Force, compliance, impedance and interaction control

Summer School

Dynamic Walking and Running with Robots
ETH Zürich, July I2, 20 II
Jonas Buchli

Advanced Robotics

Goals

- Understand basics of force control, impedance, admittance
- Understand forces in kinematic and RBD models
- Understand some examples of force control
- Understand some of the issues of actuation for force and position control in robotics (SEA, motors, hydraulics etc)
- Understand need for torque source (and velocity source)
- Keep math at minimum, develop intuition and understanding

Motivation: Let's discuss a few control concepts

High gain position control

High gain position control

High gain position control

High gain position control

High gain position control

High gain position control

High gain position control

High gain position control

High gain position control

$$
\begin{array}{cc}
\hline & \\
\hline x_{d} & x_{m} \\
F=-K\left(x_{m}-x_{d}\right) &
\end{array}
$$

High gain position control

$x_{d} \longrightarrow x$
x_{m}
$F=-K\left(x_{m}-x_{d}\right)$

High gain position control

High gain position control

High gain position control

$$
\begin{aligned}
& \xrightarrow[x_{d}]{x_{m}} \\
& F=-K\left(x_{m}-x_{d}\right) \\
& F=-K x_{e}
\end{aligned}
$$

High gain position control

$$
\begin{aligned}
& F=-K\left(x_{m}-x_{d}\right) \\
& F=-K x_{e} \\
& \quad\left|x_{e}\right|=\left|\frac{F_{e}}{K}\right|
\end{aligned}
$$

High gain position control

$$
F=-K\left(x_{m}-x_{d}\right)
$$

$$
F=-K x_{e}
$$

The higher the gain, the less

$$
\left|x_{e}\right|=\left|\frac{F_{e}}{K}\right|
$$ dependent on external forces and uncertainties!

Position control \& contact

Is position control always a good choice?
Contact: Environment imposes position, Controller wants to impose position... what happens?

Position control \& contact

Is position control always a good choice?
Contact: Environment imposes position, Controller wants to impose position... what happens?

Why high gain control

sometimes might be a bad idea!

The DLR Crash Report

Sami Faddadin, Alin Albu-Schäffer, Mirko Frommberger, Jürgen Rossmann, and Gerd Hirzinger

DIR - German Aerospace Center RWTHH Aachen
[DLR: Haddadin, Albu-Schäffer, Frommberger, Rossmann, Hirzinger]

Compliance control

Compliance is widely exploited in natural systems!

Compliance control

Compliance is widely exploited in natural systems!

Compliance control

Compliance is widely exploited in natural systems!
It can be controlled \& changed!

Complia

Lots of active control!

Compliance is widely exploited in natural systems!
It can be controlled \& changed!

Compliance \& Force control

Compliance \& Force control

Can we use compliance and force control for robots and what is it useful for?

Compliance \& Force control

Can we use compliance and force control for robots and what is it useful for? How to do this on complex robots?

Compliance \& Force control

[Little Dog, Boston Dynamics/CLMC Lab , USC]

Compliance \& Force control

Compliance \& Force control

[Little Dog, Boston Dynamics/CLMC Lab , USC]
[SARCOS Slave arm, CLMC Lab , USC]
[Kalakrishnan, Righetti, Pastor, Schaal, IROS I I]

Constrained motion

Constrained motion

Two directions:

Constrained motion

Two directions:

- unconstrained

Constrained motion

Two directions:

- unconstrained

Constrained motion

Two directions:

- unconstrained
- constrained

Constrained motion

Two directions:

- unconstrained
- constrained

Constrained motion

Two directions:

- unconstrained
- constrained

Constrained motion

Two directions:

- unconstrained
- constrained

Constrained motion

Two directions:

- unconstrained
- constrained

Constrained motion

Two directions:

- unconstrained
- constrained

In constrained direction sum of forces always zero

Constrained motion

Two directions:

- unconstrained
- constrained

In constrained direction sum of forces always zero

Give up control over position!

Constrained motion

Two directions:

- unconstrained
- constrained

In constrained direction sum of forces always zero

Give up control over position! What remains?

Constrained motion

Two directions:

- unconstrained
- constrained

In constrained direction sum of forces always zero

Give up control over position!
What remains?
Force control!

Constrained motion

Two directions:

- unconstrained
- constrained

In constrained direction sum of forces always zero

Give up control over position!
What remains?
Force control!
Interaction control!

Constrained motion

Two directions:

- unconstrained
- constrained

In constrained direction sum of forces always zero

Give up control over position!
What remains?
Force control!
Interaction control!
Impedance control...

Constrained motion

Two directions:

- unconstrained
- constrained

In constrained direction sum of forces always zero

Many 'every day's’ tasks involve, contact with environment and controlling force

Give up control over position!
What remains?
Force control!
Interaction control!
Impedance control...

Interaction! Dynamics!

We are interested in what happens when contact conditions change \Rightarrow Contact dynamics!

Interaction! Dynamics!

We are interested in what happens when contact conditions change \Rightarrow Contact dynamics!

Interaction! Dynamics!

We are interested in what happens when contact conditions change \Rightarrow Contact dynamics!

Interaction! Dynamics!

We are interested in what happens when contact conditions change \Rightarrow Contact dynamics!

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two masses come into contact?

Collisions...

What happens if two mass

Collisions...

What happens if two mass

Collisions...

What happens if two mass

Collisions...

What happens if two mass

Collisions...

What happens if two mass

Collisions...

What happens if two mass

Collisions...

What happens if two mass

Collisions...

What happens if two mass

Collisions...

What happens if two mass

$$
\dot{v}_{2}=\frac{F_{2}}{m_{2}} \quad \text { Before in }
$$

v_{2}

Collisions...

What happens if two mass

$$
\dot{v}_{1}=\frac{F_{1}}{m_{1}} \quad \dot{v}_{2}=\frac{F_{2}}{m_{2}} \quad \text { Before in }
$$

v_{2}

v_{2}

$$
F \mathrm{dt}<\infty
$$

$$
\longrightarrow v_{1}=v_{2} \quad \text { I state }
$$

$$
\ddot{x}_{1,2}=\frac{F_{1,2}}{m_{1,2}}
$$

Collisions...

What happens if two mass

Collisions...

What happens if two mass

$$
\dot{v}_{2}=\frac{F_{2}}{m_{2}} \quad \text { Before it } \quad 2 \mathrm{sta}
$$

v_{2}

Collisions...

What happens if two mass

$70^{\prime} 000$ frames $/ \mathrm{sec}$

$70^{\prime} 000$ frames $/ \mathrm{sec}$

$70^{\prime} 000 \mathrm{f}$ No instantaneous change of physical quantities!

To infinity, and beyond...

Is useful as a shortcut in modeling, description.

To infinity, and beyond...

Is useful as a shortcut in modeling, description.

Infinities occurring when analyzing a system with the goal to design controllers means incomplete problem description!

Collisions...

What about this situation?

Collisions...

What about this situation?

Collisions...

What about this situation?

Collisions...

What about this situation?

Collisions...

What about this situation?

$F_{s}=K l_{s}$

Collisions...

What about this situation?

$$
\begin{aligned}
\left|F_{s}\right| & = \begin{cases}\left|K\left(\Delta x-l_{0}\right)\right|, & \text { if } \Delta x<l_{0} \\
0, & \text { otherwise }\end{cases} \\
& \stackrel{v_{1}}{\square} F_{s}=K l_{s}
\end{aligned}
$$

Collisions...

What about this situation?

$$
\begin{aligned}
\left|F_{s}\right| & = \begin{cases}\left|K\left(\Delta x-l_{0}\right)\right|, & \text { if } \Delta x<l_{0} \text { Need relative position } \\
0, & \text { otherwise }\end{cases} \\
& F_{s}=K l_{s}
\end{aligned}
$$

Collisions...

What about this situation?

$$
\begin{aligned}
&\left|F_{s}\right|= \begin{cases}\left|K\left(\Delta x-l_{0}\right)\right|, & \text { if } \Delta x<l_{0} \text { Need relative position } \\
0, & \text { otherwise }\end{cases} \\
& \begin{array}{l}
F_{s}=K l_{s} \\
2+{ }^{\prime}
\end{array} \\
& v_{\text {' }}=3 \text { states }
\end{aligned}
$$

Collisions...

What about this situation?

$$
\left|F_{s}\right|= \begin{cases}\left|K\left(\Delta x-l_{0}\right)\right|, & \text { if } \Delta x<l_{0} \text { Need relative position } \\ 0, & \text { otherwise }\end{cases}
$$

Collisions...

What about this situation?

$$
\left|F_{s}\right|= \begin{cases}\left|K\left(\Delta x-l_{0}\right)\right|, & \text { if } \Delta x<l_{0} \text { Need relative position } \\ 0, & \text { otherwise }\end{cases}
$$

3 states

Collisions...

What about this situation?

$$
\left|F_{s}\right|= \begin{cases}\left|K\left(\Delta x-l_{0}\right)\right|, & \text { if } \Delta x<l_{0} \text { Need relative position } \\ 0, & \text { otherwise }\end{cases}
$$

What about this

3 states

What about this

3 states

What about this

3 states

3 states

Collisic

What about this

$$
\begin{aligned}
\left|F_{s}\right| & =\left\{\begin{array}{ll}
\left|K\left(\Delta x-l_{0}\right)\right|, & \text { if } \Delta x \\
0, & \text { otherwi }
\end{array}\right\} \underbrace{F_{2} \uparrow}_{2} \\
& \underbrace{F_{2}}_{2+\prime \prime}=3 \text { states }
\end{aligned}
$$

3 states

Two questions:
-How to characterize \& control dynamics of interaction
-How to control forces?

Force control

Force control?

Force control?

Control IOI:

Force control?

Control IOI:

- In order to control a state, need to have influence on its (time) derivative

Force control?

Control IOI:

- In order to control a state, need to have influence on its (time) derivative
- In oder to control a state robustly need to be able to measure it ('close the loop')

Force control?

Control IOI:

- In order to control a state, need to have influence on its (time) derivative
- In oder to control a state robustly need to be able to measure it ('close the loop')

States in equation?

Force control?

Control IOI:

- In order to control a state, need to have influence on its (time) derivative
- In oder to control a state robustly need to be able to measure it ('close the loop')

States in equation?
Energy storages!

Force control?

Control IOI:

- In order to control a state, need to have influence on its (time) derivative
- In oder to control a state robustly need to be able to measure it ('close the loop')

States in equation?

Energy storages!
What are mechanical energy storages?

Force control?

Control IOI:

- In order to control a state, need to have influence on its (time) derivative
- In oder to control a state robustly need to be able to measure it ('close the loop')

States in equation?

Energy storages!
What are mechanical energy storages?

Force control?

Control IOI:

- In order to control a state, need to have influence on its (time) derivative
- In oder to control a state robustly need to be able to measure it ('close the loop')

States in equation?

Energy storages!
What are mechanical energy storages?

How/where can force be controlled?

How/where can force be controlled?

Input output-relations of ideal mechanical elements:

How/where can force be controlled?

