
Page | 1
©GRCTC

January 2017

A Solution for the Problems of Translation and
Transparency in Smart Contracts

Firas Al Khalil
Marcello Ceci
Leona O’Brien &
Tom Butler

February 2017

Page | 2
©GRCTC

Table of Contents

Abstract .. 3

1 Introduction .. 3

2 On Distributed Ledger Technologies... 5

Programming DLTs ... 5

3 The Translation Problem ... 6

4 The Problem of Trust and Transparency in Smart Contracts.. 8

5 Conclusions ... 11

References ... 12

About the Authors

Dr Firas Al Khalil is a post-
doctoral researcher in semantic
technologies at the GRC
Technology Centre

 Dr Tom Butler is Professor in
Business Information Systems at
University College Cork and GRC
Technology Centre Principal
Investigator.

Dr Marcello Ceci is a post-
doctoral researcher in legal
informatics and semantic
technologies at the GRC
Technology Centre

Leona O’Brien is Senior Legal
Researcher at the GRC
Technology Centre

Page | 3
©GRCTC

Abstract

There is increasing interest in Distributed
Ledger Technologies (DLT) across industry
sectors. This is also true in the financial
industry as established firms and FinTech
companies seek to leverage the potentially
disruptive nature of DLT to automate
business processes, thereby reducing
costs, and making products and services
more information intensive, thereby
improving business effectiveness and
efficiency. Smart contracts are at the core
of this potential innovation of DLT. Several
implementations of distributed ledgers
have been proposed, and different
languages for the development of smart
contracts have been suggested. However,
as with the dot-com period, technologists
are in the driving seat, which increases the
likelihood of failed business
implementations. We argue that too much
attention is being given to the
programming aspect of creating smart
contracts by computer scientists, as
opposed to upstream activities performed
by lawyers, business practitioners, and
regulators. This position paper argues that
more attention should be paid to bridging
the yawning gap between a smart
contract’s legal semantics, business
semantics and regulatory semantics and its
denotational semantics1 and ensuring
provenance, while guaranteeing the
empirical fidelity of the operational
semantics2. Simply put, it is the lawyers
and financial professionals and not
computer programmers who should be
creating smart contracts.

Building on over 3 years of research at the
GRC Technology Centre, we propose

1 Denotational semantics are concerned with the
meaning of a computer program as a function that
maps input into output.

necessary and sufficient requirements for
a standards-based, lawyer-friendly,
human- and machine-readable contract
authoring language. This can bridge the
‘translation’ gap and serve as a common,
specification language for programmers,
counterparties to a contract, and provide a
means to ensure regulatory transparency
and oversight.

1 Introduction

Distributed Ledger Technology (DLT)
emerged due to the development of and
relative success of Bitcoin [1]. Accordingly,
it has sparked much interest in different
communities — from academia to a variety
of industry sectors, and from technological
and financial spheres to philosophical,
legal, and regulatory domains [2,3].

The enthusiasm generated around DLTs is
indicative of the potential that exists and
awaits to be realized. However, as with
previous much-touted disruptive
technologies, the business benefits of DLT
may be elusive. While it is undeniable that
the benefits to the financial industry of
cryptocurrencies, such as Bitcoin, may be
obvious, there may be other compelling
business use cases of DLTs in the financial
industry.

Which brings us to smart contracts. This
concept was first envisioned by Nick
Szabo [4 as far back as 1995, so is claimed.
However, the advent of DLTs may make
smart contracts a viable business
proposition. Smart contracts have been
defined in several ways that vary in their
faithfulness to the original concept;
however, some definitions merely add to

2 Operational semantics provide a formal
description of the behaviour a computer program.

Page | 4
©GRCTC

the confusion that exists around the
concept.

Clack et al. [21] define “A smart contract
[as] an agreement whose execution is both
automatable and enforceable.
Automatable by computer, although some
parts may require human input and
control. Enforceable by either legal
enforcement of rights and obligations or
tamper-proof execution.”

Returning to the Rough Ground and to the
seminal concept proposed by Nick Szabo,
“[s]mart contracts […] facilitate all steps of
the contracting process”; Szabo correctly
argues that search, negotiation,
commitment, performance, and
adjudication activities are all parts of the
contracting process and should be
represented [5]. However, we add
regulatory transparency and oversight to
this list of essential features and activities.

