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Abstract: We study N = 1 supergravity with N > 1 chiral superfields in which one of
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solutions in which supersymmetry is predominantly broken by the no-scale field, with only

a small contribution to the breaking coming from the other fields. Metastable dS vacua of

this type were recently shown to be achievable by the finetuning of an N×N sub-matrix of

the Hessian matrix at the critical point. We show that perturbatively small deformations of

the no-scale Minkowski vacuum into dS are only possible when the spectrum of the no-scale

vacuum, besides the no-scale field, contain an additional massless mode. The no-scale struc-

ture allows for a decoupling of N−2 fields, and metastability can be achieved by the tuning

of O(1) parameters. We illustrate this scenario in several examples, and derive a geometric

condition for its realisation in type IIB string theory. Supergravities in which the complex

structure moduli space is a symmetric space, such as the string theory inspired STU-models,

are non-generic and realise a modified version of the scenario. For the STU-model with

a single non-perturbative correction we present an explicit analytic family of dS solutions

that includes examples with quantised fluxes satisfying the O3-plane tadpole condition.
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1 Introduction

The observation of an apparently accelerated expansion of the universe [1, 2] is perhaps

the most striking discovery of modern cosmology. Recent, combined data from the Cosmic

Microwave Background (CMB) and distant supernovae gives strong evidence for the energy

density of the universe being dominated by a cosmological constant [3, 4], thus making the

present universe well approximated by four dimensional de Sitter space.

String theory may accommodate a small positive cosmological constant through the

numerous metastable solutions forming the ‘landscape’ of type IIB flux vacua, but deter-

mining the statistical properties of such vacua has proven challenging. While constructing

fully generic flux vacua involving a large number of moduli is computationally prohibitive,

much can be learned from subsets of solutions in which a substantial number of moduli can

be made to decouple. In the KKLT scenario [5], complex structure moduli are supersymmet-

rically stabilised at a scale that is much larger than the scale of supersymmetry breaking,

m3/2, thus ensuring that these fields generically can be integrated out of the Wilsonian

effective field theory and do not develop tachyonic directions upon supersymmetry break-

ing. In the Large Volume Scenario (LVS) [6, 7], complex structure moduli obtain masses

of the order of m3/2, but an underlying no-scale symmetry again leads to decoupling and
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a substantially more tractable low-energy dynamics, at least in the non-supersymmetric

AdS minimum.1 In both KKLT and LVS, the final metastable de Sitter solution may be

obtained by the inclusion of some additional, ‘uplifting’, source of supersymmetry breaking.

Recently, the construction of metastable de Sitter vacua through spontaneous super-

symmetry breaking has received a lot of attention (see for example [9–25] and references

therein). By constructing solutions that are consistently captured by spontaneously bro-

ken N = 1 supergravity, one can hope for improved computability and a more detailed

picture of this part of the ‘landscape’. Particularly interesting are those solutions which

make use of an exact or approximate no-scale symmetry of the Kähler potential for some

of the fields. No-scale Kähler potentials are commonly encountered in the dimensionally

reduced, four dimensional effective theories arising from compactifications of string theory,

and are in the simplest case of a single no-scale modulus T and N − 1 other moduli Xi

with i = 1, . . . N − 1, given by,

K = Kno-scale(T, T ) + K̃(Xi, X
ı̄
) = −3 ln

(

T + T
)

+ K̃(Xi, X
ı̄
) , (1.1)

while the superpotential is independent of T ,

W = W0(X
i) . (1.2)

The perhaps most well-known example of such an effective theory is the dimensionally

reduced type IIB compactification with a single Kähler modulus T , N−2 complex structure

moduli, U i, and the axio-dilaton S.

The F-term supergravity potential is remarkably simplified for no-scale models,

V = eK
(

FaF̄
a − 3|W |2

)

= eKFiF̄
i , (1.3)

where a runs over all fields, i runs over the Xi fields, Fa = DaW = (∂a +Ka)W and we

have used natural units to set MPl = 2.4 × 1018GeV to one. For Fi = 0, as in the ‘GKP’

type IIB flux compactifications of [26], the Xi fields are supersymmetrically stabilised and

T remains a flat direction of the Minkowski vacuum.

Recently, motivated by the numerical solutions of [20, 21, 27], reference [28] constructed

a class of analytical de Sitter solutions in which supersymmetry is predominantly broken

by the no-scale field T , with only a small amount of supersymmetry breaking in the per-

pendicular directions. For type IIB realisations of this mechanism, the smallness of the

supersymmetry breaking in the directions perpendicular to T can be achieved by tuning of

fluxes, as discussed in [27]. A given critical point is a metastable minimum of the potential

if all the eigenvalues of the 2N × 2N hermitian Hessian matrix,

H =







∂2
ab̄
V ∂2

abV

∂2
āb̄
V ∂2

ābV






, (1.4)

are positive. In [28], analytical conditions for the positivity of the eigenvalues of the

diagonal N × N sub-matrix ∂2
ab̄
V were derived, and it was shown that upon tuning the

1For a recent discussion on the spectrum of the complex structure moduli in de Sitter space, see [8].
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N × N off-diagonal block ∂2
abV to vanish or to be very small, the full Hessian could be

made positive definite.

This type of solutions were shown to be realisable in string theory inspired ‘STU’

supergravity models with N = 3, however, a general concern with this method is the

significant fine-tuning needed to ensure metastability: for N ≫ 1, the required O(N2)

fine-tuning of ∂2
abV can be greatly limiting.

In this paper, we show that, given a small amount of no-scale breaking, there are

approximate no-scale solutions that require only minimal, O(N0) = O(1), tuning to ensure

the metastability of the Hessian matrix. To do this, we systematically expand the Hessian

matrix, equation (1.4), in the small no-scale breaking parameter ǫ. In particular we note

that to zeroth order in no-scale breaking, ∂2
abV is not small, yet has a structure that ensures

that the mass matrix for allXi fields is semi-positive definite. This is a well-known property

of flux compactifications of GKP type, that we here fully explore.

No-scale Minkowski vacua have at least two real massless fields corresponding to the

flat directions along the complex field T . We find that, to zeroth order in ǫ, the no-scale

critical points that can be perturbed into de Sitter vacua in addition always have a third

real massless mode in the spectrum of the fields Xi. This additional flat direction is

generically lifted at linear order ǫ, while the complex no-scale field T is lifted at order ǫ2.

The underlying no-scale symmetry ensures that the 2N−3 real fields that are lifted at order

O(ǫ0) are metastable with positive definite masses. A remarkable decoupling of the heavy

modes in the Hessian matrix at the approximately no-scale critical points then ensure that

metastability can be achieved by the tuning of only two terms, independently of N .

As an illustration, we contrast these findings to those obtained in ‘random supergrav-

ity’ in which the superpotential and Kähler potential are taken to be random functions

in the sense of [29], and in which only a fraction P . exp(−N) of the critical points are

metastable minima.2 For the approximately no-scale critical points constructed in this

paper, we show that the corresponding fraction is 1/2, independently of N and the value

of the gravitino mass.

The general mechanism presented in this paper appears readily embeddable in flux

compactifications of type IIB string theory, and we derive a sufficient condition on the

complex structure field space geometry for the realisation of the mechanism with minimal

O(1) fine-tuning. When the complex structure field space is a symmetric space, the condi-

tion is violated and O(N) entries of the Hessian matrix need to be tuned to ensure stability.

However, even when the geometric condition is not satisfied, approximate no-scale dS vacua

can be obtained with a moderate tuning, as we explicitly illustrate by constructing simple

de Sitter solutions in STU supergravity.