Input output-relations of ideal mechanical elements:

How/where can force be controlled?

Input output-relations of ideal mechanical elements:

How/where can force be controlled?

Input output-relations of ideal mechanical elements:

$\dot{F}=k v$

How/where can force be controlled?

Input output-relations of ideal mechanical elements:

$\dot{F}=k v$

$$
v=\int \frac{1}{m} F d t
$$

How/where can force be controlled?

Input output-relations of ideal mechanical elements:

$$
v=\int \frac{1}{m} F d t
$$

$\dot{F}=k v$

$$
F=\int k v d t
$$

How/where can force be controlled?

Input output-relations of ideal mechanical elements:

$\dot{F}=k v$
$F=\int k v d t$

How/where can force be controlled?

Input output-relations of ideal mechanical elements:

$$
\dot{F}=k v
$$

Output

$$
v=\int \frac{1}{n_{0}}-F l t \text { Input }
$$

$$
F=\int k v d t
$$

How/where can force be controlled?

Input output-relations of ideal mechanical elements:

Energy storage \Leftrightarrow states in eqs. Input/Output \Leftrightarrow Causality

Input can be non-differentiable (e.g. steps) output can't

$$
\dot{v}=\frac{1}{m} F \quad \dot{F}=k v
$$

Output

$$
v=\int \frac{1}{n_{i}}-F l t \text { Input } \quad F=\int k v d t
$$

Answer:

$$
\begin{aligned}
& \dot{F}=k v \\
& F=\int k v d t
\end{aligned}
$$

Force can be controlled by controlling expansion of a 'spring-like-element', i.e. imposing velocity on a 'spring'

Answer:

$$
\begin{aligned}
& \dot{F}=k v \\
& F=\int k v d t
\end{aligned}
$$

Force can be controlled by controlling expansion of a 'spring-like-element', i.e. imposing velocity on a 'spring'

What is a force sensor?

This is the dual to the force control problem!

What is a force sensor?

Can not measure/ observe force!

This is the dual to the force control problem!

What is a force sensor?

Can not measure/ observe force!

This is the dual to the force control problem!

What is a force sensor?

Can not measure/ observe force!

This is the dual to the force control problem!

What is a force sensor?

Can not measure/ observe force!

This is the dual to the force control problem!

What is a force sensor?

Can not measure/ observe force!

This is the dual to the force control problem!

What is a force sensor?

Can not measure/ observe force!

This is the dual to the force control problem!

Interaction dynamics

Constrained motion

Two directions:

- constrained
- unconstrained

Constrained motion

Two directions:

- constrained
- unconstrained

Constrained motion

Two directions:

- constrained
- unconstrained

Frictionless positioning task

Constrained motion

Two directions:

- constrained
- unconstrained

Frictionless positioning task

Constrained motion

Two directions:

- constrained
- unconstrained

Frictionless positioning task Force control task against stiff surface

Constrained motion

Two directions:

- constrained
- unconstrained

Frictionless positioning task Force control task against stiff surface

Constrained motion

Two directions:

- constrained
- unconstrained

Frictionless positioning task Force control task against stiff surface

What is the mechanical work done by robot on environment?

Constrained motion

Two directions:

- constrained
- unconstrained

Frictionless positioning task Force control task against stiff surface

What is the mechanical work done by robot on environment?

No work done in either direction!

Constrained motion

And now?

- Friction
- Not completely stiff environment

Constrained motion

Work...

Is there a systematic way to look at interaction of subsystems:

- What connections are possible?
- What quantities can imposed?
- How to describe 'interaction'?

Work...

Is there a systematic way to look at interaction of subsystems:

- What connections are possible?
- What quantities can imposed?
- How to describe 'interaction'?

> Energy flow instantaneous Work

Examples: Flow/effort variables

 In any system two conjugate variables describe energy flow
Examples: Flow/effort variables

 In any system two conjugate variables describe energy flow

Examples: Flow/effort variables

 In any system two conjugate variables describe energy flow
Flow \times Effort $=$ inst. work

Effort
Flow

Examples: Flow/effort variables

 In any system two conjugate variables describe energy flow| FlowF Effort
 inst. work | Effort | Flow |
| :---: | :---: | :---: |
| | Electricity | Voltage (diff. el.
 potential) |
| Electrical
 Current | | |

Examples: Flow/effort variables

In any system two conjugate variables describe energy flow

FlowE Effort inst. work	Effort	Flow	
	Electricity	Voltage (diff. el. potential)	Electrical Current
Mechanics	Force	Velocity	

Examples: Flow/effort variables

In any system two conjugate variables describe energy flow

FlowF Effort inst. work	Effort	Flow	
	Electricity	Voltage (diff. el. potential)	Electrical Current
Mechanics	Force	Velocity	
Fluids	Fluid Pressure	Fluid flow	

Examples: Flow/effort variables

In any system two conjugate variables describe energy flow

Flow inst. Work		Effort	Flow
	Electricity	Voltage (diff. el. potential)	Electrical Current
Mechanics	Force	Velocity	
Fluids	Fluid Pressure	Fluid flow	
Gases	Air Pressure	Air flow	

Impedance \& Admittance Dynamic relationship between F/E

Input-output relations:

Impedance \& Admittance Dynamic relationship between F/E

Input-output relations: Input

Impedance \& Admittance Dynamic relationship between F/E

Input-output relations:

Impedance \& Admittance Dynamic relationship between F/E

Input-output relations:

Output

Impedance \& Admittance Dynamic relationship between F/E

Input-output relations:

Impedance \& Admittance Dynamic relationship between F/E

Input-output relations:

Impedance \& Admittance Dynamic relationship between F/E

Input-output relations:

Input	Output	
Effort	Flow	Admittance

Impedance \& Admittance Dynamic relationship between F/E

Input-output relations:

Input	Output	
Effort	Flow	Admittance
Flow		

Impedance \& Admittance Dynamic relationship between F/E

Input-output relations:

Input	Output	
Effort	Flow	Admittance
Flow	Effort	

Impedance \& Admittance Dynamic relationship between F/E

Input-output relations:

Input	Output	
Effort	Flow	Admittance
Flow	Effort	Impedance

Impedance \& Admittance Dynamic relationship between F/E

Input-output relations:

Input	Output	
Effort	Flow	Admittance
Flow	Effort	Impedance

Impedance \& Admittance Dynamic relationship between F/E

Input-output relations:

Input	Output	
Effort	Flow	Admittance
Flow	Effort	Impedance

Impedance \& Admittance

Dynamic relationship between F/E
Input-output relations:

Input	Output	
Effort	Flow	Admittance
Flow	Effort	Impedance

$$
\begin{aligned}
\dot{v} & =\frac{1}{m} F \\
v & =\int \frac{1}{m} F d t
\end{aligned}
$$

Impedance \& Admittance

Dynamic relationship between F/E
Input-output relations:

Input	Output	
Effort	Flow	Admittance
Flow	Effort	Impedance

$$
\begin{aligned}
\dot{v} & =\frac{1}{m} F \\
v & =\int \frac{1}{m} F d t
\end{aligned}
$$

$$
\begin{aligned}
\dot{F} & =k v \\
F & =\int k v d t
\end{aligned}
$$

Impedance \& Admittance

Dynamic relationship between F/E
Input-output relations:

Input	Output	
Effort	Flow	Admittance
Flow	Effort	Impedance

Impedance \& Admittance

Dynamic relationship between F/E
Input-output relations:

Input	Output	
Effort	Flow	Admittance
Flow	Effort	Impedance

$$
\begin{aligned}
\dot{v} & =\frac{1}{m} F \\
v & =\int \frac{1}{m} F d t
\end{aligned}
$$

$$
\begin{aligned}
\dot{F} & =k v \\
F & =\int k v d t
\end{aligned}
$$

Impedance \& Admittance

Dynamic relationship between F/E
Input-output relations:

Input	Output	
Effort	Flow	Admittance
Flow	Effort	Impedance

$$
\begin{aligned}
\dot{v} & =\frac{1}{m} F \\
v & =\int \frac{1}{m} F d t
\end{aligned}
$$

$$
\begin{aligned}
\dot{F} & =k v \\
F & =\int k v d t
\end{aligned}
$$

Impedance \& Admittance

Dynamic relationship between F/E
Input-output relations:

Input	Output	
Effort	Flow	Admittance
Flow	Effort	Impedance

$$
\begin{aligned}
& \dot{v}=\frac{1}{m} F \\
& v=\int \frac{1}{m} F d t
\end{aligned}
$$

Impedance \& Admittance

Dynamic relationship between F/E
Input-output relations:

Impedance \& Admittance

Dynamic relationship between F/E
Input-output relations:

Impedance \& Admittance

Dynamic relationship between F/E
Input-output relations:

Admittance: Flow storage Impedance: Effort storage

Linear Impedance/Admittance

Linear Impedance/Admittance

Linear Impedance:

Linear Impedance/Admittance

Linear Impedance: $\quad Z(s)=\frac{F(s)}{v(s)}$

Linear Impedance/Admittance

Linear Impedance: $\quad Z(s)=\frac{F(s)}{v(s)}$
Spring:

Linear Impedance/Admittance

Linear Impedance: $\quad Z(s)=\frac{F(s)}{v(s)}$
Spring:

$$
K \frac{1}{s}
$$

Linear Impedance/Admittance

Linear Impedance: $\quad Z(s)=\frac{F(s)}{v(s)}$
Spring:
$K \frac{1}{s}$
Mass:

Linear Impedance/Admittance

Linear Impedance: $\quad Z(s)=\frac{F(s)}{v(s)}$
Spring:
$K \frac{1}{s}$
Mass:
Ms

Linear Impedance/Admittance

Linear Impedance:
Spring:

$$
Z(s)=\frac{F(s)}{v(s)}
$$

$K \frac{1}{s}$
Mass:
Ms

Spring-mass-damper:

Linear Impedance/Admittance

Linear Impedance:
Spring:

$$
Z(s)=\frac{F(s)}{v(s)}
$$

$K \frac{1}{s}$
Mass:
Ms
Spring-mass-damper: $M s+D+\frac{1}{s} K$

Linear Impedance/Admittance

Linear Impedance:
Spring:

$$
Z(s)=\frac{F(s)}{v(s)}
$$

$K \frac{1}{s}$
Mass:
Ms
Spring-mass-damper: $M s+D+\frac{1}{s} K$
Linear Admittance:

Linear Impedance/Admittance

Linear Impedance:
Spring:

$$
Z(s)=\frac{F(s)}{v(s)}
$$

$K \frac{1}{s}$
Mass:

$$
M s
$$

Spring-mass-damper: $M s+D+\frac{1}{s} K$
Linear Admittance: $\quad A(s)=\frac{v(s)}{F(s)}$

Linear Impedance/Admittance

Linear Impedance:
Spring:

$$
Z(s)=\frac{F(s)}{v(s)}
$$

$K \frac{1}{s}$
Mass:

$$
M s
$$

Spring-mass-damper: $M s+D+\frac{1}{s} K$
Linear Admittance: $\quad A(s)=\frac{v(s)}{F(s)} \quad \frac{1}{Z(s)}$

Linear Impedance/Admittance

Linear Impedance: $\quad Z(s)=\frac{F(s)}{v(s)}$
Spring:
$K \frac{1}{s}$
Mass:
Ms
Spring-mass-damper:

Linear Admittance:
In a nonlinear system
Admittance is NOT inverse of Impedance

Physically possible connections

Physically possible connections

A-A

Physically possible connections

Physically possible connections

A-A

Physically possible connections

Input/Output \Leftrightarrow Causality

A- A

Physically possible connections

Input/Output \Leftrightarrow Causality

Causality

Several important conatraints on the behavior of physical systems can be identified. Aloeg each degree of freedoen, instantaneous power flow between two or more phyical systens (e.g., a physical system and its environatent) is always definable as the peodect of two conjugase variables, an effoct (e.g., a force, a voltage) and a flow (0.8, a a velocity, a curremi) [20]. An obvious bat important physicall coesstraint is that no one system may determine both variables. Aloag azy degree of freedom a manipplator may imperss a force on its cnvironsent or impose a displacensent of velocity oet it, but not boch.

