

Logic Functions and Equations
Examples and Exercises

Bernd Steinbach · Christian Posthoff

Logic Functions and Equations

Examples and Exercises

Bernd Steinbach
Institute of Computer Science
Freiberg University of Technology
Bernhard-von-Cotta-Str. 2
09596 Freiberg
Germany
steinb@informatik.tu-freiberg.de

Christian Posthoff
University of the West Indies
Fac. Science & Agriculture
Cpy Augustine
Cpy Augustine Campus
Trinidad and Tobago
Christian.Posthoff@sta.uwi.edu

ISBN 978-1-4020-9594-8 e-ISBN 978-1-4020-9595-5

Library of Congress Control Number: 2008941076

© Springer Science + Business Media B.V. 2009

No part of this work may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, microfilming, recording or
otherwise, without the written permission from the Publisher, with the exception of any

material supplied specifically for the purpose of being entered and executed on a computer
system, for the exclusive use by the purchaser of the work.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

This book is dedicated
to all our past, present

and future students

Contents

List of Figures . ix

List of Tables . xiii

Preface . xv

Foreword . xvii

Introduction . xix

I Basic Software

1 XBOOLE MONITOR . 3
1. XBOOLE Preliminaries . 3
2. The XBOOLE Window Structure . 5
3. XBOOLE Menu . 8
4. Toolbars . 10
5. Command Line . 13
6. Problem Program . 16
7. XBOOLE Library . 19

2 BASICS AND LOGIC FUNCTIONS 23
1. Combinatorial Considerations in B and Bn 23
2. Logic Functions, Formulas and Expressions 25
3. Special Functions and Representations 30
4. Minimization . 35
5. Complete Systems of Functions . 37

vii

viii Contents

6. Partially Defined Functions . 39
7. Solutions . 40

3 LOGIC EQUATIONS . 61
1. Logic Equations . 61
2. Solutions . 68

4 BOOLEAN DIFFERENTIAL CALCULUS 75
1. Differentials . 75
2. Derivatives . 82
3. Applications . 88
4. Solutions . 96

5 THE SOLUTION OF LOGIC EQUATIONS 105
1. Tasks . 105
2. Solutions . 107

APPLICATIONS

6 LOGICS AND ARITHMETICS . 111
1. Propositional Logics . 111
2. Solutions . 120

7 COMBINATORIAL CIRCUITS . 135
1. The Circuit Model . 135
2. Analysis . 140
3. Design . 145
4. Test . 162
5. Solutions . 167

8 FINITE-STATE MACHINES . 195
1. The Circuit Model . 195
2. Analysis . 200
3. Design . 203
4. Solutions . 211

References . 227

Index . 229

List of Figures

1.1 Complete window structure of the XBOOLE Monitor 5
1.2 Example of the 4-fold view in the XBOOLE Monitor 7
1.3 Dialog window that allows the definition of a new

Boolean space . 10
1.4 Dialog window to specify basic properties of a new TVL . . 12
1.5 Dialog window to append ternary vectors to a selected

TVL . 12
1.6 Dialog window for the execution of problem programs 17
1.7 Structure of a simple circuit a) and the associated

problem program to calculate the complete behavior b) . . 18
1.8 The complete behavior calculated by means of a PRP

listed in Fig. 1.7 . 19
1.9 C-program to simplify a logic function using the

XBOOLE library . 20
6.1 The seven brigdes of Königsberg . 119
7.1 Structure of a circuit using AND- and OR-gates

restricted to two inputs . 136
7.2 Behavior of a completely specified circuit: a) system

function F (x1, x2, x3, x4, x5, x7, y1, y2) that is identical
with the list of phases as object 2, b) function y1(x) as
object 11, c) function y2(x) as object 12 168

7.3 Global list of phases that describes the behavior of the
combinatorial circuit given in Fig. 7.1 170

7.4 Behavioral descriptions of the combinatorial circuit given
in Fig. 7.1: a) List of phases of the input-output-behavior,
b) logic function f(x), and c) prime conjunctions 172

ix

x List of Figures

7.5 Output behavior of the combinatorial circuit given in
Fig. 7.1 and modified such that additional outputs are
defined by y2 = g20, y3 = g11, y4 = g23: a) all output
patterns of the circuit as object 41, b) don’t-care
function fϕ(y, y2, y3, y4) for a successor circuit as object
42 . 173

7.6 Simplest system functions of the characteristic function
set represented by F (x1, x2, x3, x4, x5, x6, x7, y) (7.2) on
page 139: a) F (x4, x6, y) as object 60, b) F (x3, x6, y) as
object 61 . 175

7.7 All prime conjunctions and minimal disjunctive forms of
the combinatorial circuit given in Fig. 7.1: a) all prime
conjunctions, b) first minimal disjunctive form having
eight conjunctions, and c) second minimal disjunctive
form having eight conjunctions . 177

7.8 Cover function covf (p) based on the set of all prime
conjunctions given in Fig. 7.7 a): a) conjunctive form,
and b) minimized disjunctive form which indicates all
minimal disjunctive forms . 179

7.9 Structure of a circuit using AND- and OR-gates
restricted to two inputs that realizes the shortest
minimal disjunctive form of Fig. 7.7 b) 180

7.10 Results of the EXOR-bi-decomposition of the function
in Fig. 7.4 b): a) g1(x1, x2, x3, x4) as TVL 10,
and b) h1(x2, x3, x4, x5, x6) as TVL 11 182

7.11 Results of the weak OR-bi-decomposition of the function
in Fig. 7.10 a): a) g2q(x1, x2, x3, x4) as object 30,
b) g2r(x1, x2, x3, x4) as object 31, and c) the selected
function g2(x1, x2, x3, x4) as object 12 183

7.12 Results of the AND-bi-decomposition of the ISF
in Fig. 7.11 a) and b): a) g3q(x1, x2) as object 32,
b) g3r(x1, x2) as object 33, c) the selected function
g3(x1, x2) as object 13, d) h3q(x2, x3, x4) as object
34, e) h3r(x2, x3, x4) as object 35, and f) the selected
function h3(x2, x3, x4) as object 14. 185

7.13 Results of the EXOR-bi-decomposition of the incom-
pletely specified function h3 with the mark functions
of Fig. 7.12 d) and e): a) h4q(x3, x4) as object 30,
b) h4r(x3, x4) as object 31, and c) the selected function
h4(x3, x4) . 187

List of Figuress xi

7.14 Functions on the branch h2 of the weak OR-bi-decompo-
sition of the function g1 of Fig. 7.10 a): a) h2q(x2, x3, x4)
as object 38, b) h2r(x2, x4)as object 39, and c) the
realized function h2(x2, x3, x4) as object 17 187

7.15 OR-bi-decomposition of the function h6(x): a) the
function h6(x2, x3, x4) as object 21, b) the decomposition
function g7(x2, x4) as object 22, and c) the decomposition
function h7(x3, x4) as object 23 . 188

7.16 Structure of a circuit using AND-, OR- and EXOR-gates
restricted to two inputs for the function of Fig. 7.1
designed by bi-decomposition . 190

7.17 All test patterns of the selected sensible point h3 of the
circuit shown in Fig. 7.16: a) calculated by the detailed
formulas (7.146), . . . , (7.149) of [18], b) calculated by the
formula (7.150) of [18] . 192

7.18 Test pattern of the sensible point on the local branch
nx4 of the circuit shown in Fig. 7.16: a) all test patterns
of the signal source, b) all test patterns of the signal
target s1, c) all test patterns of the signal target s2,
d) test patterns that detect errors of the signal source
only, e) test patterns that detect errors of the signal
target s1 only, f) test patterns that detect errors of the
signal target s2 only . 193

8.1 Behavior of a synchronous finite-state machine of a
simple control for a road work traffic light: left hand
side – graph, right hand side – assignment of the light
colors . 197

8.2 Structure of a finite-state machine using three types of
flip-flops and AND-, OR-, and EXOR-gates restricted to
three inputs . 199

8.3 Behavior of the finite state machine of a traffic light to
control the a road work: a) simple version with green
phases, b) extended version with controllable green
phases . 211

8.4 Behavior of a synchronous finite-state machine of an
extended control for a road work traffic light 212

8.5 Global list of phases that describes the behavior of the
sequential circuit given in Fig. 8.2 . 214

xii List of Figures

8.6 Global list of phases that describes the behavior of the
sequential circuit given in Fig. 8.2 restricted to the
essential variables and minimized . 215

8.7 Behavior of a finite-state machine of the sequential
circuit given in Fig. 8.2 – the states are labeled by
(s1, s2, s3) − y1 = 1 in the states (000) and (010), y2 = 1
in the states (000) and (100) . 215

8.8 Global list of phases that describes the behavior of the
sequential circuit given in Fig. 8.2 for each fixed input
pattern . 216

8.9 Karnaugh-maps of the mark functions to control the
JK-flip-flop: a) j1q as object 16, b) j1r as object 17,
c) the selected function j1, d) k1q as object 26, e) k1r as
object 27, f) the selected function k1 218

8.10 Karnaugh-maps of the mark functions to control the
DV -flip-flop: a) d2q as object 36, b) d2r as object 37,
c) the selected function d2, d) v2q as object 46, e) v2r as
object 47, f) the selected function v2 219

8.11 Karnaugh-maps of the mark functions to control the
D-flip-flop: a) d3q as object 56, b) d3r as object 57, c) the
selected function d3 . 220

8.12 Karnaugh-maps of the mark functions of the outputs y1

and y2: a) y1q as object 66, b) y1r as object 67, c) the
selected function y1, d) y2q as object 76, e) y2r as object
77, f) the selected function y2 . 221

8.13 Behavior of a finite-state machine: a) given non-deter-
ministic global list of phases as object number 1,
b) deterministic global list of phases as object number 9
of the designed sequential circuit . 222

8.14 Behavior of a finite-state machine of the sequential
circuit designed in Exercises 8.12 . . . 8.15 – the states
are labeled by (s1, s2, s3) – y1 = 1 in the states (000) and
(010), y2 = 1 in the states (000) and (100) 223

8.15 Structure of the designed finite-state machine using three
types of flip-flops and AND-, OR-, and EXOR-gates
restricted to three inputs . 224

8.16 Behavior of the realized synchronous finite-state machine
of an extended control for a road work traffic light 226

List of Tables

1.1 Meaning of the Files in the Directory XBOOLEMonitor 4
4.1 Solution set of the graph equation of Exercise 4.1 77
7.1 Gates and levels of different circuits for the same

function . 181
7.2 Gates and levels of different circuits for the same

function . 190

xiii

Preface

Tsutomu Sasao – Kyushu Institute of Technology, Japan

The material covered in this book is quite unique especially for peo-
ple who are reading English, since such material is quite hard to find
in the U.S. literature. German and Russian people have independently
developed their theories, but such work is not well known in the U.S.
societies. On the other hand, the theories developed in the U.S. are not
conveyed to the other places. Thus, the same theory is re-invented or
re-discovered in various places. For example, the switching theory was
developed independently in the U.S., Europe, and Japan, almost at the
same time [4, 18, 19]. Thus, the same notions are represented by differ-
ent terminologies. For example, the Shegalkin polynomial is often called
complement-free ring-sum, Reed-Muller expression [10], or Positive Po-
larity Reed-Muller expression [19]. Anyway, it is quite desirable that such
a unique book like this is written in English, and many people can read
it without any difficulties.

The authors have developed a logic system called XBOOLE. It per-
forms logical operations on the given functions. With XBOOLE, the
readers can solve the problems given in the book. Many examples and
complete solutions to the problems are shown, so the readers can study
at home. I believe that the book containing many exercises and their
solutions [9] is quite useful not only for the students, but also the pro-
fessors.

Here, I would like to show a list of key books [6, 11–15, 17], some
of them are already out of print. Especially, [15] shows the logic design
system developed in IBM in early 1960’s. XBOOLE uses essentially the
same logical structure as [7, 15]. However, you can find that this book is
more focused on the solutions of Boolean equations [4], rather than the
classical minimization of logical expressions.

xv

xvi Preface

Finally, I would like to mention that one of the authors, Prof. Dr.
Bernd Steinbach, regularly organizes the International Workshop on
Boolean Problems. This is a quite unique and important workshop
to exchange the idea of the Eastern and Western people in Boolean
problems. I hope he can continue this important project.

Foreword

This book is considered as an extension, or better, as a complement to
the book “Logic Functions and Equations – Binary Models for Computer
Science” [18] that has been published in 2004 by Springer. It can be, how-
ever, also used with any other course material that covers the required
knowledge. Particularly for the area of Logic Functions, but also in
many other areas, the use of computers and software for the solution of
special problems is quite normal, however, the proper computer-based
or computer-supported education and the preparation of graduates is
not yet fully explored, and there are not only new possibilities, but also
new and additional problems and difficulties.

Therefore, many academic institutions all over the world pay increas-
ing attention to “computer-supported” or “computer-assisted” learning.
The range of these concepts is very broad, it starts very often with Pow-
erPoint presentations and ends with a fully Internet-based presentation
of the teaching material. However, the didactics of such an approach,
the advantages and disadvantages, the desired and the actual outcome
are often not yet clear and deserve careful and serious consideration.

First of all it has to be emphasized that “computer-supported” not
only considers the computer per se, but also the existence of appropriate
software or even nowadays an appropriate (digital) multimedia environ-
ment which is specialized with regard to the topic to be taught. This
combination of hard- and software will be the necessary assumption for
the problems to be considered. And this already requires additional ef-
forts. Not only is knowledge of the area required, but also the software,
the working of the software as well as its proper use must be trained,
and this is very often not so easy and can be a real additional burden.

As a second basic assumption we emphasize that it is not intended
to replace the classroom or conventional teaching. Many people under-
stand the computerization of teaching or learning mainly in replacing

xvii

xviii Foreword

the taking of notes in the classroom by slideshows, by handing over files
with the text to the students etc. If this would be the intention, then a
file of the respective textbook could be copied to each student, and this
would be the solution.

It is our goal to increase the quality of learning considerably through
the use of examples and exercises which can be handled on a much higher
level when computer support can be or is provided. Sometimes, and in
application-oriented areas all the time, computer-based solutions are the
only possibility of solving such problems. A circuit with 100 gates can-
not be designed by hand. We demonstrate this approach by using the
book on “Logic Functions and Equations” [18] as the theoretical back-
ground (possibly as a textbook for a course “Logic Design” or “Logics
for Computer Science” or similarly) and the software package XBOOLE
as the learning software for a student. Similar problems arise, however,
in many other areas.

Another difficulty that results from the application of this solution
procedure is the impossibility of verifying the result of such a process.
The result can thus only be accepted or rejected. Careful consideration
and exploration of the models that are used, the testing of the solution
procedure with examples from many different areas, repeated solving of
the same problem by means of different algorithms or different software
packages – these steps reduce the risk of accepting a result that is not
correct – but that is not a guarantee at all.

In this way we want to contribute to the exploration of these difficult
problems, we want to invite our colleagues to discussions, we invite our
students to give us their feedback (for further considerations and im-
provements) – we also intend to dedicate a website to the extension of
the spectrum of problems, to the discussion of the problems and to the
publication of interesting results.

Christian Posthoff
Bernd Steinbach

Introduction

As we have said, there is not yet a fully approved and accepted method-
ology for this approach. However, we firmly believe that the following
assumptions and conditions should be considered.

First assumption The course material has been presented to the stu-
dent in a proper way (by textbook, in class, by tutorials, assign-
ments, . . .) such that the student has a given understanding of the
area which has to be extended, deepened and adapted for solving
real-world problems (or at least more relevant for the solution of
real-world problems). Very often in class only small examples will or
can be presented which have more or less the character of toys.

Second assumption The educational software must have a user in-
terface which is sufficiently simple and problem-oriented. Nowadays
everyone is using many sophisticated software packages all of which
require a good amount of knowledge to be used properly. It is frus-
trating to sit before the screen and struggle with the peculiarities of
the application program, instead of solving relevant problems.

Third assumption A student must be able to transfer a given problem
into the respective learning system. He/she must be able to split the
problem into a sequence of subproblems which can be solved by using
the (XBOOLE) software and the solution of which can be combined
into a solution of the overall problem. The best method to learn
and to manage this approach is the learning from examples, i.e.
the presentation and explanation of a sufficiently large number of
examples that can and have to be studied carefully and in detail.

Hence, this second book is provided with the same basic structure as
the original textbook. Each chapter contains typical problems related
to the contents of the respective chapter from the first book. All the

xix

xx Introduction

examples that are presented are explained in detail such that the result
of a careful investigation of such a problem and independent solution
trials result in a better understanding of the field. It is also possible
to use the software for the solution of problems from other sources or
courses, based on the understanding of the field acquired by studying
these two books.

It is quite easy to understand that by using this methodology, at least
two outcomes can be achieved:

1 The student will be free of a lot of routine calculations that are error-
prone and do not really contribute to the problem-solving process;
the solution process goes far beyond problems that can be solved by
hand; in this way the educational process will be more relevant for
real-life problems, hence, for the later professional life.

2 The student has more time and more possibilities and/or facilities
to explore the solutions, to understand the meaning of the solutions,
to represent functions graphically etc. which results in a thorough
understanding of the problem area, the solution process, the applica-
bility of theories etc.

This approach must be accompanied by (at least) the following steps:

The educational process must put great(er) emphasis on modeling
aspects. Students must be able to formalize real-world problems, to
find limitations for the models, to evaluate the correctness of solu-
tions etc. As a logical consequence, courses such as “Modeling and
Simulation”, “Scientific Computing” etc. must be introduced as soon
as possible, compulsory for all Science and Engineering students.

More specialized areas must be covered by appropriate software pack-
ages (which very often have to be created by the teaching academics
themselves, see XBOOLE).

The examination process also must take these developments into con-
sideration. Computer-based examinations are much more appropriate
to test the students’ knowledge and skills than (trivial) calculations
by hand and memorizing facts that can be stored on (tiny) hard disks.

The final solution which we have in mind for the use of XBOOLE
comprises

the textbook “Logic Functions and Equations – Binary Models for
Computer Science” [18],

the book “Logic Functions and Equations – Examples and Exercises”,

Introduction xxi

the software package XBOOLE that can be downloaded (for free),

a collection of examples and solutions on a constantly growing web
site (by contributions of students, academics, relevant applicants etc.).

Selecting an appropriate software for teaching we have to take two
points of view into consideration.

First of all we have to select the basic data structure for represent-
ing the problems, for its use within the algorithms and for doing the
relevant calculations. This data structure must be both as closely as
possible connected to the problems to be solved for teaching reasons
and efficient in terms of memory and computation time because of the
exponential growth of the size of Boolean spaces depending on their
number of variables. Generally there are two classes of approaches:
one of them can be based on sets of Boolean vectors and the other one
on trees. The vector representation is more understandable for both
the representation of logic functions and the solution sets of logic
equations. Using ternary vectors in XBOOLE [2, 21, 18] the compre-
hensible representation can be combined with the required efficiency.
Very popular are Binary Decision Diagrams (BDDs) suggested in [5],
among others. This data structure is also efficient for the calculation
of logic functions, but has disadvantages for comprehensible represen-
tations. For teaching reasons we decide to use XBOOLE. It should
be mentioned that all the different approaches of this book can also
be implemented using a BDD package such as, for instance, CUDD
[20].

Secondly we have to decide about the level of abstraction. On a high
level a problem can be solved using a sequence of operations for logic
functions or solution sets of logic equations. More in detail basically
the same operations out of a library can be used together with a
selected programming language.

In order to emphasize how a certain problem can be solved, we se-
lected procedures to solve the problems on a high level using the
XBOOLE Monitor. The access to the basic operations is easily given
in the XBOOLE Monitor by means of menus, toolbars, or commands.
In order to solve larger problems, such commands are simply com-
bined into a sequence of a so-called Problem Program (PRP). In that
way we concentrate on the solution procedure and avoid programming
details like preparation of the programming environment, definition
and initialization of variables, deletion of data which are no longer
needed or fitting pointers to the requirements of the used operations.

xxii Introduction

Using the knowledge from this book it is easy to implement complete
programs. The XBOOLE library was used, for instance, for the syn-
thesis of combinatorial circuits by bi-decomposition [1], improved for
fast circuits and low power consumptions [23] and including implicit
test pattern generation [24]. The same basic approach was mapped
to BDDs [5] in [22] and implemented using the CUDD package [20]
exploiting several extended strategies in [16].

Our research and teaching in this area started nearly 40 years ago,
and we considered all our results and lectures over this long period of
time. Therefore, we read and used many books, articles, publications,
approaches, discussions with colleagues, and we were not always able to
trace back each problem or algorithm or theorem to a possible source
which we have been using at a given point of time. But we hope that
the list of references in [18] as well as here in this book is as correct as
possible.

And finally, with these two books we simply want to make a contribu-
tion to the best of our abilities and experience, based on the long time of
research and teaching in this and other areas to the best of our students.
Any discussions, recommendations for improvement, contributions to the
web presence will be highly appreciated.

Christian Posthoff
Bernd Steinbach

I

BASIC SOFTWARE

Chapter 1

XBOOLE MONITOR

1. XBOOLE Preliminaries
A logic function is a unique mapping from Bn into B [18]. Thus, 2n

values 0 or 1 define such a function and must be considered for each
operation with this function. Logic operations with up to four, five or
six variables can be performed by hand, because only 24 = 16, 25 = 32,
or 26 = 64 values must be used. In practical applications, however, the
number of variables the logic function is depending on is much larger,
therefore, thousands or millions of logic values must be manipulated
without any error. Obviously a computer and suitable software are re-
quired to solve realistic logic problems.

There are several software tools for logic calculations. In this book
we use one tool which is called XBOOLE Monitor . It provides a wide
range of logic operations which can easily be combined to solve logic
problems. Chapter 9 in [18] gives a short introduction to this tool that
can be considered as a logic pocket calculator. The benefit of such a
logic pocket calculator consists in the both fast and correct execution
of each operation. Note: there is no restriction for the number of logic
variables in the XBOOLE monitor. The remaining, but very important
problem for the user of this logic pocket calculator is to know the right
operations to be used and the right button to be pressed in order to get
the required results.

All logic operations will be executed by functions of the XBOOLE
Library [8]. The monitor wraps this library and simplifies the access to
the XBOOLE functions for the user. There are several such wrapper
programs usable for different operating systems. We use in this book the

Bernd Steinbach, Christian Posthoff, Logic Functions and Equations, Examples and
Exercises,
© Springer Science + Business Media B.V. 2009

4 1 XBOOLE MONITOR

Table 1.1 Meaning of the Files in the Directory XBOOLEMonitor

Name of the File Meaning of the File

xbm32.cnt content structure of the help file in use

xbm32.exe executable file of the XBOOLE Monitor

xbm32.hlp help file in use

xbm32 e.cnt content structure of the English help file

xbm32 e.hlp help file in English

xbm32 g.cnt content structure of the German help file

xbm32 g.hlp help file in German

XBOOLE Monitor xbm32.exe that provides a graphical user interface
and runs under several versions of the Windows Operating System.

This XBOOLE Monitor can be downloaded by everybody for free from
the following web page:

http://www.informatik.tu-freiberg.de/xboole.

At the left side of this page the link XBOOLE Monitor can be seen.
A click on this link leads to the download page of the XBOOLE monitor.
In order to download the XBOOLE Monitor, the button with the label
XBOOLE Monitor located at the bottom of this page must be pressed.
This opens the dialog File Download where the button save must be
pressed in order to download the file XBOOLEMonitor.zip into a direc-
tory of your choice. After the download of this file the dialog Download
completed appears. In this dialog the button Open Folder should be
pressed. The folder which opens now contains the file XBOOLEMonitor.
zip which has been loaded before. In the context menu the item Extract
all can be chosen after a right click to extract all zipped files into a
new directory XBOOLEMonitor. Of course, other procedures to extract
all zipped files can be used as well. The XBOOLE monitor is now ready
for use.

The directory XBOOLEMonitor includes the unzipped files of Table 1.1.
It can be seen that the XBOOLE monitor can be used in English or Ger-
man. The executable file of the XBOOLE-monitor is xbm32.exe. It can
start without any further installation, and it selects automatically the
language of both all representations and the help environment depend-
ing on the language of the Windows Operating System that is used on
the respective machine.

All further explanations relate to this XBOOLE Monitor. Thus it is
strongly recommended that the reader applies the procedure given above
for downloading the XBOOLE Monitor to the respective computer such
that it is available for all further logic calculations.

http://www.informatik.tu-freiberg.de/xboole

2. The XBOOLE Window Structure 5

Figure 1.1 Complete window structure of the XBOOLE Monitor

2. The XBOOLE Window Structure
Figure 1.1 shows a screen shot of the XBOOLE monitor the size of

which has been strongly minimized in order to meet the size of the pages
of this book. The size of this window can be resized in the same way as
any other window on the screen.

The window of the XBOOLE Monitor comprises several parts. In the
following the main purpose of these parts will be explained.

The headline of the XBOOLE Monitor window shows the icon of this
program, the name of the file opened or stored the last time, and the
title of the program XBOOLE Monitor 32 Bits. The term unnamed as
name of the file means that no file has been used so far. Otherwise a
file name with the extension sdt is shown. Such an sdt-file allows to
interrupt the work with the XBOOLE Monitor. After loading a stored
sdt-file the work with the XBOOLE Monitor based on previous data
can continue.

The menu bar is located below the headline of the XBOOLE Monitor.
The menu is structured like a tree and allows the complete control of
the behavior of the XBOOLE Monitor. Typically the menu items will be
selected using the mouse. Alternatively the Alt-key in connection with

6 1 XBOOLE MONITOR

further keys of the keyboard can be used. Additional information for the
selected action must be specified in most cases in special dialogs.

Below the menu bar a set of toolbars is located. Each toolbar can be
shown or hidden separately. Its position can also be arranged by the user.
All these adjustments are automatically stored in the Windows Registry
database such that the adjustment of the toolbars does not change after
the next start of the XBOOLE Monitor. The toolbars were introduced to
shorten the management of the XBOOLE Monitor. Instead of selecting
the whole path between the root and the leaf in the menu tree step by
step, the action associated to the wanted leaf can be selected by a single
click on the associated icon in a toolbar. Note: toolbar icons are defined
only for actions which are used frequently. Thus the actions controllable
by the toolbars are a subset of all available actions.

The part below the toolbars covers the main space of the XBOOLE
Monitor window. The XBOOLE Monitor visualizes different types of
information in this area, but also allows partially to interact with the
user. This part is structured by a tab control. A click with the mouse
brings the page associated to the tab in the foreground.

The first tab is labeled by Protocol. A protocol of each action exe-
cuted by the XBOOLE Monitor is automatically created and shown on
this page. The representation of the protocol does not depend on the way
the action has been initialized. There are three possibilities to activate
an action: first of all by an item of the menu, second of all by an icon
of the toolbar, and third of all by a command of the command line. The
protocol is written as a sequence of commands. There is a possibility
to store the protocol and execute this sequence of commands again at
a later point of time. Such a sequence of commands is called problem
program or shortly PRP.

The second tab with the label 4-fold View and the third tab with the
label Single View provide basically the same behavior. The difference
between these pages is that the 4-fold view consists of a 2 × 2-matrix,
where each separate sheet of this matrix has the same behavior as the
whole single view. In such a view a selected list of ternary vectors (TVL),
an associated Karnaugh map, or a selected tuple of variables (VT) can
be shown. There is an edit mode in such a view which allows to edit the
elements of a TVL. If there is not enough space, scroll bars appear auto-
matically and allow the selection of each part of the represented data. It
is suggested to use the single view for very large objects. Otherwise the
4-fold view is preferred, because four objects can be seen at the same
time.

Figure 1.2 shows an example of the 4-fold view of the monitor of
XBOOLE. The top left part shows the first object, a TVL (list of ternary

2. The XBOOLE Window Structure 7

Figure 1.2 Example of the 4-fold view in the XBOOLE Monitor

vectors) in disjunctive form, depending on three variables, consisting of
three rows, and defined in the first space. The top right part shows
the Karnaugh map of this logic function. The button labeled by K in
the TVL-representation switches to the Karnaugh map, and the button
labeled by T in the Karnaugh map representation to the TVL, respec-
tively. The bottom left part shows the second object, a tuple VT of
two variables in the first space. The bottom right part shows the third
object, a TVL in orthogonal disjunctive/antivalence (ODA) form, de-
pending on three variables, consisting of two rows, and defined in the
first space. This TVL was calculated as the complement of the first
TVL.

The forth tab is labeled by Spaces/Objects. This page is divided
vertically into two views. The left view shows a list of all details of
the Boolean spaces defined by the user. The right view shows a list
of all TVLs and VTs recently stored in the XBOOLE Monitor, where
each of these objects is uniquely identified by its object number. In
addition to the number of the object and its type information about
the form, the space, and numbers of variables, rows and boxes are
given.

The command line is located below the main part of the XBOOLE
window. While the menu bar and the toolbar allow simple intuitive op-
erations of the XBOOLE Monitor, the application of the command line

8 1 XBOOLE MONITOR

requires the knowledge of the commands for the control of the actions.
The benefit of the command line is that XBOOLE operations can be
activated faster, because interactions in dialog windows are omitted.
The details of all commands can be studied in the XBOOLE help sys-
tem.

The bottom of the XBOOLE window contains the status bar. In this
bar help information about the action selected by a menu item or by a
toolbar icon will be displayed.

3. XBOOLE Menu
The menu allows to activate each action executable by the XBOOLE

Monitor. In this section we give some basic information about the menu.
Detailed information will be explained in that section of this book where
the actual menu item is used for the first time.

The menu is structured like a tree. The items directly connected to
the root are shown in the menu bars visible in Figs. 1.1 and 1.2. If the
mouse pointer moves over one of these items, the associated submenu
appears. A left click on a high-lighted item activates the associated ac-
tion.

Some of the actions require a precondition for their execution. It is,
for instance, not possible to calculate the complement of a function if
no function has been defined before. In such cases the menu item is
deactivated by the XBOOLE Monitor in order to protect the XBOOLE
user from errors. If a precondition does not hold, then the associated
menu item appears in grey, and its activation is not possible.

Three points (. . .) behind the text of a menu item indicate that a dialog
window appears which allows the input of some required information
for the selected action. It is, for instance, possible to define the basic
settings for the program by selecting the item Settings... in the sub-
menu File. A click on this menu item opens the dialog window which
allows to configure the appearance of the XBOOLE Monitor.

A triangle at the right of the menu item indicates that another sub-
menu is associated. This exists only once in the menu View where a next
menu opens while selecting the item Toolbars.

A tick before an item text in a menu indicates that the associated state
is true. Such ticks are used in the View menu in order to indicate which
parts are visible at present. For instance, one click onto the item Status
Bar in the menu View removes the status bar and the tick associated
to this item. The next click on the same item changes the state of the
status bar again, that means the status bar and the tick in the item are
visible.

3. XBOOLE Menu 9

All the details of the application of the XBOOLE Monitor can be
found in the integrated help environment. There are two methods in or-
der to get help information. First, the complete help information can be
studied in a separate dialog window. This window will be opened by the
item Help Topics in the menu labeled by ‘?’. The access to particular
information topics is possible using structured contents, a predefined in-
dex, or a supported search across the whole help text. The second help
method works context-sensitive. After clicking the item Context Help
in the menu labeled by ‘?’, a special cursor that includes a question
mark appears. A click with this cursor on a menu item opens a help
window that includes the help information associated to the selected
item.
Exercise 1.1 (Help Topics). Activate in the menu labeled by ‘?’ the
item Help Topics. Select in the dialog window that appears now in the
tab Content the item Graphical User Interface and there the item
Menus. Study the meaning of the menu items.

In the initial state of the XBOOLE Monitor all items in the menus
Derivative, Matrices, and Sets are deactivated, indicated by greyed
items, because so far no TVLs exist. A TVL can be created using the
item Create TVL... in the menu Objects, but this item is deactivated
in the initial state of the XBOOLE Monitor as well, because up to now
no Boolean space has been defined. Hence, it is necessary that the user
of the XBOOLE Monitor defines at least one Boolean space.

The XBOOLE Monitor allows calculations for logic functions of an
unlimited number of variables. These variables must be associated with
Boolean spaces where the number of variables in each Boolean space is
restricted by the user of the XBOOLE Monitor who defined such spaces.
In order to define a new Boolean space, the item Define Space... in
the menu Objects can be used. Figure 1.3 shows the Dialog window that
appears after selecting this item. In the upper edit control the number
of the Boolean space to be created is suggested and can be changed into
a new number which has not been used so far as a space number. In the
lower edit control the maximum number of variables in the range of 1
to 1952 can be specified. Note: this value cannot change later on. The
suggested number of variables 32 fits to the word length of the CPU and
is generally a good choice.
Exercise 1.2 (Define Space). Define two Boolean spaces using the menu.
The number of variables in the first space must be 32 and in the second
space 512, respectively. Visualize the results in the tab labeled by Spaces/
Objects. Explain the values Type and Variables.

10 1 XBOOLE MONITOR

Figure 1.3 Dialog window that allows the definition of a new Boolean space

The definition of a Boolean space defines only the number of variables,
but not their names nor the order of their appearance. Very often these
names and their order are derived from the input, for instance, of an
equation. However, sometimes it might be useful to display the variables
in a given order, for instance, first the input variables and thereafter the
output variables, or similarly. In order to achieve this, the names and
the order of variables in a given space can be defined after the definition
of the space, but before the input of a TVL. This can be achieved by
using the menu items Attach Variables... or Append Variable(s)
to a VT...

4. Toolbars
The toolbars allow a direct activation of a subset of actions of the

menu. This speeds up the activation of XBOOLE actions, but requires
the knowledge of the toolbar icons. The behavior of the toolbars is in
agreement with the menu. An icon of a toolbar can be activated by a left
mouse click only if the precondition of the associated action is satisfied.
Otherwise the icon of a toolbar is deactivated which is visible by a grey
icon.

There are six toolbars. Using the item Toolbars in the menu View, it
is possible to show or to hide each one of them separately. The position
of each toolbar can change by drag and drop. Figure 1.1 shows a vertical
arrangement of all six toolbars, while in Fig. 1.2 the toolbars have been
arranged in two rows.

The first toolbar General covers selected actions of menus labeled by
File and ‘?’. The toolbar Objects covers seven of ten actions of the
menu Objects. All actions of the menus Derivatives, Matrices and
Sets are typically used very often. Therefore all these actions can be
activated directly by the icon of the associated toolbars Derivatives,
Matrices and Sets, respectively. The last toolbar Extras covers two
of six actions of menus labeled by Execute PRP and Solve Boolean
Equation....

4. Toolbars 11

The meaning of the toolbar icons can be studied easily. The simplest
way is to move the mouse pointer over an icon of a toolbar. Immediately a
small yellow window appears which shows a quick info text that explains
the meaning of the icon. Additionally, in the status bar a more detailed
description is given. A well-structured complete information about the
meaning of the icons in all toolbars can be obtained by using the help
environment of the XBOOLE Monitor. In order to do this, the item Help
topics can be used as described above, or simply the F1 button can be
pressed. The item toolbars in the first case or the link Summary of the
toolbars lead to the same information page Survey of the Toolbars
where information about each toolbar can be selected.
Exercise 1.3 (Toolbars). Use the two possibilities described above to
study the meaning of all icons of all six toolbars.

As an example for the application of toolbars TVL 1 of Fig. 1.2 will
be created. In order to do this, it is assumed that Exercise 1.2 has
been executed; hence, space 1 exists. In order to activate the action
that creates a TVL, it is sufficient to click with the left mouse button
on the second icon of the toolbar Objects. This icon is labeled by +
TVL. All the information about the TVL which will be submitted now is
transmitted to the XBOOLE Monitor in the same way as it is done for
the initialization of a TVL using the item Create TVL... of the menu
Objects.

The action to create a TVL opens first a dialog window shown in
Fig. 1.4. Four properties of the TVL to be created must be defined in
this dialog window. In a first step the Boolean space which comprises
the TVL must be selected from a list. The next step defines an object
number for this new TVL; this number can be used in the future to call
this TVL. Note: if an object (TVL or VT) with this number already
exists, the old object will be deleted. A simple way to select a new num-
ber (not yet used) consists in pressing the button labeled by N in the
dialog window. In a third step the form of the TVL must be selected
from a list of possible forms. The selected form D means that the TVL
will be given in disjunctive form. Note: if the form ODA is selected, the
input TVL will be taken as a D-form and orthogonalized internally. In
a last (fourth) step the variables of the TVL columns must be writ-
ten into an edit control, where the variable of the first TVL column is
defined by the first row, each variable is defined in its own row, and
the row order in the dialog window corresponds to the column order
of the TVL to be created. The name of a variable may consist of up
to 12 characters, the first character cannot be a digit. Finally a TVL

12 1 XBOOLE MONITOR

Figure 1.4 Dialog window to specify basic properties of a new TVL

Figure 1.5 Dialog window to append ternary vectors to a selected TVL

which has no row as yet is created after pushing the button labeled
Create.

There are two methods to define the rows of the TVL. The first
one uses the possibility to append ternary vectors to a selected TVL.
Appending all the required vectors to an existing empty TVL leads
to the complete TVL. In order to do this, the item Append Ternary

5. Command Line 13

Vector(s)... in the menu Objects must be activated, and this opens
the dialog window shown in Fig. 1.5. The TVL which is supposed to
be extended must be selected in this dialog window, and the respective
ternary vectors must be written in an edit control, row by row. It is
possible to change these rows. Pushing the OK-button starts the action
which appends the defined rows to the selected TVL. This finishes the
first method to define a TVL.

The second method to define the rows of a TVL uses the editor which
is available in the Single View and in each area of the 4-fold View. If
a TVL is shown in such a view, a double click inside the view switches
between the TVL mode that displays the TVL and the edit mode that
allows to change given ternary values and to add ternary vectors to
a TVL. The element to be changed can be selected by a mouse click
on the position of the element. After the change or an input opera-
tion the cursor moves to the next element, first within the row and
at the end of one row to the beginning of the next row. This move-
ment of the cursor is controlled by the XBOOLE Monitor. For the input
of a TVL only the keys 0, 1, and - are required. A double click fin-
ishes the edit mode. Alternatively, a right click in the view and the
appropriate selection in the opened context menu can be used, a very
useful approach which makes all the required input operations very fea-
sible.
Exercise 1.4 (Toolbars). Use the second method described above for the
input of the TVL 1 as shown in the top left part of Fig. 1.2. Note: because
no other objects have been created in the XBOOLE Monitor, the created
TVL will be shown in all four parts of the 4-fold view. Change the top right
view such that the Karnaugh map is visible.

5. Command Line
In order to control the actions of the XBOOLE Monitor, a command

language has been defined. All the information about a particular ac-
tion to be executed will be included into the command; therefore no
additional dialog windows are required. This speeds up the handling
of the XBOOLE Monitor in comparison to the toolbars even more.
Of course, the application of commands to control the actions of the
XBOOLE Monitor requires the knowledge of the syntax of the command
language.

In order to study the details of all commands, it is suggested to use
the help environment that can be reached by the item Help Topics of
the menu labeled ‘?’. In the contents tab there is an item Command Line
that includes the following items:

14 1 XBOOLE MONITOR

List of the Commands,

Topics,

Index of Commands (in alphabetic order),

Index of Commands (ordered by topics).

A good starting point for the XBOOLE command language is the
List of the Commands. Similar information is presented in the Index
of Commands (ordered by topics). There are four main categories of
commands:

Object Management,

Derivatives,

Operations for Matrices,

Operations for Sets.

Actions that can be activated by items of the menus File and Objects
can be activated alternatively by commands of the category Object
Management. There is a complete association of the commands of the
category Derivatives with the items of the menu Derivatives. The
same statement is true for Matrices and Sets. The menus of the last
three categories help the user to learn the XBOOLE command language,
because the keyword of the command is written before the associated
item text in the menu.

The XBOOLE command language is used in several implementations
of XBOOLE Monitors. The XBOOLE Monitor used in addition to this
book does not support all commands. These commands which are not
supported are listed in a special section of the Index of Commands
(ordered by topics). If such a command is used in the command line,
it does not cause an error, but it does not activate any action. An ex-
ample for such a command is help which can simply be activated using
the button F1.

Vice versa, the XBOOLE Monitor used in addition to this book sup-
ports several commands which have been defined in addition to the
XBOOLE command language. The keywords of these commands begin
with an underline character. These additionally supported commands
are listed in the section Extended Operation of the index of commands
ordered by topics. Most of these commands have a command in the
XBOOLE command language which is more or less equivalent. They
differ only in the use of VT: the VT is explicitly given in the command,
not by an object number.

5. Command Line 15

Exercise 1.5 (Commands). Study the XBOOLE commands in the help
environment. Compare the commands for derivatives and matrices with the
commands of the Extended Operation.

All XBOOLE commands have the same structure. The keyword is fol-
lowed by parameters which specify the objects to be manipulated by this
command. Based on predefined default values, some of the parameters
can be omitted. If the command requires larger additional information,
it must be given in consecutive lines and finished by a dot (.) on the
same or next line.

One example is the command for the input of a VT that has the
following syntax:

vtin [sni [vtno]]

var list.

The keyword is vtin. The parameter sni means ‘space number input’
and specifies the Boolean space to which the VT must be assigned while
the parameter vtno means ‘VT number output’ and specifies the object
number for accessing this VT in the future. On the following lines the
ordered list of variables (var list) must be given. In the lines the vari-
ables are separated by space characters. The end of the list is indicated
by a dot. The brackets indicate that the parameters are optional. If vtno
is not specified the next free object number will be used. The default
value for sni is equal to 1. If only one parameter is used, it must be sni.
The command for input of the VT 〈ab〉 in Boolean space 1 as object
number 2 is given as follows:

vtin 1 2

a b.

Practically you have to type vtin 1 2 and press ENTER. Then the
command line will be empty again, and you type a b. and press ENTER
again. Then the object will be created and can be seen in one of the
views.

An intelligent help system supports the user during the typing of
the commands in the command line. Starting with the first letter, all
fitting keywords of valid commands are shown in a small help window.
After typing the complete keyword, the required parameter structure of
the command is shown in this window. If the command needs further
information in consecutive lines, the required syntax will be explained
in this help window during the input. In this way it is easy to learn the
command language.
Exercise 1.6 (Command Line). Extend the system of XBOOLE objects
created in Example 1.4 by a VT 〈ab〉 with object number 2 in space 1.

16 1 XBOOLE MONITOR

Use the command line for the input of this VT and show the VT in the
bottom left part of the 4-fold View. Verify that the result is equal to the
information that is shown in the bottom left part of Fig. 1.2.

Exercise 1.7 (Complement). Use the command line to calculate the com-
plement of the logic function 1 defined in Example 1.4 and associate this
new function with object number 3. Use the help environment to find the
syntax of the command for the complement operation. Show the result in
the bottom right part of the 4-fold View. Verify that your 4-fold View
is the same as in Fig. 1.2. Verify the calculated complement operation.
Change for this task the TVL representation of the right bottom part of
4-fold View into a Karnaugh map representation and compare the Kar-
naugh maps of function 1 shown at the top right and its complement shown
at the bottom right.

6. Problem Program
More complex tasks require a sequence of XBOOLE actions for cal-

culating the solution. In order to achieve this, all three possibilities for
controlling XBOOLE can be used conjointly. If in such a sequence an
error occurs, certain parts of the sequence must be repeated. In such
a situation problem programs (PRP) are a valuable support. Instead
of activating the calculation step by step, a sequence of commands is
written directly into a text file using any standard editor. Such a PRP
can be executed by the XBOOLE Monitor step by step or completely
without breaks. Such a PRP is also very helpful when the same sequence
of XBOOLE actions must be executed several times for data which have
completely or partially changed.

The content of a PRP is a sequence of XBOOLE commands. Any file
name is allowed for a PRP, and the extension .prp is suggested.

A PRP can be created outside of the XBOOLE Monitor using any
text editor or by the XBOOLE Monitor itself. As mentioned above, the
XBOOLE commands of all actions executed by the XBOOLE Monitor
will be included into a protocol, independent on the way of their speci-
fication. This protocol can be stored as a PRP file using the item Save
protocol as PRP... in the menu Extras. In order to prepare several
PRP files in this way, the old protocol can be deleted using the item
Delete Protocol in the menu Extras.

The execution of a PRP can be activated by the item Execute PRP...
in the menu Extras or by the icon PRP in the toolbar Extras. In both
cases a dialog window with the name Execute Problem Program ap-
pears. A click on the button Open PRP... opens a file dialog where the
PRP file can be selected. The content of the PRP file will be shown in

6. Problem Program 17

Figure 1.6 Dialog window for the execution of problem programs

the dialog window. Figure 1.6 shows this dialog window that includes
a loaded PRP. Using the scroll bar the other commands of the PRP
can be visualized. A click on the button Single Step executes a sin-
gle command beginning with the first command and then according to
the sequence of the PRP. A click on the button Execute executes the
sequence of commands completely.

As an example we calculate the behavior of a logic circuit. Figure 1.7
depicts the structure of the circuit a) and lists the PRP that calculates
the complete behavior in a minimized form b). The first command in
the PRP defines a Boolean space 1 of 32 variables. The second com-
mand avar associates the variables a, b, c, d, e, and f in this order to
the Boolean space 1. In this way a well ordered output is organized.
Thereafter the input of the phase lists of the three gates is described
by three commands tin. Each TVL is associated with the Boolean
space 1. The object numbers of these TVLs correspond to the labels
of the gates in Fig. 1.7 a). The behavior is calculated by the intersec-
tion of all three phase lists and stored as object number 4. Finally, by
means of an orthogonal block building using the obb command, the re-
sulting TVL is minimized with respect to the number of rows without

18 1 XBOOLE MONITOR

Figure 1.7 Structure of a simple circuit a) and the associated problem program to
calculate the complete behavior b)

change of the object number. The loaded PRP is partially shown in
Fig. 1.6.

Figure 1.8 shows in the 4-fold View all basic TVLs and the TVL of
the desired complete behavior. A comparison with the PRP of Fig. 1.7
b) reveals that the input TVLs are orthogonalized in the input action
because the form oda was specified. An orthogonal form is a precondi-
tion for the intersection operation of XBOOLE. The result in the right
bottom part of the 4-fold View shows all behavior details of the circuit
of Fig. 1.7 a). The output f is equal to 0 if either both inputs a and b
are equal to 0 or if both inputs b and c are equal to 1. The output f is
equal to 1 if either a is equal to 1 and b is equal to 0 or if b is equal to
1 and c is equal to 0. The values of the intermediate wires are listed in
the columns d and e, respectively. The dashes in TVL 4 show that the
inputs a and c decide about the value of the output f depending on the
value of the input b.
Exercise 1.8 (PRP). Prepare a PRP file as shown in Fig. 1.7 b). Execute
this PRP in the XBOOLE-monitor. Note: this PRP can be executed in a
new XBOOLE Monitor window, without a precondition, because the space

7. XBOOLE Library 19

Figure 1.8 The complete behavior calculated by means of a PRP listed in Fig. 1.7

definition is included in the PRP. Show all the created TVLs in the 4-fold
View and verify the result using Fig. 1.8. Compare your PRP file with the
created protocol. If there is no error, the only difference is the arrangement
of data in lines. Store the protocol as a new PRP file and check that this
machine-created PRP leads to the same result as before.

In the following chapters the solution of problems is sometimes given
or discussed by some hints or explanations if the problem is not too
difficult or the explanations support the material that has been taught.
Very often, however, we will show the protocol of the solution. If this
is the case, then the student should go carefully through the protocol,
line by line, and try to understand each step, i.e. each line of the proto-
col.

7. XBOOLE Library
The basis of the XBOOLE Monitor is the XBOOLE library. Most

of the functions of this library are wrapped by the XBOOLE Monitor
for simple application. The XBOOLE library is written in the program-
ming language C and can be used in programs written in programming
languages C, C++, Java, and other languages on several platforms.

It is necessary to know many programming details in order to use
the XBOOLE library. In this book we focus on the modeling of logic
problems and not on programming aspects. Therefore the XBOOLE

20 1 XBOOLE MONITOR

Figure 1.9 C-program to simplify a logic function using the XBOOLE library

library will not be considered in the remaining chapters. The XBOOLE
library can be ordered using the following address:

Steinbeis-TZ Logische Systeme
Nelkentor 7
D-09126 Chemnitz
Germany
FAX: +49 371 5381 929
Email: stz158@stw.de.

By using a simple example, the application of the XBOOLE library
will be indicated here. Assume there is a TVL in which k variables occur.
It may be so that the associated logic function actually depends only on
l variables, where l < k. It is the task of the function simplify, to create
a new simplified function the TVL of which only includes such variables
on which the logic function really depends.

Figure 1.9 shows the source code of a C-function that removes all
dependent variables from a TVL and shortens the number of rows in
the result. The prototypes of all functions of the XBOOLE library are
defined in the header file "xb pot.h". In order to use the XBOOLE
library, this header file must be included in the source file. All XBOOLE
objects are managed by XBOOLE, and the access is possible by pointers
to the type uns that is defined in the XBOOLE header too.

7. XBOOLE Library 21

The function simplify gets access to the given TVL by the parameter
ti and returns the simplified TVL by the parameter res. This function
requires that an orthogonal TVL is given and ensures that the form
of the TVL changes. All XBOOLE functions are indicated by capital
letters. The function COPYOBJ copies the TVL ti to a new TVL res
such that the given TVL will not change. In order to facilitate the access
to each variable in ti separately, a TVL xi is used. After its definition
and initialization the XBOOLE function SV NEXT assigns in the first loop
the first variable of the ti to the TVL xi, and in the following loops the
next variables, one after the other, respectively. The XBOOLE function
SV NEXT returns the value false if no further variable exists in the TVL
ti.

In the loop the XBOOLE function TE DERK checks whether the deriv-
ative of ti with respect to xi is equal to 0. If that is true, the function
ti does not depend on xi, and xi will be removed from the TVL res by
means of a k-fold maximum operation realized by the XBOOLE function
MAXK. The XBOOLE function OBB finally reduces the number of rows in
the simplified orthogonal TVL res.

Chapter 2

BASICS AND LOGIC FUNCTIONS

In order to understand and to solve the problems in this chapter, it is
recommended to read Chaps. 1, 2 and 3 of [18] and to follow carefully
the introduction into the XBOOLE system. Make sure that you know
the respective definitions and concepts and refer to the given examples.

1. Combinatorial Considerations in B and Bn

The use of the definitions for the relation ≤ and the operations ∧ and
∨ will solve the following problem using the respective tables.
Exercise 2.1 (Relations in B). 1 Show that x ≤ (x ∨ y) and x ≥ xy.

2 Show that if x1 ≤ y1 and x2 ≤ y2 then x1x2 ≤ y1y2 and (x1 ∨ x2) ≤
(y1 ∨ y2).

3 Show that x ≤ (y ∨ z) if x ≤ y or x ≤ z.

4 Show that x ≤ yz is equivalent to (x ≤ y) and (x ≤ z).
We remember that the positions from the right to the left of a binary

vector can be considered as the values x0, x1, . . . of a binary number
which have to be multiplied by 20, 21, . . . , and the products have to be
added. Because of the values 0 and 1, only the values for the positions
with the value 1 have to be added.
Exercise 2.2 (Binary Vectors). 1 Find the decimal equivalent dec(x)

for the vectors (1001) ∈ B4, (01101) ∈ B5, (110010) ∈ B6.

2 Find the vector x ∈ B6 with dec(x) = 19. Find the vector x for dec(x) =
19 in B8.

3 Find the binary vectors x with 2n−1 ≤ dec(x) < 2n.

Bernd Steinbach, Christian Posthoff, Logic Functions and Equations, Examples and
Exercises,
© Springer Science + Business Media B.V. 2009

24 2 BASICS AND LOGIC FUNCTIONS

4 Let be given the vector x = (10010101) ∈ B8.

(a) Find all y ∈ B8 with x ≤ y.

(b) Find all y ∈ B8 with y ≤ x.

5 Let be given two vectors x, y ∈ Bn with x ≤ y. Find all vectors z with
x ≤ z ≤ y.

This small example can also be used to find a solution based on Logic
Equations. We remember that the relation x ≤ z can be equivalently
translated into the equation x ∧ z = 0. For two vectors x and z the
equation must hold in each component, hence we get the equivalent
system of equations

x1 ∧ z1 = 0, . . . , xn ∧ zn = 0,

and in the same way

z1 ∧ y1 = 0, . . . , zn ∧ yn = 0.