While the realisations of this supersymmetry breaking scheme in the simplest models

with a single no-scale field are somewhat restricted and do not allow for an exponentially

large volume, we know of no reason why the general mechanism could not be applied

2Typical critical points in random supergravity for which the supersymmetry breaking scale of the same

order as the supersymmetric masses, m3/2 ≈ msusy, the fraction of metastable critical points, P , scale

with N like lnP ∼ −N2. For approximately supersymmetric critical points with m3/2 ≪ msusy, the

corresponding fraction scales like lnP ∼ −N .
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to the case of multiple Kähler moduli in which an exponentially large volume might be

achievable. Extending this scheme to more general sectors of no-scale fields is an important

future direction.

This paper is organised as follows: in section 2, we review no-scale Minkowski vacua

of N = 1 supergravity. We continue in section 3 to show how small deformations of the

superpotential can perturb such no-scale vacua into metastable de Sitter vacua, with all

scalars stabilised. In particular, we discuss the ‘no-go’ result that such perturbations are

not possible unless the unperturbed no-scale vacuum has a third real massless direction.

We also explain the generalities of the decoupling mechanism that ensures the stability of

2N−3 real modes of the Hessian, and we derive the surprisingly simple form of the spectrum

of the remaining three modes. In section 4, we present realisations of the mechanism in

supergravity and string theory, and discuss the generalities of models in which the no-

scale modulus appears in the superpotential through a single non-perturbative exponential

term. We also consider the realisation of the mechanism in type IIB flux vacua, and derive

a geometric condition on the complex structure field space geometry for minimal O(1)

tuning. Finally, we discuss the realisation of the mechanism in STU supergravity models.

We conclude in section 5, and list some useful formulae in appendix A.

2 Unbroken no-scale vacua

The remarkable properties of no-scale supergravities [30] have long been appreciated by

many authors (for a colloquial review of some of the early developments, see for in-

stance [31]). In this section, we review some elementary results on moduli stabilisation

in unbroken no-scale vacua, and introduce some useful notation.

For the no-scale Kähler potential of equation (1.1) and the superpotential of equa-

tion (1.2), the scalar potential in equation (1.3) has no-scale solutions with FT = KTW (Xi)

and Fi = 0. For these vacua, the potential (1.3) results in vanishing entries in the Hessian

for all components involving T or T :

m2
TT

= m2
TT = m2

T i = m2
T i

= 0 , (2.1)

where we have adopted the notation ∂2
abV = eKm2

ab for the entries of the Hessian matrix.

This is of course directly related to the vacuum expectation value of T not being fixed

in the no-scale solution. The fields Xi have non-vanishing entries of the Hessian that are

given by (see appendix A for useful formulae),

m2
i̄ = ZikZ

k
̄ + |W |2Ki̄ , (2.2)

m2
ij = 2ZijW , (2.3)

where we have introduced the Kähler invariant and diffeomorphism covariant symmetric

tensor Zij = DiDjW = ∂iFj +KiFj − Γk
ijFk, which for Fi = 0 reduces to Zij = ∂iFj . For

future reference, we note that in this notation, the critical point equations, ∂aV = 0, can

be written as [32],

ZabF̄
b = 2WFa , (2.4)

and imply that the no-scale vacuum enforces ZT i = 0 and ZTT = 2WKTT , for W 6= 0.
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The Hessian matrix (1.4) for the no-scale system is then given by,

H = eK



















m2
TT

~0T m2
TT

~0T

~0 m2
i̄

~0 m2
ij

m2
TT

~0T m2
TT

~0T

~0 mı̄̄ ~0 m2
ı̄j



















=

= eK



















0 ~0T 0 ~0T

~0 Zik Z
k
̄ +Ki̄|W |2 ~0 2ZijW

0 ~0T 0 ~0T

~0 2Z ı̄̄W ~0 Z ı̄k̄ Z k̄
j +Kı̄j |W |2



















. (2.5)

We note in particular that the ‘off-diagonal’ terms, m2
ij are not necessarily small compared

to the ‘diagonal block’, m2
i̄. Since the potential (1.3) is semi-positive definite and vanishes

at the no-scale minimum, the eigenvalues of the Hessian matrix must also be semi-positive

definite. To see this explicitly, we diagonalise the Hessian matrix. For ease of representa-

tion we neglect the trivial T and T directions and choose a basis in which the fields are

canonically normalised at the critical point, Ki̄|c.p. = δi̄. The complex symmetric matrix

Zij can be Takagi factorized as Z = UΣUT , where U is a unitary matrix whose columns are

orthonormal eigenvectors of ZZ, Σ = diag(λ1, . . . λN−1), and the λi are real and nonnega-

tive, with λ2
i the eigenvalues of ZZ. We note that upon performing the (2N−2)×(2N−2)

unitary transformation

H → U†H U with U =







U 0

0 U






, (2.6)

the matrix H can be written as

H =







Σ2 + δi̄|W |2 2WΣ

2WΣ Σ2 + δı̄j |W |2






. (2.7)

After rearranging the rows and columns in an obvious way, H takes the block diagonal

form

H =



























λ2
1 + |W |2 2Wλ1 0 0

2Wλ1 λ2
1 + |W |2 0 0

0 0 λ2
2 + |W |2 2Wλ2

0 0 2Wλ2 λ2
2 + |W |2

. . .



























. (2.8)
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Each 2× 2 block can be diagonalised by the unitary transformation,

u2×2 =
1√
2







1 1

eiϑW −eiϑW






, (2.9)

where W = eiϑW |W | and the corresponding eigenvalues of H are given by

m2
i± = λ2

i ± 2|W |λi + |W |2 = (λi ± |W |)2 , (2.10)

showing that the Hessian H is manifestly semi-positive definite.

In sum, no-scale vacua have T unfixed with a vanishing mass, a vanishing cosmological

constant and a semi-positive definite spectrum for the Xi fields. In this paper, we investi-

gate how small no-scale breaking perturbations to the superpotential, δW (T,Xi), may lift

the T modulus and give rise to meta-stable vacua with a positive cosmological constant.

3 Approximate no-scale vacua

In this section, we discuss how small perturbations to the superpotential can result in

potentials admitting metastable de Sitter vacua. The no-go theorem of [33] is then relevant:

if the supersymmetry breaking F -term is completely aligned with a single field, T , with a

no-scale Kähler potential, then no dS minima are obtainable, independently of the form

of the superpotential. Here, we keep the unperturbed form of the Kähler potential, (1.1),

and only consider superpotential corrections as

W = W0(X) + δW (T,Xi) , (3.1)

which then necessarily have to induce non-vanishing F -terms for some of the fields perpen-

dicular to T , as discussed in [28].

We are particularly interested in the regime in which the superpotential correction is

small compared to W0, such that |δW/W0| ≪ 1, and we furthermore assume that deriva-

tives of δW (T,Xi) are not very large compared to the scale of the perturbation itself. This

can for instance be realised if δW (T,Xi) is given by the sum of some non-perturbative

corrections which are all small compared to W0.
3 In natural units and denoting partial

derivatives of the superpotential with subscripts, we then expect,

O(δW ) ∼ O(δWT ) ∼ O(δWi) ∼ O(δWT i) ≪ O(W0) ∼ O(Wj) ∼ O(Wij) . (3.2)

This assumed hierarchy for the superpotential terms justifies a perturbative expansion in

the no-scale breaking.

For the approximate no-scale solution, we may write the F -terms at the minimum as,

FT = KTW + δWT , (3.3)

Fi = ǫWfi , (3.4)

where fi is a unit vector, ||fi|| = 1, and we study the perturbative expansion in the small

parameter ǫ.