Physically possible connections

Input/Output \Leftrightarrow Causality

The most important consequence of dynamic interaction between two physical systems is that one must physically complement the other: Along any degree of freedom, if one is an impedance, the other must be an admittance and vice versa. Now, for almost all manipulatory tasks the environment at least contains inertias and/or kinematic constraints, physical systems which accept force inputs and which determine their own motion in response. However, as described above, while a constrained inertial object can always be pushed on, it cannot always be moved; These systems are properly described as admittances. Seen from the manipulator, the world is an admittance.
When a manipulator is mechanically coupled to its environment, to ensure physical compatibility with the environmental admittance, the manipulator should assume the behavior of an impedance. Because the mechanical interaction with the environment will change with different tasks, or even in the course of a single task-the manipulator may be coupled to the environment in one phase and decoupled from it in another-the behavior of the manipulator should be adaptable. Thus the controller should be capable of modulating the impedance of the manipulator as appropriate for a particular phase of a task.
[Hogan 85]

Physically possible connections

Input/Output \Leftrightarrow Causality

The most important consequence of dynamic interaction
 between two physical systems is that one must physically complement the other: Along any degree of freedom, if one is an impedance, the other must be an admittance and vice versa. Now, for almost all manipulatory tasks the environment at least contains inertias and/or kinematic constraints, physical systems which accept force inputs and which determine their own motion in response. However, as described above, while a constrained inertial object can always be pushed on, it cannot always be moved; These systems are properly described as admittances. Seen from the manipulator, the world is an admittance.

When a manipulator is mechanically coupled to its environment, to ensure physical compatibility with the environmental admittance, the manipulator should assume the behavior of an impedance. Because the mechanical interaction with the environment will change with different tasks, or even in the course of a single task-the manipulator may be coupled to the environment in one phase and decoupled from it in another-the behavior of the manipulator should be adaptable. Thus the controller should be capable of modulating the impedance of the manipulator as appropriate for a particular phase of a task.
[Hogan 85]

Physically possible connections

Input/Output \Leftrightarrow Causality

The most important consequence of dynamic interaction between two physical systems is that one must physically complement the other: Along any degree of freedom, if one is an impedance, the other must be an admittance and vice versa. Now, for almost all manipulatory tasks the environment at least contains inertias and/or kinematic constraints, physical systems which accept force inputs and which determine their own motion in resnonse. Howeyer as described above, while a constrained inertial object can always be pushed on, it cannot always be moved; These systems are properly described as admittances. Seen from the manipulator, the world is an admittance.

When a manipulator is mechanically coupled to its environment, to ensure physical compatibility with the environmental admittance, the manipulator should assume the behavior of an impedance. Because the mechanical interaction with the environment will change with different tasks, or even in the course of a single task-the manipulator may be coupled to the environment in one phase and decoupled from it in another-the behavior of the manipulator should be adaptable. Thus the controller should be capable of modulating the impedance of the manipulator as appropriate for a particular phase of a task.
[Hogan 85]

Physically possible connections

Input/Output \Leftrightarrow Causality

The most important consequence of dynamic interaction between two physical systems is that one must physically complement the other: Along any degree of freedom, if one is an impedance, the other must be an admittance and vice versa. Now, for almost all manipulatory tasks the environment at least contains inertias and/or kinematic constraints, physical systems which accept force inputs and which determine their own motion in resnonse. Howeyer as described above, while a constrained inertial object can always be pushed on, it cannot always be moved; These systems are properly described as admittances. Seen from the manipulator, the world is an admittance.

When a manipulator is mechanically coupled to its environment, to ensure physical compatibility with the environmental admittance, the manipulator should assume the behavior of an impedance. Because the mechanical interaction with the environment will change with different tasks, or even in the course of a single task-the manipulator may be coupled to the environment in one phase and decoupled from it in another-the behavior of the manipulator should be adaptable. Thus the controller should be capable of modulating the impedance of the manipulator as appropriate for a particular phase of a task.
[Hogan 85]

Physically possible connections

Input/Output \Leftrightarrow Causality

The most important consequence of dynamic interaction between two physical systems is that one must physically complement the other: Along any degree of freedom, if one is an impedance, the other must be an admittance and vice versa. Now, for almost all manipulatory tasks the environment at least contains inertias and/or kinematic constraints, physical systems which accept force inputs and which determine their own motion in resnonse. Howeyer as described above, while a constrained inertial object can always be pushed on, it cannot always be moved; These systems are properly described as admittances. Seen from the manipulator, the world is an admittance.

When a manipulator is mechanically coupled to its environment, to ensure physical compatibility with the environmental admittance, the manipulator should assume the behavior of an impedance. Because the mechanical interaction with the environment will change with different tasks, or even in the course of a single task-the manipulator may be coupled to the environment in one phase and decoupled from it in another-the behavior of the manipulator should be adaptable. Thus the controller should be capable of modulating the impedance of the manipulator as appropriate for a particular phase of a task.
[Hogan 85]

Physically possible connections

Input/Output \Leftrightarrow Causality

The most important consequence of dynamic interaction
 between two physical systems is that one must physically complement the other: Along any degree of freedom, if one is an impedance, the other must be an admittance and vice versa. Now, for almost all manipulatory tasks the environment at least contains inertias and/or kinematic constraints, physical systems which accept force inputs and which determine their own motion in resnonse. Howeyer as described above, while a constrained inertial object can always be pushed on, it cannot always be moved; These systems are properly described as admittances. Seen from the manipulator, the world is an admittance.

When a manipulator is mechanically coupled to its environment, to ensure physical compatibility with the environmental admittance, the manipulator should assume the behavior of an impedance. Because the mechanical interaction with the environment will change with different tasks, or even in the course of a single task-the manipulator may be coupled to the environment in one phase and decoupled from it in another-the behavior of the manipulator should be adaptable. Thus the controller should be capable of modulating the impedance of the manipulator as appropriate for a particular phase of a task.
[Hogan 85]

Example: series springs

Example: series springs

Example: series springs

Force balance: $\quad F_{\Sigma}=F_{1}+F_{2}$

Example: series springs

Force balance: $\quad F_{\Sigma}=F_{1}+F_{2}$
Acceleration:

$$
\ddot{x}=\frac{F_{\Sigma}}{m}
$$

Example: series springs

Force balance: $\quad F_{\Sigma}=F_{1}+F_{2}$
Acceleration:

$$
\ddot{x}=\frac{F_{\Sigma}}{m}
$$

$$
\underset{\text { Ildeal }}{\rightarrow}
$$

[Ideal spring]

Example: series springs

Force balance: $\quad F_{\Sigma}=F_{1}+F_{2}$
Acceleration:

$$
\ddot{x}=\frac{F_{\Sigma}}{m}
$$

$$
\underset{\text { [Ideal spinga] }}{m \rightarrow 0} \text { !!!! }
$$

Example: series springs

Force balance: $\quad F_{\Sigma}=, \quad F_{2}$
Acceleration:

$$
\ddot{x}=\frac{F_{\Sigma}}{n} \quad m \rightarrow 0 \quad!!!!
$$

"Hogan's rule"

In the most common case in which the environment is an admittance (e.g., a mass, possibly kinematically constrained) that relation should be an impedance, a function, possibly nonlinear, dynamic, or even discontinuous, specifying the force produced in response to a motion imposed by the environment.
N. Hogan:"Impedance Control:An Approach to Manipulation: Part I —Theory", Journal of Dynamic Systems, Measurement, and Control I985

"Hogan's rule"

Abstract

mon case in which the environment is ar admittance (e.g., a mass, possibly kinematically constrained) that relation should be an impedance, a function, possibly nonlinear, dynamic, or even discontinuous, specifying the force produced in response to a motion imposed by the environment.

In the most com-
N. Hogan:"Impedance Control:An Approach to Manipulation: Part I —Theory", Journal of Dynamic Systems, Measurement, and Control I985

"Hogan's rule"

Abstract

In the most common case in which the environment is ar admittance (e.g., a mass, possibly kinematically constrained) that relation should be acimpedance, a function, possibly nonlinear, dynamic, or even discontinuous, specifying the force produced in response to a motion imposed by the environment.

N. Hogan:"Impedance Control:An Approach to Manipulation: Part I —Theory", Journal of Dynamic Systems, Measurement, and Control I985

"Hogan's rule"

Abstract

In the most common case in which the environment is ar admittance (e.g., a mass, possibly kinematically constrained) that relation should be acimpedance, a function, possibly nonlinear, dynamic, or even discontinuous, specifying theforce produced in response to a motion imposed by the environment.

N. Hogan:"Impedance Control:An Approach to Manipulation: Part I —Theory", Journal of Dynamic Systems, Measurement, and Control I985

"Hogan's rule"

> In the most common case in which the environment is ar admittance (e.g., a mass, possibly kinematically constrained) that relation should be an impedance, a function, possibly nonlinear, dynamic, or even discontinuous, specifying thetorce produced in response to a motion imposed by the environment.
N. Hogan:"Impedance Control:An Approach to Manipulation: Part I —Theory", Journal of Dynamic Systems, Measurement, and Control I985

"Hogan's rule"

 Imposes position!In the most common case in which the environment is admittance (e. . ., a mass, possibly kinematically constrained) that relation should be a impedance, a unction, possibly nonlinear, dynamic, or even discontinuous, specifying the force produced in response to a motion imposed he the environment.
N. Hogan:"Impedance Control:An Approach to Manipulation: Part I —Theory", Journal of Dynamic Systems, Measurement, and Control I985

"Hogan's rule"

Input position (velocity), output force

Imposes position!

In the most common case in which the environment is aradmittance (e.g., a mass, possibly kinematically constrained) that relation should be acimpedance, a function, possibly nonlinear, dynamic, or even discontinuous, specifying the force produced in response to a motion imposed hy the environment.
N. Hogan:"Impedance Control:An Approach to Manipulation: Part I —Theory", Journal of Dynamic Systems, Measurement, and Control I985

"Hogan's rule"

Input position (velocity), output force

Imposes position!