Now we use, for instance, x = (x1, . . . , x6) = (010101) and y =
(y1, . . . , y6) = (110111) and insert the constants which results in

0 ∧ z1 = 0, 1 ∧ z2 = 0, 0 ∧ z3 = 0,

1 ∧ z4 = 0, 0 ∧ z5 = 0, 1 ∧ z6 = 0

and
z1 ∧ 0 = 0, z2 ∧ 0 = 0, z3 ∧ 1 = 0,

z4 ∧ 0 = 0, z5 ∧ 0 = 0, z6 ∧ 0 = 0.

These two sets of equations define the solution immediately, and we
get

z1 = −, z2 = 1, z3 = 0, z4 = 1, z5 = −, z6 = 1,

i.e.
z = (−101 − 1).

The two values z1 = − and z5 = − are based on the fact that the
coefficients of z1 and z5 in both equations are equal to 0 which means
that the equation is identically satisfied without binding the value of z1

and z5. This can also be seen from x1 = 0, y1 = 1 and x5 = 0, y5 = 1.
The function ‖x‖ counts the number of values 1 in a given vector.

Exercise 2.3 (Binary Vectors). Let x and y be two elements of Bn. Show
that

1 ‖x‖ = n − ‖x‖;

2 ‖x ∨ y‖ = ‖x‖ + ‖y‖ − ‖xy‖;

2. Logic Functions, Formulas and Expressions 25

3 ‖xy‖ = ‖x‖ + ‖y‖ − ‖x ∨ y‖.

Now we consider the shell of a sphere which is given by Si(x, c) =
{x | h(x, c) = i}, for i = 0, . . . , n, with h as the HAMMING-metric
and c as the center of the sphere. The open and the closed spheres
with center c themselves are given by Ki(x, c) = {x | h(x, c) < i} and
Ki(x, c) = {x | h(x, c) ≤ i}, resp. (see [18], pp. 33, 34). For closed
spheres, the radius i will also have the values 0, . . . , n, for open spheres
we can set K0 = ∅ and allow i = n + 1 since Kn = Kn+1.
Exercise 2.4 (Shells and Spheres). 1 Use c = (0000) and find Si(x, c)

for i = 0, . . . , 4 with regard to this center.

2 Now use c = (1111) and find Si(x, c), i = 0, . . . , 4 with regard to this
new center.

3 Confirm that Si(x, c) = Sn−i(x, c).

4 Let n = 4, c = (0000). Show that K0 = ∅, K1 = S0, . . . , K5 =
S0 ∪ · · · ∪ S4. Generalize this relation to any value of n.

5 Let n = 4, c = (0000). Show that K0 = S0, . . . , K4 = S0 ∪ · · · ∪ S4.
Generalize this relation to any value of n.

6 What is the relation between spheres with center c and spheres with
center c? Base your considerations on the analogous relation for shells.

2. Logic Functions, Formulas and Expressions
The definition of a logic function is quite easy and fully supported

by the XBOOLE Monitor. After starting the XBOOLE Monitor we use
the sequence Objects – Define Space – Create TVL – Append Ternary
Vector(s).

And now we simply write down all the (ternary) vectors for which the
function to be defined has the value 1. When we are using the variables x1
and x2 and the only ternary vector is selected as (11), then f = x1 ∧ x2.
By clicking on K the representation can change to the Karnaugh map for
this function, the letter changes to T, and when we click on this letter
now, we go back to the representation as TVL with the character K on
the key.

A second XBOOLE possibility is the use of the concept of a Logic
Expression or a Logic Formula. The menu point Extras offers the pos-
sibility Solve Boolean Equation which is, according to the philosophy
of the book, one of the most powerful and sophisticated options of the
monitor. After clicking on this topic a new window opens, and there
the respective expression (formula) can be typed. Hint: the system is

26 2 BASICS AND LOGIC FUNCTIONS

using as a standard that the right side of an equation is equal to 1. We
type, for instance, x3 & x4 and get the solution vector (11) and an object
number for this solution set. The view is exactly the same as before for
the definition based on TVL. Hence, the two possibilities are completely
equivalent. In this way any formula can be used for the input of the
respective function.

If we want to emphasize that an equation has a value of 1, then we can
type f = 1. The system understands the = as the equivalence function
∼, and, since we know that f ∼ 1 is equal to f , we get the correct solu-
tion. In the case of an equation f = 0 the system solves (f ∼ 0) = 1, and
since f ∼ 0 is equal to f , we solve actually f = 1 which means f = 0,
again without any problem. The best way to avoid any confusion: type
the equation to be solved without the value 0 or 1 on the right side and
solve it. If a solution for the value 0 on the right side is required, then
use additionally the set operation complement.
Exercise 2.5 (Definition of Functions). 1 Define the functions

f0(x) = x, f1(x, y) = x ∧ y, f2(x, y) = x ∨ y,

f3(x, y) = x ⊕ y, f4(x, y) = x ∼ y, f5(x, y) = x → y,

f6(x, y) = x|y = x ∧ y, f7(x, y) = x ↓ y = x ∨ y

using TVLs.

2 Define the same set of functions using Solve Boolean Equations ...

3 Which functions are represented by solving the equations (x ∧ y) = 0
and (x ∨ y) = 0, resp. Use the Karnaugh map to define an appropriate
expression for these functions.

4 Show that the expressions (x ⊕ y) ⊕ z = 1 and x ⊕ (y ⊕ z) = 1 define
the same function?

5 Answer the same question for ∧, ∨, ∼, →.

Very often the question arises how many functions of a given type
can be found. Problems of this kind are dealt with mostly by methods
from combinatorics. As an example the following question should be
considered.
Exercise 2.6 (Combinatorial Properties). 1 How many functions exist

with f(x1, . . . , xn) = f(x1, . . . , xn)?

2 Two binary vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) are called
neighbored if h(x,y) = 1. How many functions exist with f(x) = f(y)
for neighbored vectors x and y?

2. Logic Functions, Formulas and Expressions 27

3 How many functions of n variables exist with less than k values 1, k ≥ 1?

Sometimes logic functions can be defined in a given context based on
verbal descriptions. In a very general understanding this can be under-
stood as “logic modeling” and sometimes be very difficult. We start here
with a very simple example.
Exercise 2.7 (Logic Modeling). Find the Karnaugh map, a TVL and a
disjunctive form for the following functions!

1 The function f(x, y, z) has the value 1 either for x = 1 or if y �= z and
the value of x is less than the value of z, otherwise the value of the
function is equal to 0.

2 f(x1, x2, x3, x4) = 0 for such vectors satisfying x1 + x2 > x3 + 2x4.
Hint: understand 0 and 1 as integers and + as the addition for integers.

Exercise 2.8 (Definition of Functions by Formulas). Which functions
are defined by the following formulas (equations):

1 (x → y) ⊕ ((y → z) ⊕ (z → x));

2 (x ∨ y) ∨ (xz) ↓ (x ∼ y);

3 x → (z ∼ (y ⊕ xz));

4 (((x | y) ↓ z) | y) ↓ z.

Give the disjunctive, conjunctive, antivalence and equivalence normal forms
for these functions.

Exercise 2.9 (Normal Forms). Find the disjunctive and the antivalence
normal form of the following functions:

1 f = ((x1 ∨ x2x3x4)((x2 ∨ x4) → x1x3x4) ∨ x2x3)(x1 ∨ x4);

2 f = ((x1 → x2x3)(x2x4 ⊕ x3) → x1x4) ∨ x1;

3 f = (x1 ∨ x2 ∨ x3 ∨ · · · ∨ x9 ∨ x10)(x1 ∨ x2 ∨ x3 ∨ · · · ∨ x9 ∨ x10);

4 f = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3) ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x10.

Exercise 2.10 (Normal Forms). Find the conjunctive and the equivalence
normal forms of the functions given in the previous question.

Exercise 2.11 (Normal Forms). Generalize the two last items of the
previous question to larger values of n:

1 f = (x1 ∨ x2 ∨ · · · ∨ xn)(x1 ∨ x2 ∨ · · · ∨ xn);

2 f = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3) ⊕ x4 ⊕ · · · ⊕ xn.

28 2 BASICS AND LOGIC FUNCTIONS

Exercise 2.12 (Antivalence Polynomial). Find the antivalence polyno-
mial and the equivalence polynomial for the following functions:

1 f = (x1|x2) ↓ x3;

2 f = (x1 → x2(x2 ↓ x3));

3 f = ((x1 → x2) ∨ x3)|x1.

Not very often the transformation of a logic function into a “normal”
polynomial is used. This polynomial only uses addition, subtraction and
multiplication. A given elementary conjunction (containing all variables)
will be translated in the following way: each variable remains unchanged,
for negated variables x we write 1−x, and then all variables are combined
by multiplication. The use of elementary conjunctions ensures that at
most only one conjunction will be equal to 1 for a given set of values,
hence, the expressions for the different conjunctions can be added to form
such a polynomial. As an example see, for instance, C = x1x2x3x4 =
x1(1 − x2)x3(1 − x4) = x1x3 − x1x3x4 − x1x2x3 +x1x2x3x4. The value of
C will be equal to 1 only for the vector (1010), for all the other vectors
of B4 it will be equal to 0.
Exercise 2.13 (Arithmetic Representation). Transform the following
functions into the respective arithmetic polynomials:

1 f = x1 ⊕ x2 ⊕ x3;

2 f = (x1 → x2) → x3;

3 f = x1x2x3 ∨ x1x2x3.

Sometimes the question arises whether a given formula represents a
tautology, or as also can be said whether the function represented by
a given formula is always equal to 1. Again the use of the XBOOLE
monitor makes this kind of questions very easy. The formula has to be
entered, and the solution of the respective equation answers this ques-
tion immediately. Since, however, many different TVLs can represent a
tautology, it is elegant and efficient to use the complement, because this
complement must be the empty set, independent on the representation
of the tautology.
Exercise 2.14 (Tautologies). Which one of the following formulas defines
a tautology?

1 (x → y) → ((x ∨ z) → (y ∨ z));

2 ((x ⊕ y) ∼ z)(x → yz);

2. Logic Functions, Formulas and Expressions 29

3 ((x ∨ y) ↓ (x ⊕ y)) ⊕ ((x → y) → (x ∨ y));

4 ((x ∨ y)z → ((x ∼ z) ⊕ y))(x(yz)).

Very often we find simple or complex identities with the meaning that
one side of such an identity defines the same function as the other side.
In this case the two formulas can be considered as equivalent. A simple
example is the expression

a(b ∨ c) = ab ∨ ac,

the function defined by a(b ∨ c) is supposed to be the same function as
the function defined by ab ∨ ac. The solution of these problems can be
achieved in two ways:

We take the XBOOLE Monitor facility for solving equations and
solve the two equations left side = 1 and right side = 1 and store the
solution sets. Then we compare the solution sets using the symmetric
difference. If the result is the empty set, then the identity is correct,
otherwise not.

We type the suspected identity as it is. The system understands the
= as the equivalence, and since the equivalence is equal to 1 for 0 = 0
and 1 = 1, we also get all the vectors for which the identity holds,
and if the set of all these vectors is equal to the respective Bn, the
identity is valid. This means that we ask the question whether the
given expression represents a tautology.

Exercise 2.15 (Identities). Are the following pairs of formulas equivalent
– try to prove this equivalence by building the disjunctive normal form of
the two formulas.

1 f1 = (x ∨ y ∨ z) → (x ∨ y)(x ∨ z); f2 = x ∼ z;

2 f1 = (x → y) → z; f2 = x → (y → z);

3 f1 = [(x ⊕ y) → (x ∨ y)][(x → y) → (x ⊕ y)]; f2 = x | y;

4 f1 = (x → y) ∨ (x → z)y; f2 = (xy)(y → xz).

Correct identities (or equivalent formulas) can be used as a possibility
for the transformation (simplification, normalization) of formulas and
should be well known for this purpose. They can be used from the left
to the right or from the right to the left (dependent on the respective
effect).
Exercise 2.16 (Transformation Rules). Can the following rules be used?

30 2 BASICS AND LOGIC FUNCTIONS

1 x ∨ (y ∼ z) = (x ∨ y) ∼ (x ∨ z);

2 x → (y ∼ z) = (x → y) ∼ (x → z);

3 x ∧ (y ∼ z) = (x ∧ y) ∼ (x ∧ z);

4 x → (y ∨ z) = (x → y) ∨ (x → z);

5 x → (y ∧ z) = (x → y) ∧ (x → z);

6 x ⊕ (y → z) = (x ⊕ y) → (x ⊕ z);

7 x → (y → z) = (x → y) → (x → z).

The composition of functions is a powerful mechanism that can and
will be used very often. The basic idea is the implementation of “smaller”
functions and its combination by other functions. As an illustration an-
swer the following question.
Exercise 2.17 (Composition of Functions). Let be given f(a, b) = a ∨ b
and g(x3, x4) = x3 ∼ x4.

1 Find all vectors (x2, x3, x4) with h(x2, x3, x4) = f(g(x3, x4), x2).

2 Find all vectors (x1, x2, x3, x4) with h(x1, x2, x3, x4) = f(x1, x2) ∨
g(x3, x4).

3 Find all vectors (x1, x2, x3, x4) with h(x1, x2, x3, x4) = f(x1, x2) ∧
g(x3, x4).

3. Special Functions and Representations
One of the most interesting problems is the question whether a func-

tion (given by a formula, a description, a table) is an element of a special
class of functions (is linear or monotone or linearly degenerated etc.).
This question will be dealt with in Chapter 4 using operations of the
Boolean Differential Calculus. Here we will give some examples for these
functions using the XBOOLE Monitor.
Exercise 2.18 (Special Formulas). Show the TVL and the Karnaugh map
of the following functions:

1 f1 = x1x2x3x4x5x6x7x8x9x10;

2 f2 = x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6 ∨ x7 ∨ x8 ∨ x9 ∨ x10;

3 f3 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x10;

4 f4 = x1 ∼ x2 ∼ x3 ∼ x4 ∼ x5 ∼ x6 ∼ x7 ∼ x8 ∼ x9 ∼ x10.

3. Special Functions and Representations 31

Exercise 2.19 (Implication). 1 Find the TVLs for the functions f =
(x → y) → z and g = x → (y → z).

2 Which function is the XBOOLE Monitor using for x → y → z.

3 Discuss the result received for f1 = x1 → x2 → x3 → x4 → x5 → x6 →
x7 → x8 → x9 → x10.

Exercise 2.20 (NAND and NOR). 1 Compare the two functions f =
(x|y)|z = (x ∧ y) ∧ z and g = x|(y|z) = x ∧ (y ∧ z).

2 Compare f = (x ↓ y) ↓ z = (x ∨ y) ∨ z with g = x ↓ (y ↓ z) =
x ∨ (y ∨ z).

3 What can be said about f = x1|x2|x3|x4 and g = x1 ↓ x2 ↓ x3 ↓ x4?

The construction of disjunctive and conjunctive forms and normal
forms is easy when the XBOOLE Monitor will be used. Again a given
overlap with the concept of logic equations exists and can be successfully
used.
Exercise 2.21 (Conjunctive and Disjunctive Normal Forms). Find a
disjunctive and a conjunctive form for the following functions:

1 f1 = (x ∨ yz)(x ∨ z);

2 f2 = ((x1 ∨ x2x3x4)((x2 ∨ x4) → x1x3x4) ∨ x2x3) ∨ (x1 ∨ x4);

3 f3 = ((x1 → x2x3)(x2x4 ⊕ x3) → x1x4) ∨ x1.

In order to find the disjunctive normal form, any ternary vector with
the value – at a given position will be replaced by two vectors with the
values 0 and 1 at this position, resp. Sometimes the function might be
given by means of a vector of the function values, such as (01101100) or
(10001110). In this case the assignment of the argument vectors to the
positions of the vector of the function values must be known. The given
functions can, for instance, be represented by the following table:

x y z f1 f2

0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 0 0
1 0 0 1 1
1 0 1 1 1
1 1 0 0 1
1 1 1 0 0

32 2 BASICS AND LOGIC FUNCTIONS

Very often this order of the assignment of the vector components of f
to the vectors for the variables (xyz) from the left to the right is assumed,
more or less as a standard, any other assignment of the variables to
the positions of the vector of the function values must be mentioned
appropriately. This arrangement is very popular because the decimal
equivalent of the respective vectors corresponds to the integer numbers
0, 1, . . . , 7 or to 0, 1, . . . , 2n − 1 for n variables. Therefore we can also
write f1 = (01101100), f2 = (10001110).
Exercise 2.22 (Function Vectors). 1 Find the disjunctive and the con-

junctive normal forms for the two given function vectors.

2 Find shorter disjunctive and conjunctive forms using the Karnaugh map.

3 Use the items OBB Orthogonal Block Building and OBBC Orthogo-
nal Block Building and Change of the XBOOLE Monitor in order
to find shorter versions.

Exercise 2.23 (Special Normal Forms). How many disjunctions (con-
junctions) will be used for the conjunctive (disjunctive) normal forms of the
following functions:

1 f = x1 ⊕ x2 ⊕ · · · ⊕ xn;

2 g = (x1 ∨ x2 ∨ · · · ∨ xn)(x1 ∨ x2 ∨ · · · ∨ xn);

3 h = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3) ⊕ x4 ⊕ x5 ⊕ · · · ⊕ xn. Start your
considerations with n = 4, n = 5, n = 6 and try to find a general rule.

Since the property of orthogonality is one of the fundamental prin-
ciples of the solution process for Boolean equations, it is very easy to
find antivalence forms of functions. We simply solve the equation f = 1
for any function f . Since the solution is given as a set of conjunctions
K1, K2, . . . with the additional property that Ki ∧ Kj = 0 for i �= j (or-
thogonality), we can simply calculate the disjunctive form of the solution
set and replace the ∨ by ⊕.
Exercise 2.24 (Antivalence Normal Forms). Find an antivalence form
for the following functions:

1 f1 = (x ∨ yz)(x ∨ z);

2 f2 = ((x1 ∨ x2x3x4)((x2 ∨ x4) → x1x3x4) ∨ x2x3) ∨ (x1 ∨ x4);

3 f3 = ((x1 → x2x3)(x2x4 ⊕ x3) → x1x4) ∨ x1.

In order to find antivalence forms without complemented variables
(Shegalkin polynomials), we remember the two rules x = 1 ⊕ x and

3. Special Functions and Representations 33

x(1 ⊕ y) = x ⊕ xy. That means that each value 0 in a conjunction of an
antivalence form results in two conjunctions, one without this variable
and the other one with the value 1.
Exercise 2.25 (Shegalkin Polynomials). 1 Transform the antivalence

forms of the previous problem into Shegalkin polynomials.

2 Find the Shegalkin polynomial for f = x1 ∨ x2 ∨ x3.

The concept of a subfunction can be interesting if only some parts of a
function are important in a given context. Any subfunction can be found
by specifying the values of some variables. One very clear way is the
definition of the function and the intersection with the respective value,
the other possibility inserts the values of some variables as a constant
into the formula and calculates the respective subfunction. Observe that
the subfunctions do not depend on the variables that have now a fixed
value.
Exercise 2.26 (Subfunctions). 1 For f = ((x1 → x2x3) ⊕ x2)x2, find

subfunctions f1(x2, x3) = f(x1 = 1, x2, x3), f2(x1, x3) = f(x1, x2 =
1, x3), f3(x3) = f(x1 = 1, x2 = 0, x3) using the intersection and the
insertion of constants.

2 Which functions f(x1, x2) do not change the value when x1 and x2 are
exchanging their positions?

When we speak about special logic functions, then very often three
questions have to be answered, mostly in a different context:

how many functions of this special nature can be found (combinatorial
considerations);

find some (all) functions with this property (constructive aspect);

check whether a given function is an element of this class (analytical
aspect).

Exercise 2.27 (Degeneration of Functions). 1 Find all conjunctively
degenerated functions of three and four variables. Explain the construc-
tion! What is the common property of these functions?

2 Find all disjunctively degenerated functions of three and four variables.
Explain the construction! What is the common property of these func-
tions?

3 Find all linearly degenerated functions of three and four variables using
the antivalence. Explain the construction! What is the common property
of these functions?

34 2 BASICS AND LOGIC FUNCTIONS

4 Find all linearly degenerated functions of three and four variables using
the equivalence. Explain the construction! What is the common property
of these functions?

Exercise 2.28 (Dual and Self-Dual Functions). Let be given the following
functions:

f1 = (11100111);

f2 = (01110001);

f3 = (11001101);

f4 = x1x2 ∨ x2(x3 ⊕ x4).

Find for each function its dual function! Is one of these functions a self-dual
function?

Exercise 2.29 (Symmetric Functions). 1 Find functions f(x1, x2, x3)
symmetric in (x1, x2).

2 Find functions f(x1, x2, x3) symmetric in (x2, x3).

3 What can be said about the intersection of these two sets?

Exercise 2.30 (Symmetric Functions). 1 Find the number of functions
f(x1, . . . , xn) which are symmetric in (x1, x2), n ≥ 2.

2 Find all functions that do not change their values for any permutation
of the variables.

Exercise 2.31 (Monotone Functions). Which functions of the given set
are monotone? Check the increasing as well as the decreasing possibility.

1 f1 = (x → (x → y)) → (y → z);

2 f2 = x1x2 ⊕ x1x3 ⊕ x1x4 ⊕ x2x3 ⊕ x2x4 ⊕ x3x4;

3 f3 = (0000000010111111);

4 f4 = (0001010101010111).

Monotone functions are in a very strict sense considered as mono-
tonely increasing and monotonely decreasing. However, this difference is
not so important since it is easy to see that a function f(x) is monotonely
increasing if and only if f(x) is monotonely decreasing and vice versa.
Therefore most of the time it is sufficient to deal with one of these
properties or to assume the consideration of increasing functions more
or less as a standard.

4. Minimization 35

Exercise 2.32 (Monotone Functions). For which value of n are the fol-
lowing functions monotone?

1 f1(x1, . . . , xn) = x1x2 ∨ x1x3 ∨ · · · xn−1xn (the disjunctions of all con-
junctions consisting of two non-negated variables);

2 f2(x1, . . . , xn) = x1x2 . . . xn−1xn → (x1 ⊕ x2 ⊕ · · · ⊕ xn−1 ⊕ xn).

Exercise 2.33 (Monotone Functions). For each monotone function, we
have

f(x) = xif(xi = 1) ∨ f(xi = 0),

and
f(x) = (xi ∨ f(xi = 0)) ∧ f(xi = 1).

Prove these identities.

Exercise 2.34 (Monotone Functions). Let be given f(x1, x2, x3, x4) such
that f(0, 1, 1, 0) = 1, f(1, 1, 0, 0) = 1, f(1, 0, 1, 0) = 0, f(0, 0, 1, 1) = 1,
f(0, 1, 0, 1) = 0.

1 Can this definition be used to build monotone functions with these val-
ues?

2 How many different monotone functions with these values can be built?

3 Represent these functions by disjunctive forms without negated variables.

Exercise 2.35 (Functional Constraints). Find all functions satisfying the
following conditions:

1 f(1, 0, 0, 0) = 1, f(0, 1, 1, 1) = 0;

2 f(1, 0, 0, 0) = 1, f linear in one or more variables;

3 f(0, 1, 0, 0) �= f(1, 0, 1, 1), f symmetric (consider all possibilities);

4 f(1, 0, 0, 1) = 0, f self-dual.

4. Minimization
In Chap. 2, Sect. 4 of [18] the Method of BLAKE and the Algorithm

of QUINE-MCCLUSKEY are represented; they give the prime impli-
cants of a function and all irredundant disjunctive forms for a given
function f .

We remember that an implicant of a function f is a conjunction K
with the property K ≤ f , i.e. K ∨ f = f and K ∧ f = K. A prime
implicant is an implicant where this property will be lost if one of the
variables in the conjunction is deleted.

36 2 BASICS AND LOGIC FUNCTIONS

Exercise 2.36 (Prime Implicants). Find the prime implicants of the fol-
lowing functions:

1 f(x, y, z) = (00101111);

2 f(x, y, z) = (01111110);

3 f(x1, x2, x3, x4) = (1010111001011110).

Exercise 2.37 (Minimized Disjunctive Normal Form). What can be said
about the minimization of the following functions:

1 f1 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5;

2 f2 = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3) ⊕ x4 ⊕ x5;

3 f3 = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x4 ⊕ x5);

4 f4 = (x1 ⊕ x2 ⊕ x3)(x4 ⊕ x5 ⊕ x6);

5 f5 = (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6)(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6)?

The XBOOLE Monitor is very flexible with regard to the variables
which are used for a function. We can type, for instance, f = a ∨ b and
g = b ∨ c as equations to be solved and consider f ∨ g which is solved by
the union of the sets of ternary vectors for f and g, respectively. And
when we check the solution sets then we see that the result depends on a,
b and c. What has been happening in the background, is the extension of
functions by variables or the embedding of functions in larger spaces. For
the variables (a, b) and (b, c), we would need a space (a, b, c) in order to
work with the two functions simultaneously. In the sense of the formulas
this can be done in the following way:

f = (a ∨ b) = (a ∨ b)(c ∨ c) and g = (a ∨ a)(b ∨ c).

Now both f and g depend on (a, b, c). It can be seen that f(a, b, c =
0) = f(a, b, c = 1) and g(a = 0, b, c) = g(a = 1, b, c). The variables c or
a, respectively, are not essential.

Sometimes it is also desirable to find out which variables are not essen-
tial, because if this is the case, then it is possible to find a formula with-
out this variable which makes the respective expressions shorter. This
will be done most efficiently using the first derivative, after the knowl-
edge of the Boolean Differential Calculus is available (see Chap. 4). Here
we will only use the two subfunctions directly. We build, for instance, the
subfunction f(xi = 1) by means of the intersection of f and the ternary
vector for xi = 1, the subfunction f(xi = 0) in the same way and check
the equality by using the symmetric difference. The two subfunctions are

5. Complete Systems of Functions 37

equal to each other, if the symmetric difference is equal to the empty
set.

Sometimes it might even be possible to get (by using algebraic trans-
formations of formulas or minimization algorithms) expressions without
a variable; then this variable is not an essential variable. The equality of
the subfunctions can be seen directly.
Exercise 2.38 (Essential Variables). Find the essential or non-essential
variables of the following functions and find formulas without non-essential
variables:

1 f(x1, x2, x3) = (x1 → (x1 ∨ x2)) → x3;

2 f(x1, x2) = ((x1 ∨ x2) → x2);

3 f(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x2x3 ∨ x1x2x3)x4;

4 f(x1, x2) = (x1 ⊕ x2)(x1 ↓ x2);

5 f(x1, x2, x3) = (((x3 → x2) ∨ x1)(x2 → x1)x3x1) ⊕ x3;

6 f(x1, x2, x3) = (((x1 ∨ x2)(x1 ∨ x3) → x1) → x2x3)x2;

7 f(x1, x2, x3, x4) = (1011100111001010);

8 f(x1, x2, x3, x4) = (0011110011000011).

5. Complete Systems of Functions
We already know that the systems consisting of conjunction, disjunc-

tion and negation are complete systems of functions, i.e. each function
can be represented by using these functions only. This can be confirmed
when we remember that each function can be represented as a conjunc-
tive or disjunctive normal form. But it can be seen that there are also
other complete systems of logic functions, sometimes consisting only of
one single function.
Exercise 2.39. Show that the following systems of functions are complete
systems:

1 {x ↓ y};

2 {xy ⊕ z, (x ∼ y) ⊕ z};

3 {x → y, x ⊕ y ⊕ z};

4 {x → y, (1100001100111100)};

5 {0, xy ∨ xz ∨ yz, 1 ⊕ x ⊕ y ⊕ z};

38 2 BASICS AND LOGIC FUNCTIONS

6 {(1011), (1111110011000000)}.

Since the functions of the previous exercise are complete systems,
it must be possible that each function can be expressed by the other
functions.
Exercise 2.40. Express every function that appears in Exercise 2.39 by all
the other complete systems of functions of this exercise.

Exercise 2.41. Represent every function of this exercise using all the com-
plete systems given in Exercise 2.39.

1 f1 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5;

2 f2 = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3) ⊕ x4 ⊕ x5;

3 f3 = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x4 ⊕ x5);

4 f4 = (x1 ⊕ x2 ⊕ x3)(x4 ⊕ x5 ⊕ x6);

5 f5 = (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6)(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6)?

6 f6 = x2x4x5 ∨ x2x4x5 ∨ (x4 ⊕ x5)(x1x2x3 ∨ x1x2x3) ∨ x1x2x3(x4 ∼ x5).

7 f7 = (x1 ⊕ x2) ∧ (x3 ∼ x4 ∼ x5).

8 f8 = x1x2 ∨ x2x3 ∨ x3x4 ∨ x4x1.

9 f9 = (x1|x2|x3) ↓ (x4 ↓ x5).

10 f10 = (x1 → x2) ∼ (x2 → x3) ∼ (x3 → x4) ∼ (x4 → x5) ∼
(x5 → x1).

Sometimes some functions can be allowed to be used in a given con-
text. They will not be a complete system, but they can be used to build
new functions. As an example we consider the system of functions {0, x}.
It can be assumed that these two functions are given and can be used
several times, according to our convenience. Which functions can be built
by using these two functions?

x f1(x) f2(x)

0 0 1
1 0 0

By using the function f2 two times, it is possible to build

f3(x) = f2(f2(x)) = x and f4(x) = f2(f1(x)) = 1.

Therefore the whole system of functions that is available consists of
the functions {0, 1, x, x}, since f1(f1(x)) = f1(f2(x)) = 0. Here the given

6. Partially Defined Functions 39

function had only one argument; when several arguments have to be
considered, then the space Bn also has to be given. We will simply say
that the arguments x1, x2, x3 or x1, x2, x3, x4 can be used – see the next
example. It can be seen later that this approach is also very typical for
the design of circuits. A special function is given, and the problem has
to be solved what can be done with this circuit or this gate, and how can
it be done. The complete systems are particularly interesting because in
this case it is known that each function can be implemented by means
of this system.
Exercise 2.42. 1 Let be given the set of functions {1, x ⊕ y}. Which

functions can be built using these two functions for M1 = {x1, x2, x3}
and for M2 = {x1, x2, x3, x4}.

2 Which functions can be built using {x ∨ y, xyz}?

3 Which system of functions can be built by {x ∨ y, xyz, x ∨ yz, (x ∨ y)z}?

4 Can xy be built using the set {0, 1, x, y, x, y}?

5 Which set can be built using the functions of the previous item?

6 Which set can be built using the given set {0, 1, x, y, x, y} together with
f1(x, y, z) = (11101000) or f2(x, y, z) = (01111111) or f3(x, y, z) =
(10011001).

6. Partially Defined Functions
Very often the values of a function are not completely specified, they

are given only for a given set of values of the argument vectors. We will
see this property very often when the design of circuits or finite-state
machines will be considered.

Such a function always can be seen as a ternary vector where only
some of the values are given, the remaining positions are equal to – and
can be replaced by values 0 or 1 (as we have seen already very often).
Exercise 2.43. Let be given the function(s) (10 − − 010 − 11000101).

1 Find the set of functions that can be derived from this partial definition.

2 Find for every function the antivalence normal form and compare the
different representations.

3 Find for every function the conjunctive normal form and compare the
different representations.

The range of values for the variables with specified values can be de-
scribed by a function ϕ(x) which is equal to 0 for the vectors of variables

40 2 BASICS AND LOGIC FUNCTIONS

with specified values of the function and equal to 1 otherwise, i.e. for
vectors with unspecified values. Later two more functions will be used
in this context: the function q(x) is equal to 1 for all vectors with f = 1
(the ON-set) and 0 otherwise. The function r(x) is equal to 1 for all
vectors with f = 0 (the OFF-set) and 0 otherwise.
Exercise 2.44. Find the function ϕ(x1, x2, x3, x4) for the following defi-
nition ranges:

1 The function f(x1, x2, x3, x4) is defined only for vectors with one or
three values 1.

2 The function f(x1, x2, x3, x4) is not defined for all vectors with two
values 1.

3 The function f(x1, x2, x3, x4) is not defined for the vectors (1110) and
(1111).

Exercise 2.45. Let be given the function f(x1, x2, x3, x4) = x1x2 ∨x2x3 ∨
x3x4 ∨ x4x1. However, it is not defined for (1110) and (1111).

1 Find the set of four functions that meet this partial specification.

2 Find the function ϕ(x1, x2, x3, x4) for this situation.

3 Represent the four possible functions by means of f(x1, x2, x3, x4) and
ϕ(x1, x2, x3, x4).

7. Solutions
Exercise 2.1.

1 x y x ∨ y x ≤ x ∨ y x ∧ y x ≥ x ∧ y

0 0 0 yes 0 yes
0 1 1 yes 0 yes
1 0 1 yes 0 yes
1 1 1 yes 1 yes

2 Here the same table will help: use four columns for x1, x2, y1 and y2. Mark the
rows where x1 ≤ y1 and x2 ≤ y2 and check the relations for the conjunctions and
disjunctions.

3 Use a table with the same procedure.

4 Here the transformation of ≤ into an equation can be used: x ≤ (yz) = x yz =
x(y ∨ z) = xy ∨ xz = 0. The disjunction is equal to 0 if and only if both con-
junctions are equal to 0: x y = 0 and x z = 0 which is equivalent to x ≤ y and
x ≤ z.

Exercise 2.2.

1 9, 13 and 50.

2 (010011) ∈ B6, (00010011) ∈ B8.

7. Solutions 41

3 The vector x = (10 . . . 0) ∈ Bn represents the number 2n−1. The first bit with the
value 1 is kept, all the other bits are successively replaced by values 1, possibly in
lexicographic order: (10 . . . 00), (10 . . . 01), (10 . . . 10), (10 . . . 11) etc. This results
in 2n−1 different numbers from 2n−1 until 2n − 1. The number 2n itself would
require one more bit, i.e. it will be represented by x = (10 . . . 0) ∈ Bn+1.

An elegant way to describe the set of all these vectors is the use of ternary vectors.
We keep the 1 in the first position and replace all the values 0 by −: (1 − − . . . −)
represents the set of all these vectors x with 2n−1 ≤ dec(x) < 2n since every −
can be replaced by 0 or 1. When only the value 0 is used, then we get the original
number 2n−1, when only the value 1 is selected, then the resulting number is equal
to 2n − 1.

4 In the first case the positions with xi = 1 remain unchanged. In order to increase
the given vector, the values 0 can change to 1, hence, the ternary vector (1 − − 1 −
1 − 1) represents all the desired vectors. Actually we build the interval between
the given vector x = (10010101) and the largest vector (11 . . . 11).

In the second case the positions with xi = 0 remain unchanged, the values 1
can change to 0, hence, the ternary vector (−00 − 0 − 0−) represents the desired
vectors, the interval (00000000) ≤ y ≤ x.

5 Let x = (010101), y =(110111). Using the considerations of the previous item, all
vectors z with z ≥ x are given by (−1 − 1 − 1), the ternary vector (− − 0 − − −)
describes the set of all vectors z with z ≤ y. The intersection of these two sets
(intervals) will be the desired set which is given by {(−101 − 1)}.

(a) We click on Objects and select Define Space. This is our first space, and 32
variables are sufficient because we need only six.

(b) Now we go back to Objects and define two TVLs as objects 1 and 2, and we
assign the variables x1, . . . , x6 to both of them. As Form predicate we select
ODA; this is an assumption for the application of set operations.

(c) For the next step we use Objects again, followed by the item Append Ternary

Vector(s). The vector (−1 − 1 − 1) will be appended to TVL1, the vector
(− − 0 − − −) to TVL2.

(d) The final step is the intersection of these two ternary vectors which can be
understood as the intersection of the respective sets of binary vectors. We
select Sets and ISC Intersection and get the desired result after specifying
the two operands.

Exercise 2.3.

1 The complement x exchanges the values 0 and 1. Hence, if x has k values 1 and
n − k values 0, then the complement must have n − k values 1 and k values 0.

2 The subtraction is necessary because some of the values 1 are counted twice on
the right side.

3 This relation follows from 2 by transformation of the equation.

This norm function which is accessing the components of a (binary or ternary)
vector is not available in the XBOOLE monitor. If it is required very often, then you
can rely on the XBOOLE library, or you write your own C-routines to be added to
the existing system.

42 2 BASICS AND LOGIC FUNCTIONS

Exercise 2.4.

1 c = (0000)

(a) h = 0: S0 = {(0000)}
(b) h = 1: S1 = {(1000), (0100), (0010), (0001)}
(c) h = 2: S2 = {(1100), (1010), (1001), (0110), (0101), (0011)}
(d) h = 3: S3 = {(1110), (1101), (1011), (0111)}
(e) h = 4: S4 = {(1111)}.

2 This problem will now start with S0 = {(1111)}, followed by S1 = {(0111), (1011),
(1101), (1110)} etc.

3 This can be seen immediately by inspecting the previous results.

4 K0 = ∅, Ki =
⋃i−1

k=0
Sk, Kn+1 =

⋃n

k=0
Sk.

5 K0 = S0, Ki =
⋃i

k=0
Sk, Kn =

⋃n

k=0
Sk.

6 This follows directly from item 3, 4 and 5.

Exercise 2.5.

1 This item simply repeats the definition of the elementary functions. Ensure that
you remember these functions well and use the steps mentioned above.

2 Use the sequence Objects, Define Space..., Extras and Solve Boolean Equa-

tion. Then you type the respective formulas for f1 to f7 and solve these equations
which will give the same results.

3 f(x, y) = x ∨ y = x ∧ y. f(x, y) = x ∧ y = x ∨ y.

4 We solve the two equations (x ⊕ y) ⊕ z and x ⊕ (y ⊕ z) – the right sides are equal
to 1 – and compare the solution sets. When we store these two solutions as two
different sets, then their symmetric difference would be empty (which means that
the two sets are equal).

5 When we explore, for instance, the two expressions (x → y) → z and x → (y → z),
then the symmetric difference of the solution sets will show that the functions are
different for the two vectors (000) and (011).

Exercise 2.6.

1 Instead of 2n argument vectors of the function now only 2n−1 pairs of arguments

have to be considered. Therefore we get 22n−1
functions with this property.

2 The construction of these functions can start at any point. We use x = (0, . . . , 0)
with f(0, . . . , 0) = 0. Then for all vectors x with ‖x‖ = 1 the value of the function
must be equal to 1, the value for all vectors x with ‖x‖ = 2 must be equal to 0
etc. This means that the value for x = (0, . . . , 0) defines the value for all other
vectors in a unique way. Since f(0, . . . , 0) = 1 is the second possibility, we only
have two such functions.

3 The definition of the function indicates that the value 1 can be assigned to vectors
x with ‖x‖ = 0, . . . , k − 1. It is known from combinatorics that m vectors with
the value 1 can be selected from 2n possibilities, using the binomial coefficient(
2n

m

)
= 2n!

m!(2n −m)!
. Therefore, the number of functions with this property is equal

to
(
2n

0

)
+

(
2n

1

)
+ · · · +

(
2n

k−1

)
.

7. Solutions 43

Exercise 2.7.

1 The condition x = 1 can be expressed by the vector (1 − −), y �= z defines the
two possibilities y = 0, z = 1 and y = 1, z = 0, but only in the first case x = 0
is less than z = 1. Therefore we have the two ternary vectors (1 − −) and (001)
as the result. The Karnaugh map follows from the change of the view after the
TVL with these two vectors has been created. f = x ∨ x yz is the corresponding
disjunctive form.

2 The given assumption changes the point of view and introduces or uses different
algebraic concepts: the addition and the calculation of 2x4 takes the values 0
and 1 simply as numbers, and for those vectors where the values of the variables
satisfy the condition the value 0 will be entered. By checking all 16 vectors, we
get the following four vectors with f = 0: (0100), (1000), (1100) and (1110). In
order to find a disjunctive form, a TVL with these four vectors can be created.
The complement of this set results in a set that can be used for the disjunctive
form, and we get, for instance, f = x4 ∨ x1x2 ∨ x1x3 ∨ x2x3.

Exercise 2.8.

1 By using the BOOLE Monitor we get f = 1 for the two vectors (000) and (111),
hence, f = x y z ∨ xyz. It will also be a good exercise to find the disjunctive or
conjunctive normal form by algebraic transformations of the given formula. Use,
for instance, the following sequence of transformations:

x → y = x ∨ y = x ⊕ y ⊕ xy = 1 ⊕ x ⊕ y ⊕ (1 ⊕ x)y = 1 ⊕ x ⊕ y ⊕ y ⊕ xy = 1 ⊕ x ⊕ xy.

We can also use the disjunctive form of this function: f = x y z ∨ xyz = x y z ⊕
xyz = 1⊕x⊕y⊕z⊕xy⊕xz⊕yz. An equivalent conjunctive form can be found when
we are using the complement of the set {(000), (111)}. After using the XBOOLE
Monitor for the original formula, the solution set is stored as an object. We can
also create a TVL and enter the two vectors directly. The use of the items Sets and
CPL Complement results in the set of ternary vectors {(100), (011), (−10), (−01)}.
The corresponding disjunctions can be used for a conjunctive form of this function:
f = (x ∨ y ∨ z)(x ∨ y ∨ z)(y ∨ z)(y ∨ z). Since the set operations are always based
on orthogonal sets of vectors, we get the equivalence normal form immediately:
f = (x ∨ y ∨ z) ∼ (x ∨ y ∨ z) ∼ (y ∨ z) ∼ (y ∨ z). The conjunctive form f =
(x ∨ y)(y ∨ z)(x ∨ z) would be shorter.

2 Since the operator ↓ has not been implemented in the XBOOLE Monitor, we must
use the definition x ↓ y = x ∨ y = x ∧ y before the input of the equation. This is
easy to do: we replace the ↓ by ∨ and the complement:

(x ∨ y) ∨ (xz) ↓ (x ∼ y) = (x ∨ y) ∨ (xz) ∨ (x ∼ y)

= (x ∨ y) ∨ (xz) ∧ (x ∼ y) = (x ∨ y ∨ xz)(x ⊕ y).

f = 1 for the two ternary vectors (01−) and (100), hence, f = xy ∨ xy z =
(x ∨ z)(x ∨ y)(x ∨ y) etc.

3 f = x ∨ yz ∨ yz = (x ∨ y ∨ z)(x ∨ y ∨ z).

4 Here x | y = xy = x ∨ y must be used as well, and we get after some steps the
expression xyz which already shows that f = 1 only for the vector (110).

This type of formulas is also a good possibility to use the XBOOLE Monitor,
particularly the possibility of manipulating sets of ternary vectors. α|β can be cal-
culated by creating objects for α and β, respectively, followed by the intersection of

44 2 BASICS AND LOGIC FUNCTIONS

these two objects and the complement of the intersection. The NOR-operation will
be implemented by the union of the two parts and the complement of the result.

Exercise 2.9.

1 The set of ternary vectors with f = 1 is equal to {(0110), (0111), (1111)} (given
by the XBOOLE Monitor) or, after using the orthogonal block building, equal to
{(011−), (1111)}, and this results in the disjunctive normal form f = x1x2x3 ∨
x1x2x3x4.

2 This expression describes the function 1(x1, x2, x3, x4) which is constant equal to
1 for all vectors (x1, x2, x3, x4).

3 When the expression is checked carefully, then it can be seen that this is already
the conjunctive normal form of the function f . It is equal to 0 only for the two
vectors (0000000000) and (1111111111). For the remaining 210–2 vectors the func-
tion would be equal to 1, hence, it would be hardly possible to write down the
disjunctive or antivalence normal forms. However, the XBOOLE Monitor needs
(only) 18 vectors for the representation of this function.

4 Using the definitions involved in this expression, two parts of the formula can
be considered: fleft = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3) and fright = x4 ⊕ x5 ⊕ x6 ⊕
x7 ⊕ x8 ⊕ x9 ⊕ x10, and f = fleft ⊕ fright. According to the definition of the
antivalence, f = 1 if fleft = 0 and fright = 1 and vice versa. Therefore, the
solution vectors have the vectors (000) and (111) for (x1, x2, x3) together with
all vectors (x4, x5, x6, x7, x8, x9, x10) having an odd number of components with
the value 1. All the other vectors (x1, x2, x3) can be paired with those vectors
(x4, x5, x6, x7, x8, x9, x10) having an even number of components with the value 1.
The XBOOLE Monitor shows 384 ternary vectors for the representation of this
function.

Exercise 2.10.
The simplest way is the use of the set of ternary vectors that is already known
followed by the correct interpretation of the vectors as disjunctions of a conjunc-
tive normal form. We create, for instance, a list of ternary vectors with the vectors
(0110), (0111), (1111). The complement of this set followed by an orthogonal mini-
mization results in three vectors (−0 − −), (−10−), (1110), and the respective orthog-
onal conjunctive normal form can be written as f = x2(x2 ∨ x3)(x1 ∨ x2 ∨ x3 ∨ x4).
The respective forms for the other functions can be found by using the same ap-
proach.

Exercise 2.11.
This more general problem uses the same ideas as the problem before. Since n is not
specified, XBOOLE cannot be used immediately. However, the following considera-
tions can be used for any special n after the value has been defined.

1 This conjunctive normal form shows that f = 0 for two vectors. For all the other
vectors we get f = 1. The easiest way to get these vectors is the input of these
two vectors followed by the complement.

2 For any n ≥ 4 the two vectors (000) and (111) will be combined with all the vectors
x4 . . . xn with an odd number of values 1, all the other vectors for (x1, x2, x3) will
be combined with all the vectors with an even number of values 1. The number

7. Solutions 45

of vectors with f = 1 is equal to the number of vectors with f = 0, i.e. equal
to 2n−1.

Exercise 2.12.

1 f = x1x2x3 = x1x2(1 ⊕ x3) = x1x2 ⊕ x1x2x3;

2 f = x1 = 1 ⊕ x1;

3 f = 1 for the two vectors (0 − −), (101), hence f = x1 ⊕ x1x2x3 = 1 ⊕ x1 ⊕ x1x3 ⊕
x1x2x3.

Exercise 2.13.

1 f = x1x2x3 + (1 − x1)(1 − x2)x3 + (1 − x1)x2(1 − x3) + x1(1 − x2)(1 − x3) =
4x1x2x3 + x1 + x2 + x3 − 2x1x2 − 2x1x3 − 2x2x3.

Check the value of f , for instance, for x1 = 1, x2 = 1, x3 = 1.

2 We use Solve Boolean Equation... and deal with each elementary conjunction
as in the previous item. In order to avoid ternary vectors, the Karnaugh map
could be used.

3 Here we have two conjunctions that can be transformed as before.

Exercise 2.14.

1 The solution of this equation shows that this is a tautology.

2 We get f = 1 only for the vectors (000) and (011).

3 Tautology.

4 This function is always equal to 0, i.e. it is the negation of a tautology.

Exercise 2.15.

1 We use again the option of Solve Boolean Equation, for the first expression we
get three solution vectors (1− −), (011), (000), for the second formula, however, we
get two solution vectors (00), (11). When we now check the variables then we can
easily see that for the first formula the variables allocated are x, y and z, for the
second, however, only x and z are used. It might be useful to know a possibility
to adjust the variables in such a way that both formulas depend on the same sets
of variables.

The first possibility is a bit tricky. We use the knowledge about the functions:
(x ∨ x) = 1 and (x ∼ 1) = x and replace the equation x ∼ z by x ∼ z ∼ (y ∨ y)
which obviously has the same set of solutions, but depends now on x, y and z.
The resulting solution set is now equal to {(0 − 0), (1 − 1)}.

The second possibility corresponds more to the theoretical understanding of binary
functions and equations. We use Create TVL and Append Ternary Vector(s),
and we append the vector (− − −) only. This vector naturally describes the whole
B3. The intersection of this object with the solution vectors (00) and (11) consid-
ers the correct allocation of variables and results in the correct solutions (0 − 0)
and (1 − 1).

By comparing now the two resulting solution sets, it can be seen that these two
formulas are not equivalent. This can be done in the most correct way (particularly
for large sets depending on many variables) by using the Symmetric Difference

46 2 BASICS AND LOGIC FUNCTIONS

which would be empty if the two solution sets are equal. In this example the
solution sets are different, hence, the formulas are not equivalent.

2 The two formulas are not equivalent.

3 The two formulas are equivalent.

4 The two formulas are not equivalent. The two solution vectors (10−) and (100)
describe different solution sets.

Exercise 2.16.
The solution of the respective equations shows that only the cases 3 and 6 cannot be
used as a rule.

Exercise 2.17.

1 In the times of cut and paste it is the easiest way to insert the expressions for a
and b (first and second argument) into the formula:

f = a ∨ b = (x3 ∼ x4) ∨ x2.

The resulting set of orthogonal ternary vectors is equal to {(0 − −), (100), (111)}
for (x2, x3, x4). Later on we will deal with the application of logic equations in
many different places. It might be useful to see that already for the composition of
logic functions the equations can be a very useful tool. The problem shows us that
the first argument a has to be equal to x3 ∼ x4, hence, we write a = (x3 ∼ x4),
or, in the language of the XBOOLE Monitor, a = (x3 = x4). We are adding
b = x2 and also f = a ∨ b, i.e. a+!b as a formula of the XBOOLE Monitor. By
using the topics Extras and Solve Boolean Equation of the XBOOLE Monitor
we create the solution sets of these three equations, and the intersection of the
three respective objects results in solution vectors for (a, b, x2, x3, x4), and if we
are interested only in values for x2, x3, x4, then the components for a and b can
be omitted, and only the different vectors for (x2, x3, x4) must be used. In spite
of the small example the methodology should be studied carefully, because many
much larger applications can be handled in the same way.

2 Use the same approach and get successively (1−), (00) for (x1, x2), (00), (11) for
(x3, x4) and use the union. Watch that the lists of ternary vectors have the
predicate ODA; this can be achieved by using Matrices – Orthogonalization.
Even when the vectors remain unchanged, still the predicate changes, and ODA is
the assumption for the application of the set operations. The orthogonal mini-
mization can be used directly to get simpler representations, such as {(1 − −−),
(00 − −), (0100), (0111)} in this case.

3 This problem can be solved in the same way. Here the intersection of the two
solution sets has to be used and results in {(0011), (0000), (1 − 00), (1 − 11)}.

Exercise 2.18.

1 Only one vector (out of 1024) satisfies this conjunction, x = (1111111111).

2 The TVL of the solution set shows very nicely the advantages of the orthogonal
representation. Ten ternary vectors are sufficient for the representation of the
solution set, each solution vector is represented by precisely one ternary vector.

7. Solutions 47

3 The last two cases show the problem of representing linear functions. The anti-
valence as well as the equivalence expression represent two sets of 512 vectors.
Each vector must be represented by a full conjunction or disjunction with all ten
variables. No simplification is possible.

4 Already covered by the previous items.

Exercise 2.19.

1 By solving the respective equations directly, we get f = z ∨ xy with 5 solution
vectors for f = 1 and g = x ∨ y ∨ z with 7 solution vectors for g = 1. By comparing
the function values, it can be seen that f < g.

2 The XBOOLE Monitor uses the → from the left to the right.

3 The solution is given as follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 0 0 0 0 0 0 0 0 0

− 1 0 0 0 0 0 0 0 0

− − − 1 0 0 0 0 0 0

− − − − − 1 0 0 0 0

− − − − − − − 1 0 0

− − − − − − − − − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Exercise 2.20.

1 It holds that (x|y)|z = z ∨ xyz = z ∨ xy whereas x|(y|z) = x ∨ xyz = x ∨ yz.

The transformation into the respective disjunctive forms can be based on alge-
braic transformations such as x ∧ y = x ∨ y, but it is also a good opportunity to
get accustomed to the consideration of solution sets. The following steps must be
performed, they are more or less trivial at this point of time, but a good possibil-
ity to get a better understanding for the transformation of a logic function into
(solution) sets of binary vectors.

We create three objects (TVLs) containing the vectors (1 − −), (−1−), (− − 1)
representing x, y and z, resp. Each TVL must be orthogonal by using Matrices

– Orthogonalization. The matrices do not change because they contain only
one vector, but they are now marked as ODA which is an assumption for the
application of set operations.

The sequence 1 ∩ 2 → 4, 4 → 5, 5 ∩ 3 → 6, 6 → 7 represents 4 = x ∧ y,

5 = x ∧ y, 6 = (x ∧ y) ∧ z, and 6 = (x ∧ y) ∧ z is the final solution represented
by the two vectors (111) and (− − 0).

2 This problem uses the same approach for x ↓ y = x ∨ y.

3 Representations like this should be avoided according to the previous consider-
ations because they would need a definition of the order in which the opera-
tions have to be applied. It is better (more readable, easier to understand) when
brackets are used for the definition of the sequence of the operations, such as
((x1 ↓ x2) ↓ x3) ↓ x4 or (x1 ↓ (x2 ↓ x3)) ↓ x4 etc.

48 2 BASICS AND LOGIC FUNCTIONS

Exercise 2.21.