3We do note however that these conditions are not satisfied in some classes of string compactifications:

for example, in KKLT vacua |W0| is tuned to be small compared to the flux scale and |δW/W0| is not small.
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3.1 Critical point equations

The critical point equations in the T and Xi directions determine much of the structure

of the approximately no-scale vacua. The equation ∂TV = 0 is to leading order in a

perturbative expansion in ǫ and |δW/W0| given by

KTT |W0|2ǫ2 = −W 0 δWTT − 4

3
KTRe

(

W 0 δWT

)

. (3.5)

Two properties of this equation are particularly noteworthy: first, while the F -term in the

Xi subspace is corrected at O(ǫ), derivatives of δW — which we by equation (3.2) relate to

the magnitude of |δW | — appear first at order ǫ2. Thus, consistently with equation (3.2)

we can realise the scaling,

O(ǫ2W0) ∼ O(δW ) ∼ O(δWT ) ∼ O(δWT i) ≪ O(W0) ∼ O(Wj) ∼ O(Wij) . (3.6)

Equation (3.5) then receives subleading corrections at O(ǫ3), and the smallness of the F-

terms in the Xi subspace assumed in equation (3.4) may be achieved by the tuning of

W0(X
i). Second, the reality of the left-hand side of equation (3.5) enforces that,

Im
(

W 0δWTT

)

= 0 . (3.7)

The remaining critical point equation, ∂iV = 0, is most illuminatingly phrased as a con-

dition on the supersymmetric masses of the Xi fields, explicitly given by an eigenvalue

equation involving Zij . To see this, we note that to leading order,

ZT i = δWT i +KiδWT +KTFi = KTFi +O(ǫ2) , (3.8)

so that the critical point equation ∂iV = 0, which can also be written as ZiaF̄
a = 2WFi

as in equation (2.4), implies that,

ZijF̄
j = −WFi , (3.9)

up to corrections of O(ǫ2). Contracting the complex conjugate of the equation above with

Zi
̄ and using the equation again, we find to linear order in ǫ,

(ZZ) j
i Fj = |W |2Fi , (3.10)

implying that ZZ has an eigenvalue equal to |W |2 to this order (in the basis in which

Ki̄ = δi̄), with Fi being the corresponding eigenvector.

Equation (3.10) directly affects the spectrum of approximately no-scale vacua. From

equation (2.10) we find that it implies the existence of one real field in the Xi-sector with a

vanishing mass at zeroth order in ǫ. Thus, out of all exact no-scale vacua, only the subset

with at least three real massless degrees of freedom can be perturbatively lifted to de Sitter

vacua (or deformed to non-supersymmetric AdS vacua).

The interpretation of the critical point equation as a condition on the supersymmetric

mass spectrum is quite familiar: in [34] it was shown that for critical points at which super-

symmetry is spontaneously broken in the Xi-sector, without a dominant contribution from

– 7 –
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the no-scale field, obey a similar eigenvalue equation derived from equation (2.4). Consis-

tently, supersymmetric Minkowski solutions that can be perturbed to non-supersymmetric

vacua also have at least one massless direction [28].

Finally, upon using the critical point equation (3.5), we find that the vacuum expec-

tation value of the scalar potential at the critical point is given by,

e−KV = 2Re(KTW 0δWT ) + |Fi|2 +O(ǫ4)

=
2

3
KTRe

(

W 0δWT

)

−KTTW 0δWTT +O(ǫ3) , (3.11)

where the reality of the scalar potential is ensured by equation (3.7).

3.2 The perturbed mass-matrix

By introducing a small amount of supersymmetry breaking in the directions perpendicular

to T , we avoid the no-go theorem of [33] and may potentially find metastable de Sitter

vacua. Since the additional supersymmetry breaking is small by assumption, a perturbative

expansion around the no-scale vacuum is well-motivated. We now show that the Hessian

matrix takes a very simple form upon performing such an expansion.

First, we note that the general expression for perturbed non-degenerate eigenvalues up

to second order is given by,

m2
A

∣

∣

∣

tot
= m2

A

∣

∣

∣

0
+ δm2

A +
∑

B 6=A

|δm2
AB|2

m2
A

∣

∣

∣

0
−m2

B

∣

∣

∣

0

+ . . . . (3.12)

This expression is not directly applicable to the perturbative analysis of the approximate

no-scale vacua as three real degrees of freedom (Re(T ), Im(T ) and one real component of

the eigenstate of ZZ with eigenvalue |W0|2) are degenerate and massless at zeroth order in

no-scale breaking. Taking this degeneracy into account, we will find equation (3.12) useful

in determining the structure of the dominant contributions of the Hessian matrix. In the

following section we describe how 2N − 3 fields are stabilised with positive definite masses

& O(m3/2), one real direction generically is lifted at O(ǫ), and the Hessian eigenvalues of

the remaining two fields take a strikingly simple form.

3.2.1 Masses for the X
i fields

We begin by considering the spectrum of all fields perpendicular to T .

While one real direction in the Xi field space has a vanishing mass at zeroth order

(by equations (3.10) and (2.10), as discussed above), the remaining Xi fields are expected

to obtain masses of order max(λi,W0). The no-scale breaking induces small perturbations

to the exact spectrum of these fields, but for ǫ ≪ 1, the corrections are too small to

destabilise these fields. This partial decoupling — which is a direct consequence of the no-

scale structure of the Kähler potential — significantly simplifies the problem of assessing

the stability of the perturbed critical point. In principle, these 2N − 3 real degrees of

freedom may still affect the general stability of the system by Hessian cross-couplings that

may destabilise lighter fields. We will see however, that the no-scale structure again makes

these contributions negligible, thus ensuring the complete decoupling of all but one Xi field.
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We now turn to the remaining, light Xi field and determine its mass and couplings

to leading order in the perturbative expansion of equation (3.6). These expressions are

most easily analysed by considering the sub-matrix of the Hessian that involve only the

Xi fields, and in a basis in which the fields at the critical point are canonically normalised,

i.e. Ki̄|c.p. = δi̄. We will see in section 3.2.2 that this explicit neglect of the cross-terms

between the Xi fields and the no-scale modulus is perfectly justifiable to O(ǫ2).

The Hessian submatrix involving only the Xi fields is to linear order in ǫ given by,






m2
i̄ m2

ij

m2
ı̄̄ m

2
̄j






=







ZikZ
k
̄ + δi̄|W |2 2ZijW

2Z ı̄̄W Z ı̄k̄Z
k̄
j + δı̄j |W |2






+







0 (DiZjk)F̄
k

(D̄ı̄Z ̄k̄)F
k̄ 0






.

(3.13)

Thus, in comparison with the no-scale Hessian of the Xi field sector of equation (2.5), we

note that the only structural correction to this sub-Hessian at O(ǫ) is given by the second

term of equation (3.13). We are interested in the lightest Xi field, which — as discussed in

section 3.1 — to linear order in ǫ corresponds to the eigenmode of ZZ with an eigenvector

proportional to Fi. The corresponding orthonormalised (sub-)Hessian eigenvectors for the

modes with eigenvalues 0 and 4|W |2 are given by,

v1± =
1√
2







f ı̄

∓f̄ i






, (3.14)

where we, as in equation (3.4), have introduced the unit vector fi = exp(−iϑW )Fi/||Fi||,
where again ϑW = arg(W ).

We now note that Hessian cross-terms between the v1− direction and the more massive

Xi fields — that generically are lifted at O(ǫ0) – enter the mass matrix at O(ǫ), as v1± are

eigenvectors of the Hessian to leading order. Thus, from equation (3.12), we see that they

affect the mass of the lightest Xi field at second order in perturbation theory by O(ǫ2) ≪
O(ǫ), and may consistently be neglected. This is a crucial property of the metastable vacua

with only O(1) fine tuning that we construct in this paper.

The Hessian eigenvalues of the lightest Xi field, which we will refer to as the ‘1’

direction, are to linear order in ǫ then given by,

m2
1+ = 4|W |2 − Re ((DiZjk)f̄

if̄ j f̄kW )ǫ , (3.15)

m2
1− = Re ((DiZjk)f̄

if̄ j f̄kW )ǫ . (3.16)

As a final word of caution, we note that if Re ((DiZjk)f̄
if̄ j f̄kW ) is of order O(ǫ), then

the structure of the Xi sector sub-Hessian is identical to that of the unbroken no-scale

Hessian to O(ǫ), and the critical point equation (3.9) again enforces that the mass of the

lightest field vanishes. Consequently, in this case the lightest Xi field is lifted at O(ǫ2), and

cross-couplings with heavier Xi fields can then not be neglected in general. Metastability

then requires that O(N) elements of the Hessian matrix may have to be tuned small.