As a cryptocurrency technology platform,
Bitcoin is capable of executing smart
contracts, but with a lot of restrictions due
to its limited scripting language. This
limitation, along with the observation that
cryptocurrencies can be viewed as “just
another kind of smart contracts”, led
eventually to the development of
Ethereum [6]. Ethereum is a decentralized
platform where smart contracts are ‘first-
class citizens’; the DLT in Ethereum is
equipped with a Turing complete
programming language that enables
developers to write ‘arbitrary’ contracts in
code. More recently, platforms built on top
of Bitcoin and supporting a Turing-
complete smart contracts language were
developed (e.g. Rootstock [7]), and maybe
more interestingly, platforms for smart
contracts with non-Turing-complete

3 A financial instrument is a contract between
counter parties. Contracts are drafted using legal
prose. However, contracts also include business
terms such as shares, bonds, interest rates and so

languages were also developed, i.e. τ-
Chain [8].

It is not a surprise that traditional
programmers, if one may call them so, are
unable to carry out “economical
thinking” [9]; indeed, they are also, in our
experience, ill-equipped to capture legal or
regulatory thinking. The inverse can be said
of subject-matter experts, i.e. business
analysts and lawyers — they are most
unlikely to carry out “computational
thinking”.

How then are we to effect the
development of smart contracts in large
financial institutions, where, traditionally,
contracts are drafted by legal subject-
matter experts? More importantly, how
can we reason on the legality of the smart
contracts and the accuracy of their
operational semantics, either manually by
a lawyer, or automatically using a tool for
compliance checking? A failure to answer
these questions inevitably contributes to
the skepticism of the financial industry –
which has been put in the rack by
regulators since 2008 – about the future of
smart contracts. To be sure DLTs are
attractive for many reasons, but industry
and the regulators may be reluctant to
adopt this new paradigm.

In this position paper, we argue that smart
contracts need to be transparent to
stakeholders and have empirical fidelity
with the hard copy versions on which they
are based. There is need for clear
provenance between the operational
semantics of the smart contract executing
on a DLT, its corresponding denotational
semantics, and the legal, business and
regulatory semantics3 when drafted by a
lawyer. This is a fundamental example of

on. In addition, contracts are subject to regulatory
supervision. Thus, a smart contract will at base
contain legal and business semantics, but may also
include regulatory semantics.

Page | 5
©GRCTC

the problem of requirements translation
for which computer scientists do not
address.

The rest of this paper is organised as
follows: Section 2 illustrates the diversity
of thought on distributed ledger
technologies; Section 3 discusses the
apparent irreconcilability of the languages
and world-views of programmers and
subject-matter experts; Section 4 develops
our theory on how can we build a bridge
that facilitates trust, from an institutional
perspective, in smart contracts; we then
offer concluding thoughts.

2 On Distributed Ledger
Technologies

The introduction of Bitcoin by Satoshi
Nakamoto [1] divided the financial industry
from the outset. Supporters were
extremely enthusiastic about it, to the
point where they claimed that Bitcoin is
the “next big thing”, and detractors were
extremely skeptical about the value of
cryptocurrency and its underlying
technology.

The core innovation of Bitcoin is not the
cryptocurrency itself; it is the concept of a
shared ledger. This proved to be a very
powerful concept that generated the DLT
paradigm and saw the emergence of rivals
to Bitcoin. The interested reader can refer
to Tschorsch and Scheuermann [10] for an
excellent technical survey on DLTs. A brief
consideration of the currently available
DLT platforms inspired by Bitcoin provides
good insights into the rising popularity of
the technology: for instance,
coinmarketcap.com is a site that tracks
market capitalisation of different
cryptocurrencies and lists 719 platforms.

Programming DLTs
Bitcoin includes a stack-based scripting
language that allows computer scientists

and software developers to define the
conditions for Bitcoin expenditures (e.g.
requiring multiple signatures). This revived
the hope that smart contracts could find a
suitable platform technology. However,
Bitcoin’s scripting language is purposefully
not Turing-complete, which ultimately
meant that it is limited in expressivity. In
the following, we will take a look at four
different platforms that are meant to
overcome Bitcoin’s scripting limitations,
illustrating the different technical choices
one can make, regarding the development
of smart contracts and their operational
semantics.