1 This function simplifies to f1 = x.

2 For f2 it is important to consider the structure of the formula in a correct way:
(x1 ∨ x2x3x4) is one disjunction: the next part comprises ((x2 ∨ x4) → x1x3x4),
and these two parts must be combined by ∧, or, if we have already the TVLs for
the two parts, by intersection. Finally x2x3 ∨ x1 ∨ x4 must be considered. It can
also be seen from these considerations that the leftmost bracket and the closing
bracket after x2x3 are not really necessary. The solution by using set operations or
the solution by solving the equation shows that the vector (1010) for (x1x2x3x4)
is the only vector with f = 1.

3 The calculations for f3 follow the same procedure.

Exercise 2.22.

1 The binary argument vectors for f1 = 1 and f1 = 0 can be translated directly
into the respective conjunctions and disjunctions as we have seen before:

f1 = x yz ∨ xyz ∨ xy z ∨ xyz; f2 = x y z ∨ xy z ∨ xyz ∨ xyz;

f1 = (x∨y∨z)(x∨y∨z)(x∨y∨z)(x∨y∨z); f2 = (x∨y∨z)(x∨y∨z)(x∨y∨z)(x∨y∨z).

2 This can be done by creating a TVL, appending the respective binary vectors
and using the representation as a Karnaugh map. From here we get, for instance
f1 = xy ∨ yz ∨ xyz, f2 = xz ∨ xy ∨ y z.

3 The results of the orthogonal block building are not as short as a full minimiza-
tion, however, the results are already rather good and orthogonal, i.e. no double
solutions have to be considered. For f1 we get, for instance, f1 = xyz ∨ xy z ∨ yz,
the result of OBBC is equal to f1 = xyz ∨ xy ∨ x yz which has the same size;
f2 = xyz ∨ y z ∨ xyz, f2 = xz ∨ x y z ∨ xyz.

Exercise 2.23.

1 The value f = 1 appears for argument vectors with an odd number of values 1;
therefore we get 2n−1 vectors with the value 1, the other half has the value f = 0
for an even number of values 1 in the argument vector.

2 The expression for g is already in conjunctive normal form. Therefore we get the
value g = 0 for the two vectors (0 . . . 0) and (1 . . . 1), for all the other vectors we
have g = 1. Therefore the desired number is equal to 2n − 2.

3 The two disjunctions (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3) result in two values 0 and six
values 1. These values have to be combined with the second part of the formula;
this part includes n − 3 variables, i.e. it describes 2n−3 binary vectors, half of them
result in 0, the other half results in 1. Therefore we get 6 × 2n−4 values 1 and
2 × 2n−4 values 0 for the given function.

Exercise 2.24.

1 f = x as a border case contains only one variable. However, the solution set in the
XBOOLE monitor is characterized as ODA which means orthogonal – disjunctive
or antivalence form.

2 The result shows originally ten ternary vectors which could be replaced by the
respective conjunctions and combined by ⊕. The orthogonal block building (min-
imization) results in four vectors representing f = x1x3x4 ⊕ x3x4 ⊕ x1x2x3x4 ⊕ x3.

7. Solutions 49

3 The solution of the given equation (right side equal to 1) shows that this func-
tion only has the value 1 which means that f = 1 is the respective antivalence
form.

Exercise 2.25.

1 We replace the complemented variables xi by 1 ⊕ xi and apply the distributive law
as often as necessary. Two identical conjunctions can be deleted. For the second
function we get, for instance, f = 1 ⊕ x1x3 ⊕ x1x2x3 ⊕ x1x3x4 ⊕ x1x2x3x4.

2 The solution of x1 ∨ x2 ∨ x3 = 1 results in the orthogonal form f = x1 ∨ x1x2 ∨
x1x2x3 = x1 ⊕ x1x2 ⊕ x1x2x3, and from here we get f = x1 ⊕ x2 ⊕ x3 ⊕ x1x2 ⊕
x1x3 ⊕ x2x3 ⊕ x1x2x3.

Exercise 2.26.

1 The solution of the equation f(x1, x2, x3) = 1 results in f(x1, x2, x3) = x1x2 which
does not depend on x3. Therefore, all three required subfunctions are identically
equal to 0. The replacement of the respective variables by the constants and the
solution of these equations will naturally show the same result.

2 The solution can easily be found by stating that in this case f(0, 1) must be
equal to f(1, 0). The values for f(0, 0) and f(1, 1) are not restricted. When we are
using ternary vectors, then the two vectors (−00−) and (−11−) for the function
f describe all these functions.

Exercise 2.27.

1 Without loss of generality the representation f(x1, x2, x3) = x1 ∧ f ′(x2, x3) will
be considered. For x1 = 0 the function f is always equal to 0, independent on x2

and x3. For x1 = 1 any function of two variables can be used. Hence, we have 16
functions of three variables which are conjunctively degenerated (in x1):

x1 x2 x3 f0 f1 . . . f14 f15

0 0 0 0 0 . . . 0 0
0 0 1 0 0 . . . 0 0
0 1 0 0 0 . . . 0 0
0 1 1 0 0 . . . 0 0
1 0 0 0 0 . . . 1 1
1 0 1 0 0 . . . 1 1
1 1 0 0 0 . . . 1 1
1 1 1 0 1 . . . 0 1

Using some of the functions of two variables, we get, for instance, f0 = x1 ∧ 0,
f1 = x1(x2x3), f14 = x1(x2 ∨ x3), f15 = x1 ∧ 1. The characteristic property is the
value 0 for f if x1 = 0. There are 256 functions of three variables, only 16 are
conjunctively degenerated if x1 is the selected variable.

2 The construction of disjunctively degenerated functions follows the same idea.
Only the role of 0 and 1 has to be exchanged.

3 For the construction of linearly dependent functions the representation

f(x1, x2, x3) = x1 ⊕ f ′(x2, x3)

will be used. For x1 = 0 any function f ′(x2, x3) can be used; x1 = 1 results in
f(x1, x2, x3) = 1 ⊕ f ′(x2, x3) = f ′(x2, x3). By using subfunctions, this property

50 2 BASICS AND LOGIC FUNCTIONS

can be expressed by the following equation: f(0, x2, x3) = f(1, x2, x3). You can
check, for instance, that for f ′(x2, x3) = x2x3 you get x2x3 = x2 ∨ x3, and this
results in f = x1 ⊕ x2x3.

For four variables the same considerations can be applied: f(x1, x2, x3, x4) = x1 ⊕
f ′(x2, x3, x4). It can also be seen that each linear function is linearly degenerated
in each variable that appears in the formula. The same considerations can also be
applied to the equivalence.

Generally a test of this property can use the relation

f(x1, . . . , xi = 0, . . . , xn) = f(x1, . . . , xi = 1, . . . , xn)

directly. The easiest way to do this is the checking of the equality:

create the TVL for f , intersect (ISC) with xi = 0 ⇒ object 1;

create the TVL for f , intersect (ISC) with xi = 1 ⇒ object 2;

CPL (complement) of object 2 ⇒ object 3;

symmetric difference SYD of object 1 and object 3 must be equal to ∅.

4 The solution of this problem uses the same approach. Watch the different meaning
of 0, 1 and the equivalence.

Exercise 2.28.
For the given function vectors use the reverse of the vector and the following negation.
When we are using f4 = x1x2 ∨ x2(x3 ⊕ x4), then we can transform the formula
into f4 = x1x2 ∨ x2x3x4 ∨ x2x3x4, and the mutual exchange of ∧ and ∨ results in
f4

∗ = (x1 ∨ x2)(x2 ∨ x3 ∨ x4)(x2 ∨ x3 ∨ x4).

Exercise 2.29.

1 The definition of a symmetric function results for x1 and x2 in f(0, 1, x3) =
f(1, 0, x3), or by inserting values for x3, in

f(0, 1, 0) = f(1, 0, 0), f(0, 1, 1) = f(1, 0, 1).

2 For x2 and x3 we get in the same way f(x1, 0, 1) = f(x1, 1, 0), or by inserting
values for x1, in

f(0, 0, 1) = f(0, 1, 0), f(1, 0, 1) = f(1, 1, 0).

3 This means that the function which has both properties is constant for argument
vectors with the same weight. Therefore, for three variables we do not have eight
degrees of freedom, but only four, as can be seen from the following table:

x1 x2 x3 f(x1, x2, x3)

0 0 0 α1

0 0 1 α2

0 1 0 α2

0 1 1 α3

1 0 0 α2

1 0 1 α3

1 1 0 α3

1 1 1 α4

7. Solutions 51

The parameters α1, α2, α3, α4, can take any value, therefore we have 16 such
functions.

Exercise 2.30.

1 The property of symmetry reduces the degrees of freedom from four to three since
f(0, 1) = f(1, 0) is required. Hence, the number of functions with this property is

equal to 2
3
4 2n

= 23·2n−2
.

2 The invariance against all permutations generalizes the property we already have
seen for three variables. For each vector with a given weight the function must
be constant (either equal to 0 or equal to 1). Since there are weights from 0 to n,
their number is equal to 2n+1.

Exercise 2.31.

1 By solving the equation, we get the two vectors (−00) and (− − 1) as solution vec-
tors. By using the Karnaugh-map it can be seen that f1(000) = 1, but f1(010) = 0,
therefore the function is not monotonely increasing. It can also not be monotonely
decreasing, because f1(111) = 1 and f1(110) = 0, but f1(100) = 1.

2 We have f2(1111) = 0, but f2(x1, x2, x3, x4) = 1 for several smaller vectors. Hence,
f2(x1, x2, x3, x4) is not monotone.

3 f3(x1, x2, x3, x4) is not monotone because of f3(1000) = 1 and f3(1001) = 0.

4 f4(x1, x2, x3, x4) is monotone. Take, for instance, the Karnaugh-map for this func-
tion and draw the graph of the partial order from (0000) to (1111) with the
respective values of the function.

Exercise 2.32.

1 We take n ≥ 2. Then we have the value 0 for f1 for all vectors with one component
equal to 1 and for (000 . . . 000). These vectors are the two lowest levels of the
graph of the partial order, all the other values of f2 are equal to 1, therefore f1 is
monotone.

2 We transform the given formula: f1 = x1 ∨ x2 ∨ · · · xn−1 ∨ xn ∨ (x1 ⊕ x2 ⊕ · · · ⊕ xn).
The value of the disjunction of the complemented variables is 0 if and only if all
the values of x1 . . . xn are equal to 1. Now it depends: if n is odd, then we get
f2(x1, . . . , xn) is constant equal to 1 because then the antivalence is equal to 1. If
n is even, then the value of f(1, 1, . . . , 1, 1) = 0, and the function is monotonely
decreasing.

Exercise 2.33.

1 We remember the theorem that monotone functions have a disjunctive (normal)
form without negated variables. We can split the set of all conjunctions of this
normal form into two orthogonal subsets: one subset with conjunctions with the
variable xi, the other subset with all conjunctions without this variable. The in-
verse use of the distributive law transforms the disjunctive form already into the
desired format.

2 This is the equivalent format derived by transformation into the equivalent con-
junctive form.

52 2 BASICS AND LOGIC FUNCTIONS

Exercise 2.34.

1 We can use the properties of monotone functions in the following way: if there is
the value 1 for a given vector, then all larger vectors must also have the value 1.
Therefore, f(0, 1, 1, 0) = 1 means that f = 1 also for the vectors (1110), (0111)
and (1111). It can be derived from f(1, 1, 0, 0) = 1 that f = 1 also for the vectors
(1110), (1101) and (1111). On the other side the value 0 for a given vector implies
this value for all smaller vectors. Therefore, f(1, 0, 1, 0) = 0 means that f = 0 also
for the vectors (0010), (1000) and (0000). For the last two values we get f = 1
for the vectors (1011), (0111) and (1111) and f = 0 for the vectors (0001), (0100)
and (0000). When we put all these values together, then it can be seen that only
the value f(1, 0, 0, 1) has not been defined. The graph of the function shows that
it can be set to 0 or to 1, in both cases we get a monotone function.

2 See the previous item.

3 The creation of the two respective TVLs and minimization show the respec-
tive disjunctive forms. When we set, for instance, f(1, 0, 0, 1) = 0, then we get
f(x1, x2, x3, x4) = x1x2 ∨ x2x3 ∨ x1x3x4.

Exercise 2.35.

1 This constraint is not very demanding. Two values of a function f have been set.
The remaining 14 positions of the vector of the function values (16 bits) can be
set arbitrarily (which results in 214 different possibilities).

2 Here the value 1 is given for the vector (1000). Take, for instance, the nice view
that the values of a linear function look like a chessboard, then you will see that
this setting defines f = x1 ⊕ x2 ⊕ x3 ⊕ x4. the definition f(1, 0, 0, 0) = 0 would
result in the complement f = 1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4.

3 As an example we explore the symmetry with regard to (x1, x2) (other symme-
tries can be checked in the same way). The problem requires that f(0, 1, 0, 0) �=
f(1, 0, 1, 1). This will be achieved by setting f(0, 1, 0, 0) = α, f(1, 0, 1, 1) = α. Be-
cause of the symmetry we get two more values: f(1, 0, 0, 0) = α and
f(0, 1, 1, 1) = α. The symmetry implies two more equalities: f(0, 1, 0, 1) =
f(1, 0, 0, 1) = γ, f(0, 1, 1, 0) = f(1, 0, 1, 0) = δ. Up to now there are three pa-
rameters α, β and γ in the solution which results in 23 possibilities. These eight
possibilities can be combined with the 28 possibilities that exist for (x1, x2) = (00)
and (x1, x2) = (11). Therefore we get 211 different solutions of this problem.

4 The condition f(1, 0, 0, 1) = 0 implies for a self-dual function that f(0, 1, 1, 0) = 1.
For the remaining seven pairs of vectors always the setting f(x1, x2, x3, x4) =
f(x1, x2, x3, x4) has to be used.

Exercise 2.36.

1 See item 3.

2 See item 3.

3 We will mention here a special possibility that will be based on the properties
of the XBOOLE Monitor. Instead of starting with the elementary conjunctions
and a comprehensive use of the Method of Blake we create a TVL and enter the
respective vectors with the value 1; for the third problem we would enter

(0000), (0010), (0100), (0101), (0110), (1001), (1011), (1100), (1101), (1110).

7. Solutions 53

Then do not forget to use the topic Matrices and there the item Orthogonaliza-

tion. This will not change the TVL itself, but the predicate of the list from D
to ODA. And now OBB Orthogonal Block Building or OBBC Orthogonal Block

Building and Change can be used. In this case it will not really make a difference.
We get (00 − 0), (10 − 1), (−110), (−10−), and the Method of Blake can start here,
and the procedure is much shorter and results in f = x1x4 ∨ x2x3 ∨ x2x4 ∨ x1x2x4.

Exercise 2.37.

1 The input of this expression and the finding of the values for x1 ⊕x2 ⊕x3 ⊕x4 ⊕x5 =
1 shows 16 Vectors, i.e. 16 conjunctions, and no further simplification is possible.
This is a very typical property of linear functions.

2 The use of the XBOOLE Monitor shows 12 ternary vectors, the orthogonal min-
imization does not change the number of ternary vectors. Again the Method of
BLAKE will show that there are no further simplifications. Check it out!

Here would also be a possibility to check whether a conjunction C is a prime
implicant or not. The conjunction C is a prime implicant if C ∨ f = f . Now we
take, for instance, C = x1x3x4x5 and omit x3 which results in C = x1x4x5. In
order to check the relation, we create a TVL with (0 − −11) as the only vector,
change the predicate to ODA (using orthogonalization for Matrices) and perform
the union of f and this single vector. The sets for f and f ∨ C can be compared by
using the symmetric difference. This difference must be equal to ∅ if the equality
holds which is not the case for the situation considered. Therefore C = x1x4x5 is
not a prime implicant.

The general idea can be understood as follows: the omission of one variable creates
larger intervals with the value 1 for the function. In order to make this shorter
conjunction an implicant and even more a prime implicant f must not be extended
(falsified), the relation C ≤ f must still hold.

3 Here we get 8 solution vectors, no simplifications.

4 The solution vectors will have an even number of values 1, because x1 ⊕x2 ⊕x3 = 1
only holds for an odd number of values 1, and the same holds for x4 ⊕ x5 ⊕ x6 = 1,
and the addition of the odd number gives an even number (2, 4 or 6).

5 The homogeneous orthogonal structure of the XBOOLE solution can be simplified
and results in f(x1, x2, x3, x4, x5, x6) = x1 ∨ x2 ∨ x3 ∨ x4x5 ∨ x4x6 ∨ x4x5 ∨ x4x6 ∨
x5x6 ∨ x5x6.

Exercise 2.38.
The solutions of these problems is not difficult, however, they should be studied
carefully to get a good understanding of the underlying concepts.

1 (x1 → (x1 ∨ x2) → x3 = (x1 ∨ x1 ∨ x2) → x3 = 1 → x3 = 0 ∨ x3 = x3.

2 (x1 ∨ x2) → x2 = x1x2 ∨ x2 = x1 ∨ x2.

3 This is a good possibility to see the application of BLAKE’s rule. After some steps
it can be seen that the expression in brackets is identically equal to 1; therefore
we have f = x4.

4 f is identically equal to 0.

5 The use of the XBOOLE monitor for this function shows directly the result
f(x1, x2, x3) = x3, therefore x1 and x2 are non-essential variables. The sequence

54 2 BASICS AND LOGIC FUNCTIONS

of transformations shows the same result: f(x1, x2, x3) = (((x3 → x2) ∨ x1)(x2 →
x1)x3x1) ⊕ x3 = (x1 ∨ x2 ∨ x3)(x1 ∨ x2)x1x3) ⊕ x3 = x3. Another possibility is the
checking of subfunctions; we insert the values x1 = 0 and x1 = 1 and compare the
resulting subfunctions. In the same way we check the variables x2 and x3 and get
finally the same result.

6 The same considerations result in f(x1, x2, x3) = x1x2 ∨ x2x3, and the considera-
tion of the respective subfunctions shows that all three variables are essential.

7 In order to find a solution for this problem, variables have to be assigned to the
components of the vector with the values of the function. One possible coding is
shown by the following representation:

f 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0

x1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Now there are several possibilities. It would be, for instance, possible to enter
the argument vectors with f = 1 into a list of ternary vectors, and to get a
shorter description by using OBB or OBBC. Thereafter, we could again build the
subfunctions f(x1 = 0) and f(x1 = 1), etc., and compare these subfunctions by
means of the symmetric difference SYD.

But there is also another possibility for this kind of representation. In the first and
second column, we have x2 = 0, x3 = 0, x4 = 0, and x1 changes its value from 0 to
1. The function value of f also changes from 1 to 0 which means that f(x1 = 1)
cannot be equal to f(x1 = 0), and this means naturally that x1 is an essential
variable. The same can be seen by comparing the columns 2 and 4 (counted from
the left) with regard to x2, by comparing the columns 3 and 7 with regard to x3,
and finally by comparing the columns 3 and 11 with regard to x4. All the variables
are essential variables. This method is successfully working for small numbers of
variables only, however, it shows very well the essence of these concepts.

8 This item can be dealt with in the same way as the previous one.

Exercise 2.39.
It is general practice to show that the given new functions are able to build other
functions that are already known as contributing to a complete system of functions.
Her we assume the knowledge that x, x ∧ y and x ∨ y are sufficient to implement any
function (see, for instance, the concepts of disjunctive and conjunctive normal form).

1 In the first case the function f(x, y) = x ↓ y = x ∨ y will be used to implement
these three functions:

x ↓ x = x ∨ x = x,

(x ↓ y) ↓ (x ↓ y) = x ∨ y ∨ x ∨ y = (x ∨ y) ∧ (x ∨ y) = x ∨ y,

(x ↓ x) ↓ (y ↓ y) = x ∨ x ∨ y ∨ y = (x ∨ x) ∧ (y ∨ y) = x ∧ y.

7. Solutions 55

When the expression h(x, y) = x ↓ y is used, then the three functions can be
expressed by using the function h(x, y) alone:

x = h(x, x),

x ∨ y = h(h(x, y), h(x, y)),

x ∧ y = h(h(x, x), h(y, y)).

Only the function h(x, y) has been used.

2 We use the same strategy: h1(x, y, z) = xy ⊕ z, h1(x, x, z) = x ⊕ z, h2(x, y, z) =
(x ∼ y) ⊕ z = x ⊕ y ⊕ z ⊕ 1, h2(x, h1(x, x, z), z) = 1, h1(x, y, h2(x, h1(x, x, z), z)) =
xy ⊕ 1 = xy = x|y. This function is the NAND-function which itself is a complete
system. Please, watch that only applications of h1 and h2 have been used.

3 We use (x → y) → y = x ∨ y and x ⊕ x ⊕ x = x, and by combination of these two
functions x ↓ y can be implemented which has been explored before.

4 We use again (x → y) → y = x ∨ y and find a formula for the given vector
of a function. When the variables x1, x2, x3, x4 are used together with the vec-
tors (0000) to (1111) from the left to the right, then we get f(x1, x2, x3, x4) =
x1 x2 x3 ∨ x1x2x3 ∨ x1x2x3 ∨ x1x2x3. This function is, in fact, independent on x4,
and therefore the function f(x1, x1, x1) = x1 can be used. Based on the consider-
ations of the first item, the disjunction and the negation can be used to build the
NOR-function which is complete.

5 For f1(x, y, z) = 0, f2(x, y, z) = xy ∨ xz ∨ yz and f3(x, y, z) = 1 ⊕ x ⊕ y ⊕ z
we find f2(x, y, 0) = xy and f3(x, x, x) = x which can be combined to build the
NAND-function.

6 In this case we get f1(x1, x2) = x1 ∨ x2 which can be used to build the function
1 by using f1(x1, x1) = 1. The second function is given by f2(x1, x2, x3, x4) =
x1x2 ∨ x1x3 ∨ x2x3, and this function produces the NOR-function when the value
1 is inserted: f2(x1, x2, 1) = x1x2 = x1 ∨ x2.

Exercise 2.40.
As an introduction we show the implemention of x ⊕ y by means of x ↓ y.

x = x ∨ x =(x ↓ x),

y = y ∨ y =(y ↓ y),

f1 = x ∧ y = {(x ↓ x) ↓ [(y ↓ y) ↓ (y ↓ y)]},

f2 = x ∧ y = {[(x ↓ x) ↓ (x ↓ x)] ↓ (y ↓ y)},

x ⊕ y = f1 ∨ f2 =(f1 ↓ f2) ↓ (f1 ↓ f2).

The solution of problems like this is not supported by XBOOLE. If they occur very
often, then it would be advisable to write a special program. Sometimes it might be
helpful to see that the left side of such a representation is equal to the right side –
problems of this kind already have been solved very often.

When we need the constant functions 0(x) and 1(x), then this can be achieved by
using x ∨ x = 1(x) and x ∧ x = 0(x):

0(x) = (x ↓ x) ↓ ((x ↓ x) ↓ (x ↓ x)),

1(x) = (x ↓ (x ↓ x)) ↓ (x ↓ (x ↓ x)).

56 2 BASICS AND LOGIC FUNCTIONS

Finally we can build the NAND by using NOR alone as follows:

x ∧ y = [(x ↓ x) ↓ (y ↓ y)],

x|y = x ∧ y = [(x ↓ x) ↓ (y ↓ y)] ↓ [(x ↓ x) ↓ (y ↓ y)].

Several applications of the given equalities are sufficient to implement all the dif-
ferent functions of the previous exercise.

Exercise 2.41.
The solution of this problem uses the same principles that have been used in the
previous item.

Exercise 2.42.

1 We set h1(x, y) = x ⊕ y, h2(x, y, z) = 1 and get successively:

h1(x1, x1) = 0, h1(x1, h2(x1, x2, x3)) = x1 ⊕ 1 = x1, h1(x1, 0) = x1,

h1(x1, x2) = x1 ⊕ x2, h1(x1, x2) = x1 ⊕ x2,

h1(x1, (x2 ⊕ x3)) = x1 ⊕ x2 ⊕ x3, h1(x1, (x2 ⊕ x3)) = x1 ⊕ x2 ⊕ x3.

Some functions that can be built by only changing the name of a variable have
not been mentioned explicitly, it is assumed and quite understandable that they
can be found in the same way (see, for instance h1(x2, x3) = x2 ⊕ x3). In each
step we only used the given function(s) and functions that have been constructed
in previous steps.

When the set of variables is extended and the set {x1, x2, x3, x4} will be used, then
all the functions that have been constructed before can be built again; additionally
we get the functions h(x1 ⊕x2, x3 ⊕x4) = x1 ⊕x2 ⊕x3 ⊕x4 and h(x1 ⊕x2, x3 ⊕x4) =
x1 ⊕ x2 ⊕ x3 ⊕ x4.

2 It can be seen immediately that single variables can be generated by x1 ∨ x1 = x1

(the same for x2 and x3), the disjunction of two variables as well, such as x1 ∨ x2

and also x1 ∨x2 ∨x3. The conjunction allows additionally the generation of x1x2 (as
well as x1x3 and x2x3) and x1x2x3. Finally the combination of the conjunctions
and disjunctions allows to build x1 ∨ x2x3, x2 ∨ x1x3, x3 ∨ x1x2, x1x2 ∨ x1x3,
x1x2 ∨ x2x3, x1x3 ∨ x2x3 and finally x1x2 ∨ x1x3 ∨ x2x3. All these functions
are monotone functions. It is not possible to get the constant functions 0 and
1, complemented variables also cannot be achieved. The consideration of four
variables follows the same ideas.

3 Here we use the same considerations as in the previous item.

4 By means of the given functions the conjunction cannot be implemented.

5 The application of the given functions will not produce new functions. There is
no possibility to extend the given set of functions.

6 We find for the given function vectors f1(x, y, z) = x y ∨ x z ∨ y z, f2(x, y, z) =
x ∨ y ∨ z and f3(x, y, z) = xz ∨ y z. Now we follow the previous approach: We get,
for instance, single negated variables as follows: f(x1, 0, 1) = x. Now the negation
can be used to get the single variables x1, x2, x3, and from here several disjunctive
forms can be built. The two other functions and the extension to four variables
follow the same ideas.

As we mentioned before, the XBOOLE Monitor can be used to check the correct-
ness of some of the implemented relations.

7. Solutions 57

Exercise 2.43.
We will use the variables x1, x2, x3, x4 and start with the vector (0000) from the left.
This means that the function values are not defined for the vectors (0010), (0011) and
(0111).

1 There are eight functions that can be derived from this incomplete specification.
We replace successively the components with a – by all possible combinations of
0 and 1. The XBOOLE Monitor can be used as a tool in the following way: we
define a TVL with the vectors (0000), (0101), (1000), (1001), (1101), (1111). This
is the basic structure for the following steps and describes already the function
generated by using the value 0 for the free components. Thereafter we are adding
to this list the vectors describing additional values 1: if, for instance, the value 1
is used for the vector (0011), then this vector is added to the original TVL. After
the building of these eight TVL we change the predicate of the list by ORTH
and reduce the size of the lists by an orthogonal block building OBB. This finally
results in the following TVLs for the eight functions:

f0(x1, x2, x3, x4) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 1 0 1
1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−→

⎛

⎜
⎝

− 0 0 0
1 0 0 1

− 1 0 1
1 1 1 1

⎞

⎟
⎠ ,

f1(x1, x2, x3, x4) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 1 0 1
1 1 1 1

0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−→

(− 0 0 0
1 0 0 1

− 1 − 1

)

,

f1(x1, x2, x3, x4) = x2x4 ∨ x2x3x4 ∨ x1x2x3x4 = x2x4 ⊕ x2x3x4 ⊕ x1x2x3x4.

This is the function with the shortest orthogonal representation. This shows clearly
that partially defined functions offer many optimization possibilities.

f2(x1, x2, x3, x4) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 1 0 1
1 1 1 1

0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−→

⎛

⎜
⎜
⎜
⎝

− 0 0 0
1 0 0 1

− 1 0 1
1 1 1 1
0 0 1 1

⎞

⎟
⎟
⎟
⎠

,

f3(x1, x2, x3, x4) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 1 0 1
1 1 1 1

0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−→

⎛

⎜
⎜
⎜
⎝

− 0 0 0
1 0 0 1

− 1 0 1
1 1 1 1
0 0 1 0

⎞

⎟
⎟
⎟
⎠

,

58 2 BASICS AND LOGIC FUNCTIONS

f4(x1, x2, x3, x4) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 1 0 1
1 1 1 1

0 1 1 1
0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−→

⎛

⎜
⎝

− 0 0 0
1 0 0 1
0 0 1 1

− 1 − 1

⎞

⎟
⎠ ,

f5(x1, x2, x3, x4) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 1 0 1
1 1 1 1

0 1 1 1
0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−→

⎛

⎜
⎝

− 0 0 0
1 0 0 1
0 0 1 0

− 1 − 1

⎞

⎟
⎠ ,

f6(x1, x2, x3, x4) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 1 0 1
1 1 1 1

0 0 1 1
0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−→

⎛

⎜
⎜
⎜
⎝

− 0 0 0
1 0 0 1

− 1 0 1
1 1 1 1
0 0 1 −

⎞

⎟
⎟
⎟
⎠

,

f7(x1, x2, x3, x4) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 1 0 1
1 1 1 1

0 1 1 0
0 0 1 1
0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−→

⎛

⎜
⎝

− 0 0 0
1 0 0 1

− 1 − 1
0 0 1 −

⎞

⎟
⎠ .

2 Since the representation consists of orthogonal vectors (i.e. of orthogonal con-
junctions), the antivalence and the disjunctive forms can be derived immediately.
Further minimization possibilities have to be explored.

3 In order to find the conjunctive normal forms, we can use the vectors with f = 0
and build the respective disjunctions. The easiest way is the use of the previous
matrix representations together with the complement, such us

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 1 0 1
1 1 1 1

0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−→

⎛

⎜
⎝

− 1 0 0
0 0 0 1

− − 1 0
− 0 1 1

⎞

⎟
⎠ ,

7. Solutions 59

f1(x1, x2, x3, x4) = (x2 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3 ∨ x4)(x3 ∨ x4)(x2 ∨ x3 ∨ x4).

Exercise 2.44.
The function ϕ(x1, x2, x3, x4) will be equal to 1 for the vectors with defined values
and equal to 0 for the vectors with undefined values.

1 ϕ(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4.

2 ϕ(x1, x2, x3, x4) = 0 for the vectors (0011), (0101), (1001), (0110), (1010) and
(1100). Now there are two possibilities: we use these six vectors to build a con-
junctive form; in this way we get a conjunctive form with six disjunctions of four
variables. The other possibility would be the use of these vectors as a set, build
the complement and try to simplify the result as a disjunctive form.

3 We get ϕ(x1, x2, x3, x4) = x1 ∨ x2 ∨ x3.

Exercise 2.45.

1 The function is equal to 0 only for the vector (0000) and not defined for the two
vectors (1110) and (1111). Therefore the conjunctive form is very appropriate to
represent the four different functions. When we replace the two empty positions
by the four possibilities 00, 01, 10 and 11, then we get successively

f1(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x3 ∨ x4),

f2(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3 ∨ x4),

f3(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3 ∨ x4),

f4(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3).

2 ϕ(x1, x2, x3, x4) = x1 ∨ x2 ∨ x3.

3 We get four functions f ∗ by using the relation

f ∗(x1, x2, x3, x4)

= f(x1, x2, x3, x4)ϕ(x1, x2, x3, x4) ∨ g(x1, x2, x3, x4)ϕ(x1, x2, x3, x4);

g(x1, x2, x3, x4) can be any function of four variables. Therefore many choices will
result in the same function f ∗(x1, x2, x3, x4). Only different values for the two
vectors (1110) and (1110) are important.

Chapter 3

LOGIC EQUATIONS

1. Logic Equations
This chapter deals with the most important concept of Logic Equations

which is a core topic of the present considerations. Many problems can
be solved by means of Logic Equations in a very elegant and also “very
easy” way. XBOOLE and the XBOOLE Monitor are very dedicated to
this concept. Therefore it is quite useful to study Chap. 3 in [18] as well as
the topics Sets and Matrices of the XBOOLE Monitor. The knowledge
of these two topics makes the solution of Logic Equations more or less
very easy. Because the concept of Boolean equations is applied more or
less everywhere throughout the book, we will restrict our considerations
in this chapter to some basic considerations.

In the item Extras we find among others the item Solve Boolean
Equation.... This item already has been used in the previous chapter
very often in order to define the values of logic functions that have been
given by logic formulas. The use of this item as an instrument for solving
Boolean equations simply is caused by the fact that the values 1 of a
logic function f(x) can be described as the solution set of the equation
f(x) = 1.

Our main point in this chapter will be the extensive use of set oper-
ations for the building of solution sets for larger equations or systems
of equations based on the solution sets of smaller parts. The reasoning
behind this approach is naturally the isomorphism between the Boolean
Algebra of logic functions and the Boolean Algebra of sets of vectors
related to these functions.

Let us remember the following relations between logic functions and
the respective sets of vectors: let f0 and f1 be the (solution) sets of

Bernd Steinbach, Christian Posthoff, Logic Functions and Equations, Examples and
Exercises,
© Springer Science + Business Media B.V. 2009

62 3 LOGIC EQUATIONS

(binary or ternary) vectors x with f(x) = 0 and f(x) = 1, respectively.
These elementary solution sets can be found or given by computations
based on formulas or the input of ternary vectors.

Then we have immediately

f0 = f1, f1 = f0.

The complement allows to switch between these two sets.
Now we consider two functions f(x) and g(x) with the elementary

solution sets f0, f1, g0 and g1. The two most important relations are
dealing with the equations

h0(x) = f(x) ∨ g(x) = 0 and h1(x) = f(x) ∧ g(x) = 1.

The first equation is satisfied by all x with f(x) = 0, g(x) = 0 which
results in the solution set f0 ∩ g0; the solution set of the second equation
is equal to f1 ∩ g1.

The equation h0(x) = f(x) ∧ g(x) = 0 has the solution set f0 ∪ g0,
because the conjunction is equal to 0 if at least one of the elements is
equal to 0. The same set operations must be used for the disjunction
of functions in a characteristic equation. Hence, the equation h1(x) =
f(x) ∨ g(x) = 1 has the solution set f1 ∪ g1, because the disjunction is
equal to 1 if at least one of the elements is equal to 1. The union (UNI),
the difference (DIF), and the intersection (ISC) as well as the comple-
ment (CPL) have been directly implemented in the XBOOLE Monitor.

Let us now have a look at the equation

h(x) = f(x) ⊕ g(x) = 1.

According to the definition of the antivalence this equation is satisfied
by vectors x with f(x) = 0, g(x) = 1 and f(x) = 1, g(x) = 0. This
results in a solution set

(f0 ∩ g1) ∪ (f1 ∩ g0) = (f0 ∩ g0) ∪ (f0 ∩ g0) = (f0 \ g0) ∪ (g0 \ f0) = f0 � g0

that can be calculated alternatively by

(f0 ∩ g1) ∪ (f1 ∩ g0) = (f1 ∩ g1) ∪ (f1 ∩ g1) = (g1 \ f1) ∪ (f1 \ g1) = f1 � g1.

The solution set of f(x) ⊕ g(x) = 0 is the complement of this set. There-
fore the symmetric difference (SYD) indicated by triangle can be used
to deal with the solution of antivalence equations. If the symmetric dif-
ference is equal to the empty set then there are no vectors with different
values for f and g, i.e. we have f(x) = g(x).

The equivalence h(x) = f(x) ∼ g(x) = 1 is equivalent to the equa-
tions f(x) ⊕ g(x) = 0 or f(x) = g(x) and is solved by all vectors x

1. Logic Equations 63

with f(x) = 0, g(x) = 0 and f(x) = 1, g(x) = 1, the solution set is
equal to (f1 ∩ g1) ∪ (f0 ∩ g0) = f0 � g0 which is the complement of the
symmetric difference (CSD). This is another item (CSD-Complement of
SYD) which is available in the XBOOLE Monitor.

And finally we can consider the implication or the relation f(x) ≤
g(x). Then we have x /∈ f1 ∩ g0 = f0 ∩ g0 = g0 \ f0, and this is equivalent
to x ∈ f0 ∪ g0 = f0 ∪ g1. The difference (DIF) of sets is the last set
operation that is available in the XBOOLE Monitor.

The SAT-problem is theoretically one of the most important prob-
lems; it is NP-complete, and many other problems can be translated
into a SAT-problem. For the user of the XBOOLE Monitor, however,
the situation is not very difficult. Let us see, for instance, the following
problem:

f = (x1 ∨ x3 ∨ x5)(x1 ∨ x2 ∨ x3)(x2 ∨ x4 ∨ x5) = 1.

The first disjunction (x1 ∨ x3 ∨ x5) = 1 has the ternary vectors (1 −
− − −), (0 − 1 − −), (0 − 0 − 0) as solution, and we used these vectors
already as orthogonal vectors which is not very difficult to do. We could
also enter the three vectors (1 − − − −), (− − 1 − −), (− − − − 0) and
use the item Orthogonalization for Matrices. This matrix of ternary
vectors can be stored as an object, and then we create the analogous
matrices for the second and the third disjunction. The intersection of
these three matrices is the solution set of f = 1.

This approach allows to answer the first five items of the problem
listed in [18]:

Does each disjunction contain exactly three literals?

Does each disjunction contain exactly k literals?

Is it possible to split the conjunctive form into two parts CF1 and
CF2, and CF1 contains only non-negated variables, CF2 only negated
variables?

Is there at most one vector which satisfies a given conjunctive form?

How many vectors satisfy a given conjunctive form?

For all these cases we build the respective TVL and use the intersec-
tion as the solution procedure. The last two items need an additional
counting of the number of (binary) vectors in the solution set.

It is even easier to use the vectors that assign the value 0 to a disjunc-
tion, because this is always only one vector: (x1 ∨ x3 ∨ x5) = 0 holds for
one single vector (0 − 0 − 1). Hence, we create a TVL with this single

64 3 LOGIC EQUATIONS

vector and use the complement to find all the vectors generating the
value 1 for this disjunction. The intersection with other TVLs then finds
the solution set.

But we can still do better: we are using the union of all the vectors
that assign the value 0 to one of the given conjunctions, because it is
sufficient that one disjunction is equal to 0 in order to assign the value
0 to the whole expression. After the creation of the respective TVL
the two steps of orthogonalization (not even necessary in the XBOOLE
Monitor) and complement give us the solution of the equation which
has been defined as a conjunctive form. We should keep this approach
in mind when we will consider the SAT-problem: this is already the user
side of the solution of the SAT-problem. Some vectors which are easy
to find have to be typed, and the software and the computer system(s)
have to carry the load.

For the small equation from above we get three vectors and the or-
thogonalization and the complement result in the following sequence:

⎛

⎝
0 − 0 − 1
0 1 1 − −

− 0 − 1 1

⎞

⎠ orthogonalization−−−−−−−−−−−→

⎛

⎜
⎜
⎝

0 − 0 − 1
0 1 1 − −
1 0 0 1 1

− 0 1 1 1

⎞

⎟
⎟
⎠

complement minimization−−−−−−−−−−−−−−−−→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 1 1
1 1 1 − −

− − 0 − 0
− 0 1 − 0
− 0 1 0 1
1 − 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Exercise 3.1 (Equation). Let f(x1, x2, x3, x4, x5) = x2x3x4 ∨ x2x3x5 ∨
x1x3x5, g(x1, x2, x3, x4, x5) = (x2 ⊕ x3).

1 Find all solution vectors of the equation f(x) = g(x).

2 Compare this set with the solution set of f(x1, x2, x3, x4, x5) ⊕ g(x1, x2,
x3, x4, x5) = 0.

3 Compare this set with the solution set of f(x1, x2, x3, x4, x5) ⊕ g(x1, x2,
x3, x4, x5) = 1.

4 Compare this set with the solution set of f(x1, x2, x3, x4, x5) ∼ g(x1, x2,
x3, x4, x5) = 0.

5 Compare this set with the solution set of f(x1, x2, x3, x4, x5) ∼ g(x1, x2,
x3, x4, x5) = 1.

1. Logic Equations 65

Exercise 3.2 (Partial Solutions). For the given functions f(x) and g(x) of
Exercise 3.1 consider the sets f0, g0, f1 und g1 and build (by set operations)
(f0 ∩ g0) ∪ (f1 ∩ g1). What can be said about this set and its complement?

Exercise 3.3 (Equation). Let

f(x1, x2, x3, x4, x5)= ((((x1 ↓ x2) ↓ x3) ↓ x4) ↓ x5),
g(x1, x2, x3, x4, x5)= ((((x1|x2)|x3)|x4)|x5).

1 Find all solution vectors of the equation f(x) = g(x) by means of set
operations.

2 Solve the equation f(x) = g(x) directly using the procedure imple-
mented in the XBOOLE Monitor.

3 Are the sets calculated in the previous two items identical?

Exercise 3.4 (Equation). Take the functions f(x) and g(x) of Exer-
cise 3.3 and the solution vector (b1, b2, b3, b4, b5) = (10000) and compare
successively the number of solutions of subequations:

1 f(x1 = b1) = 1 and g(x1 = b1) = 1,

2 f(x1 = b1, x2 = b2) = 1 and g(x1 = b1, x2 = b2) = 1,

3 f(x1 = b1, x2 = b2, x3 = b3) = 1 and g(x1 = b1, x2 = b2,
x3 = b3) = 1,

4 f(x1 = b1, x2 = b2, x3 = b3, x4 = b4) = 1 and g(x1 = b1, x2 = b2,
x3 = b3, x4 = b4) = 1,

5 f(x1 = b1, x2 = b2, x3 = b3, x4 = b4, x5 = b5) = 1 and g(x1 = b1,
x2 = b2, x3 = b3, x4 = b4, x5 = b5) = 1.

Exercise 3.5 (Inequality). Take the functions f(x) and g(x) of Exer-
cise 3.3 and find the solutions of f(x)
= g(x). Compare this solution set
with the solution set of f(x) = g(x).
Exercise 3.6 (Implication). There are given the functions f(x) = x1 ⊕
x2 ⊕ x3 ⊕ x4 ⊕ x5 and g(x) = x1x2x3x4x5 ∨ x1x2x3 ∨ x4x5 ∨ x3x5.

1 Check whether f(x) ≤ g(x) holds for the given functions.

2 How the functions f(x) or g(x) must change in order to satisfy the
relation f(x) ≤ g(x).

3 Compare the solution sets of f(x) ≤ g(x) and f(x) ∨ g(x) = 1.

4 Compare the solution sets of f(x) ≤ g(x) and f(x)g(x) = 0.

66 3 LOGIC EQUATIONS

Exercise 3.7 (Solution with Regard to Variables). Let be given

f(x1, x2, x3x4) = x1x2x3x4 ∨ x1x2x3 ∨ x1x2x3x4 ∨ x1x2x3x4.

1 Find functions x3(x1, x2) and x4(x1, x2) which are defined by f(x) = 1.

2 Are the functions x3(x1, x2) and x4(x1, x2) unique? How the function
f(x1, x2, x3, x4) must change in order to make them unique (if they are
not unique)?

3 Are there constant functions x3(x1, x2) and x4(x1, x2) which are defined
by f(x) = 0?

Exercise 3.8 (Solution with Regard to Variables). Let be given the
function f(x1, . . . , xk, xk+1, . . . , xn).

1 What can be said about the number of solutions of the equation f(x) = 1
if it is required to solve this equation with regard to xk+1(x1, . . . , xk), . . . ,
xn(x1, . . . , xk).

2 Is the condition formulated with regard to the number of solutions a
necessary or a sufficient condition?

3 Use this knowledge in order to decide whether the equation

(x1x4 ∨ x1x2x4 ∨ x1x3x4 ∨ x2x3x4x5) ∧ (x2x3 ⊕ x5) = 1

can be solved with regard to x4(x1, x2, x3) and x5(x1, x2, x3) uniquely.
Verify the solution.

Exercise 3.9 (System of Equations). Let be given the system of equa-
tions:

h1 = x1 ⊕ x2,

h2 = x1x2,

f1 = h1 ⊕ x3,

h3 = h1x3,

f2 = h2 ∨ h3.

1 Solve each of these equations separately and calculate the common so-
lution using the partial solution sets.

2 Solve the system of equations using directly the operation SBE of the
XBOOLE Monitor. Is the solution set equal to the solution set of
item 1?

1. Logic Equations 67

3 Transform the system of equations into a single equation and solve this
equation using the operation SBE of the XBOOLE Monitor. Is the solu-
tion set equal to the solution set of item 1?

Exercise 3.10 (Satisfiability). Let be given the following equation in
conjunctive form:

(x1 ∨ x3 ∨ x5 ∨ x6)(x3 ∨ x4 ∨ x5 ∨ x6)(x2 ∨ x4 ∨ x6)(x1 ∨ x3 ∨ x5) = 1.

1 Use the orthogonal solution sets for the single disjunctions and the in-
tersection of these sets to find the solution.

2 Use the vectors that are not satisfying the respective single disjunctions
and their union and the complement of this set to find the solution.
Compare this solution with the result of item 1.

3 Use the SBE operation of XBOOLE to solve this equation and compare
this solution with the result of item 1.

4 Show that the 5 questions on page 63 of this book can be answered
without any special considerations.

Exercise 3.11 (Maximum Clauses). Let be given the function f by a
conjunctive form with n = 5 clauses:

f = (x1 ∨ x3 ∨ x4)(x2 ∨ x3 ∨ x4)(x2 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3).

1 Represent the same function by k clauses, k ≤ n where the clauses
are taken from the existing set of clauses and no further clause can be
omitted.

2 Will the solution change when any clauses can be used?

3 Can this problem be solved by minimization?

Exercise 3.12 (MAXSAT). Solve the MAXSAT-problem for the following
conjunctive form:

f = (a ∨ b ∨ c)(b ∨ c)(a ∨ d)(a ∨ d)(b ∨ c)(c ∨ d)(a ∨ c).

1 Is the equation f = 1 for the given function satisfiable?

2 Which disjunctions of the given function must be removed in order to
make the equation f = 1 satisfiable?

68 3 LOGIC EQUATIONS

2. Solutions
Exercise 3.1.
By using Extras – Solve Boolean Equation... and the OBB operation for orthog-
onal minimization in the XBOOLE Monitor we get the solution vectors as follows:

⎛

⎜
⎝

x1 x2 x3 x4 x5

0 0 0 − 0
1 1 0 − 0

− 0 1 0 −

⎞

⎟
⎠ .

Based on the solution sets of f(x) = 1 and g(x) = 1 and the required operations SYD,
CSD, and CPL the solution sets of the items 2, 3, 4, and 5 are calculated. It can be
checked by an empty result of SYD that the solution sets of item 2 and 5 are the same.
Empty TVLs of CSD operations confirm that the solution sets of items 3 and 4 are
the complement of this set.

Exercise 3.2.
The empty TVL 13 as result of the PRP

space 32 1
tin 1 1
x1 x2 x3 x4 x5.
-011-
-10-1
0-0-0.

sbe 1 2
/x2#x3.
cpl 1 3
cpl 2 4
csd 1 2 5

isc 1 2 10
isc 3 4 11
uni 10 11 12
syd 12 5 13

verifies that
TVL 12 includes
all the vectors
(x1, x2, x3, x4, x5)
with

f(x1, x2, x3, x4, x5) = g(x1, x2, x3, x4, x5).

Exercise 3.3.

1 In a PRP a Boolean space and TVLs for the five variables are created. The NOR
operations of the function f (object 13) are created by UNI and CPL operations.
The NAND operations of the function g (object 23) are created by ISC and CPL

operations.

space 32 1
tin 1 1
x1.
1.
tin 1 2
x2.
1.

tin 1 3
x3.
1.
tin 1 4
x4.
1.
tin 1 5
x5.
1.

uni 1 2 10
cpl 10 10
uni 10 3 11
cpl 11 11
uni 11 4 12
cpl 12 12
uni 12 5 13
cpl 13 13

isc 1 2 20
cpl 20 20
isc 20 3 21
cpl 21 21
isc 21 4 22
cpl 22 22
isc 22 5 23
cpl 23 23
csd 13 23 25

The operation CSD – complement of SYD calculates the solution of the equation
f(x) = g(x) as object 25. The solution sets of f = 1 and g = 1 are:

F1 =

⎛

⎜
⎝

x1 x2 x3 x4 x5

1 0 0 0 0
− 1 0 0 0
− − − 1 0

⎞

⎟
⎠ , G1 =

⎛

⎜
⎝

x1 x2 x3 x4 x5

1 1 1 1 1
− − − − 0
− − 0 1 1

⎞

⎟
⎠ .

2. Solutions 69

Object 25 is the solution set we are searching for.

(f = g) = (F1 Δ G1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 x3 x4 x5

1 0 0 0 0
− 1 0 0 0
− − − 1 0
0 1 1 1 1

− 0 1 1 1
− − − 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

2 The result of
sbe 1 30
/(/(/(/(x1+x2)+x3)+x4)+x5)=/(/(/(/(x1&x2)&x3)&x4)&x5).
shows the same vectors as the previous item only in another order.

3 syd 25 30 40
The empty TVL 40 confirms that both solution sets are equal.

Exercise 3.4.

1 The basic sets are prepared by the following PRP:

space 32 1
sbe 1 1
x1=1.

sbe 1 2
x2=0.
sbe 1 3
x3=0.

sbe 1 4
x4=0.
sbe 1 5
x5=0.

sbe 1 8
/(/(/(/(x1+x2)+x3)+x4)+x5).
sbe 1 9
/(/(/(/(x1&x2)&x3)&x4)&x5).

From isc 8 1 10 and isc 9 1 11 we get |f(1, x)| = 6 and |g(1, x)| = 11.

2 From isc 10 2 20 and isc 11 2 21 we get |f(10, x)| = 3 and |g(10, x)| = 5.

3 From isc 20 3 30 and isc 21 3 31 we get |f(100, x)| = 2 and |g(100, x)| = 3.

4 From isc 30 4 40 and isc 31 4 41 we get |f(1000, x5)| = 1 and |g(1000, x5)| = 1.

5 From isc 40 5 50 and isc 41 5 51 we get |f(10000)| = 1 and |g(10000)| = 1.

Exercise 3.5.

space 32 1
sbe 1 1
/(/(/(/(x1+x2)+x3)+x4)+x5).
sbe 1 2
/(/(/(/(x1&x2)&x3)&x4)&x5).
syd 1 2 3
csd 1 2 4
isc 3 4 5
uni 3 4 6
cpl 6 7
csd 3 4 8

Using the PRP on the left object 3 includes the
solution of the inequation f �= g (see below). For
the purpose of comparison the object 4 is the so-
lution of the equation f = g. The empty TVL 5
confirms that there is no common solution. The
empty TVL 7 confirms that the union of both so-
lution sets 3 and 4 covers the Boolean space B5

completely. Thus the solution sets 3 and 4 are
complementary to each other, confirmed by the
empty TVL 8.

(f �= g) = (F1ΔG1) =

⎛

⎜
⎜
⎜
⎝

x1 x2 x3 x4 x5

1 1 1 1 1
0 0 0 0 0

− − 0 1 1
− − 1 0 0

⎞

⎟
⎟
⎟
⎠

.

70 3 LOGIC EQUATIONS

Exercise 3.6.

1 space 32 1
sbe 1 1
x1#x2#x3#x4#x5.
sbe 1 2
/x1&/x2&/x3&/x4&/x5+
x1&/x2&x3+x4&/x5+x3&x5.
dif 1 2 3

The solution set of f(x) ≤ g(x) covers all so-
lution vectors of f(x) = 1 that are not solution
vectors of g(x) = 1. This set can be calculated by
the difference operation (DIF) of XBOOLE. The
solution set covers 8 vectors (00001), (00100),
(01000), (01011), (10000), (10011), (11001), and
(11100).

2 dif 1 3 10
dif 10 2 11
uni 2 3 12
dif 1 12 13

The relation f(x) ≤ g(x) is satisfied if f(x) is restricted to
function values 1 that do not appear in the solution set 3. The
empty set 11 confirms this property. Vice versa the function
g(x) can be extended by the solution set 3 into the new func-
tion 12. The empty set 13 confirms that the extended function
12 satisfies the relation too.

3 cpl 1 20
uni 20 2 21
csd 21 3 22

The solution set 21 is calculated by a complement of f and
a union with g. The empty set 22 confirms that the solution
sets of f(x) ≤ g(x) and f(x) ∨ g(x) = 1 are complements of
each other.

4 cpl 2 30
isc 1 30 31
cpl 31 32
csd 32 3 33

The solution set 32 covers the solution vectors of f(x)g(x) =
0. The empty set 33 confirms that this solution set is the
complement of the solution set of f(x) ≤ g(x).

