring-damper

• bandwidth
• energy
• versatility
• shocks? robustness?
• safety???
• price
• combination with model based control

Important: The discussion of impedance and control is 
applicable entirely to passive or active elements: 

SYSTEMS THEORY!
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The ‘safety question’
A couple of points to consider:
• force required by task
• max. velocity system can create
• loss of controllability
• springs can make system less safe
• on strong robots software will be 

important for safety

[DLR]
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Issues in force control
• Non collocated measurement, actuation:
• Instability, chatter
• Needs fast control

• Force measurement hardware
• Calibration
• passive compliance: how much and where

Issues in impedance control
• What impedance?
• Model dependence (environment & robot)
• How to get good models? 
• What impedance controller?
• Feedback of noise
• Passive vs. active?
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Influence of models
Different type of models:
• kinematic (Jacobian)
• dynamic (+inertia, coriolis)
• actuator models

• Kinematic models are very easy to obtain 
and can already be very helpful (VM 
control etc)

• Full dynamic models are a bit more 
tricky, but often we don’t need a very 
accurate model to gain advantage
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Wrap up

• Fundamental need for torque soruce
• Dual variables velocity and force
• velocity x force = dWork
• Impedance/admittance is relationship between 

velocity and force
• Energy flow is key to interaction
• Causality puts limits on physical 

implementations
• Force is always controlled and measured over 

an impedance
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