In the most common case in which the environment is an admittance (e.,., a mass, Wossibly kinematically constrained) that relation should be a impedance, a unction, possibly nonlinear, dynamic, or even discontinuous, specifying the torce produced in response to a motion imposed he the environment.

How can this be achieved? Let's see...

N. Hogan:"Impedance Control:An Approach to Manipulation: Part I —Theory", Journal of Dynamic Systems, Measurement, and Control I985

Need torque source!

Need torque source!

A

Need torque source!

Torque/force source!!!

Fundamental need for torque source

Torque/force source!!!

Fundamental need for torque source

Endeffector

Endeffector

A

Endeffector

M

Endeffector

Endeffector

M

A

Endeffector

A

Endeffector

A

Endeffector

Endeffector

If the world has inertial behavior and robot has inertial behavior, need a compliant element to ensure stable contact/controllability of contacts

Endeffector

If the world has inertial behavior and robot has inertial behavior, need a compliant element to ensure stable contact/controllability of contacts

Soft: low inertia, high compliance

A versatile robot

A versatile robot

Two important consequences:

A versatile robot

Two important consequences:

- Robot needs (somewhat) soft interface

A versatile robot

Two important consequences:

- Robot needs (somewhat) soft interface
- Robot needs controllable torque sources

A versatile robot

Two important consequences:

- Robot needs (somewhat) soft interface
- Robot needs controllable torque sources

The stiffer the actuation system the higher the bandwidth:
Soft outside, stiff inside

A versatile robot

Two important consequences:

- Robot needs (somewhat) soft interface
- Robot needs controllable torque sources

The stiffer the actuation system the higher the bandwidth:
Soft outside, stiff inside

Soft: low inertia, high compliance

Interaction Control

Interaction control

Interaction control

If we can control impedance, can control energy exchange during interaction / Work being done...

Interaction control

If we can control impedance, can control energy exchange during interaction / Work being done...
\Rightarrow Impedance control!!! Interaction control!!!

Interaction Control

 Impedance feedback control
Interaction Control

 Impedance feedback control
Interaction Control

 Impedance feedback control

Interaction Control

 Impedance feedback control

Interaction Control

 Impedance feedback control

Interaction Control

 Impedance feedback control

Interaction Control

 Impedance feedback control

Interaction Control

 Impedance feedback controlDesired: M_{d}

Interaction Control

 Impedance feedback controlDesired: M_{d} Newton's law:

Interaction Control

 Impedance feedback controlDesired: $\mathrm{M}_{\mathrm{d}} \quad$ Newton's law: $\mathrm{F}_{\mathrm{i}}=\mathrm{M}_{\mathrm{d}} \ddot{\mathrm{X}}$

Interaction Control

 Impedance feedback controlDesired: $\mathrm{M}_{\mathrm{d}} \quad$ Newton's law: $\mathrm{F}_{\mathrm{i}}=\mathrm{M}_{\mathrm{d}} \ddot{\mathbf{x}}$

Expected acceleration:

Interaction Control

 Impedance feedback controlDesired: $\mathrm{M}_{\mathrm{d}} \quad$ Newton's law: $\mathrm{F}_{\mathrm{i}}=\mathrm{M}_{\mathrm{d}} \ddot{\mathbf{x}}$

$$
\text { Expected acceleration: } \ddot{x}=\frac{\mathbf{F}_{\mathrm{i}}}{\mathbf{M}_{\mathrm{d}}}
$$

Interaction Control

 Impedance feedback controlDesired: $\mathrm{M}_{\mathrm{d}} \quad$ Newton's law: $\mathrm{F}_{\mathrm{i}}=\mathrm{M}_{\mathrm{d}} \ddot{\mathbf{x}}$
Expected acceleration: $\ddot{x}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{d}}}$

'Real': $\mathrm{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathbf{r}} \ddot{\mathrm{X}}$

Interaction Control

 Impedance feedback controlDesired: $\mathrm{M}_{\mathrm{d}} \quad$ Newton's law: $\mathrm{F}_{\mathrm{i}}=\mathrm{M}_{\mathrm{d}} \ddot{\mathbf{x}}$
Expected acceleration: $\ddot{x}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{d}}}$

$$
\begin{array}{r}
\text { 'Real': } \mathrm{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathrm{r}} \ddot{\mathrm{X}} \\
\mathrm{~F}_{\boldsymbol{\Sigma}}=\mathrm{F}_{\mathrm{m}}+\mathrm{F}_{\mathrm{i}}
\end{array}
$$

Interaction Control

 Impedance feedback controlDesired: $\mathrm{M}_{\mathrm{d}} \quad$ Newton's law: $\mathrm{F}_{\mathrm{i}}=\mathrm{M}_{\mathrm{d}} \ddot{\mathrm{x}}$
Expected acceleration: $\ddot{x}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{d}}}$

F_{i}
'Real': $\mathrm{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathrm{r}} \ddot{\mathrm{X}}$

$$
\mathrm{F}_{\Sigma}=\mathrm{F}_{\mathrm{m}}+\mathrm{F}_{\mathrm{i}}
$$

Interaction Control

 Impedance feedback controlDesired: $\mathrm{M}_{\mathrm{d}} \quad$ Newton's law: $\mathrm{F}_{\mathrm{i}}=\mathrm{M}_{\mathrm{d}} \ddot{\mathrm{X}}$
Expected acceleration: $\ddot{x}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{d}}}$

'Real': $\mathrm{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathbf{r}} \ddot{\mathrm{X}}$

$$
F_{\Sigma}=F_{m}+F_{i}
$$

Interaction Control

 Impedance feedback controlDesired: $\mathrm{M}_{\mathrm{d}} \quad$ Newton's law: $\mathrm{F}_{\mathrm{i}}=\mathrm{M}_{\mathrm{d}} \ddot{\mathrm{X}}$
Expected acceleration: $\ddot{x}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{d}}}$
F_{i}

'Real': $\mathbf{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathbf{r}} \ddot{\mathrm{X}}$

$$
\mathrm{F}_{\Sigma}=\mathrm{F}_{\mathrm{m}}+\mathrm{F}_{\mathrm{i}}
$$

solve for Motor force

Interaction Control

 Impedance feedback controlDesired: $\mathrm{M}_{\mathrm{d}} \quad$ Newton's law: $\mathrm{F}_{\mathrm{i}}=\mathrm{M}_{\mathrm{d}} \ddot{\mathrm{X}}$
Expected acceleration: $\ddot{x}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{d}}}$
F_{i}

'Real': $\mathrm{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathbf{r}} \ddot{\mathrm{X}}$

$$
\mathrm{F}_{\Sigma}=\mathrm{F}_{\mathrm{m}}+\mathrm{F}_{\mathrm{i}}
$$

solve for Motor force
\Rightarrow

Interaction Control

 Impedance feedback controlDesired: $\mathrm{M}_{\mathrm{d}} \quad$ Newton's law: $\mathrm{F}_{\mathrm{i}}=\mathrm{M}_{\mathrm{d}} \ddot{\mathrm{X}}$
Expected acceleration: $\ddot{x}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{d}}}$

'Real': $\mathrm{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathrm{r}} \ddot{\mathrm{X}}$

$$
\mathrm{F}_{\Sigma}=\mathrm{F}_{\mathrm{m}}+\mathrm{F}_{\mathrm{i}}
$$

solve for Motor force

$$
\Rightarrow \mathrm{F}_{\mathrm{m}}=\mathrm{F}_{\mathrm{i}} \frac{\mathrm{M}_{\mathrm{r}}}{\mathrm{M}_{\mathrm{d}}}-\mathrm{F}_{\mathrm{i}}
$$

Interaction Control

 Impedance feedback controlDesired: $\mathrm{M}_{\mathrm{d}} \quad$ Newton's law: $\mathrm{F}_{\mathrm{i}}=\mathrm{M}_{\mathrm{d}} \ddot{\mathbf{x}}$
Expected acceleration: $\ddot{x}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{d}}}$

'Real': $\mathrm{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathrm{r}} \ddot{\mathrm{X}}$

$$
\mathrm{F}_{\Sigma}=\mathrm{F}_{\mathrm{m}}+\mathrm{F}_{\mathrm{i}}
$$

solve for Motor force

$$
\Rightarrow \mathrm{F}_{\mathrm{m}}=\mathrm{F}_{\mathrm{i}} \frac{\mathrm{M}_{\mathrm{r}}}{\mathrm{M}_{\mathrm{d}}}-\mathrm{F}_{\mathrm{i}}
$$

Idea: a force should lead to certain acceleration, control acceleration to be the one expected by monitoring interaction force and adding whatever force is needed to accelerate in accordance with desired impedance

Interaction Control

Impedance feedback control
Desired mass plus desired spring damper

$$
\begin{aligned}
& F=K_{s}\left(x_{0}-x\right) \\
& F=K_{d}\left(v_{0}-v\right)
\end{aligned}
$$

Interaction Control

Impedance feedback control
Desired mass plus desired spring damper

$$
\begin{aligned}
& F=K_{s}\left(x_{0}-x\right) \\
& F=K_{d}\left(v_{0}-v\right)
\end{aligned}
$$

Expected acceleration:

Interaction Control

 Impedance feedback controlDesired mass plus desired spring damper

$$
\begin{aligned}
& F=K_{s}\left(x_{0}-x\right) \\
& F=K_{d}\left(v_{0}-v\right)
\end{aligned}
$$

Expected acceleration:

$$
\ddot{x}=\frac{\mathbf{F}_{\mathrm{i}}}{\mathbf{M}_{\mathrm{d}}}
$$

Interaction Control

 Impedance feedback controlDesired mass plus desired spring damper

$$
\begin{aligned}
& F=K_{s}\left(x_{0}-x\right) \\
& F=K_{d}\left(v_{0}-v\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Expected } \\
& \text { cceleration: } \quad \ddot{x}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{d}}} \\
& \text { 'Real': } \mathrm{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathrm{r}} \ddot{\mathrm{x}}
\end{aligned}
$$

Interaction Control

 Impedance feedback controlDesired mass plus desired spring damper

$$
\begin{aligned}
& F=K_{s}\left(x_{0}-x\right) \\
& F=K_{d}\left(v_{0}-v\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Expected } \\
\text { cceleration: }
\end{array} \quad \ddot{x}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{d}}} \\
& \text { 'Real': } \mathrm{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathbf{r}} \ddot{\mathrm{x}} \\
& \mathbf{F}_{\boldsymbol{\Sigma}}=\mathbf{F}_{\mathrm{m}}+\mathbf{F}_{\mathbf{i}}
\end{aligned}
$$

Interaction Control

 Impedance feedback controlDesired mass plus desired spring damper

$$
\begin{aligned}
& F=K_{s}\left(x_{0}-x\right) \\
& F=K_{d}\left(v_{0}-v\right)
\end{aligned}
$$