Exercise 3.7.

1 space 32 1
tin 1 1
x1 x2 x3 x4.
0001
100-
1101
0111.

The solution set of the equation f(x) = 1 is given by
the TVL 1

⎛

⎜
⎜
⎜
⎝

x1 x2 x3 x4

0 0 0 1
1 0 0 −
1 1 0 1
0 1 1 1

⎞

⎟
⎟
⎟
⎠

.

sbe 1 2
x3=/x1&x2.
sbe 1 3
x4=1.
sbe 1 4
x4=/x1+x2.
vtin 1 5
x3 x4.

isc 1 2 10
isc 10 3 11
dco 11 5 12
cpl 12 13
isc 10 4 15
dco 15 5 16
cpl 16 17

Using x1 and x2 as arguments, it can be seen
that all the possibilities (00), (01), (10), and
(11) for the arguments exist. Taking TVL 1
as function table we get x3 = x1x2 as well as
x4 = 1 and x4 = x1 ∨ x2. The empty sets 13
and 17 after the substitution of both pairs of
functions into the equation f(x) = 1 confirm
these solutions.

2 The single function x3(x1, x2) is unique, but there are two functions x4(x1, x2).
Hence, x4(x1, x2) is not unique. In order to get a unique solution, the − in the
second vector must be replaced by 0 or 1.

2. Solutions 71

3 cpl 1 21
sbe 1 22
x3=1.
sbe 1 23
x4=0.
isc 21 22 25
isc 25 23 26
dco 26 5 27
cpl 27 28

The solution set of the
equation f(x) = 0 is
given by TVL 21.
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 x3 x4

0 1 0 1
0 0 0 0
1 1 1 1

− − 1 0
− 1 0 0
− 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

It is the complement of TVL 1. The
vector (− − 10) shows that the con-
stant functions x3 = 1, x4 = 0 can be
used for all the values of x1 and x2.
A row of values 1 in the associated
Karnaugh map shows this property,
too. The empty set 28 after substitu-
tions of this pair of functions into the
equation f(x) = 0 confirms these so-
lutions.

Exercise 3.8.

1 The solution functions depend on k variables x1, . . . , xk. Hence, the equation

f(x1, . . . , xk, xk+1, . . . , xn) = 1 must have at least 2
k

solutions such that each
vector (x1, . . . , xk) appears in the solution set.

2 It is only a necessary condition, since many vectors (xk+1, . . . , xn) can be in the
solution set with one vector for (x1, . . . , xk).

3 space 32 1
avar 1
x1 x2 x3 x4 x5.
sbe 1 1
(x1&/x4+/x1&x2&x4+/x1&x3&x4+
/x2&/x3&/x4&x5)&(x2&/x3#x5)=1.

vtin 1 2
x4 x5.
sbe 1 10
x4=/x1&(x2+x3).
sbe 1 11
x5=/x2+x3.

isc 1 10 15
isc 15 11 16
dco 16 2 17
cpl 17 18

There are 8 solution vectors of the equation 1 such that the necessary condition
holds. The Karnaugh map of the solution set shows exactly one solution value 1
for each vector (x1, x2, x3). The empty set 18 confirms that the pair of functions
x4 = x1 (x2 ∨ x3) and x5 = x2 ∨ x3 is a valid solution.

Exercise 3.9.

1 space 32 1
avar 1
x1 x2 x3 h1 h2
h3 f2 f1.
sbe 1 1
h1=x1#x2.

sbe 1 2
h2=x1&x2.
sbe 1 3
f1=h1#x3.

sbe 1 4
h3=h1&x3.
sbe 1 5
f2=h2+h3.

isc 1 2 6
isc 6 3 6
isc 6 4 6
isc 6 5 6

The solution set is calculated by intersections of the solution sets of the five
equations and includes 8 solution vectors.

2 sbe 1 10
h1=x1#x2,
h2=x1&x2,
f1=h1#x3,
h3=h1&x3,
f2=h2+h3.

syd 10 6 11 The SBE operation of XBOOLE allows to solve
systems of equations directly. A comma sign
separates two equations of the equation system.
The empty set 11 confirms that solution sets 6
and 10 are identical.

72 3 LOGIC EQUATIONS

3 sbe 1 20
(h1=x1#x2)&
(h2=x1&x2)&
(f1=h1#x3)&
(h3=h1&x3)&
(f2=h2+h3)=1.
syd 20 6 21

Each equation is transformed into an expression where an equiv-
alence operation connects both sides of the given equations. All
these expressions must be equal to one. Hence, AND operations
between them form the required single characteristic equation.
The empty set 21 confirms that solution sets 6 and 20 are iden-
tical.

Exercise 3.10.

1 space 32 1
avar 1
x1 x2 x3 x4 x5 x6.
sbe 1 1
(x1+x3+/x5+/x6)=1.

sbe 1 2
(x3+/x4+/x5+/x6)=1.
sbe 1 3
(x2+x4+x6)=1.
sbe 1 4
(/x1+/x3+/x5)=1.

isc 1 2 5
isc 5 3 5
isc 5 4 5
obbc 5 5

The solution sets of the first and
second disjunction are represented
by 4 orthogonal ternary vectors
each, and solution sets of the third
and fourth disjunction need 3 or-
thogonal ternary vectors each. The
intersection of these four sets M1 ∩
M2 ∩ M3 ∩ M4 is the solution S
of the SAT-problem. 9 orthogo-
nal ternary vectors represent 43
boolean solution vectors.

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 x3 x4 x5 x6

1 0 0 0 1 1
0 1 − − 1 0

− 1 − 0 0 0
1 1 0 0 1 −
0 0 − 1 1 0

− − − 1 0 −
1 − 0 1 1 0

− − − 0 0 1
0 − 1 − 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

2 cpl 1 11
cpl 2 12
cpl 3 13
cpl 4 14

uni 11 12 15
uni 15 13 15
uni 15 14 15
cpl 15 16

obbc 16 16
syd 5 16 17

The TVLs 11, 12, 13, and 14 consist of
one vector which does not satisfy the re-
spective single disjunction. Their union
and a final complement leads to the
same solution, confirmed by the empty
set 17.

tin 1 18
x1 x2 x3 x4 x5 x6.
0-0-11
–0111
-0-0-0
1-1-1-.

cpl 18 19
syd 19 5 20

Alternatively the four vectors that do
not satisfy the respective single disjunc-
tion can be specified in a TVL. The com-
plement of this set is equal to the pre-
vious solution set S. This will be again
confirmed by the empty set 20.

3 sbe 1 30
(x1+x3+/x5+/x6)&(x3+/x4+/x5+/x6)&
(x2+x4+x6)&(/x1+/x3+/x5)=1.
syd 30 5 31

The given SAT problem can be
solved directly using SBE. The
empty set 31 confirms that the
same solution was calculated.

4 These questions can be answered by a simple inspection of the given conjunctive
form and/or the respective solution sets.

2. Solutions 73

Exercise 3.11.

1 space 32 1
tin 1 1 /d
x1 x2 x3 x4.
0-00
-100
-101
010-
110-.

orth 1 2
dtv 1 1 10
orth 10 11
syd 11 2 12
dtv 1 2 13
orth 13 14
syd 14 2 15

dtv 13 2 20
orth 20 21
syd 21 2 22

dtv 20 2 30
orth 30 31
syd 31 2 32
dtv 20 3 33
orth 33 34
syd 34 2 35

There are several possibilities to solve this problem. We will use the following
approach. We combine the ternary vectors corresponding to conjunctions into
TVL 1 in such a way that the conjunction is equal to 0 for this vector. For the
purpose of comparison the orthogonal set 2 is created. Step by step one vector
of TVL 1 is deleted using the XBOOLE operation DTV (delete ternary vector).
The orthogonalized remaining sets are compared with the original set 2 using the
symmetric difference. The set 12 is not empty; that means the first row is neces-
sary. The empty set 15 confirms that the second disjunction can be omitted. We
continue to remove the third row in addition to the second row. The empty set
22 confirms that these two disjunctions can be omitted. The sets 32 and 35 which
are not empty confirm finally that no further disjunction can be omitted. From
the TVL 20 we get the expression of the same function expressed with only k = 3
disjunctions:

f = (x1 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3).

2 The last two clauses of the previous result can be expressed by the single clause
(x2 ∨ x3). Thus, simpler solutions can exist if any clause can be used.

3 obbc 2 40. Even the orthogonal minimization finds expressions with
two clauses:

f = (x1 ∨ x2 ∨ x3 ∨ x4)(x2 ∨ x3).

Exercise 3.12.

1 space 32 1
tin 1 1 /d
a b c d.
000-, -11-, 1–1, 1–0
-01-, –00, 0-0-.
cpl 1 2

This problem can be solved in the same way as
the previous problem. The CPL operation calcu-
lates the complement for orthogonal and non-
orthogonal D- and K-forms. The empty set 2
confirms that the given equation is not satisfi-
able.

cpl 1 2
dtv 1 1 10
cpl 10 11
dtv 1 2 12
cpl 12 13
dtv 1 3 14
cpl 14 15

dtv 1 4 16
cpl 16 17
dtv 1 5 18
cpl 18 19

dtv 1 6 20
cpl 20 21
dtv 1 7 22
cpl 22 23

The sets 13, 15, 19, and 23 are not
empty. Hence, the omission of one
of the clauses (b∨c), (a∨d), (b∨c)
or (a ∨ c) of the given function f
results in a satisfiable conjunctive
form.

Chapter 4

BOOLEAN DIFFERENTIAL CALCULUS

1. Differentials
Differentials dx of Boolean variables x occur in graph equations. The

differential dxi of a single variable xi has a special meaning, the change
of the value of the Boolean variable xi, but it is a Boolean variable
too. Thus a graph equation can be solved in the same way as a logic
equation.
Exercise 4.1 (Graph Equation). Solve the graph equation F (a,x, dx) =
G(a,x, dx) where

F (a,x, dx)= x1x3 dx1 dx2 dx3 ∨ x1x2x3 dx1 dx3 ∨ x1x2 dx1 dx2

∨ ax1x2x3 dx2 ∨ x1x2x3 dx1 dx2

∨ x1x2x3 dx1 dx2 dx3 ∨ x2 dx1 dx3

∨ ax1x2x3 dx1 dx2 dx3 ∨ a x1x3 dx2 dx3

∨ a x1x2x3 dx1 dx3 ∨ x1x2x3 dx1 dx3 ∨ ax1x2 dx2

∨ a x3 dx1 dx2 dx3 ∨ ax1x3 dx1dx2 dx3

∨ x1x2x3 dx1 dx2 dx3 ∨ ax1x2 dx1 dx2 dx3

and

G(a,x, dx) = x2x3 dx2 ∨ ax1x3 dx2 dx3 ∨ ax1x2x3 dx1 dx2 dx3

∨ a x1x2x3 dx1 dx2 dx3 ∨ a x1x2x3 dx2

∨ ax1x2x3 dx1 dx2 dx3 ∨ ax1x2x3 dx1 dx3

∨ ax2x3 dx1 dx2 dx3 ∨ x1x2x3 dx1 dx2 dx3

∨ ax1x2 dx1 dx2 ∨ ax2x3dx1 dx2 ∨ ax2 dx2 dx3.

Bernd Steinbach, Christian Posthoff, Logic Functions and Equations, Examples and
Exercises,
© Springer Science + Business Media B.V. 2009

76 4 BOOLEAN DIFFERENTIAL CALCULUS

Use the XBOOLE-monitor to solve this graph equation. It is suggested
to edit the equation in a text file (e.g. e41 graph.txt) using the preferred
operation signs (e.g. AND: &, OR: +, NOT: !) and an editor of your choice.
Draw the resulting graph. Take the Boolean variables x1, x2, and x3 as code
of the vertices of the graph. The differentials dx1, dx2, and dx3 describe
the direction of the edges. Take the variable a as label of edges. Answer the
following questions:

1 How many edges contains the graph? (Count edges that do not depend
on the value of a only once.)

2 How many connected components includes the graph?

3 Cycles of which length can be found in the graph for a = 1?

4 Cycles of which length contains the graph for a = 0?

Basically there are two representations of graphs. The first describes
the edges by the code of a vertex and the direction by values of differen-
tials as used in the exercise above. This graph representation is called dif-
ferential representation. The second one describes an edge by the codes
of the starting vertex x and the end vertex x′. This graph represen-
tation is called sequential representation. Though both representations
will describe the same graph, each one of them has some benefits for
particular analysis tasks. Therefore we need a transformation between
both representations of a graph.

The XBOOLE monitor allows only alphanumerical characters in the
names of Boolean variables. Therefore in the following the variable x′ will
be expressed by xf or the variable x′

i by xfi, respectively. The character
f stands for following.
Exercise 4.2 (Graph Transformation). Transform the differential rep-
resentation Gd(a,x, dx) of the graph calculated in Exercise 4.1 into its
sequential representation Gs(a,x,xf).

Use the equation xfi = xi ⊕ dxi, i = 1, 2, 3, as the theoretical back-
ground for the transformation. Restrict the result of the transformation to
the variables (a,x,xf) by means of an m-fold maximum operation. Practical
tasks:

1 Write a PRP e42 gds.prp that requires the TVL of Gd(a,x, dx) as
object number 1 and stores the resulting TVL of Gs(a,x,xf) as object
number 2 where intermediate objects may be stored as objects with
numbers larger than 10.

2 Prepare the XBOOLE-monitor in such a way that the TVL of Gd(a,x, dx)
is the object number 1, and execute the PRP e42 gds.prp.

1. Differentials 77

Table 4.1 Solution set of thegraph equation of Exercise 4.1

Gs(a,x, dx) =

a x1 x2 x3 dx1 dx2 dx3

− 0 1 1 1 1 0
− 0 0 0 0 0 1
0 1 0 0 1 1 0

− 0 1 0 0 1 0
0 1 1 − 0 0 0
1 1 0 0 1 0 0

− 1 0 1 0 0 1
− 0 0 1 0 1 0
1 1 1 − 0 0 1

3 Draw the graph of Gs(a,x,xf) stored as object number 2 and compare
it with the graph of Exercise 4.1.

4 Write a PRP e42 gsd.prp that requires for the inverse transformation
the TVL of Gs(a,x,xf) as object number 2 and stores the resulting TVL
of Gd(a,x, dx) as object number 3 where intermediate objects may be
stored as objects with numbers larger than 20.

5 Execute the PRP e42 gsd.prp and compare whether the result of the
inverse transformation (TVL 3) is the same function as the given function
(TVL 1) by means of a SYD-operation.

There are three total differential operations for a logic function. The
difference between them is the internal operation ⊕, ∧, or ∨. This op-
eration must be executed between f(x) and f(x ⊕ dx). Thus the main
challenge is the calculation of f(x⊕dx) in order to create the total differ-
ential dxf(x), the total differential minimum Minx f(x), and the total
differential maximum Maxx f(x). One possibility to create the function
f(x ⊕ dx) is the substitution of (xi ⊕ dxi) for xi by hand.
Exercise 4.3 (Total Differential Operation). Calculate all three total
differential operations of the function

f(x1, x2, x3) = x1(x2 ∨ x3) ⊕ x1(x2 ∼ x3) (4.1)

and verify relation (4.2) of [18]. Practical tasks:

1 Solve the equation f(x1, x2, x3) = 1 for function (4.1) and store the
result as object number 1.

2 Change the expression of f(x) into f(x ⊕ dx) using the SBE dialog
window of the XBOOLE-monitor and solve the equation f(x ⊕ dx) = 1
storing the result as object number 2.

3 Calculate the total differential dxf(x) by means of a SYD-operation as
object number 3. Draw the associated graph and count the edges.

78 4 BOOLEAN DIFFERENTIAL CALCULUS

4 Calculate the total differential minimum Minx f(x) by means of an ISC-
operation as object number 4. Draw the associated graph and count the
edges.

5 Calculate the total differential maximum Maxx f(x) by means of a UNI-
operation as object number 5. Draw the associated graph and count the
edges.

6 Verify relation (4.2) of [18] by means of SYD-operations between object
3, 4, and 5 and store the result as object number 6.

The substitution method applied in Exercise 4.3 is time-consuming
and error-prone. Therefore another method is suggested. Based on for-
mula (4.3) of [18] the function f(x ⊕ dx) can be replaced by f(xf). The
transformation from f(x) into f(xf) is a simple substitution of variables
and can easily be done using the XBOOLE operation TCO. Thereafter
the total differential operations can be calculated in sequential form. The
transformation gsd.prp from the sequential form into the differential
form created in Exercise 4.2 leads finally to the desired total differential
operations.
Exercise 4.4 (Total Differential Operation using Transformation). Cal-
culate all three total differential operations of function (4.1) using the trans-
formation method and verify the solution. Practical tasks:

1 Solve the equation f(x1, x2, x3) = 1 for function (4.1) and store the
result as object number 1.

2 Prepare VT 〈x1, x2, x3〉 as object number 2 and VT 〈xf1, xf2, xf3〉 as
object number 3 as the basis for the change of columns.

3 Create the function f(xf1, xf2, xf3) by means of an appropriate CCO-
operation.

4 Write a PRP for the transformation of a differential operation in se-
quential form given as object number 10 into a differential operation in
differential form generated as object number 11.

5 Create the total differential of (4.1) in sequential form as object num-
ber 10, apply the PRP for the transformation into the differential form,
copy the generated object from number 11 to object number 5, visual-
ize the total differential of number 5 as Karnaugh map, and count the
values 1.

6 Create the total differential minimum of (4.1) in sequential form as ob-
ject number 10, apply the PRP for transformation into the differential

1. Differentials 79

form, copy the generated object from number 11 to object number 6,
visualize the total differential minimum of number 6 as Karnaugh map,
and count the values 1.

7 Create the total differential maximum of (4.1) in sequential form as ob-
ject number 10, apply the PRP for the transformation into the differential
form, copy the generated object from number 11 to object number 7,
visualize the total differential maximum of number 7 as Karnaugh map,
and count the values 1.

8 Compare the Karnaugh maps with the results of Exercise 4.3 and verify
relation (4.2) of [18] by means of SYD-operations between the objects
5, 6, and 7 and store the result as object number 8.

In oder to verify the relations (4.8), (4.10), and (4.11) of [18], the total
differential expansion F (x, dx) of f(x) is required. This expansion trans-
forms the logic function from the space Bn into the space B2n. Inside of
the XBOOLE system operations between several TVLs are allowed only
if these TVLs are defined in the same Boolean space. Thus the relations
mentioned above do not require an explicit creation of the total differ-
ential expansion F (x, dx) of f(x), because the logic function f(x) must
be embedded in the same Boolean space as the total differential oper-
ations. Note: the visualization of a TVL or Karnaugh map reflects the
variables occurring in its data structure. Therefore the explicit creation
of the total differential expansion may be necessary. The expansion can
be calculated using a full TVL defined over the required differentials.
Exercise 4.5 (Partial Order of Total Differential Operations). Verify
the partial order relation (4.11) of [18] using the results of Exercise 4.4, the
total differential expansion F (x, dx) of (4.1) and the logic function itself.
Practical tasks:

1 Write a PRP that takes object number 1 as a logic function of three
variables (x1, x2, x3) and generates its total differential expansion as
object number 31.

2 Reload the result of Exercise 4.4 and apply the written PRP in order to
generate the total differential expansion of (4.1) based on definition (4.6)
of [18]. Visualize the Karnaugh map of the generated total differential
expansion in object number 31.

3 Verify (4.8) of [18] using the total differential minimum of object number
6 and the differential expansion in object number 31.

4 Verify (4.10) of [18] using the total differential maximum of object num-
ber 7 and the differential expansion in object number 31.

80 4 BOOLEAN DIFFERENTIAL CALCULUS

5 Verify (4.11) of [18] using the total differential minimum of object num-
ber 6, the logic function of object number 1, and the total differential
maximum of object number 7.

Partial differential operations restrict the directions for the consid-
eration of changes of the function to selected variables. Consequently,
the number of differential variables is reduced in comparison to total
differential operations – therefore the calculation effort is smaller for
partial differential operations. There are relations for partial differential
operations which are analogous to the relations studied before for total
differential operations.
Exercise 4.6 (Partial Differential Operation). Calculate all three partial
differential operations of the function

f(x1, x2, x3, x4) = (x1 ⊕ x2) x3 ∨ x1x4 ∨ (x1 x2) (x3 ∨ x4) (4.2)

with regard to (x3, x4), draw their graphs, and verify the relations between
these three partial differential operations. Practical tasks:

1 Solve the equation f(x1, x2, x3, x4) = 1 for the function (4.2) and store
the result as object number 1.

2 Create the function f(x1, x2, xf3, xf4) by means of an appropriate PRP
and store the orthogonal result as object number 4.

3 Write a PRP that transforms a differential operation in sequential form,
given as object number 10 with regard to the variables (x3, x4), into a
differential operation in differential form generated as object number 11.

4 Create the partial differential d(x3,x4)f(x) of (4.2) in sequential form as
object number 10, apply the PRP for transformation into the differential
form, copy the generated object from number 11 to object number 5,
visualize the partial differential of number 5 as graph, and count the
edges.

5 Create the partial differential minimum Min(x3,x4) f(x) of (4.2) in se-
quential form as object number 10, apply the PRP for transformation
into the differential form, copy the generated object from number 11 to
object number 6, visualize the partial differential minimum of number 6
as graph, and count the edges.

6 Create the partial differential maximum Max(x3,x4) f(x) of (4.2) in se-
quential form as object number 10, apply the PRP for transformation
into the differential form, copy the generated object from number 11 to
object number 7, visualize the partial differential maximum of number 7
as graph, and count the edges.

1. Differentials 81

7 Verify relation (4.21) of [18] by means of SYD-operations between the
objects 5, 6, and 7 and store the result as object number 20.

8 Verify the left relation in (4.20) of [18] by means of a DIF-operation
between the objects 6 and 1 and store the result as object number 21.

9 Verify the right relation in (4.20) of [18] by means of a DIF-operation
between the objects 1 and 7 and store the result as object number 22.

10 For the last two tasks the function of object number 1 could be used
instead of the partial differential expansion F (x1, x2, x3, x4, dx3, dx4).
Explain why!

A partial differential operation with regard to a single variable is again
a logic function. Hence, another partial differential operation of the same
type with regard to another variable can be calculated. This is the basic
procedure for the definition of m-fold differential operations. Both the
partial and the m-fold differential operations can depend on a subset of
differentials dxi. The semantics of these classes of differential operations
is quite different and should be studied in the following exercise.
Exercise 4.7 (M -fold Differential Operations). Calculate all four m-fold
differential operations of the function (4.2) with regard to (x3) and (x3, x4),
draw their graphs, compare these graphs with the graphs of the previous
Exercise 4.6, and verify the relations between these m-fold differential op-
erations. Practical tasks:

1 Solve the equation f(x1, x2, x3, x4) = 1 for the function (4.2) and store
the result as object number 1.

2 Prepare for further calculation the VTs 2: 〈x3〉, 3: 〈xf3〉, 4: 〈x4〉, 5:
〈xf4〉, and the TVLs for sequential to differential transformation, 6: for
x3, and 7: for x4.

3 Write a PRP that calculates both dx3f(x) as object number 13, and
d2

(x3,x4)
f(x) as object number 17.

4 Execute this PRP and draw the graphs of the two m-fold differentials.

5 Write a PRP that calculates both Minx3 f(x) as object number 23, and
Min2

(x3,x4)
f(x) as object number 27.

6 Execute this PRP and draw the graphs of both m-fold differential mini-
mum operations.

7 Write a PRP that calculates both Maxx3 f(x) as object number 33, and
Max2

(x3,x4) f(x) as object number 37.

82 4 BOOLEAN DIFFERENTIAL CALCULUS

8 Execute this PRP and draw the graphs of both m-fold differential max-
imum operations.

9 Calculate both ϑx3f(x) as object number 40, and ϑ(x3,x4)f(x) as object
number 41, and draw the associated graphs.

10 Check whether dx3f(x) and ϑx3f(x) are the same function.

11 Check whether d2
(x3,x4)

f(x) and ϑ(x3,x4)f(x) are the same function.

12 Verify the inequalities

Min2
(x3,x4)

f(x) ≤ Minx3 f(x), (4.3)

Minx3 f(x) ≤ f(x), (4.4)

f(x) ≤ Maxx3 f(x), (4.5)

Maxx3 f(x) ≤ Min2
(x3,x4) f(x) (4.6)

using the objects number 27, 23, 1, 33, and 37, respectively.

2. Derivatives
Derivatives of logic functions are strongly associated with their dif-

ferential operations. The direction of change is specified in differential
operations by the values of the differentials dxi. If a direction of change
is fixed by constant values of the differentials dxi, the remaining function
is the appropriate derivative. The restriction in the direction of change
of a derivative is compensated by a reduced number of variables.

Based on three classes of differential operations, there are three classes
of derivatives: simple derivatives, vectorial derivatives, and m-fold deriv-
atives. The simple derivatives are a special case of both the vectorial and
the m-fold derivatives when the derivatives are calculated with regard to
a single variable xi. Hence, the XBOOLE-monitor includes operations
for three vectorial and three m-fold derivatives.

The XBOOLE operations for three vectorial derivatives with regard
to a single variable xi use their definition (4.28), (4.31), and (4.34) of
[18] such that the variable xi appears in the results. The XBOOLE
operations for three m-fold derivatives with regard to a single variable
xi use the equation of theorem (4.29), (4.32), and (4.35) of [18] such that
the variable xi does not appear in the result.
Exercise 4.8 (Simple Derivatives). Calculate all three simple derivatives
of the function

f(x1, x2, x3, x4) = (x1x2 ⊕ x2x3x4) ∨ x1x2x4 (4.7)

2. Derivatives 83

with regard to x4 using both types of possible XBOOLE operations, visualize
the Karnaugh maps, and verify the relations between these three simple
derivatives. Practical tasks:

1 Solve the equation f(x1, x2, x3, x4) = 1 for the function (4.7) and store
the result as object number 1.

2 Prepare VT 〈x4〉 as object number 2.

3 Calculate ∂f(x)
∂x4

using the XBOOLE operation derv, show the Karnaugh
map of the result, and compare it with the Karnaugh map of the given
function.

4 Calculate ∂f(x)
∂x4

using the XBOOLE operation derk, show the Karnaugh
map of the result, and compare it with the Karnaugh maps of the given
function and the result of subtask 3.

5 Calculate minx4f(x) using the XBOOLE operation minv, show the Kar-
naugh map of the result, and compare it with the Karnaugh map of the
given function.

6 Calculate minx4f(x) using the XBOOLE operation mink, show the Kar-
naugh map of the result, and compare it with the Karnaugh maps of the
given function and the result of subtask 5.

7 Calculate maxx4f(x) using the XBOOLE operation maxv, show the Kar-
naugh map of the result, and compare it with the Karnaugh map of the
given function.

8 Calculate maxx4f(x) using the XBOOLE operation maxk, show the Kar-
naugh map of the result, and compare it with the Karnaugh maps of the
given function and the result of subtask 7.

9 Verify (4.36) of [18].

10 Verify (4.40) of [18].

The application of the Boolean Differential Calculus leads to expres-
sions that comprise differential and derivative operations. Relations be-
tween such operations help to simplify such expressions. The following
exercise verifies such relations between simple derivative operations and
supports their understanding.
Exercise 4.9 (Relations between Simple Derivatives). Calculate all three
simple derivatives of the function (4.7) with regard to x4 using m-fold
XBOOLE derivative operations for m = 1, visualize the Karnaugh maps,
and verify the six relations (4.43), . . . , (4.48) of [18] between these three
simple derivatives. Practical tasks:

84 4 BOOLEAN DIFFERENTIAL CALCULUS

1 Solve the equation f(x1, x2, x3, x4) = 1 for function (4.7) and store the
result as object number 1.

2 Prepare VT 〈x4〉 as object number 2.

3 Calculate ∂f(x)
∂x4

as object number 3, and show the Karnaugh map of the
result.

4 Calculate minx4 f(x) as object number 4, and show the Karnaugh map
of the result.

5 Calculate maxx4 f(x) as object number 5, and show the Karnaugh map
of the result.

6 Verify (4.43) of [18] and emphasize the understanding of this relation by
comparing Karnaugh map 4 and 5.

7 Verify (4.44) of [18] and emphasize the understanding of this relation by
comparing Karnaugh map 3 and 5.

8 Verify (4.45) of [18] and emphasize the understanding of this relation by
comparing Karnaugh map 3 and 4.

9 Verify (4.46) of [18] and emphasize the understanding of this relation by
comparing Karnaugh map 5, 4, and 3.

10 Verify (4.47) of [18] and emphasize the understanding of this relation by
comparing Karnaugh map 5, 3, and 4.

11 Verify (4.48) of [18] and emphasize the understanding of this relation by
comparing Karnaugh map 4, 3, and 5.

Generally, not only one, but several variables of a logic function may
change their values simultaneously. The vectorial derivatives describe the
observable properties of this approach. There are particular XBOOLE
operations derv, minv, and maxv which compute the vectorial derivative,
the vectorial minimum, and the vectorial maximum, respectively.
Exercise 4.10 (Vectorial Derivatives). Calculate all three vectorial deriv-
atives of the function (4.7) with regard to (x3, x4) using the XBOOLE
operations mentioned above, visualize the Karnaugh maps, observe that the
vectorial derivatives depend on the same variables as the given function,
and verify basic relations between these three vectorial derivatives. Practi-
cal tasks:

1 Solve the equation f(x1, x2, x3, x4) = 1 for the function (4.7) and store
the result as object number 1.

2. Derivatives 85

2 Prepare VT 〈x3, x4〉 as object number 2.

3 Calculate ∂f(x)
∂(x3,x4) as object number 3, and show the Karnaugh map of

the result.

4 Calculate min(x3,x4) f(x) as object number 4, and show the Karnaugh
map of the result.

5 Calculate max(x3,x4) f(x) as object number 5, and show the Karnaugh
map of the result.

6 Verify (4.52) of [18].

7 Verify (4.43) of [18].

The application of the Boolean Differential Calculus leads to expres-
sions that include derivative operations. Using relations between deriva-
tive operations allows to simplify such expressions. Because simple deriv-
ative operations are special cases of vectorial derivative operations, many
relations are valid for both of these classes of derivative operations.
Exercise 4.11 (Relations for Simple and Vectorial Derivatives). Verify
all 16 relations (4.52), . . . , (4.69) of [18], once for simple derivative oper-
ations with regard to x4, and once for vectorial derivative operations with
regard to (x3, x4). Use basically the function f(x1, x2, x3, x4) of (4.7) and
additionally the function g(x1, x2, x3, x4) of (4.8),

g(x1, x2, x3, x4) = x2x4 ∨ x1(x3 ∨ x2x4), (4.8)

for the relations (4.64), (4.65), and (4.66) of [18]. Study the TVLs and
Karnaugh maps of the intermediate results. Practical tasks:

1 Solve the equation f(x1, x2, x3, x4) = 1 for function (4.7) and store the
result as object number 1.

2 Solve the equation g(x1, x2, x3, x4) = 1 for function (4.8) and store the
result as object number 2.

3 Prepare VT 〈x4〉 as object number 3.

4 Prepare a PRP that evaluates all 16 relations (4.52), . . . , (4.69) of
[18] based on the functions given as objects number 1 and 2 where the
derivative operations are calculated with regard to the variables of object
number 3.

5 Execute the PRP of subtask 4 and evaluate the results for simple deriv-
ative operations.

86 4 BOOLEAN DIFFERENTIAL CALCULUS

6 Delete object number 3 and prepare VT 〈x3, x4〉 as a new object num-
ber 3.

7 Execute the PRP of subtask 4 and evaluate the results for vectorial
derivative operations.

Total and partial differential operations contain simple and vectorial
derivative operations. The fixing of the direction of change in a differ-
ential operation by constant values for the differentials dxi leads to an
associated simple or vectorial derivative operation. Vice versa, a total
and partial differential operation can be built by using all required sim-
ple and vectorial derivative operations and associated conjunctions of
differentials dxi.
Exercise 4.12 (Vectorial Derivative Operations ↔ Vectorial Differen-
tial Operations). Calculate all vectorial derivative operations based on the
partial differential operations of Exercise 4.6 and verify the results. Build
the three differential operations of Exercise 4.6 using the vectorial deriva-
tive operations of XBOOLE and verify the results. Use function (4.2) for all
calculations. Practical tasks:

1 Reload the TVL-system of Exercise 4.6 as the basis of all further calcu-
lations.

2 Prepare TVLs for conjunctions dx3 dx4, dx3 dx4, dx3 dx4, and dx3 dx4,
as objects number 30, . . . , 33, and VTs of 〈x3〉, 〈x4〉, and 〈x3, x4〉 as
objects number 34, 35, and 36.

3 Write a PRP that calculates all vectorial derivatives using the partial dif-
ferential, given in object number 5, and verify these results using vectorial
derivatives of the function in object number 1.

4 Execute the PRP of the previous subtask.

5 Write a PRP that calculates partial differentials of the function in object
number 1 using their vectorial derivatives, calculated in the previous
PRP, and verify the result.

6 Execute the PRP of the previous subtask.

7 Repeat the subtasks 3 . . . 6 for the differential minimum of object num-
ber 6.

8 Repeat the subtasks 3 . . . 6 for the differential maximum of object num-
ber 7.

Both vectorial and m-fold derivative operations of a logic function
f(x) are calculated with regard to a subset of variables x0 ⊆ x. The

2. Derivatives 87

definition and the semantics of these two kinds of derivative operations
are completely different. The m-fold derivative operations describe prop-
erties of f(x) in whole subspaces and do not depend on variables of the
vector x0. The XBOOLE Monitor offers operations derk, mink, and maxk
which calculate the m-fold derivative, the m-fold minimum, and the m-
fold maximum, respectively. The Δ-operation can be calculated using
the XBOOLE operation syd of the results of mink and maxk.
Exercise 4.13 (M -fold Derivatives). Calculate all four m-fold derivatives
of the function

f(x1, x2, x3, x4, x5) = x1(x2 ∨ x4) ∨ x2x3x5 ∨ x2x3x4x5 (4.9)

with regard to (x4, x5) using the XBOOLE operations mentioned above,
visualize the Karnaugh maps, observe that the m-fold derivative operation
depends on less variables than the given function, and verify partial order
relations between the m-fold minimum, the given function, and the m-fold
maximum. Practical tasks:

1 Solve the equation f(x1, x2, x3, x4, x5) = 1 for the function (4.9) and
store the result as object number 1.

2 Prepare VT 〈x4, x5〉 as object number 2.

3 Calculate ∂2f(x)
∂x4∂x5

as object number 3, and show the Karnaugh map of
the result.

4 Calculate min2
(x4,x5)

f(x) as object number 4, and show the Karnaugh

map of the result.

5 Calculate max2
(x4,x5)

f(x) as object number 5, and show the Karnaugh

map of the result.

6 Calculate Δ(x4,x5)f(x) as object number 6, and show the Karnaugh map
of the result.

7 Calculate the simple minimum and the simple maximum of f(x) with
regard to x4 and verify (4.88) and (4.90) of [18].

Similar to simple and vectorial derivative operations, there are also
many relations between m-fold derivative operations. The knowledge of
these relations helps to simplify expressions which include m-fold deriv-
ative operations. The verification of these relations in the following ex-
ercise supports the understanding of m-fold derivative operations.
Exercise 4.14 (Relations for m-fold Derivatives). Calculate all four m-
fold derivative operations of the functions f(x) (4.9) and g(x),

g(x1, x2, x3, x4, x5) = x2(x3 ∨ x4x5) ∨ x1x4(x3 ∨ x5) (4.10)

88 4 BOOLEAN DIFFERENTIAL CALCULUS

with regard to (x4, x5), visualize the Karnaugh maps, and verify the 16
relations (4.98), . . . , (4.113) of [18] for these m-fold derivatives. Practical
tasks:

1 Write a PRP that solves this task completely.

2 Execute this PRP and verify the 16 relations mentioned above.

The m-fold differential contains only the associated m-fold derivative.
All the other m-fold differential operations are superpositions of several
associated m-fold derivative operations. Thus, all four m-fold differen-
tial operations of a logic function can be extracted from their m-fold
differential operation, see (4.118), . . . , (4.121) of [18].
Exercise 4.15 (M -fold Differential Operations → m-fold Derivative
Operations). Calculate all four twofold derivative operations based on the
2-fold differential operations of Exercise 4.7 and verify the results. Practical
tasks:

1 Reload the TVL-system of Exercise 4.7 as the basis of all further calcu-
lations.

2 Write a PRP that uses f(x) of object number 1, d2
(x3,x4)

f(x) of object

number 17, Min2
(x3,x4)

f(x) of object number 27, Max2
(x3,x4)

f(x) of ob-

ject number 37, and ϑ(x3,x4)f(x) of object number 41 for the calculation

of ∂2f(x)
∂x3∂x4

, min2
(x4,x5)

f(x), max2
(x4,x5)

f(x), and Δ(x4,x5)f(x), and ver-

ify these results by means of the direct m-fold derivative operations of
XBOOLE.

3 Execute this PRP and evaluate the results.

For extended studies it is suggested to execute the transformation in
the reverse direction of Exercise 4.15 based on (4.114), . . . , (4.117)
of [18].

3. Applications
Differentials of variables are the fundament of the Boolean Differen-

tial Calculus. These differentials dxi allow to solve several problems of
analysis.

We assume that F (x,y, s, ds) = 1 describes the behavior of an asyn-
chronous finite-state machine, where x is the input vector, y the out-
put vector, and s codes the states. New values of x cause a sequence
of changes of the states s until a stable state will be reached. Hence,
designer of asynchronous finite-state machines are interested in these
stable states. The stable states are visible by loops in the behavioral

3. Applications 89

graph. The input and output values have no influence on the existing
stable states; hence, the behavioral function can be simplified using an
m-fold maximum.
Exercise 4.16 (Stable States). Calculate the stable states of the asyn-
chronous finite-state machine given by the following TVL in ODA-form.

F (x, y, s, ds) =

x y s1 s2 s3 ds1 ds2 ds3
0 0 − 0 0 1 1 0
0 0 1 1 − 0 0 0
1 0 1 1 0 0 1 1

− 1 − 0 1 0 0 1
0 1 0 1 0 0 1 1
1 1 0 1 0 1 1 1
1 0 1 1 1 0 1 0
1 1 − 0 0 0 0 0
0 0 0 1 1 0 1 0
1 0 0 1 1 0 0 0

Practical tasks:

1 Store the given TVL as object number 1.

2 Prepare a VT 〈x, y〉 as object number 2 and solve the equation
ds1 ds2 ds3 = 1 and store the result as object number 3.

3 Calculate F (s, ds) = max2
(x,y) F (x, y, s, ds) as object number 4.

4 Calculate the stable states using an intersection and an m-fold maximum.

The high speed of asynchronous finite-state machines must be based
on the explicit analysis of critical transitions between different states.
A transition can be critical when more than one variable must change its
value at the same time. These edges can be determined in the behavioral
graph similarly to the selection of the loops for stable states.
Exercise 4.17 (Critical Transition). Calculate all possible critical transi-
tions of the asynchronous finite-state machine given in Exercise 4.16. Prac-
tical tasks:

1 Reload the TVL-system of Exercise 4.16 as the basis of all further cal-
culations.

2 Solve the equation ds1 ds2 ∨ ds1 ds3 ∨ ds2 ds3 = 1 as object number 10.

3 Find the potentially critical transitions of the given asynchronous finite-
state machine 1.

Functional hazards of combinational circuits may lead to malfunctions
of controlled sequential circuits. A static functional hazard appears if the

90 4 BOOLEAN DIFFERENTIAL CALCULUS

input of the function f(x) changes from x = c0 to x = c1, the function is
constant for these vectors, f(c0) = f(c1), and intermediately the inverse
value f(c0) occurs as the value of the function. [3] proved that all static
functional hazards of a logic function are given by the solution of the
equation

ϑf(x) · df(x) = 1. (4.11)

Exercise 4.18 (Static Functional Hazard). Calculate all static functional
hazards of function (4.2) restricted to all possible changes of values of x3

and x4. Practical tasks:

1 Reload the TVL-system of Exercise 4.7, minimize object number 41 that
represents ϑ(x3,x4)f(x) and write down this TVL.

2 Reload the TVL-system of Exercise 4.6 where d(x3,x4)f(x) is stored as
object number 5.

3 Recreate the TVL of ϑ(x3,x4)f(x) as object number 30.

4 Calculate the required static functional hazard based on (4.11).

5 Are there static functional hazards for the change of either only x3 or
only x4? Substantiate this observation.

In order to broaden the understanding of both the differential opera-
tions and the hazards of logic functions, we suggest to solve Exercise 4.18
without the restriction to variables x3 and x4. All static functional haz-
ards of function (4.2) can be calculated by means of a PRP. More con-
venient and therefore suggested is the use of an XBOOLE library C-
program as introduced in Chap. 1, Sect. 7.

Now we come back to some concepts that have been explored in
Chap. 2 by elementary means. We will see that the Boolean Differential
Calculus will allow us to deal with these concepts in a very understand-
able and efficient way.

The differential operations are very powerful for compact theoretical
explorations. However, the additional variables dxi complicate practical
calculations. In contrast to the differential operations, derivative opera-
tions require not more and in many cases even less variables. Therefore
we focus in the rest of this section on derivative operations.

Expressions of logic functions f(x) may include a variable xi although
the function does not depend on xi. Whether a function really depends
on xi may be found out using the simple derivative with regard to xi.
The function f(x) is independent on xi if (4.12) holds:

∂f(x)
∂xi

= 0. (4.12)

3. Applications 91

If a function does not depend on the variable xi, the two subfunctions
f(x0, xi = 0) and f(x0, xi = 1) are equal to each other, hence, the
simplified function f(x0) can be created using the simple maximum of
f(x) with regard to xi.
Exercise 4.19 (Dependency on Variables). Check on which variables the
given functions f1(x), f2(x), and f3(x) depend:

f1(x) = (x1x2 ⊕ x3x4) ∨ x3x4 ∨ x1x2 ∨ x1x3, (4.13)

f2(x) = x2x4 ∨ x1 · ((x3 ⊕ x2) ∨ (x2 · x3)), (4.14)

f3(x) = x1x2 ∨ x3x4 ∨ (x1 ⊕ x4) ∨ (x2 ⊕ x3). (4.15)

Simplify the functions as much as possible and verify the results. Practical
tasks:

1 Prepare the functions f1(x) (4.13), f2(x) (4.14), and f3(x) (4.15) as
objects number 1, 2, and 3, respectively.

2 Prepare VTs 〈x1〉, 〈x2〉, 〈x3〉, and 〈x4〉 as objects number 4, 5, 6, and 7.

3 Calculate the simple derivatives of each function (4.13), (4.14), and
(4.15) with regard to each variable. Are there independences?

4 Simplify the three functions as much as possible and verify the result.

Logic functions can possess certain properties which have an influ-
ence on their possibilities for applications. Derivative operations allow
to check whether a given function possesses such a special property.

A logic function g(x) is called dual to the function f(x) if g(x) = f(x).
Hence, there is a dual function g(x) for each function f(x). In some case
the dual function is equal to the given function itself. Logic functions
f(x) that satisfy (4.16) are called self-dual :

f(x) = f(x). (4.16)

Exercise 4.20 (Self-dual Function). A logic function is self-dual if and
only if

∂f(x)
∂x

= 1. (4.17)

Prove this theorem, identify the number of self-dual functions of n variables,
and verify whether given functions f1(x) (4.18) and f2(x) (4.19) are self-
dual functions:

f1(x) = x1x2 ∨ x2x3 ∨ x3x4 ∨ x4x1, (4.18)

f2(x) = x1(x3 ⊕ x4) ∨ x3x4(x1x2) ∨ x1x2x3x4. (4.19)

92 4 BOOLEAN DIFFERENTIAL CALCULUS

Practical tasks:

1 Prove the theorem.

2 How much self-dual functions of n variables exist?

3 Prepare the functions f1(x) and f2(x) as objects number 1 and 2, and
the VT 〈x1, x2, x3, x4〉 as object number 3.

4 Apply vectorial derivatives in order to verify whether given functions
f1(x) and f2(x) are self-dual functions.

A logic function f(xi, xj ,x0) is called symmetric with regard to (xi, xj)
if the exchange of the input values between xi and xj does not change
the function value. A function possesses this property if (4.20) holds for
each x:

(xi ⊕ xj) ∧ ∂f(xi, xj ,x0)
∂(xi, xj)

= 0. (4.20)

Exercise 4.21 (Symmetric Function). Check whether there are pairs of
variables, for which the function

f(x) = (x1 ⊕ x2 ⊕ x3x4 ⊕ x2x3x4) ∨ x1x2 (4.21)

is symmetric. If there are such pairs, express the function by an expression
that emphasizes this property. Remember: derivative operations will be ex-
ecuted by the XBOOLE Monitor with regard to the variables an object is
depending on. Hence, any derivative operation can be executed for a TVL
of the function with regard to a TVL that defines the set of variables for
the derivative operation. Practical tasks:

1 Write a PRP that finds pairs of variables in which function (4.21) is
symmetric.

2 Execute this PRP and check for pairs of symmetric variables.

3 Express the function by an expression that emphasizes the symmetry
property for each pair of symmetric variables that has been found.

In [18] the interesting class of monotone functions has been defined
globally with regard to all its variables. For practical applications it is
helpful to define several more restricted classes of monotone functions.
A logic function f(xi,x0) is monotonously increasing with regard to xi

if
f(xi = 0,x0) ≤ f(xi = 1,x0), (4.22)

or monotonously decreasing with regard to xi if

3. Applications 93

f(xi = 0,x0) ≥ f(xi = 1,x0). (4.23)

For a function monotonously increasing with regard to xi exists an
expression that does not include negated variables xi. Vice versa a
function monotonously decreasing with regard to xi can be expressed
without using variables xi. If only one type of a variable (negated or
not negated) appears in an expression, the realization of an associ-
ated circuit can be simplified. Using simple derivatives, the monotone
properties of a function f(xi,x0) with regard to xi can be checked.
A logic function f(xi,x0) is monotonously increasing with regard to xi

if
xif(xi,x0)

∂f(xi,x0)
∂xi,

= 0, (4.24)

or monotonously decreasing with regard to xi if

xif(xi,x0)
∂f(xi,x0)

∂xi,
= 0. (4.25)

Exercise 4.22 (Monotone Function). In the expression (4.26) of f(x)
each variable appears both negated and not negated:

f(x) = x2x3x4 ∨ x4(x1 ∨ x2) ∨ x1x3(x2 ⊕ x4). (4.26)

Check by means of (4.24) and (4.25) whether function (4.26) is monoto-
nously increasing or monotonously decreasing, separately with regard to each
variable of the set {x1, x2, x3, x4}. Practical tasks:

1 Write a PRP that detects all monotone properties of the function (4.26)
with regard to each of its variables.

2 Execute this PRP and check for monotone properties.

3 Express the function in such a way that only one type of monotone
variables occurs.

4 Verify the simplified expression of the function.

Still stronger than monotony, linearity can be used to simplify a func-
tion. As defined in [18], a logic function f(x) can be linear with regard to
all of its variables. Unfortunately very few logic function are completely
linear. In order to simplify a function it is already helpful, if the func-
tion is linear with regard to a single variable. A logic function f(xi,x0)
is linear with regard to xi if

f(xi = 0,x0) = xi ⊕ f(x0). (4.27)

94 4 BOOLEAN DIFFERENTIAL CALCULUS

This property can be checked using a simple derivative. A logic func-
tion f(xi,x0) is linear with regard to xi if

∂f(xi,x0)
∂xi

= 1. (4.28)

Exercise 4.23 (Linear Function). In expression (4.29) of f(x) it is not
directly visible whether the function is linear with regard to certain variables:

f(x) = x1(x3 ⊕ x2x4) ∨ x1(x2 ⊕ x3)x4 ∨ x1 x3 x4. (4.29)

Check by means of (4.28) whether function (4.29) is linear, separately for
each variable of the set {(x1, x2, x3, x4)}. Practical tasks:

1 Write a PRP that detects all linearity properties of the function (4.29)
with regard to each of its variables.

2 Execute this PRP and check for linearity of f(xi,x0) with regard to
each of its variables. Use the view of Karnaugh map to check whether a
calculated function is equal to 1.

3 If f(xi,x0) is linear with regard to xi then use definition (4.27) in order
to calculate the function f(x0) independent on xi.

4 Create the simplified expression of the function and verify it.

Many applications use the solution of an equation with regard to vari-
ables in combination with the uniqueness of such variables. The basic
equation is mostly given or can easily be transformed into a homogeneous
form having a constant right-hand side c ∈ {0, 1}. An equation

f(x, y) = c (4.30)

can be solved with regard to y if there is a function y = g(x) with
f(x, g(x)) = c. Equation (4.30) is unique with regard to y if there is no
x = cx having more than one y = cy with f(cx, cy) = c.

By using simple derivative operations, it can be checked which prop-
erty holds. A characteristic equation f(x, y) = 1 can be solved with
regard to y if

maxy f(x, y) = 1, (4.31)

and it is unique with regard to y if

miny f(x, y) = 0. (4.32)

Both of these properties hold for f(x, y) = 1 with regard to y if

3. Applications 95

∂f(x, y)
∂y

= 1. (4.33)

A restrictive equation f(x, y) = 0 can be solved with regard to y if

miny f(x, y) = 0, (4.34)

and it is unique with regard to y if

maxy f(x, y) = 1. (4.35)

Both of these properties hold for f(x, y) = 0 with regard to y if

∂f(x, y)
∂y

= 1. (4.36)

Notice: the conditions (4.33) and (4.36) are the same for both the char-
acteristic equation and the restrictive equation while the conditions for
solvability and uniqueness with regard to y are different.

We assume that an equation is solvable with regard to y in a unique
way. Then the solution functions can be calculated as

g(x) = maxy(y ∼ f(x, y)) for f(x, y) = 1, (4.37)

g(x) = maxy(y ⊕ f(x, y)) for f(x, y) = 0. (4.38)

If the equation f(x, g(x)) = c is solvable with regard to y, but not in
a unique way, then a set of solution functions exists (see [18], pages 277
and 278). All functions of such a set must be equal to 1 for the ON-set
function q(x), and must be equal to 0 for the OFF-set function r(x),
respectively. These mark functions can be calculated by

q(x) = maxy(yf(x, y)) for f(x, y) = 1, (4.39)

r(x) = maxy(yf(x, y)) for f(x, y) = 1, (4.40)

q(x) = maxy(yf(x, y)) for f(x, y) = 0, (4.41)

r(x) = maxy(yf(x, y)) for f(x, y) = 0. (4.42)

Exercise 4.24 (Uniqueness and Solvability with Regard to a Variable).
Check the following equations for uniqueness and solvability with regard to
y. Calculate all solution functions y = g(x) and verify them:

x1x3y ∨ x2(x3 ⊕ y) ∨ x1x3y = 1, (4.43)

x1x3y ∨ x2(x3 ⊕ y) ∨ x2y · (x1 ∨ x3) = 1, (4.44)

x2x3y ∨ x2(x3 ⊕ y) ∨ x1x2x3 = 0, (4.45)

x1x2y ∨ x2(x3 ⊕ y) = 0. (4.46)

Practical tasks:

96 4 BOOLEAN DIFFERENTIAL CALCULUS

1 Prepare the functions of the left-hand sides of (4.43), (4.44), (4.45),
(4.46) as objects number 1, 2, 3, and 4, respectively. Assign the variable
y to object number 4.

2 Which equation is unique with regard to y? Evaluate the calculated
Karnaugh maps for this equation.

3 Which equation is unique with regard to y? Evaluate the calculated
Karnaugh maps for this equation.

4 Which equation is solvable with regard to y? Evaluate the calculated
Karnaugh maps for this equation.

5 Calculate the solution functions for all equations that are unique with
regard to y.

6 Verify the solution of the equations which are unique with regard to y.

7 Calculate the mark functions q(x) and r(x) of the solution sets for all
equations that are solvable with regard to y, but not uniquely.

8 Calculate all functions of the solution sets based on the created mark
functions q(x) and r(x).

9 Verify whether these function solve the associated equation.

4. Solutions
Exercise 4.1.

1 11 edges.
3 cycle lengths 2 and 5.

2 2 components (4 edges and 7 edges).
4 cycle lengths 0, 0, and 6.

Exercise 4.2.