The first platform we are going to look at,
which is currently almost synonymous with
the term ‘smart contract’ is Ethereum [6].
Ethereum was proposed as a distributed
platform independent of – yet very similar
to – Bitcoin. To create distributed trust-less
consensus and solve the double-spending
problem, Ethereum uses proof-of-work,
just like Bitcoin. The Ethereum Virtual
Machine (EVM) runs a Turing-complete
stack based language, which opens the
doors to a hypothetically unlimited
number of potential applications.
However, developers are not forced to use
the EVM’s opcode to write smart
contracts. Indeed, they can use Solidity or
Serpent, which are high-level
programming languages, similar to
JavaScript or python, which can compile to
EVM byte code.

Nxt is a second technology platform
currently in use and is one of the earliest
smart contract platforms. Unlike Bitcoin
and Ethereum, Nxt uses proof-of-stake to
achieve consensus and solve the double-
spending problem. Moreover, Nxt does not
provide a scripting language to smart
contract developers; instead, it provides a
RESTful API exposing a set of primitive
operations (like spending, storing strings,

Page | 6
©GRCTC

sending messages, etc.) that developers
can invoke.

The third platform in use is called
Rootstock [7]. Unlike Ethereum and Nxt,
Rootstock was developed to complement
Bitcoin (as a sidechain [11]). It provides its
own Turing-complete virtual machine (the
RVM) to enable smart contracts.

The fourth and final platform we will
examine is τ−Chain [8]. The designers of
this technology platform argue that Turing-
completeness is not necessary for
distributed ledgers, because with Turing-
completeness comes undecidability. What
this means is that smart contracts can go in
an infinite loop and the DLT network will
never be able to predict this behaviour.

Ethereum overcomes the problem of
undecidability by forcing the caller of the
smart contract to provide ‘gas’ with the
transaction (bought with ether,
Ethereum’s own cryptocurrency); every
instruction on the EVM consumes a
predefined amount of ‘gas’, and they are
non-refundable, i.e. if the ‘gas’ is totally
consumed and the smart contract didn’t
finish execution, the ‘gas’ is never returned
to the caller.

However, Asor [8] proposes the use of an
ontology of rules [12], along with a
reasoner, to enable computations on the
network. Authors of smart contracts would
write them in a totally functional
programming language, like Idris [13],
which will be ultimately translated into an
ontology. This approach will not only make
computations decidable, but it also allows
the assertion of properties of smart
contracts that were impossible with
Turing-complete languages. For example, if
the contract connects to the Internet or
not, or if the contract fulfills some
interfaces/requirements/etc.

The interested reader can refer to the
survey by Seijas et al. [14] for more
information on scripting languages for
distributed ledgers. The aforementioned
platforms illustrate some of the variations
that exist in the distributed ledger
technology’s ecosystem. These platforms
can differ not only in the tooling and the
language they expose for smart contract
writing, but also in the paradigms that
govern them. The development of smart
contracts thus requires a deep
understanding of the target platform, to
say nothing of the semantics of the legal,
business, regulatory and denotational
aspects of such contracts. In the following
section, we will examine what hinders the
adoption of such a technology by the
financial industry.

3 The Translation Problem

This section deals with extant approaches
to enabling software developers to author
smart contracts, through specific tools or
by creating abstractions. The point being
made here is that the gap between the
lawyer’s semantics and the software
programmer’s operational semantics may
bring unacceptable operational and
regulatory risks.

Delmolino et al. [9] recently reported on
their experiences in teaching smart
contract programming, using Ethereum, to
undergraduate students at the University
of Maryland. The authors concluded that
smart contract programming requires an
“economic thinking” perspective that
traditional programmers may not have
acquired. Indeed, students repeatedly
made (a) logical errors that ultimately lead
to money leaks, (b) failed to use
cryptographic primitives to secure the
contracts from attackers, (c) failed to
account for the incentives of contract
callers, and (d) made errors related to
Ethereum.