Expected $\ddot{x}=\frac{\mathbf{F}_{\mathrm{i}}}{\mathbf{M}_{\mathrm{d}}}$ 'Real': $\mathrm{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathrm{r}} \ddot{\mathrm{X}}$

$$
F_{\Sigma}=F_{m}+F_{i}
$$

Interaction Control

 Impedance feedback controlDesired mass plus desired spring damper

$$
\begin{aligned}
& F=K_{s}\left(x_{0}-x\right) \\
& F=K_{d}\left(v_{0}-v\right)
\end{aligned}
$$

Expected $\ddot{x}=\frac{\mathbf{F}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{d}}}$ 'Real': $\mathrm{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathbf{r}} \ddot{\mathrm{X}}$

$$
\mathrm{F}_{\Sigma}=\mathrm{F}_{\mathrm{m}}+\mathrm{F}_{\mathrm{i}}
$$

Interaction Control

 Impedance feedback controlDesired mass plus desired spring damper

$$
\begin{aligned}
& F=K_{s}\left(x_{0}-x\right) \\
& F=K_{d}\left(v_{0}-v\right)
\end{aligned}
$$

Expected $\ddot{x}=\frac{\mathbf{F}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{d}}}$ 'Real': $\mathrm{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathrm{r}} \ddot{\mathrm{X}}$

$$
\mathrm{F}_{\Sigma}=\mathrm{F}_{\mathrm{m}}+\mathrm{F}_{\mathrm{i}}
$$

solve for Motor force

Interaction Control

 Impedance feedback controlDesired mass plus desired spring damper

$$
\begin{aligned}
& F=K_{s}\left(x_{0}-x\right) \\
& F=K_{d}\left(v_{0}-v\right)
\end{aligned}
$$

Expected $\ddot{x}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{d}}}$ 'Real': $\mathrm{F}_{\boldsymbol{\Sigma}}=\mathrm{M}_{\mathrm{r}} \ddot{\mathrm{X}}$

$$
F_{\Sigma}=F_{m}+F_{i}
$$

solve for Motor force

$$
F_{m}=F_{i} \frac{M_{r} K}{M_{d}}\left(x_{o}-x\right)-F_{i}
$$

Impedance control

Spring-mass-damper, articulated system

map endeffector accelerations in joint accelerations

$$
\ddot{\mathrm{q}}=\mathrm{J}^{-1} \ddot{\mathrm{x}}
$$

$$
\begin{aligned}
\text { Tact } & =I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} K\left[\mathbf{X}_{0}-L(\theta)\right]+S(\theta) \\
& +I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} B\left[\mathbf{V}_{0}-\mathbf{J}(\theta) \omega\right]+V(\omega) \\
& +I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} \text { Fint }-\mathbf{J}^{\mathrm{t}}(\theta) \text { Fint } \\
& -I(\theta) \mathbf{J}^{-1}(\theta) G(\theta, \omega)+C(\theta, \omega)
\end{aligned}
$$

Impedance control

Spring-mass-damper, articulated system

map endeffector accelerations in joint accelerations

$$
\ddot{\mathrm{q}}=\mathbf{J}^{-1} \ddot{\mathrm{x}}
$$

$$
\begin{aligned}
\text { Tact } & =I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} K\left[\mathbf{X}_{0}-L(\theta)\right] \text { Spring } \\
& +I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} B\left[\mathbf{V}_{0}-\mathbf{J}(\theta) \omega\right]+V(\omega) \\
& +I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} \text { Fint }-\mathbf{J}^{\mathrm{t}}(\theta) \text { Fint } \\
& -I(\theta) \mathbf{J}^{-1}(\theta) G(\theta, \omega)+C(\theta, \omega)
\end{aligned}
$$

Impedance control

Spring-mass-damper, articulated system

map endeffector accelerations in joint accelerations

$$
\ddot{\mathrm{q}}=\mathbf{J}^{-1} \ddot{\mathrm{x}}
$$

$$
\begin{aligned}
\text { Tact } & =I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} K\left[\mathbf{X}_{0}-L(\theta)\right] \text { Spring } \\
& +I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} B\left[\mathbf{V}_{0}-\mathbf{J}(\theta) \omega\right] \text { Damper } \\
& +I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} \mathbf{F i n t}-\mathbf{J}^{\mathrm{t}}(\theta) \mathbf{F i n t} \\
& -I(\theta) \mathbf{J}^{-1}(\theta) G(\theta, \omega)+C(\theta, \omega)
\end{aligned}
$$

Impedance control

Spring-mass-damper, articulated system

map endeffector accelerations in joint accelerations

$$
\ddot{\mathrm{q}}=\mathbf{J}^{-1} \ddot{\mathrm{x}}
$$

Tact $=I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} K\left[\mathbf{X}_{0}-L(\theta)\right]$ Spring $+I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} B\left[\mathbf{V}_{0}-\mathbf{J}(\theta) \omega\right]$ Damper
Mass $I(\theta) \mathbf{J}^{-1}(\theta) M^{-1}$ Fint $-\mathbf{J}^{\mathrm{t}}(\theta)$ Fint

$$
-I(\theta) \mathbf{J}^{-1}(\theta) G(\theta, \omega)+C(\theta, \omega)
$$

Impedance control

Spring-mass-damper, articulated system

map endeffector accelerations in joint accelerations

$$
\ddot{\mathrm{q}}=\mathbf{J}^{-1} \ddot{\mathrm{x}}
$$

Tact $=I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} K\left[\mathbf{X}_{0}-L(\theta)\right] \quad$ Spring

$$
+I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} B\left[\mathbf{V}_{0}-\mathbf{J}(\theta) \omega\right] \text { Damper }
$$

Mass $I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} \mathbf{F i n t}-\mathbf{J}^{\mathrm{t}}(\theta) \mathbf{F i n t}$ applied ex

$$
-I(\theta) \mathbf{J}^{-1}(\theta) G(\theta, \omega)+C(\theta, \omega)
$$

Impedance control

Spring-mass-damper, articulated system

map endeffector accelerations in joint accelerations

$$
\ddot{\mathrm{q}}=\mathbf{J}^{-1} \ddot{\mathrm{x}}
$$

Tact $=I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} K\left[\mathbf{X}_{0}-L(\theta)\right] \quad$ Spring

$$
+I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} B\left[\mathbf{V}_{0}-\mathbf{J}(\theta) \omega\right] \text { Damper }
$$

Mass

$$
I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} \mathbf{F i n t}-\mathbf{J}^{\mathrm{t}}(\theta) \text { Fint applied ex }
$$

$$
-I(\theta) \mathbf{J}^{-1}(\theta) G(\theta, \omega)+C(\theta, \omega)
$$

Impedance control

Spring-mass-damper, articulated system

map endeffector accelerations in joint accelerations

$$
\ddot{\mathrm{q}}=\mathbf{J}^{-1} \ddot{\mathrm{x}}
$$

Tact $=I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} K\left[\mathbf{X}_{0}-L(\theta)\right] \quad$ Spring

$$
+I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} B\left[\mathbf{V}_{0}-\mathbf{J}(\theta) \omega\right] \text { Damper }
$$

Mass $I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} \mathbf{F i}$
$-I(\theta) \mathbf{J}^{-1}(\theta) G(\theta, \omega)$ gravity and Coriolis

Impedance control

Spring-mass-damper, articulated system

map endeffector accelerations in joint accelerations
$\ddot{\mathrm{q}}=\mathbf{J}^{-1} \ddot{\mathbf{x}}$
Tact $=I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} K\left[\mathbf{X}_{0}-L(\theta)\right] \quad$ Spring
$+I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} B\left[\mathbf{V}_{0}-\mathbf{J}(\theta) \omega\right]$ Damper
$\begin{array}{ll}\text { Mass } & I(\theta) \mathbf{J}^{-1}(\theta) M^{-1} \mathbf{F i} \\ - & I(\theta) \mathbf{J}^{-1}(\theta) G(\theta, \omega)\end{array}$
applied ex
gravity and Coriolis
Des. Force \Rightarrow acceleration \Rightarrow joint space \Rightarrow torques

Indirect force control

Control of interation force by ...

PD control law:

$$
\begin{aligned}
& F=K_{s}\left(x_{0}-x\right) \\
& F=K_{d}\left(v_{0}-v\right)
\end{aligned}
$$

Virtual trajectory

What about environment stiffness???
[Colgate 88, Hogan 05]

Stability issues

[Colgate 88, Hogan 05]

Stability issues

Stability issues

Regulate F_{e} through F_{a}

Stability issues

Regulate F_{e} through F_{a}

Close force feedback loop with gain K_{f}

Stability issues

Regulate F_{e} through F_{a}

Close force feedback loop with gain K_{f}

Physical equivalence of closed loop system

Stability issues

Regulate F_{e} through F_{a}

Close force feedback loop with gain K_{f}

$$
\xrightarrow{\mathrm{F}_{\mathrm{a}}} \stackrel{\left(1-\mathrm{K}_{\mathrm{t}}\right) \mathrm{m}}{2\left(1+\mathrm{K}_{\mathrm{t}}\right)}{\underset{\sim}{\left(1-\mathrm{K}_{f}\right) \mathrm{b}}}_{\left(1-\mathrm{K}_{\mathrm{f}}\right) \mathrm{k}}^{\frac{\mathrm{m}}{2}} \mathrm{~F}
$$

Physical equivalence of closed loop system

Force control of multibody/ articulated systems

Rigid body dynamics

Rigid body dynamics

[from Kljuno 20I0]

Rigid body dynamics

Rigid body dynamics

Rigid body dynamics

Rigid body dynamics

- Inertia ('form', i.e. mass distribution)

Rigid body dynamics

Rigid body dynamics

Rigid body dynamics

Rigid body dynamics

Cf. Marco Hutter's lecture
Tomorrow: applications

Kinematic chain

Joint coordinates: $q=\left[\begin{array}{l}q_{1} \\ q_{2} \\ q_{3}\end{array}\right]$

Kinematic chain

Joint coordinates: $q=\left[\begin{array}{l}q_{1} \\ q_{2} \\ q_{3}\end{array}\right]$

Kinematic chain

Kinematic chain

Kinematic chain

Joint coordinates: $q=\left[\begin{array}{l}q_{1} \\ q_{2} \\ q_{3}\end{array}\right]$
Endeffector coordinates:

Kinematic chain

Joint coordinates: $q=\left[\begin{array}{l}q_{1} \\ q_{2} \\ q_{3}\end{array}\right]$
$\begin{aligned} & \text { Endeffector } \\ & \text { coordinates: }\end{aligned} \quad r=\left[\begin{array}{l}x \\ y\end{array}\right]$

Forward kinematics:

Kinematic chain

Joint coordinates: $q=\left[\begin{array}{l}q_{1} \\ q_{2} \\ q_{3}\end{array}\right]$
Endeffector coordinates:

Forward kinematics: $r=T(q)$

Kinematic chain

Joint coordinates: $q=\left[\begin{array}{l}q_{1} \\ q_{2} \\ q_{3}\end{array}\right]$
Endeffector coordinates:

Forward kinematics: $r=T(q)$ Inverse kinematics:

Kinematic chain

Joint coordinates: $q=\left[\begin{array}{l}q_{1} \\ q_{2} \\ q_{3}\end{array}\right]$
Endeffector coordinates:

Forward kinematics: $r=T(q)$ Inverse kinematics: $q=T^{-1}(r)$

Derivation of task space differential

Derivation of task space differential

$$
\mathbf{x}=\mathbf{T}(\mathbf{q}(\mathrm{t})) \quad \text { Forward kinematics }
$$

Derivation of task space differential

$$
\begin{aligned}
& \mathbf{x}=\mathbf{T}(\mathbf{q}(\mathrm{t})) \quad \text { Forward kinematics } \\
& \mathbf{x}=\mathbf{T}(\mathbf{q})
\end{aligned}
$$

Derivation of task space differential

$$
\begin{aligned}
& \mathrm{x}=\mathbf{T}(\mathbf{q}(\mathrm{t})) \quad \text { Forward kinematics } \\
& \mathrm{x}=\mathbf{T}(\mathbf{q}) \\
& \dot{\mathrm{x}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{T}(\mathbf{q})
\end{aligned}
$$

Derivation of task space differential

$$
\begin{aligned}
& \mathbf{x}=\mathbf{T}(\mathbf{q}(\mathrm{t})) \quad \text { Forward kinematics } \\
& \mathbf{x}=\mathbf{T}(\mathbf{q}) \\
& \dot{\mathrm{x}}=\frac{\mathbf{d}}{\mathrm{dt}} \mathbf{T}(\mathbf{q})
\end{aligned}
$$

Derivative chain rule

Derivation of task space differential

$$
\begin{array}{ll}
\mathrm{x} & =\mathbf{T}(\mathbf{q}(\mathrm{t})) \\
\mathrm{x} & =\mathbf{T}(\mathbf{q}) \\
\dot{\mathrm{x}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{T}(\mathbf{q}) & \\
\dot{\mathrm{x}}=\frac{\partial}{\partial \mathbf{q}} \mathbf{T}(\mathbf{q}) \dot{\mathrm{q}} \quad \text { Derward kinematics } \\
\end{array}
$$

Derivation of task space differential

$$
\begin{array}{ll}
\mathrm{x} & =\mathbf{T}(\mathbf{q}(\mathrm{t})) \\
\mathrm{x} & =\mathbf{T}(\mathbf{q}) \\
\dot{\mathrm{x}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{T}(\mathbf{q}) & \\
\dot{\mathrm{x}}=\frac{\partial}{\partial \mathbf{q}} \mathbf{T}(\mathbf{q}) \dot{\mathrm{q}} \quad & \\
\text { Derivard } & \\
\text { Derine chain rule }
\end{array}
$$

$$
\frac{\partial}{\partial \mathbf{q}} \mathbf{T}(\mathbf{q})=\frac{\partial \mathbf{x}}{\partial \mathbf{q}}
$$

Derivation of task space differential

$$
\begin{array}{ll}
\mathrm{x} & =\mathbf{T}(\mathbf{q}(\mathrm{t})) \\
\mathrm{x}=\mathbf{T}(\mathbf{q}) & \text { Forward kinematics } \\
\dot{\mathrm{x}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{T}(\mathbf{q}) \\
\dot{\mathrm{x}}=\frac{\partial}{\partial \mathbf{q}} \mathbf{T}(\mathbf{q}) \dot{\mathrm{q}} \quad \text { Derivative chain rule }
\end{array}
$$

$$
\frac{\partial}{\partial \mathbf{q}} \mathbf{T}(\mathbf{q})=\frac{\partial \mathbf{x}}{\partial \mathbf{q}}=\mathbf{J}(\mathbf{q})
$$

Derivation of task space differential

$$
\begin{array}{ll}
\mathrm{x} & =\mathbf{T}(\mathbf{q}(\mathrm{t})) \\
\mathrm{x} & =\mathbf{T}(\mathbf{q}) \\
\dot{\mathrm{x}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{T}(\mathbf{q}) & \\
\dot{\mathrm{x}}=\frac{\partial}{\partial \mathbf{q}} \mathbf{T}(\mathbf{q}) \dot{\mathrm{q}} \quad \text { Derivard kinematics } \\
\end{array}
$$

$$
\frac{\partial}{\partial \mathbf{q}} \mathbf{T}(\mathbf{q})=\frac{\partial \mathbf{x}}{\partial \mathbf{q}}=\mathbf{J}(\mathbf{q}) \quad \text { Jacobian }
$$

Derivation of task space differential

$$
\begin{array}{ll}
\mathrm{x}=\mathbf{T}(\mathbf{q}(\mathrm{t})) & \text { Forward kinematics } \\
\mathrm{x} & =\mathbf{T}(\mathbf{q}) \\
\dot{\mathrm{x}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{T}(\mathbf{q}) & \\
\dot{\mathrm{x}}=\frac{\partial}{\partial \mathbf{q}} \mathbf{T}(\mathbf{q}) \dot{\mathrm{q}} & \text { Derivative chain rule }
\end{array}
$$

$$
\dot{\mathbf{x}}=\mathbf{J}(\mathbf{q}) \dot{\mathbf{q}}
$$

$$
\frac{\partial}{\partial \mathbf{q}} \mathbf{T}(\mathbf{q})=\frac{\partial \mathbf{x}}{\partial \mathbf{q}}=\mathbf{J}(\mathbf{q}) \quad \text { Jacobian }
$$

Forces and torques

Relationship of force and torque in an articulated robot

Forces and torques

Relationship of force and torque in an articulated robot

Forces and torques

Relationship of force and torque in an articulated robot

Principle of Virtual Work
 (Virtual) work - must be the same in both coordinate systems

Principle of Virtual Work

(Virtual) work - must be the same in both coordinate systems

$$
F \cdot \delta x=\tau \cdot \delta \theta
$$

Principle of Virtual Work

(Virtual) work - must be the same in both coordinate systems
$F \cdot \delta x=\tau \cdot \delta \theta$
rewrite scalar product:

Principle of Virtual Work

(Virtual) work - must be the same in both coordinate systems

$$
F \cdot \delta x=\tau \cdot \delta \theta
$$

rewrite scalar product:

$$
F^{T} \delta x=\tau^{T} \delta \theta
$$

Principle of Virtual Work

(Virtual) work - must be the same in both coordinate systems
$F \cdot \delta x=\tau \cdot \delta \theta$
rewrite scalar product:
$F^{T} \delta x=\tau^{T} \delta \theta$
Use definition of Jacobian

Principle of Virtual Work

(Virtual) work - must be the same in both

coordinate systems

$$
F \cdot \delta x=\tau \cdot \delta \theta
$$

rewrite scalar product:
$F^{T} \delta x=\tau^{T} \delta \theta$
Use definition of Jacobian

$$
J=\frac{\delta x}{\delta \theta}
$$

Principle of Virtual Work

(Virtual) work - must be the same in both coordinate systems
$F \cdot \delta x=\tau \cdot \delta \theta$
rewrite scalar product:
$F^{T} \delta x=\tau^{T} \delta \theta$
Use definition of Jacobian

$$
J=\frac{\delta x}{\delta \theta} \quad \delta x=J \delta \theta
$$

Principle of Virtual Work

(Virtual) work - must be the same in both coordinate systems
$F \cdot \delta x=\tau \cdot \delta \theta$
rewrite scalar product:
$F^{T} \delta x=\tau^{T} \delta \theta$
Use definition of Jacobian
$F^{T} J \delta \theta=\tau^{T} \delta \theta$

$$
J=\frac{\delta x}{\delta \theta} \quad \delta x=J \delta \theta
$$

Principle of Virtual Work

(Virtual) work - must be the same in both coordinate systems
$F \cdot \delta x=\tau \cdot \delta \theta$
rewrite scalar product:
$F^{T} \delta x=\tau^{T} \delta \theta$
Use definition of Jacobian
$F^{T} J \delta \theta=\tau^{T} \delta \theta$

$$
J=\frac{\delta x}{\delta \theta} \quad \delta x=J \delta \theta
$$

This has to be valid for all 'virtual displacements':

Principle of Virtual Work

(Virtual) work - must be the same in both coordinate systems
$F \cdot \delta x=\tau \cdot \delta \theta$
rewrite scalar product:
$F^{T} \delta x=\tau^{T} \delta \theta$
Use definition of Jacobian
$F^{T} J \delta \theta=\tau^{T} \delta \theta$

$$
J=\frac{\delta x}{\delta \theta} \quad \delta x=J \delta \theta
$$

This has to be valid for all 'virtual displacements':
$F^{T} J=\tau^{T}$

Principle of Virtual Work

(Virtual) work - must be the same in both coordinate systems

$$
F \cdot \delta x=\tau \cdot \delta \theta
$$

rewrite scalar product:
$F^{T} \delta x=\tau^{T} \delta \theta$
Use definition of Jacobian
$F^{T} J \delta \theta=\tau^{T} \delta \theta$

$$
J=\frac{\delta x}{\delta \theta} \quad \delta x=J \delta \theta
$$

This has to be valid for all 'virtual displacements':
$F^{T} J=\tau^{T}$

$$
\tau=J^{T} F
$$

Forces and RBD

Chain of rigid bodies: are is still admittances...

The only thing that changes are added constraints on possible motions \Rightarrow reduction of DOF

Need for torque source!

Jacobian transpose force control

Jacobian transpose force control

$$
\tau=J^{T} F
$$

Jacobian transpose force control

$$
\tau=J^{T} F
$$

We can use the Jacobian transpose law to:

Jacobian transpose force control

$$
\tau=J^{T} F
$$

We can use the Jacobian transpose law to:

- control endeffector forces

Jacobian transpose force control

$$
\tau=J^{T} F
$$

We can use the Jacobian transpose law to:

- control endeffector forces
- emulate 'virtual elements'

Jacobian transpose force control

$$
\tau=J^{T} F
$$

We can use the Jacobian transpose law to:

- control endeffector forces
- emulate 'virtual elements'
- endeffector impedance control

Jacobian transpose force control

$$
\tau=J^{T} F
$$

We can use the Jacobian transpose law to:

- control endeffector forces
- emulate 'virtual elements'
- endeffector impedance control

Jacobian transpose force control

$$
\tau=J^{T} F
$$

We can use the Jacobian transpose law to:

- control endeffector forces
- emulate 'virtual elements'
- endeffector impedance control
- ...