In sum, most of the fields perpendicular to the no-scale field obtain positive definite

masses of the order of max(λi,W0) (cf. equation (2.10)) and do not develop instabilities in
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the approximately de Sitter no-scale vacuum. The lightest Xi field is generically lifted at

O(ǫ), and the detailed form of the squared mass depends on the covariant tensor DaZbc. It

thus seems plausible that only a very modest amount of tuning of the superpotential pa-

rameters can result in positive eigenvalues for all the Xi fields. In section 4, we demonstrate

that this is indeed true in explicit examples.

3.2.2 Decoupling and stabilisation of the no-scale direction

To find a metastable de Sitter minimum, we must also stabilise the no-scale modulus T .

Upon using the critical point equations (3.5) and (3.9) we find that to quadratic order in ǫ,

m2
TT

= −4

3
KTRe

(

WδW T

)

, (3.17)

m2
TT = KTWδWTTT − 4

3
KTRe

(

WδWT

)

. (3.18)

Since these contributions to the mass of the no-scale modulus are of order O(ǫ2), and thus

quite small compared to other entries of the Hessian matrix, some care must be taken to

ensure that cross-couplings do not destabilise the no-scale field. Naively, this would require

the fine-tuning of the 2(N − 1) elements, m2
T i, m2

T i
of the Hessian, however, we now show

that such fine-tuning is not necessary: enforcing the critical point equations ensures that

none of the cross-terms contribute with any significant destabilising terms.

In section 2 we showed thatm2
iT andm2

iT
vanish in the no-scale vacuum. The correction

at O(ǫ) is given by,

m2
iT

= KT

(

ZijF̄
j +WFi

)

+O(ǫ2) = O(ǫ2) , (3.19)

m2
iT = KT

(

ZijF̄
j +WFi

)

+O(ǫ2) = O(ǫ2) , (3.20)

where we used the critical point equation (3.9) in the last step of both equations.

In second order perturbation theory, these terms then contribute negatively to the

eigenvalues of the (mostly) T -field eigenstates at order O
(

ǫ4W 4
0 /m

2
i±

)

according to equa-

tion (3.12). Thus, the contribution from the lightest Xi field is expected to enter at O(ǫ3),

while the other Xi fields contribute at order O(ǫ4). However, as the leading contribution

from m2
TT and m2

TT
enter at O(ǫ2), these potentially destabilising corrections are sublead-

ing and do not contribute significantly to the (de-)stabilisation of T (as long as N . 1/ǫ2).

Indeed, the smallest eigenvalues of the Hessian matrix are to O(ǫ2) given by,

m2
T± = m2

TT
± |m2

TT |

= −4

3
KTRe

(

WδWT

)

±
∣

∣

∣

∣

KTWδWTTT − 4

3
KTRe

(

WδWT

)

∣

∣

∣

∣

. (3.21)

Equation (3.21) is one of our main results, and indicates that — given some small amount

of supersymmetry breaking in the directions perpendicular to T — all moduli can be

stabilised in approximate no-scale compactifications with a very small amount of tuning.
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Let us summarise: the Hessian matrix of the approximately no-scale system is schemat-

ically given by,

H = eK





























































m2
TT

m2
T 1̄

m2
T ̄′ m2

TT m2
T1 m2

Tj′

m2
1T

m2
11̄

m2
1̄′ m2

1T m2
11 m2

1j′

m2
i′T

m2
i′1̄

m2
i′ ̄′ m2

i′T m2
i′1 m2

i′j′

m2
TT

m2
T 1̄

m2
T ̄′

m2
TT

m2
T1

m2
Tj′

m2
1̄T

m2
1̄1̄

m2
1̄̄′

m2
1̄T

m2
1̄1

m2
1̄j′

m2
ı̄′T

m2
ı̄′1̄

m2
ı̄′ ̄′ m2

ı̄′T m2
ı̄′1 m2

ı̄′j′





























































=

= m2
3/2





























































∼ ǫ2 ∼ ǫ2 ∼ ǫ2 ∼ ǫ2 ∼ ǫ2 ∼ ǫ2

∼ ǫ2 ∼ ǫ ∼ ǫ ∼ ǫ2 ∼ ǫ ∼ ǫ

∼ ǫ2 ∼ ǫ ∼ 1 ∼ ǫ2 ∼ ǫ ∼ 1

∼ ǫ2 ∼ ǫ2 ∼ ǫ2 ∼ ǫ2 ∼ ǫ2 ∼ ǫ2

∼ ǫ2 ∼ ǫ ∼ ǫ ∼ ǫ2 ∼ ǫ ∼ ǫ

∼ ǫ2 ∼ ǫ ∼ 1 ∼ ǫ2 ∼ ǫ ∼ 1





























































, (3.22)

where we for simplicity of presentation have taken O(λa) ∼ O(|W0|) to set the scale of the

matrix, and highlighted the dominant elements.

We have shown that most Xi fields decouple at zeroth order in the no-scale breaking

and receive squared masses of the order of O(ǫ0), cf. equation (2.10). The critical point

equations imply that only no-scale systems with three real flat directions at zeroth order in

the no-scale breaking support approximately de Sitter solutions, as discussed in section 3.1.

One of these directions (here taken to be the v1−-direction) is generically lifted at O(ǫ), and

the corresponding squared mass may be rendered positive by a modest amount of tuning.

The remaining two flat directions are lifted at O(ǫ2), with no significant contribution

coming from the cross-terms with other moduli.
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Thus, the approximately no-scale de Sitter vacua are meta-stable if m2
1− > 0, which

corresponds to

Re ((DiZjk)f̄
if̄ j f̄kW ) > 0 , (3.23)

and m2
T− = m2

TT
− |m2

TT | > 0, as given by equation (3.21). The tuning of the Hessian

matrix necessary to obtain such vacua is of order O(1), which should be compared with

O(N2) for similar vacua obtained in [28].

4 Examples in supergravity and string theory

We expect that the general properties of the approximately no-scale vacua considered in this

paper are broadly applicable to many different examples, including those involving more

complicated, multi-field no-scale Kähler potentials. Here, we will as a proof of principle

demonstrate that this type of vacua is indeed obtainable in supergravity, and in particular

we focus on string theory inspired supergravities of STU-type. In the simplest scenarios,

we find some limiting conditions. For more involved examples, we expect these constraints

to be relaxed, and we look forward to exploring these possibilities in future work.

Before delving into the details of an explicit STU-model, we first note some common

properties of large classes of models.

4.1 Models with one non-perturbative effect: generalities

The simplest model one can consider which realises decoupling from approximate no-scale

vacua involves a single non-perturbative, no-scale breaking superpotential correction,

δW = A(Xi)e−aT . (4.1)

By performing a trivial, constant Kähler transformation, we can choose W0 ∈ R+ at the

critical point. The stabilisation of the T -axion is ensured by equation (3.7), from which we

infer that at the critical point,

δW = s|δW | = s|A|e−aτ , τ = ReT , (4.2)

where τ denotes the real part of T and s ∈ {−1,+1}. From equation (3.17) we see that

s = +1 corresponds to mTT < 0, which immediately implies that there is a tachyon. We

therefore set s = −1. The value of the scalar potential at the critical point is given by

equation (3.11), which evaluates to

V = eKKTTa2W0|δW |
(

1− 1

aτ

)

. (4.3)

Thus, minima with V > 0 have aτ > 1. The smallest scalar mass is easily computed from

equation (3.21)

m2
T− = m2

TT
− |m2

TT | =
2a

τ
W0|δW |

(

1− |1− τ2a2|
)

. (4.4)

Thus, we find thatm2
T− > 0 for aτ <

√
2. In sum, metastable de Sitter can be found only for

1 < aτ <
√
2 . (4.5)
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The above constraint (4.5) appears very restrictive and one might wonder whether it can be

realised in a controlled supergravity regime. Since we clearly want τ = Re(T ) ≫ 1 to sup-

press α′ corrections we need a ≪ 1. In type IIB string theory this may be achievable if the

non-perturbative term (4.1) arises from gaugino condensation on a large stack of D7-branes.