Page | 7
©GRCTC

This observation lead to the development
of a Master’s thesis by Pettersson and
Edström [15], and their objective was to
help programmers to develop more
accurate and risk-free smart contracts,
although they would not have put it thus.
Nevertheless, Pettersson and Edström
aimed to prevent 3 kinds of errors
developers make: (1) failure to account for
unexpected states; (2) failure to use
cryptography; and (3) overflowing the
EVM’s stack. They proposed the use of a
functional programming language called
Idris to help remediate the risks. In this
scheme of things, Pettersson and Edström
developed a code generator that
transforms code produced by an Idris
compiler to Serpent code, which can be
subsequently compiled into EVM
bytecode. This process does not, however,
solve the translation problem.

In a different, yet related work, Luu et
al. [16] noted that a class of security-
related bugs in smart contracts are due to
the gaps in the understanding of the
distributed semantics of the underlying
platform. Noting this problem aside, a
solution is required.

Another interesting work is that of Florian
et al. [17] who propose the use of logic-
based smart contracts. They demonstrated
that this approach can complement
approaches where smart contracts are
drafted in procedural code; where
contracts are subject to negotiation,
formation, storage, notarization,
enforcement, monitoring and where
dispute resolution is required.

In articulating a different approach, García-
Bañuelos et al. [18] demonstrated how
contracts expressed in the OMG’s Business
Process Modelling Notation (BPMN) can be
mapped into executable smart contracts
on Ethereum. This development lead Hull
et al. [19] to propose a ‘Business
Collaboration Language’ (BCL) for shared

ledgers. Indeed, BCL can be thought of as
the equivalent of SQL for relational
databases, albeit targeting shared ledgers,
regardless of implementation-specific
details.

As far as we know, the only works that
consider the issue of authoring smart
contracts from the subject-matter expert’s
perspective are those proposed by Frantz
and Nowostawski [20] and Clack et al. [21].

Frantz and Nowostawski [20] propose a
semi-automated method for the
translation of human readable contracts to
smart contracts on Ethereum. The authors
developed a domain specific language for
contract modelling, where rules expressed
in plain English, and then translated into
the Solidity vocabulary. However, this
solution is anchored on Ethereum, and it is
not clear how extensible or adaptable it is.
In addition, it does not incorporate the
semantics of the legal and business
language a lawyer would use to draft the
denotational semantics.

Clack et al. [21] identify two semantic
dimensions to smart contracts:

i. Operational semantics are
concerned with the execution of
the contract on a specific platform.

ii. Denotational semantics attempt to
capture and represent the “legal
meaning” of the contract, as
understood by a lawyer.

Clack et al. propose the use of smart
contract templates, based on the idea of
Ricardian Contracts [22, 23]. A Ricardian
Contract is a digitally signed triple ⟨P,M,
C⟩ , where P is the legal prose (i.e. the legal,
business and regulatory semantics) from
which the denotational semantics may be
captured and represented, M is a map
(key-value pairs) of parameters used in P
and C, and where C is the platform specific

Page | 8
©GRCTC

code that expresses operational semantics.
The translation problem arises as
computer scientists view the
representation of legal and business prose
and their semantics as being
unproblematic.

While the use of smart contract templates,
based on Ricardian Contracts, appears like
a move in the right direction, we argue that
prose should not be directly tied to code
for the following reasons:

 While the semantics of legal and
business language can be
expressed as a set of deontic
defeasible rules, the code is rather
procedural. The order of the
instructions in the procedure does
not reflect the natural order of the
contract clauses expressed in
natural language [17].

 The life-cycle of legal and business
prose is independent from the life-
cycle of computer code. Take, for
example, a lawyer might describe
the terms of a contract in prose and
never return to it, while a
developer will, most likely, iterate
through different implementations
and variations (e.g. bug fixes).

 There does not exist a single smart
contract platform. This ultimately
means that different parameters
(key-value pairs of M) will be
needed for different platforms. For
example, several works (e.g. [24,
25, 26]) describe data feed systems
that enable smart contracts to
consume data feeds from outside
the distributed ledger (e.g. a stock
market index). Thus, while the
notion of an external feed might be
familiar to a lawyer, its technical
details, and thus the choices
related to the adoption of one
method over another, are beyond
his interest or control.

In the following section, we will identify
the key issues regarding the adoption and
use of smart contracts. We then propose a
solution to this problem.