Example:Virtual model control (Pratt 200I)

Virtual model control

[Semini, 2010]
[Boaventura et al, 20 II]

Virtual model control

[Pratt et al, 200I]
[Semini, 2010]
[Boaventura et al, 20II]

Virtual model

 implementation
Virtual model implementation

Virtual model implementation

I) Virtual spring law

Virtual model implementation

I) Virtual spring law

$$
\mathbf{F}=\mathbf{K}_{\mathbf{s}}\left(\mathbf{x}_{1}-\mathbf{x}_{\mathbf{2}}-\mathbf{l}_{0}\right)
$$

Virtual model implementation

I) Virtual spring law

$$
\mathbf{F}=\mathrm{K}_{\mathrm{s}}\left(\mathrm{x}_{1}-\mathrm{x}_{\mathbf{2}}-\mathrm{l}_{0}\right)
$$

Virtual model implementation

I) Virtual spring law

$$
\mathrm{F}=\mathrm{K}_{\mathbf{s}}\left(\mathbf{x}_{1}-\mathrm{x}_{\mathbf{2}}-\mathrm{l}_{0}\right)
$$

Virtual model implementation

I) Virtual spring law

$$
\mathbf{F}=\mathbf{K}_{\mathbf{s}}\left(\mathbf{x}_{1}-\mathrm{x}_{\mathbf{2}}-\mathrm{l}_{0}\right)
$$

2) Jacobian for one of the attachement points (Jacobian between attachement points)

Virtual model implementation

I) Virtual spring law

$$
\mathbf{F}=\mathbf{K}_{\mathbf{s}}\left(\mathbf{x}_{1}-\mathrm{x}_{\mathbf{2}}-\mathrm{l}_{0}\right)
$$

2) Jacobian for one of the attachement points (Jacobian between attachement points) J

Virtual model implementation

I) Virtual spring law

$$
\mathbf{F}=\mathbf{K}_{\mathbf{s}}\left(\mathbf{x}_{1}-\mathbf{x}_{\mathbf{2}}-\mathrm{l}_{0}\right)
$$

2) Jacobian for one of the attachement points (Jacobian between attachement points) J
3) use jacobian transpose to derive torques

Virtual model implementation

I) Virtual spring law

$$
\mathrm{F}=\mathrm{K}_{\mathrm{s}}\left(\mathrm{x}_{1}-\mathrm{x}_{\mathbf{2}}-\mathrm{l}_{0}\right)
$$

2) Jacobian for one of the attachement points (Jacobian between attachement points) J
3) use jacobian transpose to derive torques

$$
\tau=\mathbf{J}^{\mathrm{T}} \mathbf{F}
$$

Virtual model implementation

I) Virtual spring law

$$
\mathrm{F}=\mathrm{K}_{\mathrm{s}}\left(\mathrm{x}_{1}-\mathrm{x}_{\mathbf{2}}-\mathrm{l}_{0}\right)
$$

2) Jacobian for one of the attachement points (Jacobian between attachement points) J
3) use jacobian transpose to derive torques

$$
\tau=\mathbf{J}^{\mathrm{T}} \mathbf{F}
$$

[4) Use close loop force control]

Example:Virtual spring

[Boaventura, Buchli, Frigerio, Semini]

HyQ Leg - C. Semini

- Hydraulic actuation: flow control
- Closed loop torque control
- Virtual springs
- \Rightarrow Jacobian transpose

Example:Virtual spring

[Boaventura, Buchli, Frigerio, Semini]

HyQ Leg - C. Semini

- Hydraulic actuation: flow control
- Closed loop torque control
- Virtual springs
- \Rightarrow Jacobian transpose

Results

Varying spring constants

[Boaventura, Buchli, Frigerio, Semini]

Results

Varying spring constants

Virtual spring hopping
[Boaventura, Buchli, Frigerio, Semini]

Results

Varying spring constants

Virtual spring hopping

Can emulate non-linear springs, muscle models, etc etc!
[Boaventura, Buchli, Frigerio, Semini]

2-link leg: Jacobian

2-link leg: Jacobian

[Semini 2010 PhD Thesis]

2-link leg: Jacobian

$$
\mathbf{r}_{f}=\left[\begin{array}{l}
x_{f} \\
z_{f}
\end{array}\right]=\left[\begin{array}{l}
-l_{1} \sin q_{1}-l_{2} \sin \left(q_{1}+q_{2}\right) \\
-l_{0}-l_{1} \cos q_{1}-l_{2} \cos \left(q_{1}+q_{2}\right)-l_{3}
\end{array}\right]
$$

[Semini 2010 PhD Thesis]

2-link leg: Jacobian

$$
\mathbf{r}_{f}=\left[\begin{array}{l}
z_{f} \\
z_{f}
\end{array}\right]=\left[\begin{array}{l}
-l_{1} \sin q_{1}-l_{2} \sin \left(q_{1}+q_{2}\right) \\
-l_{0}-l_{1} \cos q_{1}-l_{2} \cos \left(q_{1}+q_{2}\right)-l_{3}
\end{array}\right]
$$

$$
\mathbf{J}=\frac{\partial \mathbf{r}}{\partial \mathbf{q}}
$$

[Semini 2010 PhD Thesis]

2-link leg: Jacobian

$$
\mathbf{r}_{f}=\left[\begin{array}{l}
z_{f} \\
z_{f}
\end{array}\right]=\left[\begin{array}{l}
-l_{1} \sin q_{1}-l_{2} \sin \left(q_{1}+q_{2}\right) \\
-l_{0}-l_{1} \cos q_{1}-l_{2} \cos \left(q_{1}+q_{2}\right)-l_{3}
\end{array}\right]
$$

$$
\mathbf{J}=\frac{\partial \mathbf{r}}{\partial \mathbf{q}}
$$

$$
\mathbf{J}=\left[\begin{array}{cc}
-l_{1} \cos \varphi_{1}-l_{2} \cos \left(q_{1}+q_{2}\right) & -l_{2} \cos \left(q_{1}+q_{2}\right) \\
l_{1} \sin q_{1}+l_{2} \sin \left(q_{1}+q_{2}\right) & l_{2} \sin \left(q_{1}+\varphi_{2}\right)
\end{array}\right]
$$

[Semini 2010 PhD Thesis]

Hardware

What HW for force control

 What hardware to implement a torque source?
What HW for force control What hardware to implement a torque source?

Electrical:

- Gear head (speed/ruggedness)
- Bandwidth
+ Commercial availability

What HW for force control

 What hardware to implement a torque source?Electrical:

- Gear head (speed/ruggedness)
- Bandwidth
+ Commercial availability
Hydraulic:
+ rugged
+ simple to control
+ simple mechanics
+ distributed power generation
+ high velocity / high force
- limited commercial availability
of small elements
- energy efficiency

What HW for force control

 What hardware to implement a torque source?Electrical:

- Gear head (speed/ruggedness)
- Bandwidth
+ Commercial availability

Hydraulic:

+ rugged
+ simple to control
+ simple mechanics
+ distributed power generation
+ high velocity / high force
- limited commercial availability of small elements
- energy efficiency

Pneumatics:

+ simple mechanics
+ commercial availability
- hard to control

What HW for force control

 What hardware to implement a torque source?Electrical:

- Gear head (speed/ruggedness)
- Bandwidth
+ Commercial availability

Hydraulic:

+ rugged
+ simple to control
+ simple mechanics
+ distributed power generation
+ high velocity / high force
- limited commercial availability
of small elements
- energy efficiency

Pneumatics:

+ simple mechanics
+ commercial availability
- hard to control

Piezo, Polymers, Shape memory alloy, carbon nano tubes???

What HW for fc Marco Hutter \& What hardware to implemer

Electrical:

- Gear head (speed/ruggedness)
- Bandwidth
+ Commercial availability
+ simple mechanics
+ distributed power generation
+ high velocity / high force
- limited commercial availability of small elements
- energy efficiency

Pneumatics:

+ simple mechanics
+ commercial availability
- hard to control

Piezo, Polymers, Shape memory alloy, carbon nano tubes???

Force control needs compliance

Force can be controlled by controlling expansion of a 'spring-like-element', i.e. imposing velocity on a 'spring'

Force control needs compliance

Force can be controlled by controlling expansion of a 'spring-like-element', i.e. imposing velocity on a 'spring'

Force control needs compliance

Where is the 'spring'?

Where is the 'spring'?

Electrical motors: Gears, shaft...

Where is the 'spring'?

Electrical motors: Gears, shaft...

Where is the 'spring'?

Electrical motors: Gears, shaft... Hydraulics: Oil compression, flexible hoses

Where is the 'spring'?

Electrical motors: Gears, shaft... Hydraulics: Oil compression, flexible hoses

Where is the 'spring'?

Electrical motors: Gears, shaft... Hydraulics: Oil compression, flexible hoses

[Hoerbiger]

Where is the 'spring'?

Electrical motors: Gears, shaft... Hydraulics: Oil compression, flexible hoses

Where is the 'spring'?

Electrical motors: Gears, shaft... Hydraulics: Oil compression, flexible hoses SEA: added spring dominates

[Hoerbiger]

Where is the 'spring'?

Electrical motors: Gears, shaft... Hydraulics: Oil compression, flexible hoses SEA: added spring dominates

Closed loop force control

Figure 1 Schematic diagram of a series elastic actuator

[Pratt et al, 2002]

Closed loop force control

Figure 1 Schematic diagram of a series elastic actuator

$\dot{F} \approx u$
[Pratt et al, 2002]

Closed loop force control

Figure 1 Schematic diagram of a series elastic actuator

$$
\begin{aligned}
& \dot{F} \approx u \\
& u=-K\left(F_{a}-F_{d}\right) \\
& u=-K F_{e}
\end{aligned}
$$

Closed loop force control

Figure 1 Schematic diagram of a series elastic actuator

$$
\begin{aligned}
& \dot{F} \approx u \\
& u=-K\left(F_{a}-F_{d}\right) \\
& u=-K F_{e}
\end{aligned}
$$

[Pratt et al, 2002]

Closed loop force control

Figure 1 Schematic diagram of a series elastic actuator

$$
\begin{aligned}
& \dot{F} \approx u \\
& u=-K\left(F_{a}-F_{d}\right) \\
& u=-K F_{e}
\end{aligned}
$$

[Pratt et al, 2002]

$$
\begin{aligned}
& \dot{H}=k v \\
& \dot{F} \approx v
\end{aligned}
$$

Closed loop force control

Figure 1 Schematic diagram of a series elastic actuator

$$
\begin{aligned}
& \dot{F} \approx u \\
& u=-K\left(F_{a}-F_{d}\right) \\
& u=-K F_{e}
\end{aligned}
$$

[Pratt et al, 2002]

$$
\underset{\dot{F} \approx v}{\dot{F}}=k v
$$

\Rightarrow velocity setpoint for the motor

Closed loop force control

Figure 1 Schematic diagram of a series elastic actuator

$\dot{F} \approx u$
$u=-K\left(F_{a}-F_{d}\right)$
$u=-K F_{e}$

[Pratt et al, 2002]

$$
\dot{F}=k v
$$

$$
\dot{F} \approx v
$$

\Rightarrow velocity setpoint for the motor
This control law is independent of the technology of the 'motor' and 'spring'!