In this case the full correction has the form δW = Ae−af(T,Xi) where f(T,Xi) is the gauge

kinetic function [35]. Due to the non-renormalization theorem of [36], the gauge kinetic

function takes the form f(T,Xi) = f tree(T )+f1−loop(Xi)+fnp(T,Xi) = T+f1−loop(Xi)+
∑∞

n=1 cn(X
i)e−anT . For Re(T ) ≫ 1, it seems reasonable to assume that f(T,Xi) ≈

f tree(T ) = T , but it would certainly be interesting to check this in explicit models.

Furthermore, the critical point equation (3.5) implies to leading order in ǫ that,

W 2
0 ǫ

2 =
4

3
W0|A|f(aτ) , (4.6)

where we have defined f(x) = (x2+2x) exp(−x). The function f(x) is semi-monotonically

increasing in the range x ∈ [1,
√
2], and reaches a maximum at x =

√
2. As f(x) is bounded,

this constrains the ratio between ǫ2 and |A|/W0 obtainable in any model. In particular we

find
3

4

ǫ2

fmax
<

|A|
W0

<
3

4

ǫ2

fmin
, (4.7)

where fmin = f(1) = 3/e ≈ 1.104 and fmax = f(
√
2) = 2

(

1 +
√
2
)

exp(−
√
2) ≈ 1.174.

Numerically, we then have,

0.639 <
1

ǫ2
|A|
W0

< 0.680 . (4.8)

Thus any realisation of de Sitter vacua through the mechanism we have described above

including the exact no-scale Kähler potential for a single no-scale field and a single non-

perturbative term is somewhat constrained. As we have seen, the constraint (4.8) follows

directly from the critical equation ∂TV = 0, which requires δWT = O(ǫ2), and the metasta-

bility condition aτ <
√
2 from equation (4.5). Adding more Kähler fields could in principle

allow for less restricted models, and it would be interesting to study this in detail.

4.2 Simple examples in supergravity

In this section, we illustrate the general mechanism of decoupling by an approximate no-

scale structure in the simplest possible supergravity models. While we do not expect these

to directly capture the intricacies of supergravities arising from the dimensional reduction

of string theory, they nicely illustrate the basic properties of the general mechanism.

First, we consider a system of two chiral superfields, T andX with the Kähler potential,

K = −3 ln(T + T ) +XX , (4.9)

and the superpotential W = W0(X) +Wnp(T ) with,

W0 = w0 + ǫw0X − w0

2
X2 +

w3

3!
X3 , (4.10)

Wnp = Ae−aT , (4.11)
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where we take w0, w3 ∈ R. For ǫ ≪ 1, this system has a non-supersymmetric solution at

X = 0 with FX = ǫw0 and FT = KTw0 + O(Wnp). Consistently with equations (2.10)

and (3.10), the real and imaginary components of X have masses which to zeroth order in

ǫ are given by m2
X+ = 4w2

0, and m2
X− = 0. At linear order in ǫ we find that,

m2
XX

= 2w2
0 +O(ǫ2) , (4.12)

m2
XX = −2w2

0 + ǫw0w3 +O(ǫ2) . (4.13)

The lightest component of the X field is then metastable for 0 < ǫw0w3 < 4w2
0, and the

stabilisation of the no-scale modulus may proceed as in section 4.1. Thus, we conclude

that the mechanism presented in this paper admits very simple explicit realisations.

The decoupling mechanism discussed in this paper is readily generalised to systems

with many interacting fields, and can, in particular be realised in ‘random supergravity’ [29].

To illustrate this, we consider an ensemble of critical points in which the value of the super-

potential and the tensors Zij and DiZjk are taken to be random tensors with independent

and identically distributed entries, subject to the critical point equations (3.5) and (3.9) .

The no-scale sector involving T is not assumed to be random, but rather to be stabilised

as in the discussion of section 4.1, or generalisations thereof. Consistently with our general

discussion, simulations of such systems with O(100) fields show that most of the Xi fields

are stabilised with masses m & m3/2, and a single real field in the Xi-sector remains sig-

nificantly lighter than m3/2. The fraction of all critical points that are metastable vacua

is P = 1/2, independently of N , in agreement with our discussion around equation (3.16).

This should be compared with the corresponding fractions for critical points without an un-

derlying no-scale structure [29, 37, 38]: for typical critical points with 〈W 〉2 ≈ O(eig(ZZ)),

a fraction of P ≈ exp
(

−0.2N2
)

of the typical critical points with are metastable, and for

approximately supersymmetric critical points with 〈W 〉2 ≪ O(eig(ZZ)), the metastable

fraction is given by P ≈ exp(−0.35N). Thus, in random supergravity, the relative fre-

quency, P , of metastable approximately no-scale vacua is exponentially larger than the

corresponding value for vacua without this structure.

4.3 Examples in type IIB string theory: generalities

An appealing feature of the class of de Sitter vacua presented in this paper is that they rely

on ingredients which are readily available in compactification of string theory on Calabi-

Yau manifolds. In particular, flux compactifications of type IIB string theory include all the

ingredients necessary to realise this scenario: the Kähler potential for the Kähler moduli

sector is of the no-scale form to leading order in the α′ and gs expansions, and it is plausible

that among the possible choices of quantised three-form flux, there are theories admitting

ǫ ≪ 1. In this section, we consider such flux vacua in more detail, and derive a geometric

condition on the complex structure moduli space which must be satisfied in order to achieve

de Sitter vacua with an O(1) fine-tuning of the Hessian matrix.

Type IIB string theory compactified on an orientifold, M̃3, of a Calabi-Yau threefold

M3, reduces to a four-dimensional N = 1 effective supergravity if the supersymmetry

breaking scale is much smaller than the compactification scale. The relevant degrees of
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freedom of such compactifications include the axio-dilaton, S = e−φ − iC0, the complex

structure moduli, U i, where i = 1, . . . , h2,1− (M̃3), the complexified Kähler moduli, T r, where

r = 1, . . . , h1,1+ (M̃3), the 2-form axion multiplets Gα with α = 1, . . . , h1,1− (M̃3) and possibly

open string moduli. Many simple orientifolds have h1,1− (M̃3) = 0 and therefore no scalars

arising from the B2 and C2 fields. For simplicity, we here consider only this case, and

we furthermore do not explicitly include the action of additional open string degrees of

freedom arising from stacks of D-branes.

The leading order Kähler potential for the Kähler moduli is given by Kno−scale =

−2 lnV , where V denotes the volume of the compactification manifold in units of α′. In

this paper, we focus on models with a single Kähler modulus, T , and as V ∼ (T + T )3/2,

the Kähler modulus may then play the role of the no-scale field of equation (1.1).

The Kähler potential for the complex structure moduli, U i, and the axio-dilaton, S, is

given by

K̃(S, S̄, U i, Ū ı̄) = − ln(S + S̄)− ln(i

∫

M̃3

Ω ∧ Ω̄) , (4.14)

where Ω denotes the holomorphic (3, 0)-form on M̃3. Thus, to leading order in α′ and gs,

and in the absence of open string moduli, these fields do not mix with T in the Kähler

potential and may serve as our Xi field sector.