4 The Problem of Trust and
Transparency in Smart Contracts

Section 2 demonstrated, through a non-
exhaustive list of examples, how
distributed ledgers can differ
technologically. This simple fact requires a
software developer to possess a high
degree of technological knowledge and
skills in order to draft smart contracts. We
also argued above that the current focus is
on developing technical tools and
infrastructure aimed at facilitating the
machine implementation of smart
contracts. However, there is a major lacuna
in all this: that is the upstream translation
or mapping of legal and business semantics
to denotational semantics.

We agree with Clack et al. [21] on the need
to address both operational and
denotational semantics in smart contracts.
However, we argue that trust, by all
stakeholders, including regulators, in smart
contracts can only stem from the ability of
lawyers in financial institutions to
understand, express, and ultimately
validate the denotational semantics of a
contract. However, we disagree with the
assumptions of Clack et al. on the
suitability of languages proposed to
express the legal and business semantics.
Here we refer to the assumption on the
correspondence between a “legal
language” and a “technical language”. We
argue currently no correspondence can be
achieved and that a lawyer can neither
understand, nor predict the behaviour of,
the smart contract code, as there is no
intermediate language that bridges the
gap.

Page | 9
©GRCTC

What is missing from the extant research
literature, to say nothing of practitioner
commentary, is the realisation that the
involvement of a lawyer, especially in the
heavily-regulated financial industry, in the
authoring of contracts, not only smart
contracts, is paramount. Why? A lawyer’s
knowledge of the explicit and implicit
rights and obligations, counterparties,
stakeholders, schedules and penalties, and
regulations governing a financial contract
has to be represented in the denotational
and operational semantics of a smart
contract

There are two scenarios where the
lawyer’s involvement in the process of
smart contract creation and execution is
unavoidable:

i. When the contract is partly fulfilled
through code, because the lawyer
can only validate its textual
version [17], i.e. the prose.

ii. When assessing the compliance of
the contract with regulations, from
the point of view of both the legal
requirements introduced by the
regulation (e.g. on financial
activities, anti-money laundering,
or consumer protection), and of
the effects that these regulations
automatically bind to the contract
(naturalia negotii [27]).

Therefore, we argue that smart contracts
should be authored by both the lawyer and
the developer. It is also clear that the
interaction and communication between
both actors should be governed by a
common language. This should not be the
controlled natural language of the
computer scientist. Rather, the lawyer
should author contracts in a controlled
legal natural language (LNL) that is logical,
clear, unambiguous, and comprehensible
by a computer programmer, while being as

close as possible to representing the
denotational semantics. It could then be
employed by the computer programmer as
a specification guiding the technical
implementation. This common controlled
legal natural language should have the
following properties:

 It should not alienate the lawyer;
i.e. it should be as close as possible
to the language of contracts s/he is
used to.

 It should be expressive enough to
allow the authoring of smart and
“not-so-smart” contracts.

 It should possess an unambiguous
grammar- the LNL should be
mappable to a logical formalism,
which will facilitate compliance
checking with existing regulations.

 The concepts and actions described
in the contract, i.e. the vocabulary,
along with the clauses of the
contract, i.e. the rules, should be
shareable across the network,
which is important for both
discoverability and negotiation –
two defining aspects of smart
contracts – by human and
autonomous agents.

 It should be able to represent the
actions coded in the smart
contract [21], the duties and
powers arising from the
contract [20], and the meta-rules
governing it (e.g. regulation on
financial activities, anti-money
laundering or consumer
protection).

In a previous work [28], we describe
Mercury, a language whose purpose is to
capture and represent regulations for
compliance checking, among other use
cases. We also developed a
methodology [29] to capture the legal
knowledge thus expressed and translate it
to OWL [30]. Mercury is based on the

Page | 10
©GRCTC

Semantics of Business Vocabulary and
Business Rules [31] (SBVR) specification,
but the language of smart contracts will
require, we believe, a further extension of
SBVR e.g. to capture the powers arising
from the contract. The SBVR-based LNL
should be mapped to a logical formalism,
e.g. OWL, where reasoning on compliance
is feasible.

In a recently published technical report,
English et al. [32] investigated how
distributed ledger technologies and the
Semantic Web can interact with one
another. Indeed, a blockchain can provide
secure resource identifiers (by ensuring
authenticity, human-readability, and
decentralisation), and ontologies based on
OWL can provide a unified way to
understand blockchain concepts between
humans, and exposing blockchain data
according to an ontology enables the
interlinking with other linked data and to
perform reasoning.