1 tin 1 10
x1 dx1 xf1.
000, 110,
101, 011.

tin 1 11
x2 dx2 xf2.
000, 110,
101, 011.

tin 1 12
x3 dx3 xf3.
000, 110,
101, 011.

vtin 1 13
dx1 dx2 dx3.
isc 1 10 14
isc 14 11 14

isc 14 12 14
maxk 14 13 15
obbc 15 2

2 TVL 1 as shown in Table 4.1. 3 Both graphs are identical.

4 tin 1 20
x1 dx1 xf1.
000, 110,
101, 011.

tin 1 21
x2 dx2 xf2.
000, 110,
101, 011.

tin 1 22
x3 dx3 xf3.
000, 110,
101, 011.

vtin 1 23
xf1 xf2 xf3.
isc 2 20 24
isc 24 21 24

isc 24 22 24
maxk 24 23 25
obbc 25 3

5 The result of SYD 1 3 4 is an empty TVL that indicates the correctness of both
transformations.

4. Solutions 97

Exercise 4.3.

1 x1&(/x2+/x3)#/x1&(/x2=x3)
2 (x1#dx1)&(/(x2#dx2)+

/(x3#dx3))#/(x1#dx1)&
(/(x2#dx2)=(x3#dx3))

3 30 edges.
4 25 edges.
5 55 edges.

6 The empty TVL in object
number 6 confirms the cor-
rectness.

Exercise 4.4.

1 x1&(/x2+/x3)#
/x1&(/x2=x3)

2 2: 〈x1,x2,x3〉
3: 〈xf1,xf2,xf3〉

3 CCO 1 2 3 4

4 tin 1 20
x1 dx1 xf1.
000, 110,
101, 011.

tin 1 21
x2 dx2 xf2.
000, 110,
101, 011.

tin 1 22
x3 dx3 xf3.
000, 110,
101, 011.

vtin 1 23
xf1 xf2 xf3.
isc 10 20 24
isc 24 21 24

isc 24 22 24
maxk 24 23 25
obbc 25 11

5 30 values 1. 6 25 values 1. 7 55 values 1. 8 The empty TVL in object num-
ber 8 confirms the correctness.

Exercise 4.5.

1 tin 1 30
/ODA
dx1 dx2 dx3.
− − −.
isc 1 30 31

2 Karnaugh map of object 31
shows 40 values 1 and de-
pends on 6 variables (x1, x2,
x3, dx1, dx2, dx3).

3 dif 6 31 32 – the empty
TVL in object number 32
confirms the correctness of
(4.8).

4 dif 31 7 33 – the empty TVL in
object number 33 confirms the
correctness of (4.10).

5 dif 6 1 34 – dif 1 7 35 – the empty
TVLs in objects number 34, and 35
confirm the correctness of (4.11).

Exercise 4.6.

1 (x1#x2)&x3+
x1&x4+
/(x1&x2)&
/(x3+x4)

2 vtin 1 2
x3 x4.
vtin 1 3
xf3 xf4.
cco 1 2 3 4
orth 4 4

3 tin 1 12 /ODA
x3 xf3 dx3.
000, 011, 101, 110.
tin 1 13 /ODA
x4 xf4 dx4.
000, 011, 101, 110.

vtin 1 14
xf3 xf4.
isc 10 12 11
isc 11 13 11
maxk 11 14 11
obbc 11 11

4 Four isolated subgraphs possess 6, 6,
8, and 0 edges, totally 20.

5 Four isolated subgraphs possess 1, 9,
4, and 16 edges, totally 30.

6 Four isolated subgraphs possess 7,
15, 12, and 16 edges, totally 50.

7 The empty TVL in object number 20
confirms the correctness.

8 The empty TVL in object number 21
confirms the correctness.

9 The empty TVL in object number 22
confirms the correctness.

98 4 BOOLEAN DIFFERENTIAL CALCULUS

10 The logic function of object number 1 is defined in the XBOOLE-monitor in the
same Boolean space as the partial differential operations, thus the given function
depends implicitly on the same variables.

Exercise 4.7.

1 (x1#x2)&x3+x1&x4+/(x1&x2)&/(x3+x4) 2 4 vtin and 2 tin commands.

3 cco 1 2 3 10
orth 10 10

syd 1 10 11
isc 11 6 12

maxk 12 3 13
cco 13 4 5 14

orth 14 14
syd 13 14 15

isc 15 7 16
maxk 16 5 17.

4 (x3): 4 edges in 8 subgraphs; (x3, x4): 8 edges in 4 subgraphs.

5 PRP analogously to subtask 3 using isc and objects 20 to 27.

6 (x3): 18 edges in 8 subgraphs; (x3, x4): 28 edges in 4 subgraphs.

7 PRP analogously to subtask 3 using uni and objects 30 to 37.

8 syd 23 33 40 – (x3): 22 edges in 8 subgraphs;
syd 27 37 41 – (x3, x4): 52 edges in 4 subgraphs.

9 (x3): 4 edges in 8 subgraphs; (x3, x4): 24 edges in 4 subgraphs.

10 The functions are equal to each other.

11 The functions are different.

12 dif 27 23 44
dif 23 1 45

dif 1 33 46
dif 33 37 47

All four inequations are satisfied.

Exercise 4.8.

1 (x1&/x2#/x2&x3&x4)+/x1&x2&x4 2 2: 〈x4〉
3 3: 8 of 16 values 1 4 4: 4 of 8 values 1. 5 5: 2 of 16 values 1.

6 6: 1 of 8 values 1. 7 7: 10 of 16 values 1. 8 8: 5 of 8 values 1.

9 syd 4 6 10 – syd 10 8 10 – the empty TVL in object number 10 confirms the
correctness of (4.36).

10 dif 6 1 11 – dif 1 8 12 – the empty TVLs in objects number 11 and 12 confirm the
correctness of (4.40).

Exercise 4.9.

1 (x1&/x2#/x2&x3&x4)+/x1&x2&x4 2 2: 〈x4〉
3 derk 1 2 3 4 mink 1 2 4 5 maxk 1 2 5

4 of 8 values 1. 3 of 8 values 1. 7 of 8 values 1.

6 dif 4 5 6 – the empty TVL 6 confirms the correctness of (4.43).

7 dif 3 5 7 – the empty TVL 7 confirms the correctness of (4.44).

8 isc 4 3 8 – the empty TVL 8 confirms the correctness of (4.45).

9 dif 5 4 9 – syd 9 3 10 – TVL 9 is equal to TVL 3 – the empty TVL 10 confirms
the correctness of (4.46).

10 dif 5 3 11 – syd 11 4 12 – TVL 11 is equal to TVL 4 – the empty TVL 12 confirms
the correctness of (4.47).

11 uni 4 3 13 – syd 13 5 14 – TVL 13 is equal to TVL 5 – the empty TVL 14 confirms
the correctness of (4.48).

4. Solutions 99

Exercise 4.10.

1 (x1&/x2#/x2&x3&x4)+/x1&x2&x4 2 2: 〈x3, x4〉
3 derv 1 2 3 4 minv 1 2 4 5 maxv 1 2 5

8 of 16 values 1. 2 of 16 values 1. 10 of 16 values 1.

6 dif 4 1 6 – dif 1 5 7 – the empty TVLs 6 and 7 confirm the correctness of (4.52).

7 syd 3 4 8 – syd 8 5 8 – the empty TVL 8 confirms the correctness of (4.53).

Exercise 4.11.

1 (x1&/x2#/x2&x3&x4)+ 2 x2&x4+ 3 3: 〈x4〉
/x1&x2&x4 x1&(/x3+/x2&/x4)

4 derv 1 3 4
minv 1 3 5
maxv 1 3 6
derv 2 3 7
minv 2 3 8
maxv 2 3 9
isc 5 4 10
syd 4 6 11
syd 11 5 11
syd 5 6 12

syd 12 4 12
syd 5 4 13
syd 13 6 13
dif 6 4 14
syd 14 5 14
dif 6 5 15
syd 15 4 15
uni 5 4 16
syd 16 6 16
cpl 1 17

derv 17 3 17
syd 17 4 17
cpl 1 18
maxv 18 3 18
cpl 18 18
syd 18 5 18
cpl 1 19
minv 19 3 19
cpl 19 19
syd 19 6 19

syd 1 2 20
derv 20 3 20
syd 4 7 21
syd 20 21 22
isc 1 2 23
minv 23 3 23
isc 5 8 24
syd 23 24 25
uni 1 2 26
maxv 26 3 26

uni 6 9 27
syd 26 27 28
derv 4 3 29
minv 5 3 30
syd 30 5 30
maxv 6 3 31
syd 31 6 31

5 The empty TVLs 10 to 19, 22, 25, and 28 to 31 confirm the 6 3: 〈x3, x4〉
correctness of all 16 simple relations with regard to x4.

7 The empty TVLs 10 to 19, 22, 25, and 28 to 31 confirm the correctness of all 16
vectorial relations with regard to (x3, x4).

Exercise 4.12.

1 lds e406 res.sdt.

2 tin 1 30 /oda
dx3 dx4.
00.
tin 1 31 /oda
dx3 dx4.
10.

tin 1 32 /oda
dx3 dx4.
01.
tin 1 33 /oda
dx3 dx4.
11.

vtin 1 34
x3.
vtin 1 35
x4.
vtin 1 36
x3 x4.

3 isc 5 31 40
maxk 40 30 40
derv 1 34 41
syd 40 41 42
isc 5 32 43
maxk 43 30 43

derv 1 35 44
syd 43 44 45
isc 5 33 46
maxk 46 30 46
derv 1 36 47
syd 46 47 48

4 The empty TVLs 42, 45, and 48 confirm the correctness of the extracted vectorial
derivatives.

5 isc 41 31 50 isc 47 33 52 syd 53 52 53
isc 44 32 51 syd 50 51 53 syd 53 5 54

6 The empty TVL 54 confirms the correctness of the composed partial differential.

7 The execution results of analogous PRPs confirm the correctness for the partial
differential minimum.

8 The execution results of analogous PRPs confirm the correctness for the partial
differential maximum.

100 4 BOOLEAN DIFFERENTIAL CALCULUS

Exercise 4.13.

1 x1&(x2+/x4)+x2&/x3&x5+ 2 2: 〈x4, x5〉 3 derk 1 2 3
/x2&/x3&x4&/x5 2 of 8 values 1.

4 mink 1 2 4 5 maxk 1 2 5 6 syd 4 5 6
2 of 8 values 1. 6 of 8 values 1. 4 of 8 values 1.

7 vtin 1 10
x4.
mink 1 10 11

maxk 1 10 12
dif 4 11 13
dif 11 1 14

dif 1 12 15
dif 12 5 16

The empty TVLs 13,
14, 15, and 16 confirm
the correctness.

Exercise 4.14.

1 space 32 1
avar 1
x1 x2 x3 x4 x5.
sbe 1 1
x1&(x2+/x4)+
x2&/x3&x5+
/x2&/x3&x4&/x5.
sbe 1 2
x2&(x3+/x4&x5)+
x1&x4&(/x3+x5).
vtin 1 3
x4 x5.

derk 1 3 4
mink 1 3 5
maxk 1 3 6
syd 5 6 7
derk 2 3 8
mink 2 3 9
maxk 2 3 10
syd 9 10 11
dif 5 6 21
dif 7 6 22
isc 5 7 23
dif 6 5 24

syd 24 7 25
dif 6 7 26
syd 26 5 27
uni 5 7 28
syd 28 6 29
cpl 1 30
derk 30 3 31
mink 30 3 32
maxk 30 3 33
syd 32 33 34
syd 31 4 35
syd 34 7 36

cpl 33 37
syd 37 5 38
cpl 32 39
syd 39 6 40
syd 1 2 41
derk 41 3 42
syd 4 8 43
syd 42 43 44
isc 1 2 45
mink 45 3 46
isc 5 9 47
syd 46 47 48

uni 1 2 49
maxk 49 3 50
uni 6 10 51
syd 50 51 52
mink 7 3 53
maxk 7 3 54
syd 53 54 55
mink 4 3 56
syd 56 4 57
maxk 5 3 58
syd 58 5 59

2 The empty TVLs 21, 22, 23, 25, 27, 29, 35, 36, 38, 40, 44, 48, 52, 55, 57, and 59
confirm the correctness of all 16 relations between m-fold derivative operations
with regard to (x4, x5).

Exercise 4.15.

1 lds e407 res.sdt.

2 tin 1 50
dx3 dx4.
11.
vtin 1 51
x3 x4.

isc 17 50 60
maxk 60 50 61
derk 1 51 62
syd 61 62 63

isc 27 50 70
maxk 70 50 71
mink 1 51 72
syd 71 72 73

isc 37 50 80
maxk 80 50 81
maxk 1 51 82
syd 81 82 83

isc 41 50 90
maxk 90 50 91
syd 72 82 92
syd 91 92 93

3 The empty TVLs 63, 73, 83 and 93 confirm the correctness of the extracted twofold
derivative operations.

Exercise 4.16.

1 1: given TVL of 10 rows. 2 2: 〈x, y〉 3 maxk 1 2 4
3: /ds1&/ds2&/ds3=1

4 isc 4 3 5 There are 5 stable states.
maxk 5 3 6

4. Solutions 101

Exercise 4.17.

1 lds e416 res.sdt There are five potentially critical tran-
sitions, four of them change two state
variables, and the last even all three
state variables.

2 10: ds1&ds2+ds1&ds3+ds2&ds3=1
3 isc 1 10 11

Exercise 4.18.

1 lds e407 res.sdt
obbc 41 50
50:
x1 x2 x3 x4 dx3 dx4
01-110

00-010

0-1-11

0-0--1

11---1.

2 lds e406 res.sdt.
3 tin 1 30

x1 x2 x3 x4 dx3 dx4.
01-110

00-010

0-1-11

0-0--1

11---1.

4 cpl 5 31
isc 30 31 32
There are 4 hazards.

5 No hazard for dx3dx4 or
dx3dx4 was calculated.
In a subspace of size 2 no
hazard can appear.

Exercise 4.19.

1 space 32 1
avar 1
x1 x2 x3 x4.

sbe 1 1
(x1&x2#x3&x4)+
x3&/x4+
x1&/x2+x1&x3.

sbe 1 2
x2&/x4+/x1&
x((x3#/x2)+
x/(x2&x3)).

sbe 1 3
x1&x2+
x3&x4+
(x1#x4)+
(x2#x3).

2 4: 〈x1〉
5: 〈x2〉
6: 〈x3〉
7: 〈x4〉

3 derk 1 5 12
derk 1 7 14
derk 2 6 23

Empty TVLs 12, 14, and 23 confirm that f1 does not depend
on x2 and x4, and f2 does not depend on x3. Function f3

depends on all variables.

4 maxk 1 5 15
maxk 1 7 15
syd 15 1 16

maxk 2 6 25
syd 25 2 26

The empty TVLs 16 and 26 confirm
the executed simplification for f1 on 15
and f2 on 25.

Exercise 4.20.

1 f(x) = f(x)
f(x) ⊕ f(x) = f(x) ⊕ f(x)
∂f(x)

∂x
= 1

2 The vectorial derivative defines relations be-
tween pairs of function values such that 2n−1

self-dual functions of n variables exist.

3 1: x1&/x2+x2&/x3+x3&/x4
x4&/x1
2: x1&(x3#x4)+/x3&/x4&
/(x1&x2)+/x1&/x2&x3&x4
3: 〈x1, x2, x3, x4〉

4 derv 1 3 4
derv 2 3 5
The function f2(x) is self-dual.

Exercise 4.21.
1 space 32 1

sbe 1 1
(x1#x2#
/x3&/x4#
x2&x3&/x4)+
x1&x2.

sbe 1 2
x1#x2.
sbe 1 3
x1#x3.
sbe 1 4
x1#x4.

sbe 1 5
x2#x3.
sbe 1 6
x2#x4.
sbe 1 7
x3#x4.

derv 1 2 10
isc 10 2 11
derv 1 3 12
isc 12 3 13
derv 1 4 14
isc 14 4 15

derv 1 5 16
isc 16 5 17
derv 1 6 18
isc 18 6 19
derv 1 7 20
isc 20 7 21

102 4 BOOLEAN DIFFERENTIAL CALCULUS

2 The empty TVL 19 confirms that function (4.21) is symmetric with regard to
(x2, x4).

3 f(x) = x2 x4 ∨ (x2 ⊕ x4)x1 x3 ∨ (x2 ∨ x4)x1x3 ∨ x1x3.

Exercise 4.22.
1 space 32 1

avar 1
x1 x2 x3 x4.
sbe 1 1
/x2&x3&/x4+
x4&(x1+/x2)+
/x1&/x3&
(x2#/x4).

sbe 1 2
x1=0.
sbe 1 3
x2=0.
sbe 1 4
x3=0.
sbe 1 5
x4=0.

derk 1 2 10
isc 1 10 11
isc 11 2 12
cpl 2 13
isc 13 11 14
derk 1 3 20
isc 1 20 21

isc 21 3 22
cpl 3 23
isc 23 21 24
derk 1 4 30
isc 1 30 31
isc 31 4 32
cpl 4 33

isc 33 31 34
derk 1 5 40
isc 1 40 41
isc 41 5 42
cpl 5 43
isc 43 41 44

2 The empty TVLs 24 and 42 confirm that function (4.26) is monotonously decreas-
ing with regard to x2 and monotonously increasing with regard to x4.

3 50: /x2&(/x1+x3)+x4&(x1+/x3)

4 syd 1 50 51 The empty TVL 51 confirms the correct simplification.

Exercise 4.23.

1 space 32 1
avar 1
x1 x2 x3 x4.

sbe 1 1
/x1&(/x3#/x2&x4)+
x1&(x2#/x3)&x4+
x1&x3&/x4.

sbe 1 2
x1.
sbe 1 3
x2.

sbe 1 4
x3.
sbe 1 5
x4.

derk 1 2 11
derk 1 3 12
derk 1 4 13
derk 1 5 14

2 The derivatives 11 and
13 are equal to 1 such
that the function is lin-
ear with regard to x1 and
x3.

3 syd 1 2 20
maxk 20 2 21
syd 21 4 22
maxk 22 4 23

The remaining function
is x2 ∨ x4.

4 50: x1#x3#(x2+/x4)
syd 1 50 51

The empty TVL 51 confirms the correct simpli-
fication.

Exercise 4.24.

1 space 32 1
avar 1
x1 x2 x3 y.

sbe 1 1
/x1&x3&/y+
/x2&(x3#y)+
x1&/x3&y.

sbe 1 2
/x1&x3&/y+
/x2&(x3#y)+
x2&y&(x1+/x3).

sbe 1 3
x2&/x3&/y+
/x2&(x3#y)+
/x1&x2&/x3.

sbe 1 4
x1&x2&/y+
/x2&(x3#y).
sbe 1 5
y.

2 derk 1 5 11
derk 2 5 12
derk 3 5 13
derk 4 5 14

The function 12 is
constant equal to 1
such that (4.44) is
uniquely solvable
with regard to y.

3 mink 1 5 21
mink 2 5 22
maxk 3 5 23
maxk 4 5 24

The functions 21 and
22 are constant equal
to 0 such that (4.43)
and (4.44) are unique
with regard to y.

4. Solutions 103

4 maxk 1 5 31
maxk 2 5 32
mink 3 5 33
mink 4 5 34

The function 32 is constant equal to
1, and the function 34 is constant
equal to 0 such that (4.44) and (4.46)
are solvable with regard to y.

5 csd 2 5 40
maxk 40 5 41
41: g(x) = x1x2 ∨ x3.

6 csd 5 41 42
isc 2 42 43
maxk 43 5 44
cpl 44 45

The function 44 is constant equal to 1, and the function 45 is
constant equal to 0, and this confirms the solution function 41.

7 cpl 5 50
isc 50 4 51
maxk 51 5 52
isc 5 4 53
maxk 53 5 54

The solution set of (4.46) is defined by:
52: q(x) = x1x2 ∨ x2x3

54: r(x) = x2x3

8 uni 52 54 55
cpl 55 56
sbe 1 57
/x1&x2&/x3.
sbe 1 58
/x1&x2&x3.

sbe 1 59
/x1&x2.
copy 52 61

uni 52 57 62
uni 52 58 63
uni 52 59 64

The solution functions of (4.46) are:
61: g1(x) = x1x2 ∨ x2x3

62: g2(x) = x1x2 ∨ x2x3 ∨ x1x2x3
63: g3(x) = x1x2 ∨ x2x3 ∨ x1x2x3
64: g4(x) = x1x2 ∨ x2x3 ∨ x1x2

9 csd 5 61 70
isc 4 70 71
maxk 71 5 72
csd 5 62 73
isc 4 73 74
maxk 74 5 75

csd 5 63 76
isc 4 76 77
maxk 77 5 78
csd 5 64 79
isc 4 79 80
maxk 80 5 81

The empty TVLs 72, 75, 78, and
81 confirm that the four functions
g1(x), . . . , g4(x) solve (4.46) with re-
gard to y.

Chapter 5

THE SOLUTION OF LOGIC EQUATIONS

1. Tasks
Exercise 5.1 (Equation 1). Let be given f(x) = (((x1 → x2) ↓ x3)|x4)
⊕ x5.

1 Solve the equations f(x) = 0 and f(x) = 1 by using the XBOOLE
Monitor in one step.

Hint: transfer | (NAND) and ↓ (NOR) into formulas that can be under-
stood by the XBOOLE Monitor.

2 Solve these equations by operations with sets.

3 Verify the results by comparison of the previous two subtasks.

Exercise 5.2 (Equation 2). Let be given partial solution sets of f(x) = 1,
g(x) = 1, f(x) = 0, and g(x) = 0, respectively. Consider the two equations
f(x) ∧ g(x) = 1 and f(x) ∨ g(x) = 0.

1 Why in both cases the intersection of partial solution sets with the same
right side has to be used?

2 What is the required set operation for the equations f(x) ∧ g(x) = 0
and f(x) ∨ g(x) = 1?

Exercise 5.3 (Equation 3). Let be given the two equations

x1 ⊕ x1x2 ⊕ x1x2x3 ⊕ x1x2x3x4 ⊕ x1x2x3x4x5 = 0

and
x1 ∼ x1x2 ∼ x1x2x3 ∼ x1x2x3x4 ∼ x1x2x3x4x5 = 0.

Bernd Steinbach, Christian Posthoff, Logic Functions and Equations, Examples and
Exercises,
© Springer Science + Business Media B.V. 2009

106 5 THE SOLUTION OF LOGIC EQUATIONS

1 Compare the solution sets of these two equations by means of transform-
ing the given expressions.

2 Verify your result using the XBOOLE Monitor.

3 Explain the use of the symmetric difference and the complement of the
symmetric difference.

Exercise 5.4 (Linear Disjunctive Equations). Let be given the following
system of equations:

x1 ∨ x3 ∨ x6 = 0, x2 ∨ x4 ∨ x6 = 0, x1 ∨ x2 ∨ x4 ∨ x5 = 1.

1 Combine these three equations into one equation and use the XBOOLE
Monitor for a solution in one step.

2 Solve this system of equations by using and combining the solution sets
of the three single equations.

3 Combine considerations of the right sides and the values of variables
together with required (partial) solution sets.

Exercise 5.5 (Linear Equations). Let be given the following system of
equations:

x1 ⊕ x3 ⊕ x6 = 0, x2 ⊕ x4 ⊕ x6 = 0, x1 ⊕ x2 ⊕ x4 ⊕ x5 = 1.

1 Combine these three equations into one equation and use the XBOOLE
Monitor for a solution in one step, after the possible simplification of the
equation.

2 Solve this system of equations by using and combining the solution sets
of the three single equations.

We could continue with many different questions to the remaining
areas of Chap. 5 in [18]. We felt, however, that this would be more an
exercise in typing and using the different possibilities for solving logic
equations. The main purpose to have some problems here was the syn-
chronization with the chapter structure of [18]. But now it will be more
useful to study all the methods that have been made available in [18]
together with the application process. Therefore it might be useful to
read again Chap. 5 in the previous book and check whether the required
knowledge is available or must be improved. After doing so (if necessary)
the solution of applied problems can start.

2. Solutions 107

2. Solutions
Exercise 5.1.

1 When the XBOOLE Monitor is used, then the given equations has to be typed as
follows: /(/((x1 > x2)+x3)&x4)#x5 = 0. and /(/((x1 > x2)+x3)&x4)#x5 = 1.
The item “Extras – Solve Boolean Equation” results in the following orthogonal
sets of solutions:

f(x) = 0:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 x3 x4 x5

0 0 0 1 1
1 0 0 1 0

− − − 0 1
− − 1 1 1
− 1 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, f(x) = 1:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 x3 x4 x5

1 0 0 1 1
0 0 0 1 0

− 1 0 1 0
− − 1 1 0
− − − 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Some other representations (for example, the replacement of x1 → x2 by x1 ∨ x2)
of the equation could lead to another representation of the solution set, however,
the solution set will always be the same; this can be tested by using the symmetric
difference, for instance.

2 One way to solve this problem is the creation of five different objects (TVLs)
containing the ternary vectors x1 = (1− − − −), x2 = (−1− −−), x3 = (− −1− −),
x4 = (− − −1−) and x5 = (− − − − 1). Then we use the sequence of set operations
as follows: x1 → complement → union with x2 → union with x3 → complement
→ intersection with x4 → complement → symmetric difference with x5. This
results in the solution of f(x) = 1. The solution of f(x) = 0 requires a final
complement.

3 Empty results of symmetric differences between the associated solutions of the
previous two subtasks confirm the equivalence of the found results.

Exercise 5.2.

1 Here it is possible to go back to the definition of ∧ and ∨: the conjunction is equal
to 1 if and only if both operands are equal to 1, the disjunction is equal to 0 if and
only if both operands are equal to 0. Therefore the intersection of the appropriate
partial solution sets has to be used.

2 The conjunction is equal to 0 if at least one of the operands is equal to 0. The
disjunction is equal to 1 if at least one of the operands is equal to 1, therefore in
both cases the union of the appropriate partial solution sets can be used to find
the solutions of the given equations.

Exercise 5.3.

1 We use the relation between ∼ and ⊕: x ∼ y = x ⊕ y = x ⊕ y ⊕ 1. Taking into
consideration that 1 ⊕ 1 = 0 we get x1 ⊕ x1x2 ⊕ x1x2x3 ⊕ x1x2x3x4 ⊕ x1x2x3x4x5 =
x1 ∼ x1x2 ∼ x1x2x3 ∼ x1x2x3x4 ∼ x1x2x3x4x5. Therefore the two equations have
the same solution set.

2 Solve both equations. Both solutions sets have the same 21 values 1 in their
Karnaugh maps. An empty TVL as result of symmetric difference between the
solution sets confirm that the solution sets of both equations are equal.

108 5 THE SOLUTION OF LOGIC EQUATIONS

3 x⊕y = 1 is equivalent to xy ∨xy = 1, and therefore the solution set of the equation
f(x)⊕g(x) = 1 can be based on the symmetric difference. f(x)g(x)∨f(x)g(x) = 1
has the solution set F1 ∩ G1 ∪ F 1 ∩ G1 = F1	G1 (see also Chap. 3). The equa-
tion f(x) ∼ g(x) = 1 has the complement of the solution set of the equation
f(x) ⊕ g(x) = 1, hence, the solution set of the equation f(x) ∼ g(x) = 1 can be
based on the complement of the symmetric difference.

Exercise 5.4.

1 We use /(x1 + x3 + x6)&/(x2 + x4 + x6)&(x1 + x2 + x4 + x5) = 1. Typing this
equation we get the single solution vector (000010).

2 The first two equations have a single solution vector (0 − 0 − −0) and (−0 − 0 −
0). The intersection of these two vectors leaves only one component undefined:
(0000 − 0). x1, x2 and x4 are already equal to 0, therefore x5 must take the value
1.

3 Such a disjunction is equal to 0 if and only if all the operands are equal to 0 which
defines the values in a unique way. When the right side is equal to 1, at least one
operand has to be equal to 1. Therefore the last equation has in principle, four
ternary solution vectors (1 − − − −−), (01 − − − −), (00 − 1 − −) and (00 − 01−),
however, three of them will not contribute to the final solution.

Exercise 5.5.

1 We apply the first part of a PRP

space 32 1

avar 1

x1 x2 x3 x4 x5 x6.

sbe 1 1

/(x1#x3#x6)&/(x2#x4#x6)&

(x1#x2#x4#x5)=1.

and get as result of the XBOOLE
Monitor the solution shown on the
right.

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 x3 x4 x5 x6

0 1 0 1 1 0
1 1 0 0 1 1
1 0 1 0 0 0
0 0 0 0 1 0
1 1 1 1 0 0
1 0 0 1 1 1
0 1 1 0 0 1
0 0 1 1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

2 sbe 1 2

(x1#x3#x6)=0.

sbe 1 3

(x2#x4#x6)=0.

sbe 1 4

(x1#x2#x4#x5)=1.

isc 2 3 5

isc 5 4 5

syd 5 1 6

The intersection of the partial so-
lution sets 2, 3, and 4 finds the
same solution in another order. The
empty result of the last SYD opera-
tion confirms that both solution sets
contain the same solution vectors.
That can be verified by comparing
the Karnaugh maps, too.

II

APPLICATIONS

Chapter 6

LOGICS AND ARITHMETICS

The concepts of exact “logical reasoning” and “thinking” are fully
based on propositional logics. This development already started in an-
cient times and continues until now. And the “computerization of the
human thinking” is still a vibrant field of discussions. Hence, some ex-
amples will be given with regard to these problems, particularly to the
application of the implication and the equivalence. Keep in mind that
the implication x → y can be expressed by if x then y. All the pro-
gramming languages that are used now have constructions like this or
the extension if x then y else z. Therefore it is very necessary to un-
derstand very well the truth of the assumption (or condition) x and its
negation (to be used for the else-branch). The equivalence, expressed by
x ↔ y, x ≡ y, x � y or x ∼ y, will be translated by x if and only if y.
Make sure that you understand to translate the formulas into “natural
language” and real-world problems into formulas.

1. Propositional Logics
Exercise 6.1 (Inference Rules). Show that the following rules are always
valid! Translate these rules into “natural language”!

1 (x → y) ∼ (x ∨ y);

2 (x → y) ∼ (x ∧ y);

3 (x → y) ∼ (x ∨ (x ∧ y)).

Exercise 6.2 (Propositional Rule). The argument (x1 → x2) ∧
(x3 → x4) ∧ (x1 ∨ x3) → (x2 ∨ x4) is given.

1 Show that this argument form is valid.

Bernd Steinbach, Christian Posthoff, Logic Functions and Equations, Examples and
Exercises,
© Springer Science + Business Media B.V. 2009

112 6 LOGICS AND ARITHMETICS

2 Translate this expression into a set of assumptions and a set of rules.
Express the meaning of this form in natural language.

Exercise 6.3 (Propositional Model). Remember the definition of the ex-
clusive or operation ⊕.

1 Express “p or q but not both” in terms of p, q, p, q, ∨ and ∧.

2 Verify that the formula found in the previous item expresses p ⊕ q.

Exercise 6.4 (Paradoxes). Show the paradoxes of the implication by con-
firming that the following rules are tautologies.

1 x → (y → x). A true proposition x is implied by any proposition y.

2 x → (x → y). A false proposition x implies any proposition y.

3 (x → y) ∨ (y → x). Of any two propositions, one implies the other.

Exercise 6.5 (Rules). Explain the following rules in natural language:

1 x ∨ x is a tautology – Law of the excluded middle;

2 x ∨ (y ∨ z) → (x ∨ y) ∨ z – Associative rule;

3 x → (x ∨ y) – Expansion rule;

4 (x ∨ x) → x – Contraction rule;

5 (x ∨ y) ∧ (x ∨ z) → (y ∨ z).

Exercise 6.6 (Implications). Verify the following rules and explain these
rules in natural language:

1 x ∧ (x → y) → y modus ponens;

2 y ∧ (x → y) → x modus tollens;

3 (x → y) → (y → x) contrapositive;

4 (x → y) ∧ (y → z) → (x → z) hypothetical syllogism;

5 (x ∨ y) ∧ x → y disjunctive syllogism;

6 (y → z) → ((x ∧ y) → z) strengthening the antecedent;

7 (x → y) → (x → (y ∨ z)) weakening the consequent;

8 (x → y) ∧ (x → y) → y;

9 (x → y) ∧ (x → y) → x.

1. Propositional Logics 113

An important concept is the concept of a system of axioms. These
axioms are considered to be true and can be applied without further
consideration. Based on these axioms, so-called derivation rules can be
applied. The modus ponens is the most famous example. It states that
if x is true and x implies y i.e. the implication x → y is true, then y will
be true as well. Therefore, a mathematical theory can start with a set
of axioms, and by using these axioms, the modus ponens and possibly
the definition of new concepts, a theory can be built. Typical require-
ments for sets of axioms are completeness, it also must be free of
contradictions and easy to use.

A famous example is the system that has been proposed by the Ger-
man mathematician David Hilbert.
Exercise 6.7 (Hilbert’s Axiomatic System). Show that the following
rules are always valid. Translate these rules into “natural language”.

1 (x → x);

2 x → (y → x);

3 (x → y) → ((y → z) → (x → z));

4 (x → (y → z)) → ((x → y) → (x → z));

5 x → (x ∨ y), y → (x ∨ y);

6 (x → z) → ((y → z) → ((x ∨ y) → z));

7 (x ∧ y) → x, (x ∧ y) → y;

8 (z → x) → ((z → y) → (z → (x ∧ y)));

9 ((x ∧ y) ∨ z) → ((x ∨ z) ∧ (y ∨ z)),
((x ∨ z) ∧ (y ∨ z)) → ((x ∧ y) ∨ z);

10 ((x ∨ y) ∧ z) → ((x ∧ z) ∨ (y ∧ z)),
((x ∧ z) ∨ (y ∧ z)) → ((x ∨ y) ∧ z);

11 (x → y) → (y → x);

12 x ∧ x → y;

13 y → (x ∨ x).

According to our understanding of logic formulas and logic equations,
it would be possible to replace the two axioms ((x ∧ y) ∨ z) → ((x ∨ z) ∧
(y ∨ z)), ((x ∨ z) ∧ (y ∨ z)) → ((x ∧ y) ∨ z) by one formula ((x ∧ y) ∨ z) ∼
((x∨z)∧(y∨z)) or by ((x∧y)∨z) = ((x∨z)∧(y∨z)). It was, however, one
intention of Hilbert’s System to use the implication as much as possible.

114 6 LOGICS AND ARITHMETICS

As we can see from these examples, the calculations can be completely
transferred to the XBOOLE Monitor (or a similar software package). It
is no longer so important to do these calculations by hand. However,
the logical modeling of a real-world situation will still be of high im-
portance, even higher than before, since more complex situations can be
modeled. As a very complex example, let us have a look at a combinato-
rial problem that was interesting for the famous German mathematician
C. F. Gauß.
Exercise 6.8 (The Queens’ Problem). Find a binary model for the prob-
lem and answer the following questions.

1 Prepare a PRP that describes all possibilities to place eight queens on a
chessboard 8 × 8 in such a way that no queen attacks another one.

2 How many solutions exist for this problem?

3 How many solutions exist for a board 7 × 7 or a board 9 × 9?

4 For which value of the board size no solution can be found?

The modeling of this problem by means of logical equations is rather
challenging and requires some new ideas and skills. We use binary vari-
ables xik with i = 1, . . . , 8 and k = 1, . . . , 8 for a detailed description
of the position of the queens on the board and its effect. We assume
that everybody understands that in each horizontal row, in each vertical
column and in each diagonal only one queen can be placed. The values
of the variables xik will be defined as follows:

xik =
{

0 if no queen is on the field (i, k)
1 if there is a queen on the field (i, k).

Therefore, the position of a queen on the field (1, 1), for instance,
and the consequences of this position can be expressed by the following
conjunction being equal to 1:

x11x12x13x14x15x16x17x18x21x31x41x51x61x71x81x22x33x44x55x66x77x88.

This term ensures that no other queen is in the first column, in the
first row and in the respective diagonal if there is a queen on the field
(1, 1). Now we express the requirement that one queen must be in the
first column by a sequence of similar terms for the fields

(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8).

These terms have to be combined by ∨ since the queen can be on this
field or on this field or In this way we get for the first column

1. Propositional Logics 115

x11x12x13x14x15x16x17x18x21x31x41x51x61x71x81x22x33x44x55x66x77x88

∨x11x12x13x14x15x16x17x18x22x32x42x52x62x72x82x21x23x34x45x56x67x78

∨x11x12x13x14x15x16x17x18x23x33x43x53x63x73x83x22x31x24x35x46x57x68

∨x11x12x13x14x15x16x17x18x24x34x44x54x64x74x84x23x32x41x25x36x47x58

∨x11x12x13x14x15x16x17x18x25x35x45x55x65x75x85x24x33x42x51x26x37x48

∨x11x12x13x14x15x16x17x18x26x36x46x56x66x76x86x25x34x43x52x61x27x38

∨x11x12x13x14x15x16x17x18x27x37x47x57x67x77x87x26x35x44x53x62x71x28

∨x11x12x13x14x15x16x17x18x28x38x48x58x68x78x88x27x36x45x54x63x72x81

= 1.

Such an equation does not look very nice, however, it is easy to con-
struct and easy to understand. By using a TVL instead of the expression,
it is easy to write down a PRP for the XBOOLE Monitor that solves
this task. For several sizes of the chess board it may be faster to generate
such a special PRP by means of a piece of software. Of cause, it is more
elegant to use the XBOOLE library directly in such a program. The
solution could, as we have done before, be represented by eight ternary
vectors. The terms for the second, third, . . . , eighth column follow the
same example, and the intersection of the respective ternary matrices
will give the final solution. This can be done for any value of n.

The special branch of fairy chess uses additional pieces that are not
existing for the “normal chess”. One of them combines the movement of a
rook and a knight – in the same way as the queen combines the movement
of rook and bishop; it is called Chancellor. The Cardinal combines the
movement of a bishop and a knight.
Exercise 6.9 (Fairy Chess). Find all combinations of a maximum number
of Cardinals on a very small board 3 × 3 and for larger boards as well.

Many more pieces from the area of fairy chess could be explored,
however, the same approach will be used for all of them.

Another problem of this kind is the so-called (n + k)-problem. In
order to start we use k = 1. One pawn will be placed onto the normal
chessboard, say at the position (4, 4). In this case, we have n = 8 and
k = 1. Generally the n defines the size of the board, the k the number of
pawns on the board. This pawn interrupts the attacking line of queens,
in the fourth horizontal line, in the fourth vertical row, in the diagonal
from the field (1, 1) to (8, 8) and from (7, 1) to (1, 7), and this allows the
placement of two queens (sometimes) in these rows and columns. Again
generally, it is expected that k additional pawns on the board allow the
placement of k additional queens.

116 6 LOGICS AND ARITHMETICS

Exercise 6.10 (The n + k-problem). n + 1 queens and one pawn should
be placed on an n × n chess board such that no queen attacks any other
queen.

1 How many such positions for 9 queens with the pawn on the field (4, 4)
of an (8 × 8)-board are possible?

2 How many different positions of the queens are possible altogether with
one pawn on any field of an (8 × 8)-board?

3 How many such positions for 10 queens with two pawns on the fields
(4, 4) and (5, 5) of an (8 × 8)-board are possible?

4 How many different positions of the queens are possible altogether with
two pawns on any field of an (8 × 8)-board?

As additional exercise the previous task can be solved also for other
sizes of boards, e.g. other values of n (n = 6 or 7 or 9).

There is not yet a comprehensive summary and exploration of these
results for reasonable values of n and k, this is still a problem for explo-
ration and publication. This applies even more to the following area of
problems – the results achieved so far and the methodology have not yet
been published somewhere else, they have been achieved only recently.
The authors, however, wanted to include these results into the book be-
cause it shows extremely well how strong and efficient the mechanism
of Boolean equations can be used to solve discrete problems which are
normally dealt with in combinatorics.

Let us consider the difficult area of coloring problems. Formally the
problem can be described in the following way: Can the nodes of a planar
graph be colored by means of at most four colors in such a way that two
nodes connected by an edge have different colors? The general answer
is “yes”, many controversial discussions took place because the proof of
this theorem used computer assistance. However, we want to deal with
this problem in a more constructive way, because even when it is known
that four colors are sufficient to color a given graph, then this will not
yet give a solution for one special given graph.

Exercise 6.11 (The coloring problem). A graph G is given by means of
the adjacency matrix M :

1. Propositional Logics 117

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 1 1 1 0 0
1 0 1 0 0 0 0 1 1 0
0 1 0 1 0 0 0 0 1 0
0 0 1 0 1 0 0 0 1 1
0 0 0 1 0 1 1 0 0 1
1 0 0 0 1 0 1 0 0 0
1 0 0 0 1 1 0 1 0 1
1 1 0 0 0 0 1 0 1 1
0 1 1 1 0 0 0 1 0 1
0 0 0 1 1 0 1 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This adjacency matrix describes a graph with 10 nodes. The element
M1,2 = 1 describes an edge from node 1 to node 2 etc. By the way, this
graph is supposed to be a difficult example for coloring questions, it is called
Birkhoff’s Diamond.

1 Draw a sketch of this graph.

2 Try to find a coloring of this graph by hand.

3 Design a Boolean model of this problem.

4 Find a solution.

5 Is the solution a unique solution?

The next question will also indicate a very difficult and interesting area
of Graph Theory and Discrete Mathematics. For this class of problems
a graph is given, and for this graph (at least) one sequence of edges
should be found that crosses each node precisely once and ends in the
node where it started. We are setting here a problem where the edges are
undirected, the problem can also be considered (and sometimes solved)
when the edges are directed. Furthermore we extend the problem such
that more than one disjoint sequence of edges can exist which commonly
crosses each node precisely once.
Exercise 6.12 (Hamiltonian Graphs). Let be given the following graph
by its adjacency matrix:

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 1 0
1 0 1 0 1
1 1 0 1 1
1 0 1 0 1
0 1 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

118 6 LOGICS AND ARITHMETICS

1 Draw a sketch of this graph.

2 Design a Boolean model of the problem of extended Hamiltonian graphs
and fit it into a PRP.

3 Execute the PRP in the XBOOLE Monitor in order to find all Hamiltonian
paths for the given graph. How many Hamiltonian paths exist?

Another example for Hamiltonian paths in a graph are movements of
a knight on the chessboard.
Exercise 6.13 (Knight on the Chess Board). Place a knight on any
selected field of the chessboard 6 × 6 and find a path of the knight that
returns to the selected field and uses other fields only once. If not all fields
are used then repeat the same procedure starting form a new unused field.
Finally all fields must be used.

1 Is there a set of paths of the knight where each path uses all the other
fields of the board exactly once and returns to the selected start field?

2 How many Boolean variables are necessary to model this problem?

3 Find and explain a Boolean model for this problem.

4 Generate a PRP in order to solve the problem. Due to the marginal
overlapping of the generated TVLs, the order of the required intersections
is essential. Find an appropriate order using the XBOOLE Monitor. How
many solutions exist?

A next very interesting area of problems is the existence of Eulerian
paths. Such a path has the property that each edge must be used once
and only once, from a starting point through all edges to any end point.
A subproblem is the existence of Eulerian circuits, where the start point
and the end point are identical. We will start with a very simple problem
in order to study the methodology.
Exercise 6.14 (Simple Eulerian Path). Let be given a graph with four
nodes a, b, c and d and edges between a and b, b and c, c and d, d and a
as well as b and d.

1 Draw a sketch of this graph.

2 Find a Boolean model for this problem.

3 Find all Eulerian paths.

4 How the graph must change by adding or removing one edge such that
the existing Eulerian paths are Eulerian circuits, too.

1. Propositional Logics 119

Figure 6.1 The seven brigdes of Königsberg

The original problem of Eulerian Paths originated in the town of
Königsberg. In the next task we study the original problem and a slightly
modified one.
Exercise 6.15 (Bridges in Königsberg). As can be seen in Fig. 6.1 there
were seven bridges, two from point a (the north side of a river) to point b
(an island in the middle of the river), two from point d (on the south side of
the river) to point b (on the island). After the island the river branches to
the north and the south, and there are three more bridges, one from point
c (on the east of the branch) to point a, one to point b and one to point
d. And the problem is quite simple.

1 Draw a sketch of this graph.

2 Find a Boolean model for this problem.

3 Find all Eulerian paths.

4 Modify the problem such that the bridge from point b to point c is
removed. Find a Boolean model for the modified problem.

5 Find all Eulerian paths for the modified problem.

A last demanding example for the power of modeling will be taken
from the area of game playing, however, with a considerable mathe-
matical background. It relates to the game of Sudoku, a game which is
originating from Japan. A board of 9 × 9 fields will be split in 9 sub-
boards with a size of 3 × 3. In each column, each row and each subboard
of the board the numbers from 1 to 9 must appear once and only once.
Some fields have a value which has been set before in order to narrow
down the search space.

Exercise 6.16 (Sudoku). On a board of 9×9 fields the following values are
given: (1, 5):5, (1, 9):2, (2, 4):6, (2, 9):9, (3, 2):1, (3, 3):8, (3, 4):4, (4, 2):2,
(4, 3):3, (4, 5):7, (5, 3):5, (5, 5):6, (5, 7):2, (6, 7):6, (6, 8):4, (7, 6):2, (7, 7):8,
(7, 8):5, (8, 1):9, (8, 6):1, (9, 1):7, and (9, 5):3.

120 6 LOGICS AND ARITHMETICS

1 Draw a sketch of this board with the given values.

2 Find a Boolean model for these problems. How many Boolean variables
are needed?

3 Solve this example using XBOOLE.

2. Solutions
Exercise 6.1.
Solve 3 equations having each one of the given expression on one side and the value
0 on the other side. Empty solution sets confirm that all these expressions repre-
sent tautologies, i.e. they represent logical identities and can be used everywhere in
logics.

1 The crucial point is a true assumption x. In order to get a true implication x → y,
the conclusion must be true as well, or in other words, if the assumption x is true
and the implication is true, then y must be true as well, a true assumption and a
true implication allow to derive the truth of the conclusion.

2 A true implication does not allow a true assumption and a false conclusion.

3 In order to get a true implication, x and y must be true at the same time, or x
must be false. It is important to understand this theorem: it says that “everything
follows from a false assumption”.

Exercise 6.2.

1 The empty solution set of ((x1>x2)&(x3>x4)&(x1+x3)>(x2+x4))=0 confirms that
there is no contradiction. Hence, the given expression is a tautology.

2 The conclusion (x2 ∨ x4) has an assumption consisting of three parts: x1 → x2,
x3 → x4 and x1 ∨ x3. This theorem means that if there are two true implications
and at least one true assumption, then there is also at least one true conclu-
sion.

Exercise 6.3.

1 The exclusive or expresses the alternative truth of two statements which cannot
be true at the same time, therefore it must be expressed that one proposition
is true, but not the other and vice versa. This can be done by p ∧ q ∨ p ∧ q.
The application of or in the language of the daily life very often neglects this
difference.

2 The empty solution set of ((p&/q+/p&q)=(p#q))=0 confirms the equivalence of
both expressions.

Exercise 6.4.
It is necessary (and not so easy) to get accustomed to these statements, they “look a
bit strange”.

1 The empty solution set of (x>(y>x))=0 confirms tautology.

2 The empty solution set of (/x>(x>y))=0 confirms tautology.

3 The empty solution set of ((x>y)+(y>x))=0 confirms tautology.

2. Solutions 121

Exercise 6.5.
Empty solution sets of restrictive equations having one of the given rules on one side
confirm that all these rules represent tautologies.

1 Either a proposition x or its negation is true. They cannot be true at the same
time, and they cannot be false at the same time.

2 If there are three propositions in a disjunctive assumption of an implication, then
their order is not important. They can be used in any order.

3 A true proposition x can be extended by another proposition y using the disjunc-
tion.

4 The same statement must not be repeated, it can be replaced by the statement
alone.

5 When the assumption is transformed, then we get the following formula:

(x ∨ y)(x ∨ z) = (xz ∨ xy ∨ yz).

Now we can consider the three parts of the assumption:

If xz is true, then particularly z is true, and therefore (y ∨ z) is true.

If xy is true, then particularly y is true, and therefore (y ∨ z) is true.

If yz is true, then both y and z are true, and therefore (y ∨ z) is true.

Since we see x and x in the assumption which cannot be true at the same time,
one of the two propositions y or z must be true, and therefore (y ∨ z) is always
true.

Exercise 6.6.
Empty solution sets of restrictive equations having one of the given rules on one side
confirm again that all these rules represent tautologies.

1 The use of the modus ponens guarantees that the right side of an implication
(the consequent) is true when the left side is true. From a true assumption and
a true rule we get a true conclusion. This is one of the most basic approaches
in Mathematics. Let us see, for instance, the following more or less trivial exam-
ple:

Theorem. If a and b are natural numbers and a < b, then a2 < b2.

Proof. If a < b then b = a + c, c > 0 and b2 = (a + c)2 = a2 +2ac + c2 > a2 since
2ac ≥ 2a and c2 ≥ 1.

This is the general statement, or the general rule. Now the assumption can be
equal to true by, for instance, a = 10 and b = 15, and without any calculations
we know that a2 < b2. And this applies to any natural numbers, even numbers
like 123456789 and 234567890. Here you must only be careful to determine which
number is the smaller one and which one is the larger one.

2 For a true implication a false consequent has to be based on a false assump-
tion.

3 Any implication (any rule) can be reversed when the negated propositions are
used.

4 A two-step use of implications can be replaced by a one-step direct implication.
This can be transferred to a finite number of steps: if there is a chain of implica-
tions, then this chain can be abbreviated by one direct step.

122 6 LOGICS AND ARITHMETICS

5 This item describes a property of the disjunction: If a disjunction of x and y is
true, and one proposition x is false, then the other one must be true.

6 If there is any true implication, then the assumption can be strengthened by the
conjunction with other propositions.

7 If there is any true implication, then the conclusion can be extended by disjunc-
tions with other propositions.

8 If a proposition is implied by a given assumption and its negation, then the propo-
sition is independent on these assumptions.

9 When an assumption implies a given conclusion and its negation, then this as-
sumption must be false.

Exercise 6.7.
We believe David Hilbert that these rules are useful or necessary for something.
The discussion whether an axiomatic system is appropriate, understandable, minimal
etc. can fill another book. In order to verify that these rules are tautologies, the
following PRP can be executed in the XBBOLE Monitor. Alternatively the solution
sets for the characteristic equations of the left side and the right side of the most
global implication can be calculated. In this approach empty sets of the difference
(DIF) operation between the solution sets of the left side minus the right side confirm
the tautology.

space 32 1

sbe 1 1

(x>x)=0.

sbe 1 2

(x>(y>x))=0.

sbe 1 3

((x>y)>((y>z)>(x>z)))=0.

sbe 1 4

((x>(y>z))>((x>y)>(x>z)))=0.

sbe 1 5

((x>(x+y))+(y>(x+y)))=0.

sbe 1 6

((x>z)>((y>z)>((x+y)>z)))=0.

sbe 1 7

(((x&y)>x)+((x&y)>y))=0.

sbe 1 8

((z>x)>((z>y)>(z>(x&y))))=0.

sbe 1 9

((((x&y)+z)>((x+z)&(y+z)))+

(((x+z)&(y+z))>((x&y)+z)))=0.

sbe 1 10

((((x+y)&z)>((x&z)+(y&z)))+

(((x&z)+(y&z))>((x+y)&z)))=0.

sbe 1 11

((x>y)>(/y>/x))=0.

sbe 1 12

(x&/x>y)=0.

sbe 1 13

(y>(x+/x))=0.

Empty solution sets of all these equations confirm that all these rule are always
valid. The meaning of the rules in “natural language” is as follows.

1 The meaning is that each proposition implies itself. That might be rather trivial,
however, in many occasions such a rule can be used as a starting point for a
sequence of actions.

2 If a proposition x is true, then it is implied by any proposition y.

3 This axiom is a possibility to shorten a sequence of conclusions: if x implies y and
y implies z, then z is implied by x directly.

4 If x implies y → z and also y, then it implies z directly.

5 A true proposition x implies the or of this proposition with any other proposition.

2. Solutions 123

6 If z is implied by x and also by y, then it is implied by x ∨ y.

7 The conjunction of two propositions implies the two propositions themselves.

8 If z implies x and also y, then it implies x ∧ y.

9 It is very interesting to see that the two distributive laws are included into the set
of axioms. This axiom shows the distributivity of ∨ with regard to ∧.

10 This axiom shows the distributivity of ∧ with regard to ∨.

11 This axiom is the base for proofs by contradiction. In order to show that x implies
y, we assume y and find out that then x must hold which is a contradiction to
the original assumption that x is true.

12 x ∧ x is always false, and a false assumption implies everything; an implication
with the left argument equal to 0 is always equal to 1.