We discuss the superpotential and its Kähler covariant derivatives, for more details

see for instance [32]. Compactifications with quantised NS-NS flux, H3 = dB2, and RR

flux, F3 = dC2, on non-trivial three-cycles of M̃3 have a superpotential which is a linear

combination of the periods of Ω,

W =

∫

M̃3

Ω ∧G3 = ~N · ~Π , (4.15)

where we have introduced the complex three-form flux G3 = F3 − iSH3, which takes on

2(h2,1 + 1) quantised values as ~N = ~f − iS~h. Here ~Π denotes the period vector of the

three-form Ω.

The F -terms in the axio-dilaton and complex structure sector are then given by

FS = DSW = −
~N∗ · ~Π
S + S̄

, (4.16)

Fi = DiW = ~N ·Di
~Π . (4.17)

The tensor Zab has the components,

ZSS = 0 , (4.18)

ZSi = −
~N∗ ·Di

~Π

S + S̄
, (4.19)

Zij = Fijk
~N · D̄k~Π∗ = −(S + S̄)FijkZ

k
S̄ , (4.20)

where we have used the identity DiDjΩ = FijkD̄
kΩ̄, with Fijk denoting the ‘Yukawa

couplings’ of the special geometry.4

4The coefficients Fijk can be obtained by taking three holomorphic derivatives of the N = 2 prepotential,

or by evaluating Fijk = i
∫
Ω(U) ∧ ∂3Ω(U)

∂Ui∂Uj∂Uk = i
∫
Ω(U) ∧ DiDjDkΩ(U). These ‘Yukawa couplings’

determine the field space Riemann curvature as, Ri̄kℓ̄ = −Ki̄Kkℓ̄ −Kiℓ̄Kk̄ + exp(K)FikmF̄ m
̄ℓ̄ .
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Furthermore, upon acting with three covariant derivatives on the superpotential, we

find the components,

DSZSS = 0 , DiZSS = 0 , (4.21)

DiZjS = −FijkF̄
k

S + S̄
, (4.22)

DiZjk = Fijk
~N · ~Π∗ +Dk(Fijℓ) ~N · D̄ℓ~Π∗ =

= −Fijk(S + S̄)F̄S̄ −Dk(Fijℓ)(S + S̄)Z
ℓ
S̄ . (4.23)

Equations (4.16)–(4.23) determine much of the structure of the type IIB flux vacua.

Of crucial importance for our discussion of the O(1) fine-tuning of the Hessian ma-

trix in section 3.2.1 was that the lightest Xi field was lifted at O(ǫ). We noted that

if Re (WDiZjkf̄
if̄ j f̄k) was of O(ǫ0), then cross-couplings with heavier Xi fields were

negligible, and meta-stability requires the fine-tuning of O(1) terms. In contrast, for

Re (WDiZjkf̄
if̄ j f̄k) ∼ ǫ we found an additional cancellation of the remaining O(ǫ) correc-

tions, and the lightest Xi field would be lifted at O(ǫ2) with a generic O(N) fine-tuning of

the Hessian as a result. Here, we note that equation (4.23) implies that the condition of

minimal O(1) fine-tuning of the Hessian matrix in type IIB string theory can be phrased

as a geometric constraint on the field space curvature. More precisely, minimal tuning

requires:

Di(Fjkℓ)f̄
if̄ j f̄kZ

ℓ
S̄ = O(ǫ0) [for O(1) finetuning] . (4.24)

While this condition is expected to be satisfied for generic ‘special geometries’, it fails in

some well-studied models in which the complex structure moduli space is a symmetric

space with covariantly constant Riemann curvature for which Dk(Fijℓ) = 0. As discussed

in section 3.2.1, in this case the lightest Xi field is lifted at O(ǫ2) together with the no-

scale field T , and cross-couplings with the heavier complex structure moduli are no longer

automatically negligible. However, as we now illustrate in the case of the STU-models,

even in this case one can construct examples of this type of vacua.

4.4 The STU-model with one non-perturbative effect

Let us exemplify our findings in the simple ‘STU-model’ with three complex moduli: the

axio-dilaton S = e−φ − iC0, a complex structure modulus U and a complexified volume

modulus T . This model arises by compactifying type IIB string theory on T 6/Z2×Z2, if we

restrict ourselves to the isotropic sector and take the three T 2 in the T 6 to be equal. The

latter can be for example imposed by an extra Z3 symmetry that rotates the three T 2, see

section 2 in [39]. In this model, the complex structure moduli space is a symmetric space,

so that from our general discussion around the condition (4.24), we expect m2
1− ∼ ǫ2m2

3/2

and that O(N) = O(3) terms need to be fine-tuned to ensure the metastability of the

lightest direction in the SU subspace.

In the presence of F3 and H3 fluxes the resulting Kähler and superpotential are

K = −3 log(T + T )− log(S + S̄)− 3 log(U + Ū) , (4.25)
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W = a0 + 3ia1U + 3a2U
2 + ia3U

3 + S(ib0 + 3b1U + 3ib2U
2 + b3U

3)

+Wnp(S, T, U) , (4.26)

where the real coefficients ai, bi ∈ Z correspond to the F3 and H3 fluxes respectively. In

particular, if we set (2π)2α′ = 1, then

∫

Σi

F3 = ai ,

∫

Σi

H3 = bi , (4.27)

where the Σi are 3-cycles in the integer homology of the orientifolded space. This leads to
~N = ~f−iS~h = ~a−iS~b and the above superpotential. The above Kähler and superpotential

give rise to the usual type IIB no-scale Minkowski vacua discussed in [26]. We will below

determine the parameters ai, bi in terms of the vacuum expectation values of the moduli

and the parameter ǫ (see eq. (4.31)). Plugging these into the superpotential above leads to

a superpotential that contains terms up to quadratic order in ǫ.

The volume modulus T appears in the superpotential only through non-perturba-

tive corrections, which arise from Euclidean D3-branes and from gaugino condensation on

D7-branes, and to leading order take the form Wnp = A(S,U)e−aT . Naturally these non-

perturbative corrections are small compared to the tree-level flux contribution so that we

can think of them as a perturbation around the no-scale Minkowski vacuum and apply

our general approach. Since the moduli S and U are stabilised by the fluxes at tree-level

one can assume that the small perturbation does not shift their minimum much so we can

neglect the dependence of A on S and U and treat A effectively as a constant:5

Wnp = Ae−aT . (4.28)

To simplify the equations, we set a1 = a3 = b0 = b2 = 0. Then W and all its Kähler

covariant derivatives are real, if we set the imaginary parts of S, T and U to zero. In

particular this means that we can trivially solve half of the critical point equations by

setting Im(S) =Im(T ) =Im(U) = 0.

It is convenient to solve this system by considering the ‘inverse problem’ of finding the

fluxes which will allow for a minimum at the moduli vevs S = S0, T = T0 and U = U0 with

S0, T0, U0 ∈ R. By appropriate SL(2,Z) transformations we can always ensure that S0 and

U0 are in the fundamental domain (i.e. being larger or equal than one). This is important if

we want to count dS vacua, but since we are only interested in their existence we refrain from

explicitly doing these SL(2,Z) transformations. Furthermore, our supergravity solutions

require S0 > 1 and T0 ≫ 1 in order to ensure that string loop and α′ corrections are small.