Our proposal improves transparency,
which is one of the major qualities of
distributed ledgers, and which is also a
determining factor of the trust-less trust in
a blockchain network. But problems arise
when it comes to trust in the fact that the
contract, as written by the lawyer, was
correctly translated into code: that is, the
trust whether the operational semantics
faithfully represent the denotational
semantics and whether these in turn
capture the meaning of the legal, business
and regulatory semantics.

One may argue that trust can only be
guaranteed if there is a mechanism 𝒢 that
enables code to be generated from prose
expressed in a LNL and/or a mechanism 𝒞,
potentially the inverse of 𝒢, which proves
the correspondence of the code to the LNL
and the contract prose. However, a closer
inspection of the literature illustrates that:

a. There is evidence that 𝒢 and 𝒞 can
exist, especially from [17] and τ-
Chain [8]. Indeed, if the vision of τ-
Chain is possible, then there is an
opportunity to go directly from
legal and business semantics to
denotational semantics and then to
operational semantics using our
approach. However, this may imply
the restriction of said trust to one
specific distributed ledger
technology.

b. It is not really clear, at least for us,
if 𝒢 and 𝒞 exist for shared ledgers
that use stack-based languages.
This is an open question that
deserves closer attention, and can
have one of two clear answers:

i. It is possible or practically
feasible, which is great
news for everyone, or

ii. It is impossible or practically
infeasible. Then it is only
reasonable to ask: is the
existence of 𝒢 and 𝒞 a
prerequisite for the
establishment of said trust?
We conjecture that it is not,
for two reasons:

c. The implementation processes of
existing financial contracts in the
form of software is already opaque,
especially to the consumer, and our
proposed approach would only
facilitate transparency.

d. Trust can be assured through the
establishment of reputation: the
better you are in effectively
transforming your specification to
code, the more reputable you are;
the more reputable you are, the
more trustworthy you are
perceived to be.

The next and final section provides
concluding elaborations of our thesis.

Page | 11
©GRCTC

5 Conclusions

In this position paper, we reasoned that
regulatory, legal and counterparty trust in
smart contracts can be achieved. It is true
that cryptographic guarantees are
enablers of, and integral to, trust in
distributed ledger technology (DLT), but
we argue that another kind of trust is
needed — one that is established by a
process that involves lawyers expressing
the legal and business semantics of
contracts using the precepts of ISO
common logic. We have in our Mercury
platform demonstrated practically how
this can be achieved when it comes to
expressing regulatory semantics in a
controlled regulatory natural language
(RNL) using deontic and alethic logic.

Above we demonstrated how DLTs can
vary significantly at a technical level. This
has led to the development of tools and
abstractions to help developers to
program smart contracts. All this is
essential for a functioning technological
ecosystem. However, we also illustrated
that extant research does not take into
account the issue of legal, business or
regulatory semantics that govern

compliance with existing and ever
increasing regulations.

To that end, we proposed the criteria
required for a natural language to express
smart contracts, which has empirical
fidelity with the legal and business prose or
semantics. These criteria have
transparency at their core. We also point
to a practical and achievable solution to
the problem of translating the prose of a
contract and expressing legal, business and
regulatory semantics using an approach
based on the Object Management Group’s
SBVR specification, which is rooted in
common logic. The output of this solution
sees the legal semantics, and related
business and regulatory semantics
expressed in a language—the controlled
Legal Natural Language—that is both
human and machine readable.

Figure 1 presents a model of our schema.
It is technologically feasible. This is, we
believe, the missing piece, the key to
solving the problems of transparency, trust
and translation in smart contracts. Our
Mercury-based SmaRT Protocol is, in
essence, the Rosetta Stone that will ensure

complete trust in autonomous or semi-

autonomous smart contracts.

Figure 1 A Solution for the Translation and Transparency Problems with Smart Contracts

Page | 12
©GRCTC

References

[1]S. Nakamoto, “Bitcoin: A peer-to-peer
electronic cash system,” 2008.