13 A true statement (x ∨ x is always true) is implied by any assumption.

Exercise 6.8.
We will at least mention that the term in the text is already an abbreviation of a
sequence of rules. For a queen on the field (1, 1) and the consideration of the first row
we get:

x11 → x12, x11 → x13, x11 → x14, x11 → x15, x11 → x16, x11 → x17, x11 → x18.

The transformation of the implications and their conjunction results in

(x11 ∨ x12)(x11 ∨ x13)(x11 ∨ x14)(x11 ∨ x15)(x11 ∨ x16)(x11 ∨ x17)(x11 ∨ x18).

The calculation of all these intersections together with the conjunction with x11 results
in the formula given above. This is a very detailed modeling process, however, it is
also very understandable and correct.

1 The term given in the text can be simply represented by a TVL of 8 rows in a PRP.
Similar TVLs are added to the PRP for the other columns as well. Thereafter,
the intersection of these eight TVLs shows all the solutions.

2 For the board 8 × 8, there are 92 solutions.

3 For a board 7 × 7 we have 40 solutions, and 352 solutions for a board 9 × 9 can
be found.

4 It is very easy to see that a board of 3 × 3 has no solutions, solutions for n = 7
exist, therefore, the values n = 4, n = 5 and n = 6 have to be checked with the
same method. If this is done carefully, by using the XBOOLE Monitor or even
XBOOLE itself, then you will get the following results:

n number of solutions n number of solutions

3 0 9 352
4 2 10 724
5 10 11 2680
6 4 12 14200
7 40 13 73712
8 92 14 365596

124 6 LOGICS AND ARITHMETICS

Exercise 6.9.
This problem will be solved basically in the same way. Only the equations have to
change. Because the board is so small, we can enumerate the fields from 1 to 9, as
follows:

7 8 9

4 5 6

1 2 3

The respective Boolean variables can be defined as usual:

xi =
{

0 if no cardinal is on the field i
1 if there is a cardinal on the field i

The next step is the definition of the ternary vectors for the nine fields:

x1 x2 x3 x4 x5 x6 x7 x8 x9

1: 1 – – – 0 0 – 0 0
2: – 1 – 0 – 0 0 – 0
3: – – 1 0 0 – 0 0 -
4: – 0 0 1 – – – 0 0
5: 0 – 0 – 1 – 0 – 0
6: 0 0 – – – 1 0 0 -
7: – 0 0 – 0 0 1 – -
8: 0 – 0 0 – 0 – 1 -
9: 0 0 – 0 0 – – – 1

These ternary vectors describe the position of such a Cardinal on one field and its
consequences. In the PRP for the XBOOLE Monitor each of these vectors should be
defined as a TVL assigned to the object number as the label given on the left.

How to proceed now? The requirements for two Cardinals on the board are satisfied,
when two positions can be combined without contradiction, and this can be achieved
when the intersection of two vectors is used. Each intersection which is not empty
characterizes an allowed position of two Cardinals on the board. Since the intersection
is a commutative operation, only one intersection must be calculated for each pair of
ternary vectors: 1 ∩ 2 = 2 ∩ 1.

The following ternary vectors describe the found allowed positions of two Cardinals
together with their common restricted fields on the board.

x1 x2 x3 x4 x5 x6 x7 x8 x9

1–2: 1 1 – 0 0 0 0 0 0
1–3: 1 – 1 0 0 0 0 0 0
1–4: 1 0 0 1 0 0 – 0 0
1–7: 1 0 0 – 0 0 1 0 0
2–3: – 1 1 0 0 0 0 0 0
2–5: 0 1 0 0 1 0 0 – 0
2–8: 0 1 0 0 – 0 0 1 0
3–6: 0 0 1 0 0 1 0 0 –
3–9: 0 0 1 0 0 – 0 0 1
4–5: 0 0 0 1 1 – 0 0 0
4–6: 0 0 0 1 – 1 0 0 0
4–7: – 0 0 1 0 0 1 0 0
5–6: 0 0 0 – 1 1 0 0 0
5–8: 0 – 0 0 1 0 0 1 0
6–9: 0 0 – 0 0 1 0 0 1
7–8: 0 0 0 0 0 0 1 1 –
7–9: 0 0 0 0 0 0 1 – 1
8–9: 0 0 0 0 0 0 – 1 1

2. Solutions 125

Now we have 18 ternary vectors describing all the possible positions with two
Cardinals on the board. For the next sequence of intersections the number of the
third vector can be selected larger than the number of the second vector (such as
1–2–3) in order to avoid duplications. The intersection with the nine original vectors
already produces the final solutions. It is quite easy to see and to understand the
properties of the solutions such as symmetry etc.

x1 x2 x3 x4 x5 x6 x7 x8 x9

1–2–3: 1 1 1 0 0 0 0 0 0
1–4–7: 1 0 0 1 0 0 1 0 0
2–5–8: 0 1 0 0 1 0 0 1 0
3–6–9: 0 0 1 0 0 1 0 0 1
4–5–6: 0 0 0 1 1 1 0 0 0
7–8–9: 0 0 0 0 0 0 1 1 1

Exercise 6.10.
The given methodology allows easily to solve this problem as well. Only the equations
for the queens have to change.

1 A pawn on (4, 4) changes the values for the fourth column, the fourth row and the
diagonals. We go back to the queen on the field (1, 1) and show these changes:

x11x12x13x14x15x16x17x18x21x31x41x51x61x71x81x22x33x44

∨x11x12x13x14x15x16x17x18x22x32x42x52x62x72x82x21x23x34x45x56x67x78

∨x11x12x13x14x15x16x17x18x23x33x43x53x63x73x83x22x31x24x35x46x57x68

∨x11x12x13x14x15x16x17x18x24x34x44x23x32x41x25x36x47x58

∨x11x12x13x14x15x16x17x18x25x35x45x55x65x75x85x24x33x42x51x26x37x48

∨x11x12x13x14x15x16x17x18x26x36x46x56x66x76x86x25x34x43x52x61x27x38

∨x11x12x13x14x15x16x17x18x27x37x47x57x67x77x87x26x35x44

∨x11x12x13x14x15x16x17x18x28x38x48x58x68x78x88x27x36x45x54x63x72x81

= 1.

The same modification has to be implemented for the other columns (except
column 4). Here we get two disjunctions x41 ∨ x42 ∨ x43 and x45 ∨ x46 ∨ x47 ∨ x48

with the respective consequences which have to be included into the final equation.
The intersection of the prepared 9 partial solution sets results in 10 solutions for
9 queens and one pawn on the field (4, 4).

2 There are 128 positions without attacks of 9 queens and one pawn on an 8×8-chess
board.

3 There are 2 positions without attacks of 10 queens and two pawns on the fields
(4, 4) and (5, 5) on an 8 × 8-chess board.

4 There are 44 positions without attacks of 10 queens and two pawns on an 8 × 8-
chess board.

126 6 LOGICS AND ARITHMETICS

Exercise 6.11.

1

2 Assuming the colors red (r), green (g), blue (b) and yellow (y) one coloring of the
graph is: r: 1, 3, 10; g: 2, 4, 6; b: 5, 8; y: 7, 9.

3 The methodology might not be very difficult anymore when the previous ideas
have been studied carefully. The biggest advantage of the approach is the fact that
only structural properties of the graph have to be described and then all solutions
will be found without any special considerations. It is suggested to generate a
PRP by a piece of software and solve the task using the XBOOLE Monitor.
Assuming the colors introduced above, we introduce Boolean variables in the
following way:

xir =

{
1 if the colour of node i is red

0 otherwise.

In the same way the following definitions will be used:

xig =

{
1 if the color of node i is green

0 otherwise,

xib =

{
1 if the color of node i is blue

0 otherwise,

xiy =

{
1 if the color of node i is yellow

0 otherwise.

Now the structure of the graph can be taken into consideration. For node 1 it can
be written:

(x1r ∨ x1g ∨ x1b ∨ x1y).

The consequences can be split into two parts:

When one node has a given color then this node cannot have the three other
colors.

When a node has a given color then the nodes connected to this node must
have another color.

2. Solutions 127

In this way we get for the first node

x1rx1gx1bx1yx2rx6rx7rx8r

∨x1gx1rx1bx1yx2gx6gx7gx8g

∨x1bx1rx1gx1yx2bx6bx7bx8b

∨x1yx1rx1gx1bx2yx6yx7yx8y.

Such expressions can be created for each node of the graph. It is helpful to specify
these expressions by TVLs, one for each node. Since there are 10 nodes and 4
colors, the problem requires 40 Boolean variables for a complete description of
the problem. The intersection of the 10 TVLs for the 10 nodes shows all possible
solutions of the problem.

4 There are 576 valid colorings of the graph.

5 The solution is not unique because permutations of the colors allow 576 colorings
of the graph.

Exercise 6.12.

1

2 Boolean variables are introduced for each edge and each direction as follows:

xik =
{

1 if the edge is used from node i to node k
0 otherwise.

16 Boolean variables are needed for both directions of the 8 existing edges. In
node 1 there are three edges available, one to node 2, one to node 3 and one to
node 4. Because each node can be used only once, the use of one edge forbids the
use of other edges starting or ending on the same node on the same node as well
as the use of this edge in the reverse direction. For the edge from node 1 to node
2 the following conjunction describes these restrictions:

x12x13x14x21x32x52.

For the starting node, incoming edges are not forbidden: x12 will still allow x31

or x41. Associated to the node 1 we get for x13 and x14:

x12x13x14x23x31x43x53,
x12x13x14x34x41x54.

These edges are all edges related to the node 1, and one of them must be used
which can be expressed by a common TVL in disjunctive form. In this way the
requirements for the other nodes are described.

Since these five situations must be considered simultaneously, the result of inter-
section of these five TVLs is the solution of all Hamiltonian paths we are searching
for.

128 6 LOGICS AND ARITHMETICS

space 32 1

tin 1 1

x12 x13 x14 x21 x23 x25 x31 x32 x34 x35 x41 x43 x45 x52 x53 x54.

1000---0-----0--

010-0-0----0--0-

001-----0-0----0.

tin 1 2

x12 x13 x14 x21 x23 x25 x31 x32 x34 x35 x41 x43 x45 x52 x53 x54.

0--1000---0-----

---010-0---0--0-

---001---0--00--.

tin 1 3

x12 x13 x14 x21 x23 x25 x31 x32 x34 x35 x41 x43 x45 x52 x53 x54.

-0-0--10000-----

0---0-0100---0--

--0---0010-0---0

-----00001--0-0-.

tin 1 4

x12 x13 x14 x21 x23 x25 x31 x32 x34 x35 x41 x43 x45 x52 x53 x54.

--00--0---100---

-0--0---0-010-0-

-----0---0001--0.

tin 1 5

x12 x13 x14 x21 x23 x25 x31 x32 x34 x35 x41 x43 x45 x52 x53 x54.

0----0-0-----100

-0--0----0-0-010

--0-----0---0001.

isc 1 2 6

isc 6 3 6

isc 6 4 6

isc 6 5 6

3 There are eight Hamiltonian paths for the given graph. It is not possible to split
the graph into subgraphs which have at least one Hamiltonian path each.

Exercise 6.13.

1 Hamilton path 1: a1—c2—d4—e2—c1—a2—c3—b1—a3—b5—d6—f5—e3—f1—
d2—b3—a1
Hamilton path 2: a6—b4—d5—f6—e4—f2—d1—b2—a4—b6—c4—a5—c6—e5—
f3—e1—d3—f4—e6—c5—a6

2. Solutions 129

These Hamilton paths cover all fields of the chess board exactly once. As additional
task you should combine this set of two Hamilton paths to a single one.

2 The number of Boolean variables is equal to the
sum of the number of edges that exist to move
from one node to another one. Modeling the path
of the knights on a chess board, these numbers
are equal to the allowed moves of the knight de-
pending on the field. The matrix on the right
enumerates these values. Hence, the number of
required Boolean variables is 160.

⎡

⎢
⎢
⎢
⎢
⎣

2 3 4 4 3 2
3 4 6 6 4 3
4 6 8 8 6 4
4 6 8 8 6 4
3 4 6 6 4 3
2 3 4 4 3 2

⎤

⎥
⎥
⎥
⎥
⎦

3 When the knight is on the field a1, then there are two possibilities for the first
move: a1 − c2 or a1 − b3. The following definition of Boolean variables can be
used:

xa1−c2 =
{

1 if the knight moves from a1 to c2
0 otherwise.

When the move a1-c2 is used, then other moves starting from a1 are forbidden.
In this case only a1-b3 must be excluded. The reverse move c2-a1 is forbidden
as well. Because the field c2 is taken and cannot be used anymore, all basically
possible moves to this field must be excluded finally.

Therefore we get altogether the following conjunctions for the field a1 which can
be used alternatively:

xa1−c2xa1−b3xc2−a1xa3−c2xb4−c2xd4−c2xe3−c2xe1−c2,
xa1−b3xa1−c2xb3−a1xa5−b3xc5−b3xd4−b3xd2−b3xc1−b3.

The same principle must be applied to define the condition for the other fields.
The intersection of these 36 TVLs will show all the possible sets of Hamiltonian
paths of the knight where each set covers each field exactly once.

4 A program should be written that generates the required PRP from a 36 × 36
adjacency matrix of the graph that describes the allowed moves of the knight.
The intersections of the 36 TVLs must be executed in an order that restricts
the number of vectors of the intermediate results. There are 185,868 sets of dis-
joint Hamiltonian cycles that cover all fields of the 6 × 6 chess board exactly
once.

Exercise 6.14.

1

2 The sketch of this graph shows that this is simply a rectangle with an additional
diagonal. Eulerian paths can go clockwise around the rectangle followed by the
diagonal: b-c-d-a-b-d, counterclockwise around the rectangle followed by the di-
agonal: b-a-d-c-b-d, starting with the diagonal, e.g.: d-b-c-d-a-b or even taking
the diagonal in the middle of the path, e.g.: b-c-d-b-a-d.

130 6 LOGICS AND ARITHMETICS

The introduction of Boolean variables follows the same idea that has been used
already very often:

ab =
{

1 if the edge is used from a to b
0 otherwise.

This simple example shows nodes with an even (a, c) or an odd (b, d) number of
adjacent edges. All edges can be used only in the case when the number of edges
used to move to the node is equal the number of edges used to leave the node.
Due to odd numbers of edges additional variables for the start node and the end
node of Eulerian path can solve this requirement.

as =
{

1 if the Eulerian path starts from node a
0 otherwise,

ae =
{

1 if the Eulerian path ends on node a
0 otherwise.

In case of an odd number of adjacent edges to a node the Eulerian path must
start or end on that node in order to cover all these edges. In case of an even
number of adjacent edges to a node the Eulerian path must start and end on that
node or uses simply one edge to move to the node and one edge to move from
the node in order to cover all these edges. An additional requirement for Eulerian
paths is exactly one start node and exactly one end node of the path. The solution
vectors describe the combination of the directions to use the edges. One solution
can cover several Eulerian paths.

3 space 32 1

avar 1

ab ba bc cb cd dc da ad bd db as ae bs be cs ce ds de.

tin 1 1

ab ba ad da

as ae.

100100

011000

100111

011011.

tin 1 2

ba ab bc cb

bd db bs be.

10010101

01100101

01011001

01101010

10011010

10100110.

tin 1 3

cb bc cd dc

cs ce.

100100

011000

100111

011011.

tin 1 4

da ad dc cd

db bd ds de.

10010101

01100101

01011001

01101010

10011010

10100110.

tin 1 5

as bs cs ds.

1000

0100

0010

0001.

tin 1 6

ae be ce de.

1000

0100

0010

0001.

isc 1 2 7

isc 7 3 7

isc 7 4 7

isc 7 5 7

isc 7 6 7

There are six Eulerian paths for the given graph. All of them start on node b and
end on node d or vice versa.

2. Solutions 131

4 If the diagonal edge is removed, an Eulerian circuit around the rectangle in both
directions exists. Adding a second edge in parallel to the given diagonal edge leads
to Eulerian circuits too. The calculation of the Eulerian circuits can be done in
the same way as shown for Eulerian paths. Of couse, the restriction TVLs for the
nodes must be adapted to the number of adjacent edges. Results of the intersection
of the Eulerian paths with the TVL

as ae bs be cs ce ds de
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

which are not empty confirm that Eulerian circuits were calculated.

Exercise 6.15.

1

2 Basically the Boolean model is an extension of the Boolean model of the previous
task. Separate variables must be introduced for each of the parallel bridges. There
are three edges at the nodes a, c, and d, therefore the restriction for the nodes b

or d of the previous task can be reduced. An extended restriction must be created
for the node b of the “island”. Two edges used for moves to this node imply three
edges for moves from this node. Consequently this node must be an ending node
for the Eulerian path. The only possible alternative for the node b are three edges
used for moves to this node and two edges for moves from it which requires that
this node is a starting node for the Eulerian path.

3 space 32 1

avar 1

ab1 ba1 ab2 ba2 ac ca bc cb cd dc bd1 db1 bd2 db2

as ae bs be cs ce ds de.

132 6 LOGICS AND ARITHMETICS

tin 1 1

ab1 ba1 ab2 ba2 ac

ca as ae.

10010101

01100101

01011001

01101010

10011010

10100110.

tin 1 3

ca ac cb bc cd dc

cs ce.

10010101

01100101

01011001

01101010

10011010

10100110.

tin 1 4

dc cd db1 bd1 db2

bd2 ds de.

10010101

01100101

01011001

01101010

10011010

10100110.

tin 1 2

ba1 ab1 ba2 ab2

bc cb bd1 db1

bd2 db2 bs be.

101010010110

101001100110

101001011010

100110100110

100110011010

100101101010

011010100110

011010011010

011001101010

010110101010

011010010101

011001100101

011001011001

010110100101

010110011001

010101101001

101010100101

101010011001

101001101001

100110101001.

tin 1 5

as bs cs ds.

1000

0100

0010

0001.

tin 1 6

ae be ce de.

1000

0100

0010

0001.

isc 1 2 7

isc 7 3 7

isc 7 4 7

isc 7 5 7

isc 7 6 7

The empty TVL 7
confirms that there
is no Eulerian path
over the bridges of
Königsberg.

4 Removing the edge between the node b and c does not influence the restrictions
for the nodes a and d. The changed node c is connected by two edges and can be
modeled like node c of Exercise 6.14.

5 In a copy of the previous PRP where all object numbers are increased by 100 the
following TVLs are substituted.
tin 1 102

ba1 ab1 ba2 ab2

bd1 db1 bd2 db2

bs be.

1010010100

1001100100

1001011000

0110100100

0110011000

0101101000

1010010111

1001100111

1001011011

0110100111

0110011011

0101101011.

tin 1 103

ca ac cd dc cs ce.

100100

011000

100111

011011.
There are ten solution vectors for the modified problem.

2. Solutions 133

Exercise 6.16.

1 5 2

6 9

1 8 4

2 3 7

5 6 2

6 4

2 8 5

9 1

7 3

2 The game can be modeled by the variables:

xi,j,k =
{

1 if k is on the field (i, j)
0 otherwise

where 1 ≤ i ≤ 9, 1 ≤ j ≤ 9, and 1 ≤ k ≤ 9 as well. Hence, 93 = 729 Boolean
variables are needed. In order to restrict such a gigantic search space, the given
values and the resulting restrictions should be used first in an intersection of the
requirements and restrictions of the game. For a given value

all the other values on the same field,

the given value on the same row,

the given value on the same column, and

the given value on the same subsquare

are forbidden. Therefore ternary vectors having a single value 1 and 28 associ-
ated values 0 can be created. It is suggested to generate a 729 × 729 ternary
matrix that includes all these vectors by a piece of software. From this TVL the
fitting ternary vectors of the given values can be selected using the STV oper-
ation of the XBOOLE Monitor. The result of the intersection of these ternary
vectors is a single ternary vector, if the given values do not include any contra-
diction.

Now the requirements of the game must be considered. The rule there must be the
value k in one of the columns j of the row i can be expressed by the disjunction
of the appropriate 9 ternary vectors of the prepared TVL. 81 intersections for all
values and all rows are sufficient to solve the Sudoku game completely. The other
rules are used implicitly due to the strong restrictions in the generated large TVL.
In spite of the large number of Boolean variables it needs much less the one second
to solve the game using the 729 × 729 ternary matrix which must be generated
only once.

134 6 LOGICS AND ARITHMETICS

3 The given Sudoku has the following solution:

4 9 6 1 5 3 7 8 2
5 3 7 6 2 8 4 1 9
2 1 8 4 9 7 5 3 6

6 2 3 8 7 4 1 9 5

1 4 5 3 6 9 2 7 8

8 7 9 2 1 5 6 4 3

3 6 1 9 4 2 8 5 7

9 5 2 7 8 1 3 6 4

7 8 4 5 3 6 9 2 1

Chapter 7

COMBINATORIAL CIRCUITS

1. The Circuit Model
A combinatorial circuit is realized by a structure of basic elements

called gates. The gates of the circuit are visualized in a schematic di-
agram by symbols listed in Table 7.1 of [18] together with their logic
function. The connection wires between the gates of a circuit are ex-
pressed by lines in the schematic diagram.

A combinatorial circuit possesses a unique behavior, but the same
behavior may be realized by different circuit structures. Therefore both
structural and behavioral models are necessary in order to describe a
combinatorial circuit.

The main tasks for combinatorial circuits preform transformations
between these classes of models. The basic task of analysis requires a
structural model of a combinatorial circuit and creates the associated
behavioral model. Vice versa, the basic task of synthesis takes a behav-
ioral model of a combinatorial circuit and leads to structural models of
one or several associated circuits.

This chapter includes both exercises for analysis and synthesis of com-
binatorial circuits. The required models are prepared in this section. It is
strongly recommended to store all the solution of each exercise because
succeeding exercises may use results of previous exercises. For comfort-
able work and sometimes required corrections it is suggested to store for
each exercise

your own prepared problem programs (PRPs),

complete TVL systems created in the XBOOLE Monitor, and

Bernd Steinbach, Christian Posthoff, Logic Functions and Equations, Examples and
Exercises,
© Springer Science + Business Media B.V. 2009

136 7 COMBINATORIAL CIRCUITS

Figure 7.1 Structure of a circuit using AND- and OR-gates restricted to two inputs

the PRP that documents all executed steps to solve all tasks of an Ex-
ercise which is generated by the menu item Extras – Save Protocol
as PRP.

1. The Circuit Model 137

One structural model is a system of logic equations, where each equa-
tion describes one gate and the connections are expressed by using the
same names of variables in different equations. The behavior of each gate
is specified by the operations applied in the associated equation.
Exercise 7.1 (Structural Model – System of Logic Equations). Create
a system of logic equations as structural model of the combinatorial circuit
shown as schematic diagram in Fig. 7.1. Prepare this system of equations
as PRP so that it can be used later on for an analysis task. It is helpful to
use the names of the gates as names of their output signals.

Alternatively a set of local lists of phases can be used as a structural
model of a combinatorial circuit. In this case the phases describe the
behavior of the gates, and the same names of column variables express
connections.
Exercise 7.2 (Structural Model – Set of Local Lists of Phases). Create
a set of local lists of phases as structural model of the combinatorial circuit
shown as schematic diagram in Fig. 7.1. Prepare this set of local lists of
phases as PRP such that it can be used later on for an analysis task. It is
helpful to use the names of the gates as names of their output signals. The
required phases can be taken from Table 7.1 of [18].

In the special case of two level circuits a TVL in d-form expresses the
structure of an AND-OR or a NOR-NOR circuit where the conjunctions
of the associated disjunctive form are enumerated in the rows and the
OR-gate is described implicitly by the form of the TVL. As shown in
Fig. 7.5 of [18], other circuit structures correspond directly to TVLs in
c-form, a-form or e-form.
Exercise 7.3 (Structural Model – TVL in a Certain Form). Assume the
circuit structure in Fig. 7.1 may by transformed into a two level AND-OR
structure such that the conjunctions of the disjunctive form are built by the
AND-gates connected directly with an OR-gate. Describe the associated
structural model by a TVL in d-form.

The behavior of a combinatorial circuit can be described by a system
of explicit logic equations in which the output values yi appear on the
left-hand side only while on the right-hand sides expressions of the in-
put variables are given. Such a specification defines a set of completely
specified functions but is not easy to understand. More comprehensible
is the solution of such an equation system expressed by a TVL in ODA-
form. This TVL can be interpreted as system function F (x,y) where
the equation F (x,y) = 1 possesses the same solution.
Exercise 7.4 (Behavioral Model – Explicit Equation System – System
Function of a Completely Specified Circuit). The behavior of a circuit is

138 7 COMBINATORIAL CIRCUITS

given by the equation system (7.1),

y1 = ((x1(x2 ⊕ (x3 ∨ x4)) ∨ (x5 ⊕ x6) ∨ x2x3x4)

⊕ (x1x3x4(x5 ⊕ x6))) ∨ x2x3x4,

y2 = (x1x5x6 ∨ x1x2x3 ∨ x1x3(x2 ∨ x4) ∨ x5x6(x1x3 ∨ x4))

⊕ x4x5x6. (7.1)

Calculate a minimized system function F (x,y). Practical tasks:

1 Prepare a Boolean space and attach the input and output variables in a
convenient order.

2 Solve the equation system (7.1).

3 Minimize the solution and show this list of phases that can be interpreted
as system function F (x,y).

The system function in Fig. 7.2 a) describes in 17 rows for all 64
input patterns which values are associated to the outputs y1 and y2.
Alternatively the more compact TVL for the functions y1(x) and y2(x)
can be used as behavioral description.

Exercise 7.5 (Behavioral Model – System of Function TVLs of a Com-
pletely Specified Circuit). Separate the system function of Exercise 7.4
into a system of function TVLs using formula (7.56) of [18]. Practical
tasks:

1 Load the TVL system of Exercise 7.4.

2 Prepare solutions of the simple equations y1 = 1, y2 = 1, and a VT
〈y1, y2〉.

3 Calculate the function TVLs y1(x) and y2(x).

4 Show the function TVLs y1(x) and y2(x) and evaluate the results.

The system function F (x,y) of Exercise 7.4 describes the completely
specified behavior of a combinatorial circuit. Generally a system function
F (x,y) can also be described as incompletely specified behavior or even
a behavior not realizable by a combinatorial circuit. An incomplete be-
havior gives some freedom that can be exploited in the synthesis of the
circuit. Alternatively to the system function F (x,y) of an incomplete
function each pair of the mark functions fq(x) for the ON-set, fr(x) for
the OFF-set, and fϕ(x) for the don’t-care-set can be used.

1. The Circuit Model 139

Exercise 7.6 (Behavioral Model – Incompletely Specified Circuit). Ver-
ify that the system function F (x, y) (7.2) describes an incompletely specified
function.

F (x, y) = ((x1x2(x3 ⊕ x4)y ∨ x3x4(x5 ⊕ x6)y ∨ x1x7y

∨ x1x2x6x7) ⊕ x6) ∨ (x3 ⊕ x4)x6 ∨ x3x4x5

∨ x1x3x6x7 ∨ x1x2(x3 ⊕ x4)x6x7. (7.2)

Calculate all three associated mark functions and verify that these functions
are pairwisely disjoint. Reconstruct the function F (x, y) based on each pair
of mark functions and verify the result. Practical tasks:

1 Prepare a Boolean space and attach the input and output variables in a
convenient order.

2 Solve (7.2).

3 Prepare solutions of the simple equations y = 1.

4 Calculate the mark function fϕ(x) of the don’t-care set based on formula
(7.24) of [18].

5 Calculate the mark function fq(x) of the ON-set based on formula (7.25)
of [18].

6 Calculate the mark function fr(x) of the OFF-set based on the formula
(7.25) of [18].

7 Verify whether the three mark functions are pairwisely disjoint and cover
the Boolean space completely.

8 How many functions includes the characteristic function set FC(x) which
is specified by the calculated mark functions?

9 Calculate the system function using the mark functions fq(x) and fr(x)
based on formula (7.21) of [18] and verify the result.

10 Calculate the system function using the mark functions fϕ(x) and fr(x)
based on formula (7.22) of [18] and verify the result.

11 Calculate the system function using the mark functions fq(x) and fϕ(x)
based on formula (7.23) of [18] and verify the result.

140 7 COMBINATORIAL CIRCUITS

2. Analysis
The basic analysis task for combinatorial circuits is the calculation of

the behavior realized by the circuit. The set of solution vectors of the
system of logic equations given as structural model describes the global
list of phases of the associated combinatorial circuit. Hence, it is a be-
havioral model that can be interpreted as system function F (x, y,nx,g).
Notice, it supports the clearness when the variables are well ordered in
the phases.
Exercise 7.7 (Behavior of a Combinatorial Circuit Based on a System
of Logic Equations). Calculate the behavior of the circuit given in Fig. 7.1.
Use the system of logic equations prepared in Exercise 7.1 as structural
model. Practical tasks:

1 The output y depends on 6 inputs. How many phases exist?

2 Define a Boolean space, large enough for this task, and attach the vari-
ables for well-ordered phases.

3 Solve the system of equations prepared in Exercise 7.1 and show the
global list of phases.

Each structural model of a combinatorial circuit can be used in order
to calculate its global behavior.
Exercise 7.8 (Behavior of a Combinatorial Circuit Based on a Set of Lo-
cal Lists of Phases). Calculate the behavior of the circuit given in Fig. 7.1.
Use the set of local lists of phases prepared in Exercise 7.2 as structural
model and verify whether the calculated behavior coincides with the result
of Exercise 7.7. Practical tasks:

1 Load the final TVL system of Exercise 7.7.

2 Create the set of local lists of phases executing the PRP prepared in
Exercise 7.2.

3 Calculate the intersection of all 33 local lists of phases of the gates.

4 Verify whether the behavior calculated on the basis of local lists of phases
coincides with the behavior of the circuit calculated by solving a system
of equations in Exercise 7.7 which is available as object number 1.

A more compact representation of the behavior takes the black box
view of the combinatorial circuit into account. Such a restricted global
list of phases includes the values of the input and output variables only,
and can be interpreted as input-output system function F (x, y).

2. Analysis 141

Exercise 7.9 (Input-Output Behavior of a Combinatorial Circuit). Cal-
culate the input-output behavior of the circuit given in Fig. 7.1. Minimize
the result to an orthogonal TVL. Practical tasks:

1 Which operation of the Boolean differential calculus calculates the list
of phases of the input-output-behavior from a given global list of phases
that includes the values of all gates? Motivate your answer!

2 Load the final TVL system of Exercise 7.7.

3 Prepare a VT of the internal variables.

4 Calculate the input-output-behavior.

5 Minimize the input-output-behavior to a short orthogonal TVL.

The global list of phases is a complete model of the behavior that is
or has to be realized in a combinatorial circuit. The global list of phases
calculated in Exercise 7.7 depends on only 6 input variables, but together
with all signals of the circuit the 64 rows and 39 columns require a whole
page to print this TVL (see Fig. 7.3 on page 170). For larger circuits it is
more convenient to use the global list of phases as basis of several types
of simulation. In fact, there is no restriction answering questions about
relationships between selected values of the behavior.
Exercise 7.10 (Simulation Based on a Global List of Phases). Execute
several simulations of a modified circuit created from the circuit structure
in Fig. 7.1. The circuit is extended such that additional outputs y2, y3, and
y4 are introduced which are connected with the outputs of the gates g20,
g11, and g23 in the given order. Practical tasks:

1 Load the TVL system of Exercise 7.7.

2 Extend the behavior by the outputs y2, y3, and y4 as specified in this
Exercise.

3 Prepare VTs for the inputs, the internal signals, and the outputs.

4 Execute a forward simulation based on formula (7.52) of [18] that finds
the values of the four outputs for the input pattern (x1, x2, x3, x4, x5, x6)
that are equal to either (100010) or (011010). Calculate both the sim-
ulation pattern (x,y) and the restricted simulation result (y). Evaluate
the simulation result.

5 Execute a backward simulation based on formula (7.53) of [18] that finds
the values of the six inputs for the output pattern (y, y2, y3, y4) that are
equal to either (1010) or (0101). Calculate both the simulation pattern

142 7 COMBINATORIAL CIRCUITS

(x,y) and the restricted simulation result (x). Evaluate the simulation
result.

6 Execute a general simulation based on formula (7.54) of [18] that finds
the values of the six inputs and four outputs for the pattern (g1, g5, g7)
of the reused internal signals that are equal to either (010) or (101).
Calculate the restricted simulation result (x,y) and evaluate it.

The simulations executed in Exercise 7.10 were controlled by single
vectors of values. The applied method is usable without any changes for
sets of vectors, too. The analysis of a global list of phases allows further-
more the identification of important information for a subsequent syn-
thesis task. In some applications the outputs of one combinatorial circuit
control the inputs of another such circuit. If not all output patterns ap-
pear on the output of the predecessor circuit, a don’t-care function can
simplify the successor circuit.
Exercise 7.11 (Don’t-Care Function Defined by the Outputs of a Global
List of Phases). Calculate both the output pattern of the circuit modified
in Exercise 7.10 and the don’t-care function caused by this circuit for a
successor circuit. Practical tasks:

1 Load the TVL system of Exercise 7.10.

2 What is the maximal number of output patterns that can be observed
on a circuit having four outputs.

3 Calculate the output pattern of the circuit modified in Exercise 7.10.
How many patterns can be seen for the outputs (y, y2, y3, y4). Minimize
this TVL and show the result.

4 Calculate the don’t-care function fϕ(y, y2, y3, y4) caused by the circuit
modified in Exercise 7.10 using formula (7.55) of [18]. Show the calcu-
lated don’t-care function.

Further analysis tasks investigate the behavioral description with re-
gard to certain properties. In the equation system (7.1) appear the vari-
ables xi, i = 1, . . . , 6, for both functions y1(x) and y2(x). Figure 7.2 c)
on page 168 shows that the function y2(x) calculated in Task 3 of Exer-
cise 7.5 does not depend on x2. The condition that only dashes appear
in a column of a function TVL is sufficient, but not necessary for the
independence of a function regarding a variable.
Exercise 7.12 (Independence of a Function Regarding Variables). An-
alyze whether the functions y1(x) and y2(x) calculated in Task 3 of Exer-
cise 7.5 really depend on the variables (x1, x2, x3, x4, x5, x6) and simplify
these functions if possible. Practical tasks:

2. Analysis 143

1 Load the TVL system of Exercise 7.5. This TVL system includes the
function y1(x) as object number 11 and the function y2(x) as object
number 12.

2 Prepare a PRP that checks whether a function depends on the variables
(x1, x2, x3, x4, x5, x6).

3 Check for the function y1(x) the variables it is depending on.

4 Check for the function y2(x) the variables it is depending on.

5 Simplify the function y1(x) as much as possible and verify the result.

6 Simplify the function y2(x) as much as possible and verify the result.

A system function F (x,y) specifies all allowed phases of a circuit.
A combinatorial circuit possesses for each input pattern an associated
output pattern. Consequently only such system functions describe real-
izable circuits which allow for each input pattern at least one output
pattern. The analysis whether a system function is realizable is a neces-
sary task before starting a design.
Exercise 7.13 (Realizability of a System Function). Check whether the
system functions of Exercises 7.5 and 7.6 are realizable. Practical tasks:

1 Load the TVL system of Exercise 7.5. This TVL system includes the
system function F (x, y1, y2) as object number 1 and the VT 〈y1, y2〉 as
object number 5.

2 Check whether the loaded system function is realizable using formula
(7.64) of [18].

3 Load the TVL system of Exercise 7.6. This TVL system includes the
system function F (x, y) as object number 1 and a solution of y = 1 as
object number 2.

4 Check whether the loaded system function is realizable using formula
(7.64) of [18].

Assume the system function is realizable. Then F (x,y) = 1 can be
solved with regard to y whereas one or more functions for each selected
output of the circuit may exist. It can be analyzed whether the system
function specifies a selected output function uniquely.
Exercise 7.14 (Unique Solution of a System Function with Regard to
an Output). From Exercise 7.13 it is known that the system functions of
Exercises 7.5 and 7.6 are realizable. Check whether these system functions
have unique solutions with regard to their outputs. Practical tasks:

144 7 COMBINATORIAL CIRCUITS

1 Load the TVL system of Exercise 7.5. This TVL system includes the
system function F (x, y1, y2) as object number 1.

2 Check whether the loaded system function is uniquely realizable using
formulas (7.66) and (7.67) of [18].

3 Load the TVL system of Exercise 7.6. This TVL system includes the
system function F (x, y) as object number 1 and a solution of y = 1 as
object number 2.

4 Check whether the loaded system function is uniquely realizable using
formula (7.67) of [18].

It was analyzed in Exercise 7.12 whether a completely specified func-
tion depends on all variables used in its specification. This analysis can
be generalized for incompletely specified functions (ISF). Basically each
completely specified function of the characteristic function set associ-
ated to an incompletely specified function can be explored separately.
The incompletely specified function specified in Exercise 7.6 can be re-
alized by 298 functions. If each of these functions is checked within 100
nanoseconds it takes approximately 1012 years to solve this task com-
pletely using the mentioned method. Hence, another analysis approach
is required.

Using formula (7.65) of [18] it can be explored whether the charac-
teristic function set associated to the incompletely specified function
y = f(x) described by the system function F (x, y) includes a function
that does not depend on the variable xi. The more functions are covered
by the function set, the larger is the probability to find such variables.
If several such variables for a system function F (x, y) were found, it
cannot be concluded that there is one function that does not depend on
all of them. Thus a detailed analysis of subsets of the found variables
is required. This analysis can be organized constructively starting with
pairs of variables, or restrictively starting with the set of all possible
variables.
Exercise 7.15 (Independence of an Incompletely Specified Function
Regarding Variables). Analyze whether all functions represented by the
system function F (x, y) specified in Exercise 7.6 really depend on the vari-
ables (x1, x2, x3, x4, x5, x6, x7). Find all functions described by F (x, y) that
depend on the smallest number of variables. Practical tasks:

1 Load the TVL system of Exercise 7.6. This TVL system includes the
system function F (x, y) as object number 1.

2 Check whether the system function F (x, y) includes functions that do
not depend on one of the variables (x1, x2, x3, x4, x5, x7).

3. Design 145

3 Formula (7.65) of [18] allows to analyze the independence of F (x, y)
with regard to a single variable. Generalize this formula for a set of
variables. Substantiate this generalization.

4 Check whether the system function F (x, y) includes functions that do
not depend on all variables detected in Task 2 of Exercise 7.15.

5 In Task 2 of Exercise 7.15 n variables were found for which the system
function F (x, y) includes at least one function that does not depend
on one of these variables. Check whether the system function F (x, y)
includes functions that do not depend on n − 1 variables detected in
task 2 of Exercise 7.15.

6 Develop a formula that restricts the system function F (x1,x2, y) such
that functions depending on more variables than x1 only are excluded.
Substantiate this formula.

7 Calculate all minimal functions described by F (x, y) that do not depend
on the sets of variables found in Task 5 of Exercise 7.15 and show the
results.

3. Design
The basic design task for combinatorial circuits is the calculation of

a circuit structure that realizes a given behavior. The most common
behavioral description is the system function F (x,y) that describes the
allowed input-output phases.

A combinatorial circuit yields for each input pattern exactly one out-
put pattern. Thus, the system function must allow at least one output
pattern for each input pattern. Consequently, only for such system func-
tions F (x,y) for which the equation F (x,y) = 1 can be solved with
regard to y, a combinatorial circuit exists. If this equation can be solved
with regard to y there may be a unique solution or a set of solutions.

A system equation F (x, y) = 1 can be solved with regard to y if

max
y

F (x, y) = 1, (7.3)

and can be solved with regard to y uniquely if

∂F (x, y)
∂y

= 1. (7.4)

If a system equation F (x, y) = 1 is uniquely solvable with regard to y,
the logic function y = f(x) can be calculated by (7.5).

y = f(x) = F (x, y = 1) = max
y

[(y ∧ F (x, y))]. (7.5)

146 7 COMBINATORIAL CIRCUITS

Exercise 7.16 (Verify Whether a Combinatorial Circuit Exists for a
System Function). Verify whether the system function calculated in Ex-
ercise 7.9 can be realized as combinatorial circuit. If that is possible, then
calculate the logic function y = f(x). Practical tasks:

1 Load the final TVL system of Exercise 7.9. This TVL system includes
the system function F (x, y) as object 4.

2 Prepare a TVL for y = 1 as object number 5.

3 Verify whether F (x, y) given in object 4 can be solved with regard to y.

4 Verify whether F (x, y) given in object 4 can be solved with regard to y
uniquely.

5 Calculate the logic function y = f(x) that must be realized in the
combinatorial circuit and show the result.

Basically it is possible to realize a given behavior by several struc-
tures of combinatorial circuits. The most explored basic architecture is
the disjunctive form of a logic function which can be mapped on a two-
level combinatorial circuit. A minimal circuit structure requires prime
conjunctions in the disjunctive form. The calculation of all prime con-
junctions is a NP-complete task. This task can be simplified if a sufficient
number of prime conjunctions, but not all of them are calculated.

A simple method to find prime conjunctions was introduced in [18],
page 295. A variable can be removed from a conjunction if this changed
conjunction is covered completely by the function. Starting with a min-
imized TVL in ODA form instead of a BVL simplifies this task because
several variables of the conjunctions have been removed in a ternary
vector already.

The given conjunction of a function can be restricted to prime con-
junctions using a PRP that must be applied repeatedly. The results of
such a PRP are completely visible in the window Spaces/Objects in the
XBOOLE Monitor and a value 0 in the column Rows indicates quickly
which omissions of variables are allowed.
Exercise 7.17 (Prime Conjunctions of a Logic Function). Create all
prime conjunctions of the function of Fig. 7.4 b) on page 172 calculated in
Exercise 7.16 that can be built by restriction of the given ternary vectors.
Collect each found prime conjunction only once. Practical tasks:

1 Load the final TVL system of Exercise 7.16.

2 Prepare a PRP that allows to check whether one of the variables can be
removed from a conjunction.

3. Design 147

3 Create prime conjunctions of the conjunction 1 in Fig. 7.4 b).

4 Create prime conjunctions of the conjunction 2 in Fig. 7.4 b).

5 Create prime conjunctions of the conjunction 3 in Fig. 7.4 b).

6 Create prime conjunctions of the conjunction 4 in Fig. 7.4 b).

7 Create prime conjunctions of the conjunction 5 in Fig. 7.4 b).

8 Create prime conjunctions of the conjunction 6 in Fig. 7.4 b).

9 Create prime conjunctions of the conjunction 7 in Fig. 7.4 b).

10 Create prime conjunctions of the conjunction 8 in Fig. 7.4 b).

11 Create prime conjunctions of the conjunction 9 in Fig. 7.4 b).

12 Create prime conjunctions of the conjunction 10 in Fig. 7.4 b).

13 Show all found prime conjunctions.

The simple method applied in Exercise 7.17 finds several, but in gen-
eral not all prime conjunction of a function. Therefore their completeness
should be studied.
Exercise 7.18 (Completeness of the Simple Set of Prime Conjunctions).
Verify whether the 8 prime conjunctions calculated in Exercise 7.17, see
Fig. 7.4 c), cover the function of Fig. 7.4 b) and whether all these prime
conjunctions are necessary to cover this function. Practical tasks:

1 Substantiate why a disjunctive form of the 8 prime conjunctions of
Fig. 7.4 c) must cover the function of Fig. 7.4 b) completely.

2 Load the final TVL system of Exercise 7.17.

3 Verify that the disjunctive form of the 8 prime conjunctions of
Fig. 7.4 c) (object 15) covers the function of Fig. 7.4 b) (object 11).

4 Prepare a PRP that allows to check whether one of these 8 prime con-
junctions can be removed without loss of the cover of the function of
Fig. 7.4 b).

5 Verify that the 8 prime conjunctions of Fig. 7.4 c) describe a minimal
disjunctive form of the function of Fig. 7.4 b).

The minimal disjunctive form of Fig. 7.4 c) on page 172 requires 8
prime conjunctions. That is one prime conjunction less than the given
circuit in Fig. 7.1 on page 136 that realizes the same function. In Ex-
ercise 7.17 only a subset of all prime conjunctions was calculated. The

148 7 COMBINATORIAL CIRCUITS

question arises whether there is a shorter disjunctive form of the func-
tion that uses any other prime conjunction. All prime conjunctions can
be found using the consensus law, see [18] page 17. If exactly one vari-
able appears in one conjunction negated and in a second conjunction
not negated, a new conjunction that does not include this variable but
all other variables of both conjunctions, can be added without change
of the function. Such new conjunctions can be taken in order to create
new prime conjunctions.
Exercise 7.19 (Additional Prime Conjunctions Based on the Consensus
Law). Extend the set of prime conjunctions of Fig. 7.4 c) based on the
consensus law. Take for this search all combinations of the given 8 prime
conjunctions into account. Only such consensus conjunctions that cannot
be absorbed by one of the known conjunctions must be taken as basis to
check for new prime conjunctions. Such a check can be done using the PRP
of Exercise 7.17 Task 2.

1 Load the final TVL system of Exercise 7.17.

2 Extend the set of prime conjunctions of Fig. 7.4 c) by prime conjunc-
tions based one such consensus conjunctions created by removing the
variable x1.

3 Extend the set of prime conjunctions of Fig. 7.4 c) by prime conjunc-
tions based one such consensus conjunctions created by removing the
variable x2.

4 Extend the set of prime conjunctions of Fig. 7.4 c) by prime conjunc-
tions based one such consensus conjunctions created by removing the
variable x3.

5 Extend the set of prime conjunctions of Fig. 7.4 c) by prime conjunc-
tions based one such consensus conjunctions created by removing the
variable x4.

6 Extend the set of prime conjunctions of Fig. 7.4 c) by prime conjunc-
tions based one such consensus conjunctions created by removing the
variable x5.

7 Extend the set of prime conjunctions of Fig. 7.4 c) by prime conjunc-
tions based one such consensus conjunctions created by removing the
variable x6.

8 Show all found prime conjunctions.

The six new prime conjunctions can be the source of new consensus
conjunctions as the basis for further prime conjunctions. The check for

3. Design 149

additional consensus conjunctions must be executed between the six new
prime conjunctions and all the other prime conjunctions. It is not neces-
sary to repeat this procedure for pairs of conjunctions that were already
analyzed.
Exercise 7.20 (Complete Check for Additional Prime Conjunctions
Based on the Consensus Law). Check based on the result of Exercise 7.19
whether there are additional prime conjunctions and add them, if found, to
the set of prime conjunctions. This check can be restricted such that only
the 6 prime conjunctions created in Exercise 7.19 must be taken as first
conjunctions in pairs of conjunctions in the consensus law. Practical tasks:

1 Load the final TVL system of Exercise 7.19.

2 Execute this task for the prime conjunctions in rows 9 . . . 14 of
Fig. 7.7 a) and consensus conjunctions with regard to the variable x1.

3 Execute this task for the prime conjunctions in rows 9 . . . 14 of
Fig. 7.7 a) and consensus conjunctions with regard to the variable x2.

4 Execute this task for the prime conjunctions in rows 9 . . . 14 of
Fig. 7.7 a) and consensus conjunctions with regard to the variable x3.

5 Execute this task for the prime conjunctions in rows 9 . . . 14 of
Fig. 7.7 a) and consensus conjunctions with regard to the variable x4.

6 Execute this task for the prime conjunctions in rows 9 . . . 14 of
Fig. 7.7 a) and consensus conjunctions with regard to the variable x5.

7 Execute this task for the prime conjunctions in rows 9 . . . 14 of
Fig. 7.7 a) and consensus conjunctions with regard to the variable x6.

8 Show all found prime conjunctions.

Knowing all prime conjunctions it is required to find minimal subsets
of prime conjunctions that cover the associated function completely. This
search can be simplified be means of the essential prime conjunctions
which must be inherent parts of each of these subsets. Using formula
(7.79) of [18] on page 299 it can be checked whether a prime conjunction
is an essential prime conjunction.
Exercise 7.21 (Essential Prime Conjunctions). Detect all essential prime
conjunctions based on the set of all prime conjunctions given in Fig. 7.7 a).
Practical tasks:

1 Load the final TVL system of Exercise 7.20.

2 Prepare a PRP that finds all essential prime conjunctions out of the set
of all 14 prime conjunctions given as object number 15.

150 7 COMBINATORIAL CIRCUITS

3 Apply the PRP of Task 2 and enumerate the found essential prime con-
junctions.

4 Which cubes of the function f(x) given in Fig. 7.4 b) on page 172 are
covered by the found essential prime conjunctions only.

Generally there are several minimal disjunctive forms where no prime
conjunction can be removed from the expression without changing the
function. All minimal disjunctive forms can be found using the cover
function covf (p), see [18], page 297. The cover function is created in a
conjunctive form which must be transformed into a simplified disjunc-
tive form. The function of Fig. 7.4 b) covers 36 cubes, therefore the cover
function consists of 36 disjunctions. Their transformation into disjunc-
tive form is a time-consuming and error-prone task.

The solution of this task can be supported by the XBOOLE monitor.
The cover function covf (p) can be created quickly and concisely using
a TVL in disjunctive form where 1 and – are the only elements. Using
negation according to DE MORGAN (NDM) and a complement (CPL),
an orthogonal disjunctive form of covf (p) can be created by XBOOLE.
A following OBBC operation minimizes the number of disjunctions. For
orthogonality reasons 0 values appear in the result. Such a 0 values
means that the associated prime conjunction is not part of the mini-
mal disjunctive form. Because a – has the same meaning in the cover
function, all 0 values can be substituted by – values using the change
elements operation (CEL). Remaining absorptions can be eliminated by
the operation ‘delete ternary vector’ (DTV).
Exercise 7.22 (All Minimal Disjunctive Forms). Create the sets of all
minimal disjunctive forms based on the set of all prime conjunctions given
in Fig. 7.7 a) for the function given in Fig. 7.4 b). Evaluate these sets
with regard to the number of required prime conjunctions. Enumerate the
shortest minimal disjunctive forms. Practical tasks:

1 Create a Boolean space for the cover function covf (p).

2 Create a TVL in K-form having the columns of the variables p1 . . . p14.
Add rows to this TVL such that the 1 marks usable prime conjunctions for
a function cube and fill the remaining positions with dashes −. In order
to do this compare systematically the ternary vectors of the function
given in Fig. 7.4 b) on page 172 with the prime conjunctions given in
Fig. 7.7 a) on page 177 for allowed covers. Equal rows can be removed
immediately.

3 Transform the TVL created in K-form into a minimized TVL in D-form
as described above. Remove all such rows that can be absorbed by any
other row.

3. Design 151

4 Each row of the minimized cover function in D-form represents a minimal
disjunctive form of the basic function. Evaluate the found sets with regard
to the number of required prime conjunctions.

5 Create and show TVLs of the shortest minimal disjunctive forms.

The final design step is the mapping of the found expression to avail-
able gates. Generally it is possible to map the minimal disjunctive forms
of the function directly to a PLA. Other basic structures are more re-
strictive. Look-up tables (LUT) inside of configurable logic blocks (CLB)
of an FPGA allow typically four inputs. The fastest gates even restrict
to two inputs. Applying the distributive and other laws of logic func-
tions, the minimal disjunctive forms of a function can change such that
the technological restrictions hold and certain gates are reused several
times. In the following we assume that only NOT-gates and AND-, OR-
and EXOR-gates of two inputs are available in a multiple level circuit
structure.
Exercise 7.23 (Technology Mapping). All minimal disjunctive forms were
calculated in Exercise 7.22 based on the function that is given by the circuit
of Fig. 7.1. Does this circuit realize a minimal disjunctive form, or is it
possible to simplify this circuit? Create a circuit structure for one of the
shortest minimal disjunctive forms calculated in Exercise 7.22. Compare both
the required numbers of gates and the depths of these circuits. Practical
tasks:

1 Compare the circuit of Fig. 7.1 with the set of all prime conjunctions
in Fig. 7.7 a) in order to verify whether the circuit realizes one of the
minimal disjunctive forms enumerated in Fig. 7.8 b).

2 How the circuit of Fig. 7.1 must change in order to realize one of the
minimal disjunctive forms?

3 Apply the distributive law to one of the shortest minimal disjunctive
forms calculated in Exercise 7.22 such that it can be realized by using
NOT gates, and AND-, OR- and EXOR-gates of two inputs only. Draw
the found circuit.

4 Compare the required number of gates and the depths of the three dif-
ferent circuits of the same function used in this exercise.