The critical point equations are solved by the F -terms,

FS =
1

4S0
W

(ǫ=0)
0 ǫ ,

5As we discussed above there should be one real direction among S and U that gets generically a mass of

O(ǫ) which is still sufficient to treat A as constant. In the simple STU-model there are further cancellations

and this light direction only gets a mass at O(ǫ2) so that the dependence of A on this light direction could

be important. It would be interesting to explicitly calculate the function A(S,U) in this model to check

whether it is justified to take A to be constant.
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FT = KTW +
λ

T0
ǫ2 ,

FU =
3

4U0
W

(ǫ=0)
0 ǫ , (4.29)

where λ = T0 δWT /ǫ
2 is a real number of order O(ǫ0), and where W

(ǫ=0)
0 denotes the flux

superpotential at the critical point to zeroth order in ǫ, or equivalently, the value of W at

the non-supersymmetric Minkowski minimum with unbroken no-scale symmetry. The flux

superpotential can be expressed in terms of λ and T0 as,

W
(ǫ=0)
0 =

4λ

3
(2 + aT0) . (4.30)

The choice of normalising the F-terms of equation (3.4) in terms of W
(ǫ=0)
0 is convenient

as this way the ǫ-expansion of the fluxes truncates at second order:

a0 = λ

(

−1

6
(7 + 2aT0) ǫ+

(8 + aT0 (4 + aT0))

4aT0 (2 + aT0)
ǫ2
)

,

a2 =
λ

U2
0

(

2 (2 + aT0)

9
+

7

18
ǫ+

(8 + aT0)

36 (2 + aT0)
ǫ2
)

,

b1 =
U0

S0
a2 , (4.31)

b3 =
λ

S0U3
0

(

(1 + 2aT0)

6
ǫ+

aT0

4(2 + aT0)
ǫ2
)

,

A = −ǫ2
eaT0λ

aT0
.

In this particular example some fluxes turn out to be of O(ǫ). This is not generic but

rather due to the simplicity of this model. One might worry further that the appearance

of parametrically small ǫ and ǫ2 terms are in tension with having quantized fluxes. This

could be resolved by appropriately choosing the values S0, T0, U0 and the overall scale λ.

However, we do not expect such a hierarchy (or tuning) in the vacuum expectation values

of the moduli to naturally arise in this simple model since it has such a limited number

of flux quanta. Generic string compactifications have however very large numbers of flux

parameters and should more naturally allow for a parametrically small ǫ.

The F -terms in the (S,U) subspace of equation (4.29) are aligned with the unit vector

fT
i = (1/(4S0), 3/(4U0)) as in (3.4) and section 3.2.2, which upon canonical normalisation

is given by fT
i = (1/2,

√
3/2), independently of the field vevs and fluxes. The gravitino

mass at the de Sitter vacuum is to O(ǫ0) given by,

m2
3/2 = eK |W |2 = (2 + aT0)

2λ2

72S0T 3
0U

3
0

. (4.32)

We may now proceed as in section 3 to systematically extract the eigenvalues of the

Hessian matrix.

The heaviest fields in the system correspond to the linear combination of S and U

that are perpendicular to fi. These fields are lifted by the fluxes at order O(ǫ0) with the
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physical masses (we define M2
i to be the eigenvalues of V ′′ in a canonically normalised

basis):

M2
2+ =

16

9
m2

3/2 , (4.33)

M2
2− =

4

9
m2

3/2 , (4.34)

up to corrections ofO(ǫ). In addition, one heavy real degree of freedom corresponding to the

v1+ direction of equation (3.14) is lifted at O(ǫ0) by the fluxes. By explicit diagonalisation,

we confirm equation (3.15) to zeroth order in ǫ,

M2
1+ = 4m2

3/2 . (4.35)

The remaining three real degrees of freedom corresponding to v1−, Re(T ) and Im(T ) are

lifted at order ǫ2. From our general discussion in section 3.2.2, we expect that if the lightest

Xi field (the v1− direction) is lifted at O(ǫ2), then an O(N) fine-tuning is necessary in order

to ensure that cross couplings with heavier Xi fields do not destabilise the vacuum. In this

STU example however, we find that such cross-terms — which we in general expect to

enter at O(ǫ) – are absent both at O(ǫ) and O(ǫ2). Thus, in this particular model, the

lightest X-field is lighter than the generic expectation, but this still does not result in an

increased amount of tuning needed in order to achieve metastability.

The physical masses of the three lightest degrees of freedom are then given by,

M2
L1

=
2(aT0)

2

(2 + aT0)
m2

3/2ǫ
2 , (4.36)

M2
L2±

=
1

2 (2 + aT0) 2
m2

3/2ǫ
2
(

21− 2a3T 3
0 + 14aT0 (4.37)

±
√

4aT0(aT0 + 1)(aT0(aT0(aT0(aT0 + 7) + 27) + 26)− 33) + 217
)

,

The metastability condition of these de Sitter vacua (which for only T being lifted at

O(ǫ2) is given by aT0 <
√
2, cf. equation (4.5)), here translates into the marginally stricter

condition m2
L2±

> 0, or,

1 < aT0 < aT⋆ ≈ 1.383 =
√
1.914 , (4.38)

where aT⋆ is given by equation (A.20) in the appendix.

The cosmological constant for these de Sitter vacua is given by,

V =
m2

3/2ǫ
2

(2 + aT0)2

(

(aT0 − 1)(2 + aT0)− 3ǫ− 3

4
ǫ2
)

. (4.39)

We want to point out that our general analysis provides sufficient and necessary con-

ditions only for ǫ ≪ 1 and if all quantities scale with ǫ in the way we assumed. For larger

ǫ or at points in moduli space where the scaling is different, it is very well possible that

dS vacua still exist and their features can deviate from our predictions. Since for simple

models we can find explicit, analytic families of dS vacua it might be possible to map out
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the entire parameter space of stable dS vacua that are connected to our analytic families.

While we leave this interesting task for the future, we give one simple example for the

STU-model that shows that

• stable dS vacua also exist when we move away from the regime of validity of our

general ansatz.

• we can find examples with correctly quantised fluxes.

• we can choose the flux numbers so small that even in simple models it is possible to

satisfy the tadpole condition.

In particular, if we take the superpotential to be

W = −2 + 18U2 + S
(

6U + 2U3
)

− 3e−aT , (4.40)

then we find stable dS vacua with S0 ≈ 2.02, U0 ≈ .67 and aT0 ≈ 1.73. In particular

aT0 >
√
2 which disagrees with our general prediction. We can also explicitly calculate the

F-terms and find that ||(FS , 0, FU )||/W ≈ 0.72 is not small and we cannot view this solution

directly as a small ǫ-deformation of a no-scale Minkowski vacuum. Similarly, |δWT /W | is
not small.

The integer fluxes in the superpotential (4.40) are a0 = −2, a2 = 6, b1 = 2, b3 = 2,

which leads to the tadpole condition (cf. for example [40])

1

2
(a0b3 + 3a2b1) =

1

2
(−4 + 36) =

1

4
NO3 = 16 , (4.41)

where the factor 1/2 in front of the fluxes is due to the fact that the above tadpole condition

is derived in the covering space, before taking into account the orientifold projection. We

see that we exactly satisfy the tadpole condition in our simple example.

There are additional tadpole constraints due to the presence of O7-planes. The O7-

plane charges and tensions can be canceled by D7-branes, which also need to be present

to generate the non-perturbative correction to the flux superpotential. It would be very

interesting to study this in detail.