[2]W. Reijers, F. O’Brolcháin, and P. Haynes,
“Governance in blockchain technologies &
social contract theories,” Ledger, vol. 1, no. 0,
pp. 134–151, 2016.

[3]M. Swan, “Blockchain temporality: Smart
contract time specifiability with blocktime,” in
Rule technologies. research, tools, and
applications: 10th international symposium,
ruleML 2016, stony brook, nY, uSA, july 6-9,
2016. proceedings, J. J. Alferes, L. Bertossi, G.
Governatori, P. Fodor, and D. Roman, Eds.
Cham: Springer International Publishing, 2016,
pp. 184–196.

[4]N. Szabo, “The Idea of Smart Contracts.”
https://web.archive.org/web/2016083107094
2/http://szabo.best.vwh.net/smart_contracts
_idea.html, 1997.

[5]N. Szabo, “Formalizing and Securing
Relationships on Public Networks.”
https://web.archive.org/web/2005021717262
6/http://www.firstmonday.dk/ISSUES/issue2_
9/szabo/index.html, 1997.

[6] G. Wood, “Ethereum: A secure
decentralised generalised transaction ledger,”
Ethereum Project Yellow Paper, vol. 151,
2014.

[7] S. Demian Lerner, “Rootstock. bitcoin
powered smart contracts. white paper.” Nov.
2015.

[8] O. Asor, “About Tau-Chain,” ArXiv e-prints,
Feb. 2015.

[9] K. Delmolino, M. Arnett, A. E. Kosba, A.
Miller, and E. Shi, “Step by step towards
creating a safe smart contract: Lessons and
insights from a cryptocurrency lab,” in
Financial cryptography and data security - FC
2016 international workshops, BITCOIN,
VOTING, and WAHC, Christ Church, Barbados,
February 26, 2016, revised selected papers,
2016, pp. 79–94.

[10]F. Tschorsch and B. Scheuermann,
“Bitcoin and beyond: A technical survey on

decentralized digital currencies,” IEEE
Communications Surveys and Tutorials, vol.
18, no. 3, pp. 2084–2123, 2016.

[11]S. Demian Lerner, “Drivechains,
sidechains, and 2-way hybrid peg designs,”
Jan. 2016.

[12]“OWL 2 Web Ontology Language
Document Overview (Second Edition).”
https://www.w3.org/TR/2012/REC-owl2-
overview-20121211/.

[13]E. BRADY, “Idris, a general-purpose
dependently typed programming language:
Design and implementation,” Journal of
Functional Programming, vol. 23, no. 5, pp.
552–593, Sep 2013.

[14]P. L. Seijas, S. Thompson, and D.
McAdams, “Scripting smart contracts for
distributed ledger technology.” Cryptology
ePrint Archive, Report 2016/1156, 2016.

[15]J. Pettersson and R. Edström, “Safer smart
contracts through type-driven development,”
PhD thesis, Master’s thesis, Dept. of CS&E,
Chalmers University of Technology &
University of Gothenburg, Sweden, 2015.

[16]L. Luu, D.-H. Chu, H. Olickel, P. Saxena,
and A. Hobor, “Making smart contracts
smarter,” in Proceedings of the 2016 aCM
sIGSAC conference on computer and
communications security, 2016, pp. 254–269.

[17]F. Idelberger, G. Governatori, R. Riveret,
and G. Sartor, “Evaluation of logic-based
smart contracts for blockchain systems,” in
Rule technologies. research, tools, and
applications: 10th international symposium,
ruleML 2016, stony brook, nY, uSA, july 6-9,
2016. proceedings, J. J. Alferes, L. Bertossi, G.
Governatori, P. Fodor, and D. Roman, Eds.
Cham: Springer International Publishing, 2016,
pp. 167–183.

[18]L. García-Bañuelos, A. Ponomarev, M.
Dumas, and I. Weber, “Optimized Execution of
Business Processes on Blockchain,” ArXiv e-
prints, Dec. 2016.