The results of Exercise 7.23 have shown that the effort for the calcula-
tion of an exact minimal disjunctive form leads after technology mapping
to a multiple-level circuit to a very small improvement only. Alterna-
tively the decomposition approach can be used. The bi-decomposition
can be checked with regard to the OR-, AND- and EXOR-operation for

152 7 COMBINATORIAL CIRCUITS

logic functions that are completely or incompletely specified. In the next
exercises the complete design of the same logic function will be executed
step by step.
Exercise 7.24 (Strong Elementary Bi-Decomposition of the Completely
Specified Function y = f(x)). Check for each pair of variables whether a
bi-decomposition with regard to the OR-, AND- and EXOR-operation exists
for the function of Fig. 7.1. Practical tasks:

1 Load the final TVL system of Exercise 7.9. This TVL system includes
the list of phases F (x, y) as object number 4. Calculate the function
f(x). Store this TVL system as e73dec1.sdt for later use.

2 Prepare a PRP that checks for each pair of the six variables based on
(7.86) in [18] whether an OR-bi-decomposition exists.

3 Prepare a PRP that checks for each pair of the six variables based on
(7.90) in [18] whether an AND-bi-decomposition exists.

4 Prepare a PRP that checks for each pair of the six variables based on
(7.93) in [18] whether an EXOR-bi-decomposition exists.

5 Are there any OR-bi-decompositions?

6 Are there any AND-bi-decompositions?

7 Are there any EXOR-bi-decompositions?

If more than one pair for the same type of bi-decomposition exists,
it is possible that such a pair of variables can be extended to a pair of
sets of variables. A complete bi-decomposition is found when no further
variables can be added to the decomposition sets of variables without
loss of the decomposition property. Complete bi-decompositions simplify
result functions of the decomposition most strongly.
Exercise 7.25 (Complete EXOR-Bi-Decomposition). Check whether an
extended complete EXOR-bi-decomposition based on the two pairs of vari-
ables found in Exercise 7.24 exists. Calculate the decomposition functions
of the complete EXOR-bi-decomposition. Practical tasks:

1 Load the TVL system e73dec1.sdt of Exercise 7.24.

2 In Exercise 7.24 the allowed pairs of variables (x1, x5) and (x1, x6) for
an EXOR-bi-decomposition were found. Check based on (7.94) of [18]
whether there is an EXOR-bi-decomposition of the function in object 7
with regard to a = x1 and xb = (x5, x6).

3. Design 153

3 Calculate the decomposition function g1 based on (7.95) of [18] and h1

based on (7.97) of [18] and show Karnaugh-maps of these decomposition
functions.

4 Verify the calculated EXOR-bi-decomposition.

5 Remove the intermediate results and store the TVL system as
e73dec2.sdt for later use.

As next the simpler function g1 of Fig. 7.10 a) on page 182 have to
be decomposed. The check for all three types of strong bi-decomposition
can be executed similarly to Exercise 7.24. Due to the reduced number
of variables the PRP for the check can be simplified.
Exercise 7.26 (Strong Elementary Bi-Decomposition of the Completely
Specified Function g1(x)). Check for each pair of variables whether for the
function g1(x) of Fig. 7.10 a) on page 182 exists a bi-decomposition with
regard to the OR-, AND- and EXOR-operation. Practical tasks:

1 Load the TVL system e73dec2.sdt of Exercise 7.25. This TVL system
includes the function g1(x) as object number 10. Copy for universal use
in the PRPs the function g1(x) as object number 30 and create their
complement as object number 31.

2 Prepare a PRP that checks for each pair of the four variables based on
(7.86) in [18] whether an OR-bi-decomposition exists.

3 Prepare a PRP that checks for each pair of the four variables based on
(7.90) in [18] whether an AND-bi-decomposition exists.

4 Prepare a PRP that checks for each pair of the four variables based on
(7.93) in [18] whether an EXOR-bi-decomposition exists.

5 Are there any strong OR-bi-decompositions?

6 Are there any strong AND-bi-decompositions?

7 Are there any strong EXOR-bi-decompositions?

Exercise 7.26 confirms that a bi-decomposition with regard to a se-
lected pair of variables is a property that characterizes the given function.
There are logic functions which do not have any strong bi-decomposi-
tions. Theorem 7.12 of [18] describes the completeness of the bi-decom-
position such that either an EXOR-bi-decomposition or at least one of
the weak bi-decompositions with regard to an OR- or an AND-operation
exists. If a weak bi-decomposition exists, additional don’t-cares extend
the function to an incompletely specified function (ISF) or, if given, an

154 7 COMBINATORIAL CIRCUITS

ISF itself. The characteristic function set of an extended ISF includes a
set with more functions which can be used in the following decomposi-
tion.

Generally it is possible to find and use a weak bi-decomposition with
respect of a set of variables. The larger the number of variables in such
a set of variables, the larger is typically the depth of the circuit. Due
to this observation in the next Exercise weak bi-decompositions with
respect to single variables are explored.
Exercise 7.27 (Weak OR-Bi-Decomposition of the Completely Spec-
ified Function g1(x)). Check for each variable whether for the function
g1(x) of Fig. 7.10 a) on page 182 exists a weak bi-decomposition with re-
gard to the OR- and AND-operation. If possible, create a ISF of g2. Practical
tasks:

1 Load the TVL system e73dec2.sdt of Exercise 7.25. This TVL system
includes the function g1(x) as object number 10.

2 Prepare a PRP that checks for each of the 4 variables based on (7.122)
in [18] whether a weak OR-bi-decomposition exists.

3 Prepare a PRP that checks for each of the 4 variables based on (7.127)
in [18] whether a weak AND-bi-decomposition exists.

4 Are there any weak OR-bi-decompositions?

5 Are there any weak AND-bi-decompositions?

6 Calculate the mark function g2q as object 30 and g2r as object number
31 using formulas (7.123) and (7.124) in [18] for the existing weak OR-
bi-decomposition with regard to x1. Show the Karnaugh-maps of the
calculated mark functions.

7 Remove the intermediate results and store the TVL system as
e73dec3.sdt for later use.

The extension of the function g1(x) to an incompletely specified func-
tion with the mark functions g2q and g2r as the result of a weak OR-
bi-decomposition may allow strong bi-decompositions again. All func-
tions of the function set specified by g2q and g2r can be checked for bi-
decompositions using the formulas for incompletely specified functions
simultaneously. The comparison of the formulas (7.86) and (7.99) of
[18] which allow to check completely or incompletely specified functions
for OR-bi-decompositions shows that f is replaced by fq and f by fr.
The same observation will be found comparing the formulas (7.90) and

3. Design 155

(7.106) of [18] which allow to check completely or incompletely speci-
fied functions for AND-bi-decompositions, respectively. For that reason
the PRPs of Exercise 7.26 that check the AND- or OR-bi-decomposition
with respect to 4 variables can be reused for an incompletely specified
function.
Exercise 7.28 (Elementary Bi-Decomposition of the Incompletely Spec-
ified Function 〈g2q(x), g2r(x)〉). Check for each pair of variables whether
for the incompletely specified function with the mark function g2q(x) and
g2r(x) calculated in Task 6 of Exercise 7.27 a bi-decomposition with regard
to the OR-, AND- and EXOR-operation exists. Practical tasks:

1 Load the TVL system e73dec3.sdt of Exercise 7.27. This TVL system
includes the function g2q(x) as object number 30 and g2r(x) as object
number 31.

2 Prepare a PRP that checks for each pair of the 4 variables based on
(7.112), (7.113), and (7.114) in [18] whether an EXOR-bi-decomposition
of the incompletely specified function exists.

3 Are there any strong OR-bi-decompositions? Use the PRP of Task 2 of
Exercise 7.26.

4 Are there any strong AND-bi-decompositions? Use the PRP of Task 3
of Exercise 7.26.

5 Are there any strong EXOR-bi-decompositions?

In the case that more than one pair for the same type of bi-decompo-
sition for an incompletely specified function exists, it is possible that
such a pair of variables can be extended to a pair of sets of variables. If
an elementary bi-decomposition with regard to a pair of variables does
not exist, the extension of this pair of variables by other variables does
not lead to an allowed bi-decomposition of the same type. This condition
helps to restrict the search space for complete bi-decompositions.
Exercise 7.29 (Complete Bi-Decomposition of the Incompletely Spec-
ified Function 〈g2q(x), g2r(x)〉). Check, based on the allowed pairs of vari-
ables found for all types of bi-decompositions in Exercise 7.24, whether
extended complete bi-decompositions exist for the incompletely specified
function with the mark function g2q(x) and g2r(x). Calculate the decompo-
sition functions of a complete bi-decomposition having the most variables
in their decomposition sets. Practical tasks:

1 Load the TVL system e73dec3.sdt of Exercise 7.27. This TVL system
includes the function g2q(x) as object number 30 and g2r(x) as object
number 31.

156 7 COMBINATORIAL CIRCUITS

2 Prepare a PRP that checks whether a one-to-two OR-bi-decomposition
of the given ISF based on the known elementary OR-bi-decompositions
exist.

3 Prepare a PRP that checks whether a one-to-two AND-bi-decomposition
of the given ISF based on the known elementary AND-bi-decompositions
exists.

4 Prepare a PRP that checks whether a one-to-two EXOR-bi-decomposi-
tion of the given ISF based on the known elementary EXOR-bi-decom-
positions exists.

5 Are there one-to-two OR-bi-decompositions?

6 Are there one-to-two AND-bi-decompositions?

7 Are there one-to-two EXOR-bi-decompositions?

8 Prepare a PRP that checks whether a two-to-two AND-bi-decomposition
of the given ISF based on the known elementary AND-bi-decompositions
exists.

9 Are there two-to-two AND-bi-decompositions?

10 Prepare a PRP that checks whether a one-to-three AND-bi-decomposi-
tion of the given ISF based on the known elementary AND-bi-decompo-
sitions exists.

11 Are there one-to-three AND-bi-decompositions?

12 Load the TVL system e73dec3.sdt of Exercise 7.27 in order to remove
the intermediate results.

13 Calculate the mark function g3q(x) as object 32 and g3r(x) as object
number 33 using the formulas (7.107) and (7.108) in [18] for the existing
AND-bi-decomposition with regard to (x1, [x3, x4]). Select the function
g3(x1, x2) to be realized in the multilevel circuit and store it as object
13. Show the Karnaugh-maps of the calculated mark functions and the
selected function.

14 Calculate the mark functions h3q(x) as object 34 and h3r(x) as object
number 35 using the formulas (7.109) and (7.110) in [18] for the existing
AND-bi-decomposition with regard to (x1, [x3, x4]). Show the Karnaugh-
maps of the calculated mark functions.

15 Store TVL system as e73dec4.sdt for later use.

3. Design 157

The characteristic function set of h3(x) includes four functions. All
of them depend on three variables. If any strong bi-decomposition for
one of these functions exists, both decomposition functions depend on
two variables only. Such functions can be realized by two input gates
such that the decomposition terminates. The required PRPs to check
for bi-decomposition are similar and simpler than the PRPs created in
the previous Exercises. Thus, the change of stored PRPs in an editor
can save some time to solve the following Exercise.
Exercise 7.30 (Complete Bi-Decomposition of the Incompletely Spec-
ified Function 〈h3q(x), h3r(x)〉). Check first for each pair of variables
whether for the incompletely specified function with the mark functions
h3q(x) and h3r(x) calculated in Task 14 of Exercise 7.29 exists a bi-decompo-
sition with regard to the OR-, AND- and EXOR-operation. Extend the
found elementary bi-decompositions to complete bi-decompositions. Select
the best existing bi-decomposition and calculate the decomposition func-
tions. Practical tasks:

1 Load the TVL system e73dec4.sdt of Exercise 7.29. This TVL system
includes the function h3q(x) as object number 34 and h3r(x) as object
number 35.

2 Prepare a PRP that checks for each pair of the three variables based on
(7.99) in [18] whether an OR-bi-decomposition exists.

3 Prepare a PRP that checks for each pair of the three variables based on
(7.106) in [18] whether an AND-bi-decomposition exists.

4 Prepare a PRP that checks for each pair of the three variables based on
(7.112), (7.113), and (7.114) in [18] whether an EXOR-bi-decomposition
exists.

5 Are there strong one-to-one OR-bi-decompositions?

6 Are there strong one-to-one AND-bi-decompositions?

7 Are there strong one-to-one EXOR-bi-decompositions?

8 Are there strong one-to-two OR-bi-decompositions?

9 Are there strong one-to-two AND-bi-decompositions?

10 Are there strong one-to-two EXOR-bi-decompositions?

11 Load the TVL system e73dec4.sdt of Exercise 7.29 in order to remove
the intermediate results.

158 7 COMBINATORIAL CIRCUITS

12 Calculate the function g4(x) of the existing EXOR-bi-decomposition
based on (7.115) in [18] as object 15.

13 Calculate the mark function h4q(x) as object 36 and h4r(x) as object
number 37 using the formulas (7.116) and (7.117) in [18] for the ex-
isting EXOR-bi-decomposition with regard to (x2, [x3, x4]). Show the
Karnaugh-maps of the calculated mark functions.

14 Select the function h4(x3, x4) to be realized in the multilevel circuit and
store it as object 15. Show the Karnaugh-map of the selected function
h4(x3, x4).

15 Remove the intermediated TVL and store for later use the TVL system
as e73dec5.sdt.

The design of a multilevel circuit by means of the bi-decomposition is
organized as a recursive procedure. When both decomposition functions
of a bi-decomposition are chosen from the allowed sets, the function re-
alized by the decomposition gate can be calculated. In several cases such
a g-function is needed to calculate the required incompletely specified
h-function. Found gates which are controlled by input variables directly
initialize the calculation process of the realized functions.
Exercise 7.31 (Calculate the Realized Functions h3(x), g2(x), and the
Incompletely Specified Function 〈h2q(x), h2r(x)〉 That Must Be Decom-
posed). Calculate the mark functions h2q(x), h2r(x) of the weak OR-bi-
decomposition selected in Exercise 7.27. This calculation requires first the
output function of the EXOR-bi-decomposition selected in Exercise 7.30
and secondly the output function of the AND-bi-decomposition selected in
Exercise 7.29. Show the Karnaugh-maps of the realized functions h3(x),
g2(x) and the mark functions h2q(x), h2r(x) of the next decomposition
task. Practical tasks:

1 Load the TVL system e73dec5.sdt of Exercise 7.30. This TVL system
includes the function g4(x) as object number 15, h4(x) as object number
16, g3(x) as object number 13, and g1(x) as object number 10.

2 Calculate h3(x) as object number 14. This function is realized by an
EXOR-gate controlled by g4(x) and h4(x). Show the Karnaugh-map of
h3(x).

3 Calculate g2(x) as object number 12. This function is realized by an
AND-gate controlled by g3(x) and h3(x). Show the Karnaugh-map of
g2(x).

4 Calculate the mark functions h2q(x), h2r(x) of the weak OR-bi-decom-
position using the formulas (7.125) and (7.126) of [18] as objects 38

3. Design 159

and 39. Remember that the weak OR-bi-decomposition was created for
the completely specified function g1(x). Show the Karnaugh-maps of the
calculated mark functions.

5 Remove the intermediated TVL and store for later use the TVL system
as e73dec6.sdt.

The comparison of the mark functions h2q(x) and h2r(x) in
Fig. 7.14 a) and b) on page 187 reveals that only the function h2(x) =
h2q(x) is allowed. Thus the formulas of a completely specified function
can be applied for the bi-decomposition, and the known function h2r(x)
can be taken as complement of the function to be decomposed.
Exercise 7.32 (Complete Bi-Decomposition of h2(x)). Execute the bi-
decomposition of the completely specified h2(x) = h2q(x) which depends
on the variables (x2, x3, x4) and verify the result. Practical tasks:

1 Load the TVL system e73dec6.sdt of Exercise 7.31. This TVL system
includes the function h2q(x) as object number 38, h2r(x) = h2q(x)
as object number 39, g3(x) as object number 13, and g1(x) as object
number 10.

2 Prepare a PRP that checks for each pair of the three variables based on
(7.86) in [18] whether an OR-bi-decomposition exists.

3 Prepare a PRP that checks for each pair of the three variables based on
(7.90) in [18] whether an AND-bi-decomposition exists.

4 Prepare a PRP that checks for each pair of the three variables based on
(7.93) in [18] whether an EXOR-bi-decomposition exists.

5 Are there strong one-to-one OR-bi-decompositions?

6 Are there strong one-to-one AND-bi-decompositions?

7 Are there strong one-to-one EXOR-bi-decompositions?

8 Are there strong one-to-two bi-decompositions?

9 Calculate the function g5 of the existing disjoint AND-bi-decomposition
with regard to (x2, [x3, x4]) based on (7.91) in [18] as object 18.

10 Calculate the function h5 of the existing disjoint AND-bi-decomposition
with regard to (x2, [x3, x4]) based on (7.92) in [18] as object 19.

11 Calculate the function h2(x2, x3, x4) to be realized in the multilevel cir-
cuit and store it as object 17. Show the Karnaugh-map of the selected
function h2(x2, x3, x4).

160 7 COMBINATORIAL CIRCUITS

12 Remove the intermediate TVL and store for later use the TVL system
as e73dec7.sdt.

In order to design the circuit structure of the function y = f(x) of
Fig. 7.4 completely, the decomposition of the function h1(x) shown in
Fig. 7.10 b) on page 182 still remains. A programmed procedure solves
this task as executed in the previous exercises by checking for one-to-one
bi-decompositions followed by possible extensions of found bi-decompo-
sitions. The Karnaugh-map of the function h1(x) in Fig. 7.10 b) shows
that the three function values appear in the line selected by x5 = 1 and
x6 = 1. This observation indicates the existence of a disjoint AND-bi-
decomposition with regard to ([x2, x3, x4], [x5, x6]) which simplifies the
next calculations.
Exercise 7.33 (Complete Bi-Decomposition of h1(x)). Verify whether an
AND-bi-decomposition h1(x) shown in Fig. 7.10 b) with regard to
([x2, x3, x4], [x5, x6]) exists and calculate allowed decomposition functions.
xPractical tasks:

1 Load the TVL system e73dec7.sdt of Exercise 7.32. This TVL system
includes the function h1(x) as object number 11.

2 Check by means of (7.90) in [18] whether an AND-bi-decomposition of
h1(x) with regard to ([x2, x3, x4], [x5, x6]) exists.

3 Calculate the function g6 of the existing disjoint AND-bi-decomposition
with regard to ([x2, x3, x4], [x5, x6]) based on (7.91) in [18] as object 20.

4 Calculate the function h6 of the existing disjoint AND-bi-decomposition
with regard to ([x2, x3, x4], [x5, x6]) based on (7.92) in [18] as object 21.

5 Verify the calculated decomposition.

6 Remove the intermediated TVLs and store for later use the TVL system
as e73dec8.sdt.

If a bi-decomposition for the function h6(x) exists, the whole design
procedure terminates.
Exercise 7.34 (Complete Bi-Decomposition of h6(x)). Check first for
each pair of variables whether a bi-decomposition exists with regard to
the OR-, AND- and EXOR-operation for the function h6(x). Extend the
found elementary bi-decompositions to complete bi-decompositions. Select
the best existing bi-decomposition and calculate the decomposition func-
tions. Practical tasks:

1 Load the TVL system e73dec8.sdt of Exercise 7.33. This TVL system
includes the function h6(x) as object number 21.

3. Design 161

2 Prepare a PRP that checks for each pair of the three variables based on
(7.86) in [18] whether an OR-bi-decomposition exists.

3 Prepare a PRP that checks for each pair of the three variables based on
(7.90) in [18] whether an AND-bi-decomposition exists.

4 Prepare a PRP that checks for each pair of the three variables based on
(7.93) in [18] whether an EXOR-bi-decomposition exists.

5 Are there strong one-to-one OR-bi-decompositions?

6 Are there strong one-to-one AND-bi-decompositions?

7 Are there strong one-to-one EXOR-bi-decompositions?

8 Are there strong one-to-two bi-decompositions?

9 Calculate the function g7 of the existing AND-bi-decomposition with re-
gard to (x2, x3) based on (7.91) in [18] as object 22. Show the Karnaugh-
map of the calculated function g7(x2, x4).

10 Calculate the function h7 of the existing AND-bi-decomposition with re-
gard to (x2, x3) based on (7.92) in [18] as object 23. Show the Karnaugh-
map of the calculated function h7(x3, x4).

11 Verify the calculated decomposition.

12 Remove the intermediate TVL and store for later use the TVL system
as e73dec9.sdt.

The function of the circuit of Fig. 7.1 was taken to design a multiple-
level circuit based on the bi-decomposition applied in a recursive pro-
cedure. The detailed results of the bi-decompositions were calculated in
Exercises 7.24 . . . 7.34.
Exercise 7.35 (Technology Mapping and Verification). Draw the circuit
structure calculated by bi-decompositions in Exercises 7.24 . . . 7.34. Verify
whether the decomposition structure realizes the given basic function of
Fig. 7.1. Compare both the required numbers of gates and the depth of the
designed structure with the results of minimal disjunctive forms. Practical
tasks:

1 Load the TVL system e73dec9.sdt of Exercise 7.34. This TVL system
includes the system function F (x, y) as object number 4.

2 Draw the circuit structure calculated by bi-decompositions in Exer-
cises 7.24 . . . 7.34.

162 7 COMBINATORIAL CIRCUITS

3 Verify whether the decomposition structure realizes the given basic func-
tion of Fig. 7.1.

4 Extend the comparison of Task 4 in Exercise 7.23 by the values of the
design using bi-decomposition. Summarize conclusions from this com-
parison.

4. Test
For technical reasons the controllability and observability of combi-

natorial circuits is restricted. Typically it is only possible to control the
inputs and to observe the outputs of the circuit. One strategy to test
the circuit is to verify whether a stuck-at-0 or a stuck-at-1 error exists
on any gate connection. There are several methods to calculate the re-
quired test pattern. One of them is the method of the sensible path. The
advantage of this method is that all stuck-at errors along the selected
sensible path can be excluded if the change of an input value causes the
change of the output value.
Exercise 7.36 (Test Pattern Calculated for a Sensible Path). Calculate
all test patterns for the selected sensible path x2 − g7 − h6 − h1 − y in
the circuit of Fig. 7.16 on page 190 designed in Section 3. using the bi-
decomposition. Practical tasks:

1 Load the TVL system e73dec9.sdt of Exercise 7.34. This TVL system
includes the output function y = f(x) as object 7, and the controlling
functions g1(x) as object 10, g6(x) as object 20, and h7(x) as object
23. Prepare a variable tuple for the independent variable x2 and a TVL
for the function nx4 = x4.

2 Calculate all test patterns for the sensible path x2 − g7 − h6 − h1 − y
using formula (7.144) of [18].

3 Enumerate all stuck-at errors which can be excluded by the calculated
test pattern if correct values appear at the circuit output y.

The disadvantage of the method of the sensible path is that in many
cases no test pattern can be found, although for each gate connection
on the path both stuck-at-0 and stuck-at-1 test patterns exist.
Exercise 7.37 (Restriction of the Sensible Path Method). Calculate all
test patterns for the selected sensible path x2 − g4 − h3 − g2 − g1 − y
in the circuit of Fig. 7.16 on page 190 designed in Section 3. using the
bi-decomposition. Practical tasks:

1 Load the TVL system e73dec9.sdt of Exercise 7.34. This TVL system
includes the output function y = f(x) as object 7, and the controlling

4. Test 163

functions h1(x) as object 11, h2(x) as object 17, g3(x) as object 13,
and h4(x) as object 16. Prepare a variable tuple for the independent
variable x2.

2 Calculate all test patterns for the sensible path x2 − g4 − h3 − g2 − g1 − y
using formula (7.144) of [18].

3 Enumerate all stuck-at errors which can be excluded by the calculated
test patterns if correct values appear at the circuit output y.

Each test pattern can be found by the method of the sensible point.
First the detailed method is applied in order to calculate all test pat-
tern for the connection h3 of the circuit in Fig. 7.16. Remember, the
method of sensible path does not find any test pattern for this connec-
tion.
Exercise 7.38 (Test Pattern Calculated for a Sensible Point Using the
Detailed Method). Calculate all test patterns for the sensible point h3 in
the circuit of Fig. 7.16 on page 190 designed in Section 3. using the bi-
decomposition. Use (7.146) . . . (7.149) of [18] and the equation system of
Exercise 7.35, Task 3 as basis. Practical tasks:

1 Define a Boolean space of 32 variables and assign the variables appearing
in the circuit of Fig. 7.16.

2 Solve the equation system of Exercise 7.35, Task 3 that describes the
required behavior.

3 Modify the equation system of Exercise 7.35, Task 3 in order to get the
observing part of the circuit such that h3 is substituted by s and the
controlling equations are removed. Solve this equation system.

4 Prepare an equation system for the controlling part of the circuit. This
equation system includes the equation with the variables h3, g4 and h4

on the left-hand side. Solve this equation system.

5 Solve the simple equations y = 1, h2 = 1, t = 1 and prepare a VT of the
internal variables of the circuit. These objects are required to calculate
the test pattern.

6 Solve (7.146) of [18] for the sensible point h3 that describes the error
controlling condition.

7 Solve (7.147) of [18] for the sensible point h3 that describes the error
observability condition.

8 Solve (7.148) of [18] for the circuit that allows the error evaluation.

164 7 COMBINATORIAL CIRCUITS

9 Solve (7.149) of [18] for the sensible point h3. The result of this equation
are all existing test patterns for the sensible point h3. How many test
patterns exist?

10 Substantiate why the method of the sensible path does not find any test
pattern for h3.

It is not necessary to handle the controllability and observability sep-
arately. Using the list of error phases FE(x, f, s, t) it is possible to cal-
culate all existing test patterns of a sensible point in a much simpler
way.
Exercise 7.39 (Test Patterns Calculated for a Sensible Point Using the
List of Error Phases). Calculate all test patterns for the sensible point h3

in the circuit of Fig. 7.16 on page 190 designed in Section 3. using the bi-
decomposition. Use (7.150) of [18] and the equation system of Exercise 7.35,
Task 3 as basis. Practical tasks:

1 Define a Boolean space of 32 variables and assign the variables appearing
in the circuit of Fig. 7.16.

2 Solve the equation system of Exercise 7.35, Task 3 that describes the
required behavior.

3 Modify the equation system of Exercise 7.35, Task 3 such that the list
of error phases can be calculated. In order to do this, substitute the
variable h3 appearing on the left-hand side of an equation by t and on
the right-hand side by s, respectively. Solve this equation system.

4 Prepare a VT of the internal variables of the circuit.

5 Calculate the function FE(x, f, s, t) for the sensible point h3 that de-
scribes the list of error phases.

6 Calculate the function FR(x, f) for the sensible point h3 that describes
the list of required phases.

7 Solve (7.150) of [18] for the sensible point h3. The results of this equation
are all existing test patterns for the sensible point h3. Compare these test
patterns with the test patterns calculated in Exercise 7.38.

Assume that the output of a gate controls exactly one input of a
following gate. If an error occurs at this connection, it is not possible
to distinguish between an error at the gate output and the controlled
gate input. In the case that several inputs are controlled by one gate
output, different test patterns may exist for the connected pins of the

4. Test 165

gates. There is a method that allows the calculation of all existing test
patterns for connected pins of a local branch separately.
Exercise 7.40 (Test Pattern Calculated for a Sensible Point of a Local
Branch). Calculate all test patterns for the sensible point nx4 in the circuit
of Fig. 7.16 on page 190 designed in Section 3. using the bi-decomposition.
Use (7.152) . . . (7.156) of [18] and the equation system of Exercise 7.35,
Task 3 as basis. Practical tasks:

1 Define a Boolean space of 32 variables and assign the variables appearing
in the circuit of Fig. 7.16.

2 Modify the equation system of Exercise 7.35, Task 3 such that the NOT-
gate nx4 is described explicitly, and the controlled inputs of nx4 are
labeled by the model variables s1 and s2, respectively. Solve this system
of logic equations.

3 Prepare for the sensible point nx4 both the branch function FB(t, s1, s2)
and the function FT (nx4, t) that describe the controllability condition.

4 Prepare VTs of the internal variables of the circuit, first of all model
variables of the local branch 〈s1, s2, t〉, secondly of each of these variables
separately, and finally of 〈s1, s2〉.

5 Calculate the possible behavior for the local branch of nx4 based on
(7.152) of [18].

6 Calculate the required behavior for the local branch of nx4 based on
(7.154) of [18].

7 Calculate all existing test patterns for the signal source of the local
branch of nx4 based on (7.156) of [18].

8 Calculate all existing test patterns for the signal target s1 on the OR-gate
of the local branch of nx4 based on (7.156) of [18].

9 Calculate all existing test patterns for the signal target s2 on the EXOR-
gate of the local branch of nx4 based on (7.156) of [18].

10 Calculate all these test patterns which can detect errors on the signal
source of the branch nx4, but not on the signal targets s1 and s2, re-
spectively.

11 Calculate all these test patterns which can detect errors on the target s1

of the branch nx4, but not on the associated signal source.

12 Calculate all these test patterns which can detect errors on the target s2

of the branch nx4, but not on the associated signal source.

166 7 COMBINATORIAL CIRCUITS

13 Verify whether there are test patterns which detect errors on both signal
targets of the branch nx4 but not on the signal source.

The result of the bi-decomposition based on the formulas given in
Chap. 7 of [18] is a completely testable circuit. The required test patterns
can be calculated as a byproduct during the design using intermediate
design results.
Exercise 7.41 (Test Pattern for the Path x2 − g4 − h3 − g2 − g1 − y
Based on Bi-Decomposition Results). Calculate all test patterns for the
path x2 −g4 −h3 −g2 −g1 −y in the circuit of Fig. 7.16 on page 190 designed
in Section 3. using the bi-decomposition. Use the equations (7.157) and
(7.158) of [18] and the intermediate design results stored in e7dec9.sdt
created in Exercise 7.34 as basis. Practical tasks:

1 Load the TVL system e73dec9.sdt of Exercise 7.34. This TVL system
includes the solution of y = f(x) as object 4, the function h2r(x) =
maxk

xa
g1r as object 39, and the function g3(x) as object 13. Prepare

the solution of x2 ⊕ t = 1.

2 Calculate the requirements for the test pattern on the given path using
(7.157) and (7.158) of [18].

3 Extend test patterns calculated in the previous task by information about
the expected behavior.

There is a direct relationship between the testability and the realiza-
tion of a minimal disjunctive form. It was found in Exercise 7.23, Task 2
that the input of x5 of the gate g11 is not part of a prime conjunction.
Let us finally calculate all test patterns for this point using the method
of the sensible point that finds all existing test patterns.
Exercise 7.42 (Test Pattern for the Sensible Point of a Redundant
Variable). Calculate all test patterns for the sensible point x5 of the gate
g11 in the circuit of Fig. 7.1 on page 136 and evaluate the result. Use
(7.150) and (7.152) . . . (7.154) of [18] and the equation system created in
Exercise 7.1 as basis. Practical tasks:

1 Modify the equation system created in Exercise 7.1 such that test pat-
terns for the sensible point x5 of the gate g11 can be calculated. Solve
the equation system in an appropriate Boolean space.

2 Prepare the solution of x5 ⊕ t = 1, the degenerate branch function
FB(t, s) and a VT of the internal variables of the circuit.

3 Calculate the possible behavior for the sensible point x5 of the gate g11

based on (7.152) of [18].

5. Solutions 167

4 Calculate the required behavior for the sensible point x5 of the gate g11

based on (7.154) of [18].

5 Calculate all existing test patterns for the sensible point x5 of the gate
g11 based on (7.150) of [18].

6 Evaluate the calculated test patterns with regard to the circuit structure.

5. Solutions
Exercise 7.1.

sbe 1 1
nx1=/x1,
nx2=/x2,
nx3=/x3,
nx4=/x4,
nx5=/x5,
nx6=/x6,

g1=x3&nx4,
g2=nx1&g1,
g3=nx2&x4,
g4=nx1&g3,
g5=x5&x6,
g6=nx1&g5,
g7=x2&nx3,
g8=x4&g7,
g9=x1&nx5,

g10=g7&g9,
g11=x1&x5,
g12=g7&g11,
g13=nx6&g12,
g14=x2&g1,
g15=x2&x4,
g16=g5&g15,
g17=nx2&nx3,
g18=nx4&g17,

g19=g5&g18,
g20=g2+g4,
g21=g6+g8,
g22=g10+g13,
g23=g14+g16,
g24=g20+g21,
g25=g22+g23,
g26=g24+g25,
y=g19+g26.

Exercise 7.2.

tin 1 21
x1 nx1.
01,10.
tin 1 22
x2 nx2.
01,10.
tin 1 23
x3 nx3.
01,10.
tin 1 24
x4 nx4.
01,10.
tin 1 25
x5 nx5.
01,10.
tin 1 26
x6 nx6.
01,10.

tin 1 31
x3 nx4 g1.
111,0-0,100.
tin 1 32
nx1 g1 g2.
111,0-0,100.
tin 1 33
nx2 x4 g3.
111,0-0,100.
tin 1 34
nx1 g3 g4.
111,0-0,100.
tin 1 35
x5 x6 g5.
111,0-0,100.
tin 1 36
nx1 g5 g6.
111,0-0,100.
tin 1 37
x2 nx3 g7.
111,0-0,100.
tin 1 38
x4 g7 g8.
111,0-0,100.
tin 1 39
x1 nx5 g9.
111,0-0,100.

tin 1 40
g7 g9 g10.
111,0-0,100.
tin 1 41
x1 x5 g11.
111,0-0,100.
tin 1 42
g7 g11 g12.
111,0-0,100.
tin 1 43
nx6 g12 g13.
111,0-0,100.
tin 1 44
x2 g1 g14.
111,0-0,100.
tin 1 45
x2 x4 g15.
111,0-0,100.
tin 1 46
g5 g15 g16.
111,0-0,100.
tin 1 47
nx2 nx3 g17.
111,0-0,100.
tin 1 48
nx4 g17 g18.
111,0-0,100.

tin 1 49
g5 g18 g19.
111,0-0,100.
tin 1 50
g2 g4 g20.
000,1-1,011.
tin 1 51
g6 g8 g21.
000,1-1,011.
tin 1 52
g10 g13 g22.
000,1-1,011.
tin 1 53
g14 g16 g23.
000,1-1,011.
tin 1 54
g20 g21 g24.
000,1-1,011.
tin 1 55
g22 g23 g25.
000,1-1,011.
tin 1 56
g24 g25 g26.
000,1-1,011.
tin 1 57
g19 g26 y.
000,1-1,011.

168 7 COMBINATORIAL CIRCUITS

Figure 7.2 Behavior of a completely specified circuit: a) system function
F (x1, x2, x3, x4, x5, x7, y1, y2) that is identical with the list of phases as object 2,
b) function y1(x) as object 11, c) function y2(x) as object 12

Exercise 7.3.
tin 1 1 /d

x1 x2 x3 x4 x5 x6.

0-10--,00-1--,0---11,-101--,110-0-,110-11,-110--,-1-111,-00011.

Exercise 7.4.

1 space 32 1
avar 1
x1 x2 x3 x4 x5 x6 y1 y2.

2 sbe 1 1
y1=((x1&(x2#(/x3+x4))+(x5#x6)+x2&/x3&/x4) #(x1&x3&x4&(/x5#x6)))
+x2&/x3&x4,
y2=(/x1&x5&/x6+x1&x2&/x3+x1&/x3 &(/x2+x4)+/x5&x6&(/x1&/x3+x4))
#/x4&/x5&x6.

3 obbc 1 2
Figure 7.2 a) shows the system function F (x1, x2, x3, x4, x5, x6, y1, y2).

Exercise 7.5.

1 lds e7104.sdt

2 sbe 1 3
y1=1.

sbe 1 4
y2=1.

vtin 1 5
y1 y2.

3 isc 2 3 6
maxk 6 5 11

isc 2 4 8
maxk 8 5 12

4 Figure 7.2 b) and c) show the functions y1(x) and y2(x) as TVLs in ODA-form.
The functions are equal to 1 for the shown input pattern. Because only dashes

5. Solutions 169

appear in the column x2 of the TVL 12, the function y2(x) does not depend on
the variable x2.

Exercise 7.6.

1 space 32 1
avar 1
x1 x2 x3 x4 x5 x6 x7 y.

2 sbe 1 1
((x1&/x2&(x3#x4)&y+x3&/x4&(x5#x6)&/y+/x1&x7&y
+x1&x2&x6&/x7)#/x6)
+(x3#/x4)&x6+x3&/x4&x5+/x1&/x3&x6&/x7+x1&x2&(x3#x4)&x6&x7.

3 sbe 1 2
y=1.

4 mink 1 2 3

5 isc 1 2 4 dif 4 3 4 maxk 4 2 4

6 cpl 2 5 isc 5 1 5 dif 5 3 5 maxk 5 2 5

7 isc 3 4 6 isc 3 5 7 isc 4 5 8
The TVLs 6, 7, and 8 are empty. Thus the mark functions are pairwisely disjoint.
uni 3 4 9 uni 9 5 9 cpl 9 9
The TVL 9 is empty. Hence, the mark functions cover the whole Boolean space.

8 The mark function fϕ(x) possesses 98 function values 1. Hence, it can be chosen
out of the huge amount of 298 functions in the design process.

9 csd 2 4 10 syd 2 5 11 uni 10 11 12 syd 1 12 13
The TVL 13 is empty. Thus the TVL 12 is an identical system function F (x, y)
reconstructed using the mark functions fq(x) and fr(x).

10 syd 2 5 20 uni 20 3 21 syd 1 21 22
The TVL 22 is empty. Thus the TVL 21 is an identical system function F (x, y)
reconstructed using the mark functions fϕ(x) and fr(x).

11 csd 2 4 30 uni 30 3 31 syd 1 31 32
The TVL 32 is empty. Thus the TVL 31 is an identical system function F (x, y)
reconstructed using the mark functions fq(x) and fϕ(x).

Exercise 7.7.

1 26 = 64 phases exist.

2 space 64 1
avar 1
x1 x2 x3 x4 x5 x6 y nx1 nx2 nx3 nx4 nx5 nx6 g1 g2 g3 g4 g5 g6 g7 g8 g9
g10 g11 g12 g13 g14 g15 g16 g17 g18 g19 g20 g21 g22 g23 g24 g25 g26.

3 Execute the PRP prepared in Exercise 7.1. Figure 7.3 shows the calculated global
list of phases.

Exercise 7.8.

1 lds e7201.sdt

170 7 COMBINATORIAL CIRCUITS

Figure 7.3 Global list of phases that describes the behavior of the combinatorial
circuit given in Fig. 7.1

5. Solutions 171

2 Local list of phases in objects 21 . . . 26 for NOT-gates and 31 . . . 57 for the remain-
ing gates.

3 isc 21 22 60
isc 60 23 60
isc 60 24 60
isc 60 25 60
isc 60 26 60
isc 60 31 60
isc 60 32 60
isc 60 33 60

isc 60 34 60
isc 60 35 60
isc 60 36 60
isc 60 37 60
isc 60 38 60
isc 60 39 60
isc 60 40 60
isc 60 41 60

isc 60 42 60
isc 60 43 60
isc 60 44 60
isc 60 45 60
isc 60 46 60
isc 60 47 60
isc 60 48 60
isc 60 49 60

isc 60 50 60
isc 60 51 60
isc 60 52 60
isc 60 53 60
isc 60 54 60
isc 60 55 60
isc 60 56 60
isc 60 57 60

4 The order of phases in the objects 1 and 60 is different. The empty TVL 61 as
result of – syd 1 60 61 – confirms that both TVL include the same phases.

Exercise 7.9.

1 The m-fold maximum with regard to all internal variables solves this task. The
function F (x, y) is equal to 1 if there exists at least one pattern (nx = const ,
g = const) such that F (x, y,nx = const , g = const) is equal to 1.

2 lds e7201.sdt

3 vtin 1 2
nx1 nx2 nx3 nx4 nx5 nx6 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16
g17 g18 g19 g20 g21 g22 g23 g24 g25 g26.

4 There are 64 rows in the TVL calculated by maxk 1 2 3.

5 Figure 7.4 a) shows 64 phases in 19 rows and 7 columns

Exercise 7.10.

1 lds e7201.sdt

2 sbe 1 2
y2=g20, y3=g11, y4=g23.
isc 1 2 3

3 vtin 1 4
x1 x2 x3 x4 x5 x6.
vtin 1 5
nx1 nx2 nx3 nx4 nx5 nx6 g1 g2 g3 g4 g5 g6 g7 g8 g8 g9 g10 g11 g12
g13 g14 g15 g16 g17 g18 g19 g20 g21 g22 g23 g24 g25 g26.
vtin 1 6
y y2 y3 y4.

4 tin 1 10
x1 x2 x3 x4 x5 x6.
100010.

tin 1 11
x1 x2 x3 x4 x5 x6.
011010.

maxk 3 5 7
isc 7 10 12
maxk 12 4 13

isc 7 11 14
maxk 14 4 15

The output signals are uniquely defined by the input signals.
The simulation patterns are:
(x1, x2, x3, x4, x5, x6; y, y2, y3, y4) = (100010; 0010) and
(x1, x2, x3, x4, x5, x6; y, y2, y3, y4) = (011010; 1101).

5 tin 1 20
y y2 y3 y4.
1010.

tin 1 21
y y2 y3 y4.
0101.

isc 7 20 22
maxk 22 6 23

isc 7 21 24
maxk 24 6 25

172 7 COMBINATORIAL CIRCUITS

Figure 7.4 Behavioral descriptions of the combinatorial circuit given in Fig. 7.1:
a) List of phases of the input-output-behavior, b) logic function f(x), and c) prime
conjunctions

The input signals are not uniquely defined by the output signals. There are three
simulation patterns for the first given output pattern:
(x1, x2, x3, x4, x5, x6; y, y2, y3, y4) = (110010; 1010),
(x1, x2, x3, x4, x5, x6; y, y2, y3, y4) = (110110; 1010), and
(x1, x2, x3, x4, x5, x6; y, y2, y3, y4) = (100011; 1010),
but there is no input pattern that creates the second given output pattern.

6 tin 1 30
g1 g5 g7.
010.

tin 1 31
g1 g5 g7.
101.

isc 3 30 32
maxk 32 5 33

isc 3 31 34
maxk 34 5 35

The input and output signals are not uniquely defined by the internal signals.
There are 8 input-output patterns for (g1, g5, y7) = (010),
(x1, x2, x3, x4, x5, x6; y, y2, y3, y4) = (111111; 1011),
(x1, x2, x3, x4, x5, x6; y, y2, y3, y4) = (011111; 1001),
(x1, x2, x3, x4, x5, x6; y, y2, y3, y4) = (000111; 1100),
(x1, x2, x3, x4, x5, x6; y, y2, y3, y4) = (001111; 1100),
(x1, x2, x3, x4, x5, x6; y, y2, y3, y4) = (000011; 1000),
(x1, x2, x3, x4, x5, x6; y, y2, y3, y4) = (100011; 1010),
(x1, x2, x3, x4, x5, x6; y, y2, y3, y4) = (100111; 0010), and
(x1, x2, x3, x4, x5, x6; y, y2, y3, y4) = (101111; 0010),
but no such pattern for (g1, g5, y7) = (101).

Exercise 7.11.

1 lds e7204.sdt

2 24 = 16 output patterns can exist for a circuit with four outputs.

3 maxk 7 4 40
Eight patterns can be seen at the outputs of the given circuit.

5. Solutions 173

Figure 7.5 Output behavior of the combinatorial circuit given in Fig. 7.1 and modified
such that additional outputs are defined by y2 = g20, y3 = g11, y4 = g23: a) all
output patterns of the circuit as object 41, b) don’t-care function fϕ(y, y2, y3, y4) for
a successor circuit as object 42

obbc 40 41
Figure 7.5 a) shows the output patterns (y, y2, y3, y4) of the given circuit.

4 cpl 41 42
Figure 7.5 b) shows the don’t-care function fϕ(y, y2, y3, y4).

Exercise 7.12.

1 lds e7105.sdt

2 derk 20 <x1> 21
derk 20 <x2> 22

derk 20 <x3> 23
derk 20 <x4> 24

derk 20 <x5> 25
derk 20 <x6> 26

3 copy 11 20 Execute the PRP of Task 2. TVL 24 is empty. Hence, the
function y1(x) does not depend on x4.

4 copy 12 20 Execute the PRP of Task 2. TVL 22 is empty. Hence, the
function y2(x) does not depend on x2.

5 maxk 11 <x4> 13
syd 11 13 14

The TVL 14 is empty. Hence, object 13 is an allowed
short representation of the function y1(x).

6 maxk 12 <x2> 15
syd 12 15 16

The TVL 16 is empty. Hence, object 15 is an allowed
short representation of the function y2(x).

Exercise 7.13.

1 lds e7105.sdt

2 maxk 1 5 20
cpl 20 21

The TVL 21 is empty. Thus both functions y1(x) and y2(x)
can be realized as combinatorial circuit.

3 lds e7106.sdt

4 maxk 1 2 40
cpl 40 41

TVL 41 is empty. Thus this system function includes at
least one realizable function y(x).

Exercise 7.14.

1 lds e7105.sdt

2 maxk 1 <y2> 20
mink 20 <y1> 21
maxk 1 <y1> 22
mink 22 <y2> 23

The TVLs 21 and 23 are empty. Thus both functions y1(x)
and y2(x) are uniquely defined.

3 lds e7106.sdt
4 mink 1 2 40 TVL 40 is not empty. Thus a function y(x) can be chosen

out of a lattice of functions.

174 7 COMBINATORIAL CIRCUITS

Exercise 7.15.

1 lds e7106.sdt

2 mink 1 <x1> 41
maxk 41 2 41
cpl 41 41
mink 1 <x2> 42

maxk 42 2 42
cpl 42 42

mink 1 <x3> 43
maxk 43 2 43
cpl 43 43
maxk 1 <x4> 44

maxk 44 2 44
cpl 44 44

mink 1 <x5> 45
maxk 45 2 45
cpl 45 45
mink 1 <x6> 46
maxk 46 2 46
cpl 46 46

mink 1 <x7> 47
maxk 47 2 47
cpl 47 47

TVL 46 is not empty. Hence all functions described by F (x, y) depend on the
variable x6. The TVLs 41 . . . 45 and 47 are empty. Consequently the system
function F (x, y) includes functions which do not depend on at least one of the
variables (x1, x2, x3, x4, x5, x7).

3
max

y
[min

x1

mF (x1,x2, y)] = 1. (7.6)

Function values 1 of F (x1,x2, y) for all patterns of x1 fix either the associated
value of y or allow as part of a don’t-care description the free choice of the y
value. Thus, if formula (7.6) holds, there must be at least one function covered by
F (x1,x2, y) that does not depend on the variables x1.

4 mink 1 <x1 x2 x3 x4 x5 x7> 50 maxk 50 2 50 cpl 50 50
TVL 50 is not empty. Thus there is no function described by F (x1,x2, y) that
depends on x6 only.

5 mink 1 <x1 x2 x3 x4 x5> 51
maxk 51 2 51
cpl 51 51
mink 1 <x1 x2 x3 x4 x7> 52

maxk 52 2 52
cpl 52 52
mink 1 <x1 x2 x3 x5 x7> 53

maxk 53 2 53
cpl 53 53

mink 1 <x1 x2 x4 x5 x7> 54
maxk 54 2 54
cpl 54 54
mink 1 <x1 x3 x4 x5 x7> 55
maxk 55 2 55
cpl 55 55
mink 1 <x2 x3 x4 x5 x7> 56
maxk 56 2 56
cpl 56 56

The TVLs 53 and 54 are empty. Hence, the system function F (x1,x2, y) includes
simple functions that depend on either (x4, x6) or (x3, x6) only.

6
F (x2, y) = min

x1

mF (x1,x2, y) (7.7)

Function values 1 must appear for all patterns of x1 in the system function
F (x1,x2, y) in order to restrict the system function F (x2, y) such that it includes
only functions not depending on the variables x1.

7 mink 1 <x1 x2 x3 x5 x7> 60 mink 1 <x1 x2 x4 x5 x7> 61
The completely specified functions f1(x4, x6) = x4x6 and f2(x3, x6) = x3x6 are
the simplest functions covered by the system function F (x1, x2, x3, x4, x5, x6, x7, y)
each depending on two variables only. Figure 7.6 shows the associated lists of
phases.

Exercise 7.16.

1 lds e7203.sdt

5. Solutions 175

Figure 7.6 Simplest system functions of the characteristic function set represented
by F (x1, x2, x3, x4, x5, x6, x7, y) (7.2) on page 139: a) F (x4, x6, y) as object 60,
b) F (x3, x6, y) as object 61

2 tin 1 5 /oda y. 1.

3 maxk 4 5 6
cpl 6 7

The empty TVL 7 confirms that at least one combinatorial
circuit exists.

4 derk 4 5 8
cpl 8 9

The empty TVL 9 confirms that exactly one combinatorial
circuit exists.

5 isc 4 5 10
maxk 10 5 11

Figure 7.4 b) on page 172 shows the logic function of the
combinatorial circuit given in Fig. 7.1.

Exercise 7.17.

1 lds e7301.sdt

2 maxk 12 <x1> 20
dif 20 11 21
maxk 12 <x2> 20
dif 20 11 22

maxk 12 <x3> 20
dif 20 11 23
maxk 12 <x4> 20
dif 20 11 24

maxk 12 <x5> 20
dif 20 11 25
maxk 12 <x6> 20

dif 20 11 26

3 stv 11 1 12
execute PRP of task 2
removable var.: x5, x6

maxk 12 <x5> 12
execute PRP of task 2

maxk 12 <x6> 15
pc: x1x3x4

4 stv 11 2 12
execute PRP of task 2
removable var.: x6

maxk 12 <x6> 12
con 15 12 15
pc: x1x2x4x5

5 stv 11 3 12
execute PRP of task 2
removable var.: x2, x4

maxk 12 <x2> 12
execute PRP of task 2

maxk 12 <x4> 12
con 15 12 15
pc: x1x5x6

6 stv 11 4 12
execute PRP of task 2
removable var.: x5

maxk 12 <x5> 12
pc: x1x3x4 repeated found

7 stv 11 5 12
execute PRP of task 2
removable var.: x2, x3,
x4

maxk 12 <x2> 12
execute PRP of task 2

maxk 12 <x3> 12
execute PRP of task 2
pc: x1x5x6 repeated
found

8 stv 11 6 12
execute PRP of task 2
removable var.: x1

maxk 12 <x1> 12
con 15 12 15
pc: x2x3x4x5x6

9 stv 11 7 12
execute PRP of task 2

removable var.: not any
con 15 12 15

pc: x1x2x4x6

176 7 COMBINATORIAL CIRCUITS

10 stv 11 8 12
execute PRP of task 2

removable var.: not any
con 15 12 15

pc: x2x3x5x6

11 stv 11 9 12
execute PRP of task 2

removable var.: not any
con 15 12 15

pc: x2x3x4

12 stv 11 10 12
execute PRP of task 2

removable var.: not any
con 15 12 15

pc: x1x2x4

13 The found eight prime conjunctions are shown in Figure 7.4 c) on page 172.

Exercise 7.18.

1 All conjunctions of the function of Fig. 7.4 b) were extended or directly used.

2 lds e7302.sdt

3 orth 15 27 The empty TVL 28 confirms the complete cover.
syd 27 11 28

4 dtv 15 1 29
dif 11 29 31
dtv 15 2 29
dif 11 29 32

dtv 15 3 29
dif 11 29 33
dtv 15 4 29
dif 11 29 34

dtv 15 5 29
dif 11 29 35
dtv 15 6 29
dif 11 29 36

dtv 15 7 29
dif 11 29 37
dtv 15 7 29
dif 11 29 38

5 Not any of the TVLs 31 . . . 38 is empty after the execution of the PRP. Hence, the
eight conjunctions of Fig. 7.4 c) on page 172 describe a minimal disjunctive form.

Exercise 7.19.

1 lds e7302.sdt

2 dco 15 <x1> 30
consensus: p1-p2
stv 30 1 12
stv 30 2 31

isc 12 31 12
execute PRP of
Ex. 7.17 task 2
maxk 12 <x5> 12

con 15 12 15
new p9: x2x3x4

consensus: p1-p5
new pc is equal to p9

3 dco 15 <x2> 30
consensus: p6-p8

absorbed by p3
consensus: p7-p8

new p10: x1x3x4

4 dco 15 <x3> 30
consensus: p1-p4

absorbed by p3
consensus: p6-p7

new p11: x2x4x5x6

5 dco 15 <x4> 30
consensus: p1-p8
new p12: x1x2x3

consensus: p2-p7
new p13: x1x2x3x5 con-
sensus: p4-p8

absorbed by p3
consensus: p5-p7
new p14: x1x2x3x6

6 dco 15 <x5> 30 consensus: p2-p6 absorbed by p9

7 dco 15 <x6> 30 consensus: p5-p6 absorbed by p9

8 The found 6 prime conjunctions are added to the given eight prime conjunctions.
The six new prime conjunctions are shown in rows 9 . . . 14 of Fig. 7.7 a).