5 Conclusions

We have shown that N = 1 supergravities in which one of the fields has a Kähler potential

of no-scale type admit de Sitter solutions that can be rendered metastable upon the tuning

of only two parameters, independently of the number of chiral fields, N . These vacua arise

from small superpotential perturbations to the well-known non-supersymmetric no-scale

Minkowski vacuum. The perturbation induces small F-terms in the directions perpendicu-

lar to the no-scale modulus, Fi = O(ǫW ). No-scale vacua that can be perturbatively lifted

to de Sitter space have one real massless mode along the Fi direction in field space, in addi-

tion to the massless no-scale modulus. This massless mode appears as a direct consequence

of the critical point equation and extends the theorem of [28] for non-supersymmetric de-

formations of supersymmetric Minkowski solutions to have at least one real flat direction.
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At the de Sitter critical point, the lingering approximate no-scale structure of the

Hessian matrix ensures that 2N−3 real modes receive positive definite eigenvalues that are

(at least) of the order of the gravitino mass, m3/2 = eK/2|W |. The remaining three modes,

which we denote ‘v1−’ and ‘T±’, are lifted at O(ǫ) and O(ǫ2), respectively. In general,

the stabilisation of such light modes require fine-tuning of off-diagonal Hessian cross-terms

with heavier modes, however, in section 3.2.2 we found that the no-scale structure again

leads to a cancellation of the leading order cross-terms, thus reducing the question of the

full stabilisation of the vacuum to that of two 2 × 2 matrices. Metastability can then be

obtained by tuning the ratio of the off-diagonal entries to the diagonal entries of these

matrices, which we showed corresponds to requiring

Re (WDiZjkf̄
if̄ j f̄k) > 0 , (5.1)

and ensuring that

− 4

3
KTRe

(

WδWT

)

− |KTWδWTTT − 4

3
KTRe

(

WδWT

)

| > 0 . (5.2)

With this moderate tuning, the spectrum of the lightest modes is given by,

m2
1− ∼ m2

3/2ǫ > 0 , m2
T± ∼ m2

3/2ǫ
2 > 0 . (5.3)

We stress that this mechanism for the decoupling of many modes is different from the

well-known supersymmetric decoupling, in which many fields are given positive definite

supersymmetric squared masses at some scale m2
susy ≫ m2

3/2. In contrast, the ‘decoupling

by no-scale’ developed in this paper does not require large (or small) supersymmetric

masses for any of the fields, but is rather ensured by the very particular no-scale structure.

For approximate no-scale de Sitter vacua, the (classical) vacuum energy is hierarchically

smaller than the generic supergravity expectation,

〈V 〉 ∼ m2
3/2M

2
Plǫ

2 ≪ m2
3/2M

2
Pl . (5.4)

Since the no-scale form of the Kähler potential often appears in the four dimensional

effective theories derived from dimensional reduction of string theory, we expect that the

general scenario presented in this paper is relevant for constructing metastable de Sitter

vacua in string theory. In section 4.3, we considered the embedding of this scenario in

the type IIB ‘landscape’ of flux compactifications, in which fine-tuning of three-form fluxes

can ensure that ǫ ≪ 1. We derived a geometric condition on the complex structure field

space geometry for the realisation of the minimal version of this scenario with O(1) fine-

tuning. We expect this condition to be satisfied for generic Calabi-Yau compactifications,

but we note that it fails in toroidal orientifold compactifications in which the complex

structure moduli space is a symmetric space. However, also in this case metastable de

Sitter minima can be found, and in section 4.4 we explicitly constructed such solutions in

STU-supergravity models.

The simplest examples of the mechanism for obtaining metastable de Sitter vacua

presented in this paper have two obvious short-comings. First, if the single no-scale mod-

ulus considered in this paper is stabilised by a single non-perturbative effect with δW =
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A exp (−aT ), then metastable de Sitter solutions are only obtainable for 1 < aRe(T ) <
√
2

and 0.639ǫ2 < |A/W0| < 0.680ǫ2. While gaugino condensation on large rank gauge groups

gives a ≪ 1, so that V ∼ (Re(T ))3/2 ≫ 1 and m3/2 ≪ MPl are consistently achievable, it

remains to be established that the compactification volumes can be made large enough to

neglect all α′ corrections. Moreover, A is in general a modulus dependent function, and we

have not fully assessed the severity of the constraint for |A/W0| in string theory models.

Second, the mass of the lightest two moduli is comparable to the (classical) vacuum Hubble

parameter, and this may complicate the construction of viable cosmologies for these vacua.

However, while in this paper we have considered single no-scale modulus theories and

in particular focused on the special case in which the no-scale symmetry is broken by a

single non-perturbative superpotential correction, we know of no reason why the general

mechanism presented in this paper should not be extendable to more general theories

in which these shortcomings may be overcome. For example, it will be interesting to

embed this mechanism in the Large Volume Scenario, which has a multiple moduli no-

scale sector and in which the no-scale symmetry is broken by perturbative α′ corrections

and non-perturbative superpotential corrections, so that exponentially large volumes are

obtainable [6, 7]. There are good reasons to believe that such embeddings can successfully

be achieved: small Kähler deformations of no-scale models give a positive diagonal term

in the Hessian along the sGoldstino direction [41], and the approximately no-scale ‘Kähler

uplifting’ scenarios such as those outlined in [10, 42, 43] exhibit a similar mass scaling for

the no-scale field (quadratic in the perturbation) as in our solutions (5.3).

In sum, we anticipate that the methods and results presented in this paper can be

usefully applied to find fully controlled, simple de Sitter vacua in string theory. The

explicit construction of such vacua is an important problem for the future.
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A Useful formulae

We often use subscripts to indicate scalar derivatives, for example ∂aV ≡ Va. The potential

and its derivatives at a critical point with Va = 0 are [34]:

V = eK
(

FaF̄
a − 3|W |2

)

, (A.1)
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Va = eK
(

(DaDbW )F̄ b − 2FaW
)

= eK
(

ZabF̄
b − 2FaW

)

, (A.2)

Vab = eK
(

(DaDbDcW )F̄ c − (DaDbW )W
)

= eK
(

UabcF̄
c − ZabW

)

, (A.3)

Vab̄ = eK
(

−Rab̄cd̄F̄
cF d̄ +Kab̄FcF̄

c − FaF̄b̄ + (DaDcW )(D̄b̄D̄
cW )− 2Kab̄|W |2

= eK
(

−Rab̄cd̄F̄
cF d̄ +Kab̄FcF̄

c − FaF̄b̄ + (ZZ̄)ab̄ − 2Kab̄|W |2 , (A.4)

where we used the definitions Fa = DaW , Zab = DaFb and Uabc = DaZbc and Da is the

Kähler and diffeomorphism covariant derivative such that for example Zab = ∂aFb+KaFb−
Γc
abFc.

The derivatives of our Kähler potential with respect to the no-scale modulus are:

K = −3 ln(T + T ) + K̃(XiX
i
) , (A.5)

1

3
KT =

1

KT
, (A.6)

KTT =
1

3
KT K̄T , (A.7)

KTKTT =
3

2
KTTT , (A.8)

ΓT
TT =

2

3
KT , (A.9)

RTTTT =
2

3
KTTKTT . (A.10)

In our conventions the Kähler potential is symmetric under T and T exchange so that

derivatives with respect to T and T are the same, for example KTT = KTT = KTT .

Straightforward calculations lead to the following covariant derivatives:

W = W0(X
i) + δW (Xi, T ) , (A.11)

FT = KTW + δWT , (A.12)

Fi = KiW +Wi , (A.13)

ZTT = δWTT +
4

3
KT δWT + 2KTTW , (A.14)

ZT i = δWT i +KiδWT +KTFi , (A.15)

Zij = Wij +KiFj +KjFi − Γk
ijFk + (Kij −KiKj)W , (A.16)

UTTT = KTTTW + δWTTT +KT δWTT + 2KTT δWT , (A.17)

UTT i = 2KTTFi + ∂2
TTFi +

4

3
KT∂TFi

= 2KTT (KiW +Wi) +KiδWTT + δWTT i +
4

3
KT (KiδWT + δWT i) , (A.18)

UijT = (∂T +KT )Zij = KTZij + δWT ij +KiδWTj +KjδWT i − Γk
ijδWTk

+ (Kij +KiKj − Γk
ijKk)δWT . (A.19)
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A.1 STU-model

The requirement M2
L2−

> 0 for the squared masses of (4.38) determines the upper bound

aT0 < aT⋆ with,

aT⋆ =
1

12



−12 +
√

3 (38 + c) +

[

228− 3c+ 576

√

3

38 + c

] 1
2



 ≈ 1.383 , (A.20)

c =
3

√

53477− 108
√
105389 +

3

√

53477 + 108
√
105389 .
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