[19]R. Hull, V. S. Batra, Y.-M. Chen, A.
Deutsch, F. F. T. Heath III, and V. Vianu,
“Towards a shared ledger business

https://web.archive.org/web/20160831070942/http:/szabo.best.vwh.net/smart_contracts_idea.html
https://web.archive.org/web/20160831070942/http:/szabo.best.vwh.net/smart_contracts_idea.html
https://web.archive.org/web/20160831070942/http:/szabo.best.vwh.net/smart_contracts_idea.html
https://web.archive.org/web/20050217172626/http:/www.firstmonday.dk/ISSUES/issue2_9/szabo/index.html
https://web.archive.org/web/20050217172626/http:/www.firstmonday.dk/ISSUES/issue2_9/szabo/index.html
https://web.archive.org/web/20050217172626/http:/www.firstmonday.dk/ISSUES/issue2_9/szabo/index.html
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/

Page | 13
©GRCTC

collaboration language based on data-aware
processes,” in Service-oriented computing:
14th international conference, iCSOC 2016,
banff, aB, canada, october 10-13, 2016,
proceedings, Q. Z. Sheng, E. Stroulia, S. Tata,
and S. Bhiri, Eds. Cham: Springer International
Publishing, 2016, pp. 18–36.

[20]C. K. Frantz and M. Nowostawski, “From
institutions to code: Towards automated
generation of smart contracts,” in 2016 iEEE
1st international workshops on foundations
and applications of self* systems (fAS*W),
2016, pp. 210–215.

[21]C. D. Clack, V. A. Bakshi, and L. Braine,
“Smart Contract Templates: essential
requirements and design options,” ArXiv e-
prints, Dec. 2016.

[22]I. Grigg, “The ricardian contract,” in
Proceedings. first iEEE international workshop
on electronic contracting, 2004., 2004, pp.
25–31.

[23]I. Grigg, “On the intersection of Ricardian
and Smart Contracts.”
http://iang.org/papers/intersection_ricardian
_smart.html, Feb-2017.

[24]F. Zhang, E. Cecchetti, K. Croman, A. Juels,
and E. Shi, “Town crier: An authenticated data
feed for smart contracts,” in Proceedings of
the 2016 aCM sIGSAC conference on
computer and communications security, 2016,
pp. 270–282.

[25]“PriceFeed smart contract.”
http://feed.ether.camp/.

[26]“Oraclize: ‘The provably honest oracle
service’.” http://www.oraclize.it/.

[27]A. Frignani, “Some Basic Differences
between the Common Law and the Civil Law
Approach.”
http://www.jus.unitn.it/CARDOZO/Review/Co
mparative/Frignani-1997/Washingt.htm,
1996.

[28]M. Ceci, F. Al Khalil, and L. O’Brien,
“Making Sense of Regulations with SBVR,” in
RuleML 2016 challenge, doctoral consortium
and industry track hosted by the 10th

international web rule symposium (ruleML
2016), 2016.

[29]E. Abi-Lahoud, L. O’Brien, and T. Butler,
“On the road to regulatory ontologies,” in AI
approaches to the complexity of legal
systems: AICOL 2013 international workshops,
aICOL-iV@IVR, belo horizonte, brazil, july 21-
27, 2013 and aICOL-v@SINTELNET-jURIX,
bologna, italy, december 11, 2013, revised
selected papers, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 188–201.

[30]F. Al Khalil, M. Ceci, K. Yapa, and L.
O’Brien, “SBVR to oWL 2 mapping in the
domain of legal rules,” in Rule technologies.
research, tools, and applications: 10th
international symposium, ruleML 2016, stony
brook, nY, uSA, july 6-9, 2016. proceedings,
Springer International Publishing, 2016, pp.
258–266.

[31]“Semantics of Business Vocabulary and
Business Rules (SBVR) Version 1.3.”
http://www.omg.org/spec/SBVR/1.3/PDF;
Object Management Group, May-2015.

[32]M. English, S. Auer, and J. Domingue,
“Block chain technologies & the semantic
web: A framework for symbiotic
development,” Technical report, University of
Bonn, Germany, 2016.

http://iang.org/papers/intersection_ricardian_smart.html
http://iang.org/papers/intersection_ricardian_smart.html
http://feed.ether.camp/
http://www.oraclize.it/
http://www.jus.unitn.it/CARDOZO/Review/Comparative/Frignani-1997/Washingt.htm
http://www.jus.unitn.it/CARDOZO/Review/Comparative/Frignani-1997/Washingt.htm
http://www.omg.org/spec/SBVR/1.3/PDF