SEA: Force control over soft spring

$$
\begin{gathered}
F=K_{s}\left(x_{m}-x_{L}\right) \\
\dot{F}=K_{s}\left(\dot{x}_{m}-\dot{x}_{L}\right)
\end{gathered}
$$

[Robinson et al, 1999]

Series Elastic Actuator Development for a Biomimetic Walking Robot
David W. Robinson, Jerry E. Pratt, Daniel J. Paluska, and Gill A. Pratt

SEA: Force control over soft spring

$$
\begin{gathered}
F=K_{s}\left(x_{m}-x_{L}\right) \\
\dot{F}=K_{s}\left(\dot{x}_{m}-\dot{x}_{L}\right)
\end{gathered}
$$

[Robinson et al, 1999]

Series Elastic Actuator Development for a Biomimetic Walking Robot
David W. Robinson, Jerry E. Pratt, Daniel J. Paluska, and Gill A. Pratt

SEA: Force control over soft spring

$$
\begin{aligned}
& F=K_{s}\left(x_{m}-x_{L}\right) \\
& \left.\dot{F}=K_{s}{ }^{\prime} \dot{x}_{m}-\dot{x}_{L}\right)
\end{aligned}
$$

Spring constant $=$
 Gain of plant

[Robinson et al, I999]

Series Elastic Actuator Development for a Biomimetic Walking Robot
David W. Robinson, Jerry E. Pratt, Daniel J. Paluska, and Gill A. Pratt

SEA: Force control over soft spring

$$
\begin{gathered}
F=K_{s}\left(x_{m}-x_{L}\right) \\
\left.\dot{F}=K_{s} \dot{x}_{m}-\dot{x}_{L}\right)
\end{gathered}
$$

Spring constant $=$ Gain of plant

[Robinson et al, 1999]

[Pratt et al, 2002]

Series Elastic Actuator Development for a
Biomimetic Walking Robot
David W. Robinson, Jerry E. Pratt, Daniel J. Paluska, and Gill A. Pratt

SEA: Force control over soft spring

$$
\begin{aligned}
& F=K_{s}\left(x_{m}-x_{L}\right) \\
& \dot{F}=K_{s}\left(\dot{x}_{m}-\dot{x}_{L}\right) \\
& \text { Limits on velocity? }
\end{aligned}
$$

Spring constant $=$ Gain of plant

[Robinson et al, 1999]

[Pratt et al, 2002]

Series Elastic Actuator Development for a
Biomimetic Walking Robot
David W. Robinson, Jerry E. Pratt, Daniel J. Paluska, and Gill A. Pratt

SEA: Force control over soft spring

$$
\begin{gathered}
F=K_{s}\left(x_{m}-x_{L}\right) \\
\dot{F}=K_{s}\left(\dot{x}_{m}-\dot{x}_{L}\right)
\end{gathered}
$$

Limits on velocity? Limits bandwidth!

Spring constant $=$ Gain of plant

[Robinson et al, 1999]

Figure 1 Schematic diagram of a series elastic actuator

[Pratt et al, 2002]

Series Elastic Actuator Development for a
Biomimetic Walking Robot
David W. Robinson, Jerry E. Pratt, Daniel J. Paluska, and Gill A. Pratt

SEA: Force control over soft spring

$$
F=K_{s}\left(x_{m}-x_{L}\right)
$$

$$
\left.\dot{F}=K_{s} \dot{x}_{m}-\dot{x}_{L}\right)
$$

Limits on velocity?
Limits bandwidth!
Puts a resonant mode at fairly low frequency!

Spring constant $=$ Gain of plant

[Robinson et al, 1999]
Figure 1 Schematic diagram of a seeies elastic actuator

[Pratt et al, 2002]

Series Elastic Actuator Development for a Biomimetic Walking Robot
David W. Robinson, Jerry E. Pratt, Daniel J. Paluska, and Gill A. Pratt

SEA: Force control over soft spring

$$
\begin{gathered}
F=K_{s}\left(x_{m}-x_{L}\right) \\
\dot{F}=K_{s}\left(\dot{x}_{m}-\dot{x}_{L}\right)
\end{gathered}
$$

Limits on velocity?

Limits bandwidth!
Puts a resonant mode at Spring constant $=$ fairly low frequency!

Gain of plant

[Robinson et al, I999]

[Pratt et al, 2002]

Series Elastic Actuator Development for a Biomimetic Walking Robot
David W. Robinson, Jerry E. Pratt, Daniel J. Paluska, and Gill A. Pratt

Passive vs Active

Pros/Cons of active/passive compliance

Passive vs Active

Pros/Cons of active/passive compliance

Take away: PD pos control == Spring-damper

Passive vs Active

Pros/Cons of active/passive compliance

Take away: PD pos control == Spring-damper

- bandwidth

Passive vs Active

Pros/Cons of active/passive compliance

Take away: PD pos control == Spring-damper

- bandwidth
- energy

Passive vs Active

Pros/Cons of active/passive compliance

Take away: PD pos control == Spring-damper

- bandwidth
- energy
- versatility

Passive vs Active

Pros/Cons of active/passive compliance
Take away: PD pos control == Spring-damper

- bandwidth
- energy
- versatility
- shocks? robustness?

Passive vs Active

Pros/Cons of active/passive compliance
Take away: PD pos control == Spring-damper

- bandwidth
- energy
- versatility
- shocks? robustness?
- safety???

Passive vs Active

Pros/Cons of active/passive compliance
Take away: PD pos control == Spring-damper

- bandwidth
- energy
- versatility
- shocks? robustness?
- safety???
- price

Passive vs Active

Pros/Cons of active/passive compliance
Take away: PD pos control == Spring-damper

- bandwidth
- energy
- versatility
- shocks? robustness?
- safety???
- price
- combination with model based control

Passive vs Active

Pros/Cons of active/passive compliance
Take away: PD pos control == Spring-damper

- bandwidth
- energy
- versatility
- shocks? robustness?
- safety???
- price
- combination with model based control

Important:The discussion of impedance and control is applicable entirely to passive or active elements: SYSTEMS THEORY!

The 'safety question'

The 'safety question'

A couple of points to consider:

The 'safety question'

A couple of points to consider: - force required by task

The 'safety question'

A couple of points to consider:

- force required by task
- max. velocity system can create

The 'safety question'

A couple of points to consider:

- force required by task
- max. velocity system can create
- loss of controllability

The 'safety question'

A couple of points to consider:

- force required by task
- max. velocity system can create
- loss of controllability
- springs can make system less safe

The 'safety question'

A couple of points to consider:

- force required by task
- max. velocity system can create
- loss of controllability
- springs can make system less safe
- on strong robots software will be important for safety

The 'safety question'

A couple of points to consider:

- force required by task
- max. velocity system can create
- loss of controllability
- springs can make system less safe
- on strong robots software will be important for safety

Issues in force control

Issues in force control

- Non collocated measurement, actuation:

Issues in force control

- Non collocated measurement, actuation:
- Instability, chatter

Issues in force control

- Non collocated measurement, actuation:
- Instability, chatter
- Needs fast control

Issues in force control

- Non collocated measurement, actuation:
- Instability, chatter
- Needs fast control
- Force measurement hardware

Issues in force control

- Non collocated measurement, actuation:
- Instability, chatter
- Needs fast control
- Force measurement hardware
- Calibration

Issues in force control

- Non collocated measurement, actuation:
- Instability, chatter
- Needs fast control
- Force measurement hardware
- Calibration
- passive compliance: how much and where

Issues in force control

- Non collocated measurement, actuation:
- Instability, chatter
- Needs fast control
- Force measurement hardware
- Calibration
- passive compliance: how much and where Issues in impedance control

Issues in force control

- Non collocated measurement, actuation:
- Instability, chatter
- Needs fast control
- Force measurement hardware
- Calibration
- passive compliance: how much and where Issues in impedance control
- What impedance?

Issues in force control

- Non collocated measurement, actuation:
- Instability, chatter
- Needs fast control
- Force measurement hardware
- Calibration
- passive compliance: how much and where Issues in impedance control
- What impedance?
- Model dependence (environment \& robot)

Issues in force control

- Non collocated measurement, actuation:
- Instability, chatter
- Needs fast control
- Force measurement hardware
- Calibration
- passive compliance: how much and where Issues in impedance control
- What impedance?
- Model dependence (environment \& robot)
- How to get good models?

Issues in force control

- Non collocated measurement, actuation:
- Instability, chatter
- Needs fast control
- Force measurement hardware
- Calibration
- passive compliance: how much and where Issues in impedance control
- What impedance?
- Model dependence (environment \& robot)
- How to get good models?
- What impedance controller?

Issues in force control

- Non collocated measurement, actuation:
- Instability, chatter
- Needs fast control
- Force measurement hardware
- Calibration
- passive compliance: how much and where Issues in impedance control
- What impedance?
- Model dependence (environment \& robot)
- How to get good models?
- What impedance controller?
- Feedback of noise

Issues in force control

- Non collocated measurement, actuation:
- Instability, chatter
- Needs fast control
- Force measurement hardware
- Calibration
- passive compliance: how much and where Issues in impedance control
- What impedance?
- Model dependence (environment \& robot)
- How to get good models?
- What impedance controller?
- Feedback of noise
- Passive vs. active?

Influence of models

Influence of models

Different type of models:

Influence of models

Different type of models:

- kinematic (Jacobian)

Influence of models

Different type of models:

- kinematic (Jacobian)
- dynamic (+inertia, coriolis)

Influence of models

Different type of models:

- kinematic (Jacobian)
- dynamic (+inertia, coriolis)
- actuator models

Influence of models

Different type of models:

- kinematic (Jacobian)
- dynamic (+inertia, coriolis)
- actuator models
- Kinematic models are very easy to obtain and can already be very helpful (VM control etc)

Influence of models

Different type of models:

- kinematic (Jacobian)
- dynamic (+inertia, coriolis)
- actuator models
- Kinematic models are very easy to obtain and can already be very helpful (VM control etc)
- Full dynamic models are a bit more tricky, but often we don't need a very accurate model to gain advantage

Wrap up

Wrap up

- Fundamental need for torque soruce

Wrap up

- Fundamental need for torque soruce
- Dual variables velocity and force

Wrap up

- Fundamental need for torque soruce
- Dual variables velocity and force
- velocity x force $=\mathrm{dWork}$

Wrap up

- Fundamental need for torque soruce
- Dual variables velocity and force
- velocity \times force $=\mathrm{dWork}$
- Impedance/admittance is relationship between velocity and force

Wrap up

- Fundamental need for torque soruce
- Dual variables velocity and force
- velocity \times force $=\mathrm{dWork}$
- Impedance/admittance is relationship between velocity and force
- Energy flow is key to interaction

Wrap up

- Fundamental need for torque soruce
- Dual variables velocity and force
- velocity x force $=\mathrm{dWork}$
- Impedance/admittance is relationship between velocity and force
- Energy flow is key to interaction
- Causality puts limits on physical implementations

Wrap up

- Fundamental need for torque soruce
- Dual variables velocity and force
- velocity x force $=\mathrm{dWork}$
- Impedance/admittance is relationship between velocity and force
- Energy flow is key to interaction
- Causality puts limits on physical implementations
- Force is always controlled and measured over an impedance

END LECTURE I