Exercise 7.20.

1 lds e7304.sdt

2 dco 15 <x1> 30
consensus: p10-p13
stv 30 10 12
stv 30 13 31

isc 12 31 12
absorbed by p7
consensus: p10-p14

stv 30 10 12
stv 30 14 31
isc 12 31 12
absorbed by p7

5. Solutions 177

Figure 7.7 All prime conjunctions and minimal disjunctive forms of the combinato-
rial circuit given in Fig. 7.1: a) all prime conjunctions, b) first minimal disjunctive
form having eight conjunctions, and c) second minimal disjunctive form having eight
conjunctions

3 dco 15 <x2> 30
consensus: p9-p12

equal to p1
consensus: p11-p12

absorbed by p3

4 dco 15 <x3> 30
consensus: p9-p13
equal to p2

consensus: p9-p14
equal to p5
consensus: p10-p6
absorbed by p3

consensus: p10-p12
equal to p8
consensus: p12-p4
absorbed by p3

5 dco 15 <x4> 30
consensus: p9-p11
equal to p6

consensus: p10-p4
absorbed by p3

consensus: p11-p1
absorbed by p3

6 dco 15 <x5> 30 consensus: p11-p13 absorbed by p7

7 dco 15 <x6> 30 consensus: p11-p14 absorbed by p7

8 There are no additional prime conjunctions. Hence, Fig. 7.7 a) shows the set of
all prime conjunctions of the function shown in Fig. 7.4 b) on page 172.

Exercise 7.21.

1 lds e7305.sdt

2 dtv 15 1 32
dif 11 32 41
dtv 15 2 32
dif 11 32 42
dtv 15 3 32
dif 11 32 43
dtv 15 4 32

dif 11 32 44
dtv 15 5 32
dif 11 32 45
dtv 15 6 32
dif 11 32 46
dtv 15 7 32
dif 11 32 47

dtv 15 8 32
dif 11 32 48
dtv 15 9 32
dif 11 32 49
dtv 15 10 32
dif 11 32 50
dtv 15 11 32

dif 11 32 51
dtv 15 12 32
dif 11 32 52
dtv 15 13 32
dif 11 32 53
dtv 15 14 32
dif 11 32 54

3 There are only two TVLs in the set of solution TVLs 41 . . . 54 which are not
empty. Associated to these TVLs 43 and 44 are the prime conjunctions p3 (row 3)
and p4 (row 4) which are essential prime conjunctions.

178 7 COMBINATORIAL CIRCUITS

4 The TVLs 43 and 44 show the cubes covered by essential prime conjunctions only.
The cube 010011 is covered by p3 only. The cube 100011 is covered by p4 only.

Exercise 7.22.

1 space 32 1

2 The rows in Fig. 7.8 a) are associated with the rows in Fig. 7.4 b) as follows:
1: 1(0), 2: 1(1), 3: 2(0), 4: 2(1), 5: 3(0), 6: 3(1), 7: 4(0-), 8: 4(1-), 9: 5(), 10:
6(), 11: 7(00), 12: 7(01), 13: 7(10), 14: 7(11), 15: 8(00), 16: 8(01), 17: 8(10), 18:
8(11), 19: 9(00-,010), 20: 9(011), 21: 9(100), 22: 9(101), 23: 9(110), 24: 9(111), 25:
10(00-,010), 26: 10(011), 27: 10(10-,110), 28: 10(111), where the elements in an
expression [a: b(c)] have the following meaning: a – row number in this TVL, b –
row in the function, and c – values assigned to dashes in the function.

3 ndm 1 2 cpl 2 3 obbc 3 4 cel 4 4 5 /0 − /11 / − −
row 22 can be absorbed by row 29: dtv 5 22 6
Fig. 7.8 b) shows the cover function in disjunctive form.

4 Figure 7.8 b) shows that there are 28 different minimal disjunctive forms for the
analyzed function. 24 of these forms require 9 prime conjunctions. Two minimal
disjunctive forms, see rows 5 and 25, require even 11 prime conjunctions. There
are two minimal disjunctive forms indicated in rows 7 and 28 that require 8 prime
conjunctions only. The columns of p3 and p4 of the TVL shown in Fig. 7.8 b)
include values 1 only, because the associated conjunctions are essential prime
conjunctions.

5 Fig. 7.7 b) and c) show the shortest minimal disjunctive forms. The expression of
Fig. 7.7 b) was already found by the simple procedure of Exercise 7.17.

copy 15 60
dtv 60 5 60

dtv 60 5 60
dtv 60 5 60

dtv 60 5 60
dtv 60 1 60

dtv 60 1 60

The second shortest minimal disjunctive form of Fig. 7.7 c) includes the essential
prime conjunctions and all six prime conjunctions found additionally using the
consensus law in Exercise 7.19.

Exercise 7.23.

1 The AND-gates that control the tree of OR-gates in Fig. 7.1 directly create the
conjunctions of the realized disjunctive form. The following prime conjunctions of
Fig. 7.7 a) are realized by AND-gates of Fig. 7.1: g2 ⇔ p1, g4 ⇔ p8, g6 ⇔ p3,
g8 ⇔ p7, g10 ⇔ p13, g14 ⇔ p9, g16 ⇔ p11, and g18 ⇔ p4. The AND-gate g13
realizes the conjunction x1x2x3x5, x6 that includes (in comparison to the prime
conjunction p14) the variable x5 additionally. Figure 7.8 b) shows in row 10 that
there is a minimal disjunctive form of p1, p3, p4, p7, p8, p9, p11, p13, and p14.
Because of the additional variable x5 in the conjunction realized by g13 the circuit
of Fig. 7.1 does not realize a minimal disjunctive form.

2 The prime conjunction p14 can be realized by three gates: g7 = x2x3 as given and
again reused, g11 = x1x6 changed for one input, and g12 = g7g11 as given. The
gate g13 can be removed which requires the change g22 = g10 ∨ g12. This changed
circuit realizes the minimal disjunctive form of row 10 in Fig. 7.8 b), requires one
gate less than the basic circuit of Fig. 7.1 and reduces the depth of the circuit by
one level.

5. Solutions 179

Figure 7.8 Cover function covf (p) based on the set of all prime conjunctions given in
Fig. 7.7 a): a) conjunctive form, and b) minimized disjunctive form which indicates
all minimal disjunctive forms

3 Using the distributive and associative laws for the shortest minimal disjunctive
forms of Fig. 7.7 b) such that only operations for two variables occur leads to
formula (7.8),

f(x) = (x1x3)x4

∨ (x1x2) ∧ [x4x5 ∨ x4x6]

∨ (x5x6) ∧ [x1 ∨ ((x2x3)x4) ∨ x2x3]

∨ (x2x3)x4

∨ (x1x2)x4. (7.8)

The OR-operation can be realized by a tree of OR-gates. An EXOR-gate does not
simplify the circuit structure. The created circuit structure is shown in Fig. 7.9.

4 Table 7.1 shows the requested values. It follows that the number of gates could be
reduced by two gates only and the circuits of both explored minimal disjunctive
forms need seven instead of eight levels.

180 7 COMBINATORIAL CIRCUITS

Figure 7.9 Structure of a circuit using AND- and OR-gates restricted to two inputs
that realizes the shortest minimal disjunctive form of Fig. 7.7 b)

5. Solutions 181

Table 7.1 Gates and levels of different circuits for the same function

Circuit # NOT # AND # OR all gates levels

Figure 7.1 6 19 8 33 8
Exercise 7.23 Task 2 6 18 8 32 7
Figure 7.9 6 18 7 31 7

Exercise 7.24.

1 lds e7203.sdt sbe 1 5
y=1.

isc 4 5 6
maxk 6 5 7

sts e73dec1.sdt

2 cpl 7 20
maxk 20 <x1> 21
maxk 20 <x2> 22
isc 7 21 23
isc 23 22 40
maxk 7 <x3> 22
isc 23 22 41
maxk 20 <x4> 22
isc 23 22 42
maxk 20 <x5> 22
isc 23 22 43

maxk 20 <x6> 22
isc 23 22 44
maxk 20 <x2> 21
maxk 20 <x3> 22

isc 7 21 23
isc 23 22 45
maxk 20 <x4> 22

isc 23 22 46
maxk 20 <x5> 22

isc 23 22 47

maxk 20 <x6> 22
isc 23 22 48
maxk 20 <x3> 21
maxk 20 <x4> 22

isc 7 21 23
isc 23 22 49
maxk 20 <x5> 22

isc 23 22 50
maxk 20 <x6> 22

isc 23 22 51

maxk 20 <x4> 21
maxk 20 <x5> 22
isc 7 21 23
isc 23 22 52
maxk 20 <x6> 22
isc 23 22 53
maxk 20 <x5> 21
maxk 20 <x6> 22
isc 7 21 23
isc 23 22 54

3 cpl 7 20
maxk 7 <x1> 21
maxk 7 <x2> 22
isc 20 21 23
isc 23 22 60
maxk 7 <x3> 22
isc 23 22 61
maxk 7 <x4> 22
isc 23 22 62
maxk 7 <x5> 22
isc 23 22 63

maxk 7 <x6> 22
isc 23 22 64
maxk 7 <x2> 21
maxk 7 <x3> 22

isc 20 21 23
isc 23 22 65
maxk 7 <x4> 22

isc 23 22 66
maxk 7 <x5> 22

isc 23 22 67

maxk 7 <x6> 22
isc 23 22 68
maxk 7 <x3> 21
maxk 7 <x4> 22

isc 20 21 23
isc 23 22 69
maxk 7 <x5> 22

isc 23 22 70
maxk 7 <x6> 22

isc 23 22 71

maxk 7 <x4> 21
maxk 7 <x5> 22
isc 20 21 23
isc 23 22 72
maxk 7 <x6> 22
isc 23 22 73
maxk 7 <x5> 21
maxk 7 <x6> 22
isc 20 21 23
isc 23 22 74

4 derk 7 <x1 x2> 80
derk 7 <x1 x3> 81
derk 7 <x1 x4> 82
derk 7 <x1 x5> 83
derk 7 <x1 x6> 84

derk 7 <x2 x3> 85
derk 7 <x2 x4> 86
derk 7 <x2 x5> 87
derk 7 <x2 x6> 88
derk 7 <x3 x4> 89

derk 7 <x3 x5> 90
derk 7 <x3 x6> 91
derk 7 <x4 x5> 92
derk 7 <x4 x6> 93
derk 7 <x5 x6> 94

5 There is no empty object 40 . . . 54. Hence, there is no OR-bi-decomposition for
the function f .

6 There is no empty object 60 . . . 74. Hence, there is no AND-bi-decomposition for
the function f .

7 There are the empty objects 83 and 84. Hence, there are EXOR-bi-decompositions
for the function f for the pairs of variables (x1, x5) and (x1, x6).

182 7 COMBINATORIAL CIRCUITS

Figure 7.10 Results of the EXOR-bi-decomposition of the function in Fig. 7.4 b):
a) g1(x1, x2, x3, x4) as TVL 10, and b) h1(x2, x3, x4, x5, x6) as TVL 11

Exercise 7.25.

1 lds e73dec1.sdt

2 derk 7 <x1> 30 maxk 30 <x5 x6> 31 mink 30 <x5 x6> 32 syd 31 32 33
The empty TVL 33 confirms that an EXOR-bi-decomposition with regard to
(x1, [x5, x6]) exists.

3 tin 1 40 /oda
x5 x6.
00.

isc 7 40 41
maxk 41 40 10

syd 7 10 42
maxk 42 <x1> 11

Figure 7.10 shows both decomposition functions g1 (object 10) and h1 (object 11).

4 syd 10 11 43 syd 43 7 44
The empty TVL 44 confirms the correctness of the decomposition.

5 del 30
del 31

del 32
del 33

del 40
del 41

del 42
del 43

del 44
sts e73dec2.sdt

Exercise 7.26.

1 lds e73dec2.sdt copy 10 30 cpl 10 31

2 maxk 31 <x1> 40
isc 30 40 41
maxk 31 <x2> 42

isc 41 42 43
maxk 31 <x3> 42

isc 41 42 44

maxk 31 <x4> 42
isc 41 42 45
maxk 31 <x2> 40

isc 30 40 41
maxk 31 <x3> 42

isc 41 42 46

maxk 31 <x4> 42
isc 41 42 47
maxk 31 <x3> 40

isc 30 40 41
maxk 31 <x4> 42

isc 41 42 48

3 maxk 30 <x1> 50
isc 31 50 51
maxk 30 <x2> 52

isc 51 52 53
maxk 30 <x3> 52

isc 51 52 54

maxk 30 <x4> 52
isc 51 52 55
maxk 30 <x2> 50

isc 31 50 51
maxk 30 <x3> 52

isc 51 52 56

maxk 30 <x4> 52
isc 51 52 57
maxk 30 <x3> 50

isc 31 50 51
maxk 30 <x4> 52

isc 51 52 58

4 derk 30 <x1 x2> 60
derk 30 <x1 x3> 61

derk 30 <x1 x4> 62
derk 30 <x2 x3> 63

derk 30 <x2 x4> 64
derk 30 <x3 x4> 65

5. Solutions 183

Figure 7.11 Results of the weak OR-bi-decomposition of the function in Fig. 7.10 a):
a) g2q(x1, x2, x3, x4) as object 30, b) g2r(x1, x2, x3, x4) as object 31, and c) the selected
function g2(x1, x2, x3, x4) as object 12

5 The TVLs 43 . . . 48 are not empty. Hence, there is no strong OR-bi-decomposition
for the function g1.

6 The TVLs 53 . . . 58 are not empty. Hence, there is no strong AND-bi-decompo-
sition for the function g1.

7 The TVLs 60 . . . 65 are not empty. Hence, there is no strong EXOR-bi-decompo-
sition for the function g1.

Exercise 7.27.

1 lds e73dec2.sdt

2 cpl 10 70
maxk 70 <x1> 71
dif 10 71 72

maxk 70 <x2> 71
dif 10 71 73
maxk 70 <x3> 71

dif 10 71 74
maxk 70 <x4> 71

dif 10 71 75

3 cpl 10 80
maxk 10 <x1> 81
dif 80 81 82

maxk 10 <x2> 81
dif 80 81 83
maxk 10 <x3> 81

dif 80 81 84
maxk 10 <x4> 81

dif 80 81 85

4 The TVLs 72 . . . 75 are not empty. Hence, the function g1 is weakly OR-bi-
decomposable with regard to each of the four variables.

5 The TVLs 82 . . . 85 are not empty. Hence, the function g1 is weakly AND-bi-
decomposable with regard to each of the four variables.

6 cpl 10 31 maxk 31 <x1> 30 isc 10 30 30

Figure 7.11 shows the mark functions g2q and g2r.

7 Delete the TVLs 70 . . . 85 using the del command. sts e73dec3.sdt

Exercise 7.28.

1 lds e73dec3.sdt

184 7 COMBINATORIAL CIRCUITS

2 maxk 30 <x1> 60
maxk 31 <x1> 61

isc 60 61 62
mink 30 <x1> 60
mink 31 <x1> 61

uni 60 61 63
maxk 62 <x2> 64

isc 64 63 64
maxk 62 <x3> 65

isc 65 63 65

maxk 62 <x4> 66
isc 66 63 66
maxk 30 <x2> 60
maxk 31 <x2> 61

isc 60 61 62
mink 30 <x2> 60
mink 31 <x2> 61

uni 60 61 63
maxk 62 <x3> 67

isc 67 63 67

maxk 62 <x4> 68
isc 68 63 68
maxk 30 <x3> 60
maxk 31 <x3> 61

isc 60 61 62
mink 30 <x3> 60
mink 31 <x3> 61

uni 60 61 63
maxk 62 <x4> 69

isc 69 63 69

3 There are the empty objects 46, 47 and 48. Hence, there are OR-bi-decompositions
for the pairs of variables (x2, x3), (x2, x4), and (x3, x4).

4 There are the empty objects 53 . . . 57. Hence, there are OR-bi-decompositions for
all pairs of variables except the pair (x3, x4).

5 There are the empty objects 67 and 68. Hence, there are EXOR-bi-decompositions
for the pairs of variables (x2, x3), and (x2, x4).

Exercise 7.29.

1 lds e73dec3.sdt

2 maxk 31 <x2> 80
isc 30 80 81
maxk 31 <x3 x4> 82

isc 81 82 83

maxk 31 <x3> 80
isc 30 80 81
maxk 31 <x2 x4> 82

isc 81 82 84

maxk 31 <x4> 80
isc 30 80 81
maxk 31 <x2 x3> 82

isc 81 82 85

3 maxk 30 <x1> 90
isc 31 90 91
maxk 30 <x2 x3> 92

isc 91 92 93
maxk 30 <x2 x4> 92

isc 91 92 94
maxk 30 <x3 x4> 92

isc 91 92 95

maxk 30 <x2> 90
isc 31 90 91
maxk 30 <x1 x3> 92

isc 91 92 96
maxk 30 <x1 x4> 92

isc 91 92 97
maxk 30 <x3 x4> 92

isc 91 92 98

maxk 30 <x3> 90
isc 31 90 91
maxk 30 <x1 x2> 92

isc 91 92 99
maxk 30 <x4> 90

isc 31 90 91
maxk 30 <x1 x2> 92

isc 91 92 100

4 maxk 30 <x2> 110
maxk 31 <x2> 111

isc 110 111 112

mink 30 <x2> 110
mink 31 <x2> 111

uni 110 111 113

maxk 112 <x3 x4> 114
isc 114 113 114

5 There is no empty object 83 . . . 85. Hence, there is no one-to-two OR-bi-decom-
position for the ISF of g2.

6 The empty TVLs 95 and 98 confirm that AND-bi-decompositions for the ISF of
g2 with regard to (x1, [x3, x4]) and (x2, [x3, x4]) exist.

7 The TVL 114 is not empty. Hence, there is no one-to-two EXOR-bi-decomposition
for the ISF of g2.

8 maxk 30 <x1 x2> 90
isc 31 90 91

maxk 30 <x3 x4> 92
isc 91 92 101

9 The TVL 101 is not empty. Hence, there is no two-to-two AND-bi-decomposition
for the ISF of g2.

5. Solutions 185

Figure 7.12 Results of the AND-bi-decomposition of the ISF in Fig. 7.11 a) and b): a)
g3q(x1, x2) as object 32, b) g3r(x1, x2) as object 33, c) the selected function g3(x1, x2)
as object 13, d) h3q(x2, x3, x4) as object 34, e) h3r(x2, x3, x4) as object 35, and f) the
selected function h3(x2, x3, x4) as object 14

10 maxk 30 <x1> 90
isc 31 90 91

maxk 30 <x2 x3 x4> 92
isc 91 92 102

11 The TVL 102 is not empty. Hence, there is no one-to-three OR-bi-decomposition
for the ISF of g2.

12 lds e73dec3.sdt

13 maxk 30 <x3 x4> 32
maxk 30 <x1> 33

isc 33 31 33
maxk 33 <x3 x4> 33

Figure 7.12 a) and b) shows the mark functions g3q and g3r. The calculated ISF
includes only the single function g3(x1, x2) = x1 ⊕ x2 that can be realized by an
EXOR-gate. Hence, copy 32 13. Figure 7.12 c) shows the selected functions g3.

14 maxk 30 <x1> 34 isc 13 31 35 maxk 35 <x1> 35
Figure 7.12 d) and e) show the mark functions h3q and h3r.

15 sts e73dec4.sdt

Exercise 7.30.

1 lds e73dec4.sdt

2 maxk 35 <x2> 40
isc 34 40 41
maxk 35 <x3> 42
isc 41 42 43

maxk 35 <x4> 42
isc 41 42 44
maxk 35 <x3> 40
isc 34 40 41

maxk 35 <x4> 42
isc 41 42 45

3 maxk 34 <x2> 50
isc 35 50 51
maxk 34 <x3> 52
isc 51 52 53

maxk 34 <x4> 52
isc 51 52 54
maxk 34 <x3> 50
isc 35 50 51

maxk 34 <x4> 52
isc 51 52 55

186 7 COMBINATORIAL CIRCUITS

4 maxk 34 <x2> 60
maxk 35 <x2> 61

isc 60 61 62
mink 34 <x2> 60
mink 35 <x2> 61

uni 60 61 63

maxk 62 <x3> 64
isc 64 63 64
maxk 62 <x4> 65

isc 65 63 65
maxk 34 <x3> 60
maxk 35 <x3> 61

isc 60 61 62
mink 34 <x3> 60
mink 35 <x3> 61

uni 60 61 63
maxk 62 <x4> 66

isc 66 63 66

5 The TVLs 43, 44 and 45 are empty. Hence, all possible one-to-one OR-bi-decompo-
sitions for the ISF of h3 exist.

6 The TVLs 53, 54 and 55 are not empty. Hence, no AND-bi-decomposition for the
ISF of h3 exists.

7 The TVLs 64 and 65 are empty. Hence, EXOR-bi-decompositions for the ISF of
h3 with regard to (x2, x3) and (x2, x4) exist.

8 maxk 35 <x2> 80
isc 34 80 81
maxk 35 <x3 x4> 82

isc 81 82 83

maxk 35 <x3> 80
isc 34 80 81
maxk 35 <x2 x4> 82

isc 82 82 84

maxk 35 <x4> 80
isc 34 80 81
maxk 35 <x2 x3> 82

isc 81 82 85

The TVLs 83, 84 and 85 are not empty. Hence, there are no one-to-two OR-bi-
decompositions for the ISF of h3.

9 Because no one-to-one AND-bi-decomposition for the ISF of h3 exists, no one-to-
two AND-bi-decomposition can exist.

10 maxk 34 <x2> 90
maxk 35 <x2> 91

isc 90 91 92

mink 34 <x2> 90
mink 35 <x2> 91

uni 90 91 93

maxk 92 <x3 x4> 94
isc 94 93 94

The empty TVL 94 confirms that the EXOR-bi-decompositions for the ISF of h3

with regard to (x2, [x3, x4]) exist.

11 lds e73dec4.sdt

12 maxk 34 <x2> 95
maxk 35 <x2> 96

isc 95 96 97

tin 1 98
x2.
1.

maxk 97 <x3 x4> 99
isc 98 99 15

The decomposition function is equal to g4(x2) = x2 stored as object 15.

13 cpl 15 100
isc 100 34 101
isc 15 35 102

uni 101 102 103
maxk 103 <x2> 36

isc 100 35 104

isc 15 34 105
uni 104 105 106
maxk 106 <x2> 37

Figure 7.13 a) and b) show the mark functions h4q and h4r.

14 The calculated ISF includes only the single function h4(x3, x4) = x3 ∨ x4 that can
be realized by an OR-gate. Hence, copy 36 16 stores the function h4q (x3, x4) into
the function h4(x3, x4) as object 16. Figure 7.13 c) shows the selected functions
h4.

15 Delete TVLs 95,. . ., 106 using the del command.
sts e73dec5.sdt

Exercise 7.31.
1 lds e73dec5.sdt

2 syd 15 16 14 Figure 7.12 f) on page 185 shows h3(x).

5. Solutions 187

Figure 7.13 Results of the EXOR-bi-decomposition of the incompletely specified
function h3 with the mark functions of Fig. 7.12 d) and e): a) h4q(x3, x4) as object
30, b) h4r(x3, x4)as object 31, and c) the selected function h4(x3, x4)

Figure 7.14 Functions on the branch h2 of the weak OR-bi-decomposition of the
function g1 of Fig. 7.10 a): a) h2q(x2, x3, x4) as object 38, b) h2r(x2, x4)as object 39,
and c) the realized function h2(x2, x3, x4) as object 17

3 isc 13 14 12 Figure 7.11 c) on page 183 shows g2(x).

4 cpl 12 40
isc 40 10 41

maxk 41 <x1> 38
cpl 10 42

maxk 42 <x1> 39

Figure 7.14 a) and b) show the mark functions h2q(x) and h2r(x).

5 del 40 del 41 del 42 sts e73dec6.sdt

Exercise 7.32.

1 lds e73dec6.sdt

2 maxk 39 <x2> 50
isc 38 50 51
maxk 39 <x3> 52
isc 51 52 53

maxk 39 <x4> 52
isc 51 52 54
maxk 39 <x3> 50
isc 38 50 51

maxk 39 <x4> 52
isc 51 52 55

3 maxk 38 <x2> 60
isc 39 60 61
maxk 38 <x3> 62
isc 61 62 63

maxk 38 <x4> 62
isc 61 62 64
maxk 38 <x3> 60
isc 39 60 61

maxk 38 <x4> 62
isc 61 62 65

4 derk 38 <x2 x3> 70 derk 38 <x2 x4> 71 derk 38 <x3 x4> 73

5 The TVLs 53, 54 and 55 are not empty. Hence, no OR-bi-decomposition for the
function h2 exist.

6 There are the empty objects 63 and 64. Hence, there are AND-bi-decompositions
for the function h2 with regard to the pairs of variables (x2, x3), and (x2, x4).

7 There is only the empty object 72. Hence, an EXOR-bi-decomposition for the
function h2 with regard to the pair of variables (x2, x4) exists.

8 As result of the analyzed one-to-one bi-decompositions only a one-to-two AND-
bi-decomposition can exist.

188 7 COMBINATORIAL CIRCUITS

Figure 7.15 OR-bi-decomposition of the function h6(x): a) the function h6(x2, x3, x4)
as object 21, b) the decomposition function g7(x2, x4) as object 22, and c) the de-
composition function h7(x3, x4) as object 23

maxk 38 <x2> 60
isc 39 60 61
maxk 38 <x3 x4> 62

isc 61 62 66

The empty object 66 confirms that
the disjoint AND-bi-decomposition
of the function h2 with regard
to (x2, [x3, x4]) exists.

9 maxk 38 <x3 x4> 18
The decomposition function is equal to g5(x2) = x2.

10 maxk 38 <x2> 19
The decomposition function is equal to h5(x3, x4) = x3 ⊕ x4.

11 isc 18 19 17
Figure 7.14 c) shows the realized function h2 as object 17 that is equal to the func-
tion h2q of Fig. 7.14 a) which confirms the correct execution of the decomposition.

12 Delete TVLs 50 . . . 72 using the del command.
sts e73dec7.sdt

Exercise 7.33.

1 lds e73dec7.sdt

2 maxk 11 <x2 x3 x4> 50
maxk 11 <x5 x6> 51

cpl 11 52
isc 52 50 53

isc 53 51 53

The empty object 53 confirms that the disjoint AND-bi-decomposition of the
function h1 with regard to ([x2, x3, x4], [x5, x6]) exists.

3 maxk 11 <x2 x3 x4> 20
The decomposition function is g6(x5, x6) = x5 ∧ x6. This function can be realized
by an AND-gate of two inputs directly such that no further decomposition is
required.

4 maxk 11 <x5 x6> 21
The decomposition function h6(x2, x3, x4) depends on three variables such that a
further decomposition is necessary. Figure 7.15 a) shows the function h6(x2, x3, x4).

5 isc 20 21 54
syd 54 11 55

The empty object 55 confirms that the specified
AND-gate realizes the correct function.

6 Delete TVLs 50,. . ., 55 using the del command.
sts e73dec8.sdt

5. Solutions 189

Exercise 7.34.

1 lds e73dec8.sdt

2 cpl 21 50
maxk 50 <x2> 51
isc 21 51 52
maxk 50 <x3> 53

isc 52 53 54
maxk 50 <x4> 53
isc 52 53 55
maxk 50 <x3> 51

isc 21 51 52
maxk 50 <x4> 53

isc 52 53 56

3 cpl 21 60
maxk 21 <x2> 61
isc 60 61 62
maxk 21 <x3> 63

isc 62 63 64
maxk 21 <x4> 63
isc 62 63 65
maxk 21 <x3> 61

isc 60 61 62
maxk 21 <x4> 63

isc 62 63 66

4 derk 21 <x2 x3> 70 derk 21 <x2 x4> 71 derk 21 <x3 x4> 72

5 The objects 54, 55, and 56 are not empty. Hence, no OR-bi-decomposition for the
function h6 exists.

6 There are the empty object 64 and 65. Hence, there are AND-bi-decompositions
for the function h6 with regard to the pairs of variables (x2, x3), and (x2, x4).

7 The objects 70, 71 and 72 are not empty. Hence, no EXOR-bi-decomposition for
the function h6 exists.

8 As a result of the analyzed one-to-one bi-decompositions, only a one-to-two AND-
bi-decomposition can exist.
maxk 21 <x2> 61 isc 60 61 62 maxk 21 <x3 x4> 63 isc 62 63 67
The object 67 is not empty. Hence, the OR-bi-decomposition for the function h6

with regard to (x2, [x3, x4]) does not exist.

9 maxk 21 <x3> 22
The decomposition function is g7(x2, x4) = x2 ∨ x4. This function can be real-
ized by an OR-gate of two inputs directly such that no further decomposition is
required.

10 maxk 21 <x2> 23
The decomposition function is h7(x3, x4) = x3 ⊕ x4. This function can be real-
ized by an EXOR-gate of two inputs directly such that no further decomposi-
tion is required. Alternatively the complement of the function h5 can be reused:
h7(x3, x4) = (x3 ⊕ x4) = h5(x3, x4) which requires a NOT-gate instead of an
EXOR-gate.

11 isc 22 23 80
syd 21 80 81

The empty object 81 confirms that the specified
AND-gate realizes the right function.

12 Delete TVLs 50 . . . 81 using the del command.
sts e73dec9.sdt

Exercise 7.35.

1 lds e73dec9.sdt

2 Figure 7.16 shows the circuit calculated by bi-decompositions in Exercises 7.24,
. . . , 7.34. The labels on the connection lines correspond to the names of the
designed functions.

190 7 COMBINATORIAL CIRCUITS

Figure 7.16 Structure of a circuit using AND-, OR- and EXOR-gates restricted to
two inputs for the function of Fig. 7.1 designed by bi-decomposition

Table 7.2 Gates and levels of different circuits for the same function

Circuit # NOT # AND# OR EXOR all gates levels

Figure 7.1 6 19 8 0 33 8
Exercise 7.23 Task 2 6 18 8 0 32 8
Figure 7.9 6 18 7 0 31 7
Figure 7.16 2 5 3 5 15 5

3 sbe 1 50
y=g1#h1,
g1=g2+h2,
g2=g3&h3,

g3=/x1#x2,
h3=g4#h4,
g4=x2,
h4=x3+x4,

h2=g5&h5,
g5=x2,
h5=x3#x4,
h1=g6&h6,

g6=x5&x6,
h6=g7&h7,
g7=x2+/x4,
h7=x3#/x4.

vtin 1 51
g1 g2 g3 g4 g5 g6 g7 h1 h2 h3 h4 h5 h6 h7.

maxk 50 51 52
syd 52 4 53

The empty object 53 confirms that the circuit designed by bi-decomposition real-
izes the given function.

4 Table 7.2 shows the requested values. It follows that the number of gates in the
decomposed circuit is less than half of the shortest minimal disjunctive form. The
number of levels is reduced by 2 which speeds up the circuit.

Exercise 7.36.

1 lds e73dec9.sdt vtin 1 50
x2.

tin 1 51
x4.
0.

5. Solutions 191

2 derk 51 50 52
cpl 52 53
cpl 51 54
isc 54 53 55

derk 23 50 56
cpl 56 57
isc 57 23 58

derk 20 50 59
cpl 59 60
isc 60 20 61

derk 10 50 62
cpl 62 63
derk 7 50 64

isc 64 55 65
isc 65 58 66
isc 66 61 67
isc 67 63 68
isc 68 64 69

The variable x2 must change for the selected sensible path. There is only one
test pattern of the remaining variables (x1, x3, x4, x5, x6) = (11111) calculated as
object 69.

3 This path is not affected by complement operations. Hence, the pattern (x1, x2, x3,
x4, x5, x6) = (101111) detects stuck-at-1 errors at the x2-input of g7 and on the
connections g7, h6, h1, and y, respectively, and the pattern (x1, x2, x3, x4, x5,
x6) = (111111) detects stuck-at-0 errors at the same gate connections.

Exercise 7.37.

1 lds e73dec9.sdt vtin 1 50
x2.

2 derk 16 50 51
cpl 51 52
derk 13 50 53
cpl 53 54

isc 54 13 55
derk 17 50 56
cpl 56 57
cpl 17 58

isc 57 58 59
derk 11 50 60
cpl 60 61
derk 7 50 62

isc 62 52 63
isc 63 55 64
isc 64 59 65
isc 65 61 66

The object 66 is empty. Thus, no test pattern could be found for the selected path
using the method of the sensible path.

3 Because no test pattern was found using the method of the sensible path, other
methods must be utilized in order to calculate the required test pattern.

Exercise 7.38.

1 space 32 1
avar 1
x1 x2 x3 x4 x5 x6 y g1 g2 g3 g4 g5 g6 g7 h1 h2 h3 h4 h5 h6 h7.

2 sbe 1 1
y=g1#h1,
g1=g2+h2,
g2=g3&h3,

g3=/x1#x2,
h3=g4#h4,
g4=x2,
h4=x3+x4,

h2=g5&h5,
g5=x2,
h5=x3#x4,
h1=g6&h6,

g6=x5&x6,
h6=g7&h7,
g7=x2+/x4,
h7=x3#/x4.

3 sbe 1 2
y=g1#h1,
g1=g2+h2,
g2=g3&s,

g3=/x1#x2,
h2=g5&h5,
g5=x2,

h5=x3#x4,
h1=g6&h6,
g6=x5&x6,

h6=g7&h7,
g7=x2+/x4,
h7=x3#/x4.

4 sbe 1 3 h3=g4#h4, g4=x2, h4=x3+x4.

5 sbe 1 4
y=1.
sbe 1 5
h3=1.

sbe 1 6
t=1.

vtin 1 7
g1 g2 g3 g4 g5 g6 g7
h1 h2 h3 h4 h5 h6 h7.

6 isc 3 5 10 maxk 10 5 11 maxk 11 7 12 syd 12 6 13

7 isc 2 4 20 maxk 20 4 21 maxk 21 7 22 derk 22 <s> 23

192 7 COMBINATORIAL CIRCUITS

Figure 7.17 All test patterns of the selected sensible point h3 of the circuit shown in
Fig. 7.16: a) calculated by the detailed formulas (7.146), . . . , (7.149) of [18], b) calcu-
lated by the formula (7.150) of [18]

8 maxk 1 7 30

9 isc 13 23 40 isc 40 30 41 obbc 41 42
Figure 7.17 a) shows the 24 test pattern of the sensible point h3 in TVL 42.

10 The value of the model variable t indicates the type as SAt test pattern. In all test
patterns for the sensible point h3 the variables x1 and x2 possess the same values.
Hence, there is no test pattern where only the change of the x2 value changes
between an SA0 and an SA1 test pattern, how has been explored in the method
of the sensible path.

Exercise 7.39.

1 Use the same solution as the first task of Exercise 7.38.

2 Use the same solution as the second task of Exercise 7.38.

3 sbe 1 2
y=g1#h1,
g1=g2+h2,
g2=g3&s,

g3=/x1#x2,
/t=g4#h4,
g4=x2,
h4=x3+x4,

h2=g5&h5,
g5=x2,
h5=x3#x4,
h1=g6&h6,

g6=x5&x6,
h6=g7&h7,
g7=x2+/x4,
h7=x3#/x4.

4 vtin 1 7
g1 g2 g3 g4 g5 g6 g7 h1 h2 h3 h4 h5 h6 h7.

5 maxk 2 7 10

6 maxk 1 7 20

7 derk 10 <s> 11 isc 11 20 30 obbc 30 31
Figure 7.17 b) shows the 24 test patterns of the sensible point h3 in TVL 31.
Figure 7.17 a) shows the same test patterns in another order.

Exercise 7.40.

1 Use the same solution as the first task of Exercise 7.38.

5. Solutions 193

Figure 7.18 Test pattern of the sensible point on the local branch nx4 of the circuit
shown in Fig. 7.16: a) all test patterns of the signal source, b) all test patterns of
the signal target s1, c) all test patterns of the signal target s2, d) test patterns that
detect errors of the signal source only, e) test patterns that detect errors of the signal
target s1 only, f) test patterns that detect errors of the signal target s2 only

2 sbe 1 1
y=g1#h1,
g1=g2+h2,
g2=g3&h3,
g3=/x1#x2,

h3=g4#h4,
g4=x2,
h4=x3+x4,
h2=g5&h5,

g5=x2,
h5=x3#x4,
h1=g6&h6,
g6=x5&x6,

h6=g7&h7,
g7=x2+s1,
h7=x3#s2,
nx4=/x4.

3 sbe 1 2
/t=nx4.

tin 1 3
s1 s2 t.

001
110.

4 vtin 1 4
g1 g2 g3 g4 g5 g6 g7
h1 h2 h3 h4 h5 h6 h7 nx4.
vtin 1 5
s1 s2 t.

vtin 1 6
t.
vtin 1 7
s1.

vtin 1 8
s2.
vtin 1 9
s1 s2.

5 isc 1 2 10 maxk 10 4 11

6 isc 11 3 12 maxk 12 5 13

7 maxk 3 6 20
isc 20 11 21

derk 21 9 22
isc 22 13 23

obbc 23 24
Figure 7.18 a)

shows the test
pattern as object
24.

8 maxk 3 7 30
isc 30 11 31

derk 31 9 32
isc 32 13 33

obbc 33 34
Figure 7.18 b)

shows the test
pattern as object
34.

9 maxk 3 8 40
isc 40 11 41

derk 41 9 42
isc 42 13 43

obbc 43 44
Figure 7.18 c)

shows the test
pattern as object
44.

10 dif 24 34 50 Figure 7.18 d) shows the wanted test pattern as object 50.
dif 50 44 50

11 dif 34 24 51 Figure 7.18 e) shows the wanted test pattern as object 51.

12 dif 44 24 52 Figure 7.18 f) shows the wanted test pattern as object 52.

13 isc 51 52 53 The TVL 53 is empty. Thus, no such test pattern exists.

194 7 COMBINATORIAL CIRCUITS

Exercise 7.41.

1 lds e73dec9.sdt sbe 1 50 x2#t.

2 isc 50 39 51
isc 51 13 52
obbc 52 53

SA1 test patterns require x1 = 0, x2 = 0, and SA0 test pat-
terns requires x1 = 1, x2 = 1 in combination with either
x3 = 0, x4 = 0 or x3 = 1, x4 = 1.

3 isc 53 4 54 There are 16 SA1 test patterns and 8 SA0 test patterns.

Exercise 7.42.

1 space 64 1
sbe 1 1
nx1=/x1,
nx2=/x2,
nx3=/x3,
nx4=/x4,
nx5=/x5,
nx6=/x6,

g1=x3&nx4,
g2=nx1&g1,
g3=nx2&x4,
g4=nx1&g3,
g5=x5&x6,
g6=nx1&g5,
g7=x2&nx3,
g8=x4&g7,
g9=x1&nx5,

g10=g7&g9,
g11=x1&s,
g12=g7&g11,
g13=nx6&g12,
g14=x2&g1,
g15=x2&x4,
g16=g5&g15,
g17=nx2&nx3,
g18=nx4&g17,

g19=g5&g18,
g20=g2+g4,
g21=g6+g8,
g22=g10+g13,
g23=g14+g16,
g24=g20+g21,
g25=g22+g23,
g26=g24+g25,
y=g19+g26.

2 sbe 1 2
x5=/t.
sbe 1 3
t#s=1.

vtin 1 4
g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13
g14 g15 g16 g17 g18 g19 g20 g21 g22 g23 g24 g25 g26
nx1 nx2 nx3 nx4 nx5 nx6.

3 isc 1 2 10 maxk 10 4 11

4 isc 11 3 12 maxk 12 3 13

5 derk 11 <s> 14 isc 14 13 15

There exists the SA0 test pattern (x1, x2, x3, x4, x5, x6, y, t) = (11001010) only.

6 Because there is no SA1 test pattern for the input x5 of gate g11, this SA1 fault
does not affect the circuit behavior. For that reason the input can be substituted
by a constant value 1 such that finally the gate g11 can be replaced by a wire from
x1 to g12. An alternative reconfiguration was given in Task 2 of Exercise 7.23.

Chapter 8

FINITE-STATE MACHINES

1. The Circuit Model
A sequential circuit is realized by a structure of basic elements. These

basic elements are visualized in a schematic diagram by symbols. The
connection wires between the basic elements of a circuit are expressed
by lines in the schematic diagram. The basic elements of a sequential
circuit can be dtaken from logic gates and flip-flops. Table 7.1 of [18]
gives a list which includes for each gate the associated symbol together
with its logic function, and its list of phases. In contradiction to all types
of gates a flip-flop can store one logic value. Table 8.3 of [18] summarizes
for several flip-flops the associated symbols together with their graphs,
their logic functions and their lists of phases.

A sequential circuit possesses a unique behavior, but the same be-
havior may be realized by different circuit structures. Therefore both
structural and behavioral models are necessary in order to describe a
sequential circuit.

The main tasks for sequential circuits perform transformations be-
tween these classes of models. The basic task of analysis requires a struc-
tural model of a sequential circuit and creates the associated behavioral
model. Vice versa, the basic task of synthesis takes a behavioral model
of a sequential circuit and leads to structural models of one or several
associated circuits.

This chapter includes both exercises for analysis and synthesis of se-
quential circuits. The required models are prepared in this section. It is
strongly recommended to store all the solutions of each exercise because
succeeding exercises may use results of previous exercises. For comfort-

Bernd Steinbach, Christian Posthoff, Logic Functions and Equations, Examples and
Exercises,
© Springer Science + Business Media B.V. 2009

196 8 FINITE-STATE MACHINES

able work and sometimes required corrections it is suggested to store for
each exercise

your own prepared problem programs (PRPs),

complete TVL systems created in the XBOOLE Monitor, and

the PRP that documents all executed steps to solve all tasks of an Ex-
ercise which is generated by the menu item Extras – Save Protocol
as PRP.

The behavior of a finite-state machine can be described by a graph.
The vertices of the graph represent the states of the finite-state machine
and are labeled by names. The edges of the graph indicate the following
state to be reached and can be labeled by an input condition. Depending
on the type (Moore or Mealy) of the finite-state machine, information
about the outputs is associated to the vertices or the edges of the graph.
In order to realize a finite-state machine as sequential circuit, each state
must be coded by logic values.

Alternatively the behavior of a finite-state machine can be expressed
by its system function F (x, s, s′,y), where x indicates the inputs, s the
states, s′ the states in the following time step, and y the outputs, respec-
tively. For practical reasons we use in this chapter sf instead of s′. The
solution of the system equation F (x, s, sf ,y) = 1 is the list of phases of
the finite-state machine.
Exercise 8.1 (Behavioral Model – Simple Traffic Light – List of Phases).
Figure 8.1 describes the behavior of a simple traffic light that can be used
to control a road work, where three periods of time are required to pass the
distance to be in work and yellow phases are included for security reasons.
Create a list of phases as behavioral model for both traffic lights. Use a
binary code for the states that indicates the state number directly, and a
1-out-of-3 code for the outputs that controls the color of both traffic lights.
Prepare this list of phases as PRP such that it can be used later on for an
analysis and synthesis tasks. Practical tasks:

1 How many variables are required to code the states.

2 Prepare a Boolean space large enough for the list of phases.

3 Define the list of phases as object number 1.

4 Add variable tuples for state variables as object number 3, state variables
for the following time step as object number 4, and outputs as object
number 5. Object number 2 is not used because there are no input
variables in this finite-state machine. Store TVL system as e8101.sdt
for later use.

1. The Circuit Model 197

Figure 8.1 Behavior of a synchronous finite-state machine of a simple control for a
road work traffic light: left hand side – graph, right hand side – assignment of the
light colors

The traffic control of Exercise 8.1 allows only in three periods of time
to drive in one direction. Assume this traffic control is used on a main
street at the border of a town: a strong traffic jam will occur in the morn-
ing in direction to the town and in the evening in the reverse direction,
but not so strong. For that reason a controllable finite-state machine for
the traffic light is required.
Exercise 8.2 (Behavioral Model – Extended Traffic Light – Graph –
List of Phases). Create a behavioral model of a finite-state machine for
the traffic light that extends the model of Fig. 8.1. Two input variables
(x1, x2) allow to control the extended traffic light. If x1 = 0, the traffic
light behaves as shown in Fig. 8.1 which is the preferred mode for traffic
in both directions. If x1 = 1 and x2 = 0, three additional green states are
included before the state 1 for the strong traffic in direction to the town.
If x1 = 1 and x2 = 1, two additional green states are included before
the state 9 for the strong traffic in direction out of the town. Practical
tasks:

1 Draw the graph of the extended finite-state machine and extend the
table of the required outputs.

2 How many variables are required to code the states.

198 8 FINITE-STATE MACHINES

3 Prepare a Boolean space which is large enough for the list of phases.

4 Define the list of phases as object number 1.

5 Add variable tuples for inputs as object number 2, state variables as
object number 3, state variables for the following time step as object
number 4, and outputs as object number 5. Store the TVL system as
e8102.sdt for later use.

In addition to the behavioral model of a finite-state machine a model
of its structure is required as the result of the synthesis or as a source
of the analysis. The structure of a finite-state machine is given by its
sequential circuit. The structure model must represent the switching el-
ements. In the case of a clocked sequential circuit these elements are
gates and flip-flops. Both types may be expressed in a structural model
either by a logic equation or by local lists of phases. The connection
wires between these elements are shown in the schema by lines. In the
structural model the same variable in descriptions of different elements
expresses such a connection. Variable tuples of the inputs, state vari-
ables, state variables for the following time step, and outputs complete
the structural model of a finite state machine.
Exercise 8.3 (Structural Model – System of Equations). Figure 8.2 de-
scribes the structure of a finite-state machine using three types of flip-flops
and AND-, OR-, and EXOR-gates. Create a system of logic equations as
structural model for this sequential circuit. Add information about the mean-
ing of the variables using variable tuples. Prepare this system of equations
together with the variable tuples as PRP such that it can be used later on
for an analysis task. Practical tasks:

1 How many states are coded by the flip-flops of the sequential circuit?

2 Prepare a Boolean space large enough for the used variables and associate
the variables of the inputs, states, states for the following time step, and
outputs in an appropriate order.

3 Define the system of equations of the circuit elements as object number
1. Use the names of the logic gates as signal names of their outputs
and the signal names given in the circuit structure for the flip-flops. Re-
member that each flip-flop creates both the state signal and its negated
signal on the outputs.

4 Add variable tuples for inputs as object number 2, state variables as
object number 3, state variables for the following time step as object
number 4, outputs as object number 5, and all other internal variables
as object number 6. Store the TVL system as e8103.sdt for later use.

1. The Circuit Model 199

Figure 8.2 Structure of a finite-state machine using three types of flip-flops and
AND-, OR-, and EXOR-gates restricted to three inputs

Alternatively to the equations of the switching elements in Fig. 8.2
local lists of phases can be used.
Exercise 8.4 (Structural Model – Set of Local Lists of Phases). Create
a set of local lists of phases as structural model for the sequential circuit
given in Fig. 8.2. This set of local lists of phases will be used later on in
combination with the PRP of Exercise 8.3. Practical tasks:

200 8 FINITE-STATE MACHINES

1 Prepare a PRP that creates a set of local lists of phases for all switching
elements of the sequential circuit given in Fig. 8.2. Use the object num-
bers larger than 10 so that this PRP can used in combination with the
PRP of Exercise 8.3.

2 Store the TVL system as e8104.sdt for later use.

2. Analysis
The basic analysis task for sequential circuits is the calculation of the

behavior realized by the circuit. The set of solution vectors of the sys-
tem of logic equations given as structural model describes the global
list of phases of the associated sequential circuit. Hence, it is a behav-
ioral model that can be interpreted as system function F (x, s, sf ,y).
In addition to these variables the variables of negated inputs nx the
negated state variables ns, the variables of internal gate functions g,
and the variables of the flip-flop inputs can be included in the system
function. Equivalently to the global list of phases, the system function
F (x, s, sf ,y) depicts the graph of the finite-state machine and its behav-
ior.
Exercise 8.5 (Behavior of a Sequential Circuit Based on a System of
Logic Equations). Calculate the behavior of the sequential circuit given
in Fig. 8.2. Use the system of logic equations prepared in Exercise 8.3 as
structural model. Practical tasks:

1 What type of finite-state machine is given by the sequential circuit in
Fig. 8.2?

2 The sequential circuit depends on 2 inputs and includes 3 flip-flops, How
many phases exist?

3 Solve the system of equations prepared in Exercise 8.3 and show the
global list of phases.

4 Simplify the global list of phases that depends on all variables to a
global list of phases that depends on the necessary variables to describe
the behavior of the finite-state machine. Show the associated system
function F (x, s, sf ,y).

5 Store TVL system as e8201.sdt for later use.

6 Draw the graph of the analyzed finite-state machine and describe the
visualized behavior.

Alternatively to the structural model by a system of logic equations
the set of local lists of phases can be used in order to calculate the global

2. Analysis 201

behavior of the sequential circuit. Independent structural models allow
the verification of the calculated behavior.
Exercise 8.6 (Behavior of a Sequential Circuit Based on a Set of Local
Lists of Phases). Calculate the behavior of the circuit given in Fig. 8.2.
Use the set of local lists of phases prepared in Exercise 8.4 as structural
model and verify whether the calculated behavior coincides with the result
of Exercise 8.5. Practical tasks:

1 Load the final TVL system of Exercise 8.5.

2 Create the set of local lists of phases executing the PRP prepared in
Exercise 8.4.

3 Calculate the intersection of all 34 local lists of phases of the gates,
flip-flops, and connections.

4 Verify whether the behavior calculated on the basis of local lists of phases
coincides with the behavior of the circuit calculated by solving a system
of equations in Exercise 8.5 which is available as object number 1.

A global list of phases represents for a finite-state machine the system
function F (x, s, sf ,y) and describes its allowed behavior completely. The
selection of certain partial behaviors can be helpful to understand the
global behavior. Such analysis steps can be combined to simulations of
the behavior, both in forward and in backward direction of the final state
machine.
Exercise 8.7 (Partial Behavior of a Sequential Circuit). Calculate sev-
eral partial behaviors of the sequential circuit of Fig. 8.2. The global list of
phases of this finite-state machine is available as object 7 in the solution
of Exercise 8.5. This solution includes additionally variable tuples for inputs
as object 2, variables of the states as object 3, variables of the states at
the following time step as object 4, and outputs as object 5. Minimize the
number of rows in the solution only, but not the fixed demand information.
Practical tasks:

1 Load the final TVL system of Exercise 8.5.

2 Calculate the partial behaviors for all four possible input patterns.

3 How many and which states can be reached in the following time step
starting form the states (s1, s2, s3) equal to (000), (100), and (101).

4 From how many and which states it is possible to reach the states
(sf1, sf2, sf3) equal to (000), (100), and (101) in the following time
step.

5 Are there states which can not be reached?

202 8 FINITE-STATE MACHINES

An important analysis task as precondition for the design is to verify
whether the finite-state machine is realizable by a sequential circuit. This
precondition requires that the system function F (x, s, sf ,y) allows for
each state and each input pattern at least one phase, e.g. one state for
the following time step and one output pattern. This task is equivalent
to the check whether the system equation F (x, s, sf ,y) = 1 is solvable
with regard to the dependent variables (sf ,y) in the sequential circuit.
Remember, the system equation is uniquely solvable with regard to the
dependent variables (sf ,y) for any sequential circuit.
Exercise 8.8 (Verification of the Realizability of a Finite-State Ma-
chine Specified by a Sequential Circuit). Analyze the realizability of several
finite-state machines. Detailed information about the finite-state machines
to be analyzed are given in Exercises 8.7. Practical tasks:

1 Load the final TVL system of Exercise 8.5.

2 Verify whether the system function of object number 7 is realizable.

3 Verify that all memory functions sfi(x1, x2, s1.s2, s3), i = 1, 2, 3 are
uniquely specified by the system equation F (x, s, sf ,y) = 1.

4 Verify that all result functions yj(x1, x2, s1.s2, s3), j = 1, 2 are uniquely
specified by the system equation F (x, s, sf ,y) = 1.

Exercise 8.9 (Check of the Realizability of a Finite-State Machine –
Simple Traffic Light). Analyze the realizability of the finite-state machine
for the simple road work traffic lights defined in Exercises 8.1. Detailed in-
formation about this finite-state machine is given in the mentioned exercise.
Practical tasks:

1 Load the final TVL system of Exercise 8.1.

2 What type of finite-state machine possesses the global list of phases of
the simple traffic light control specified in Exercises 8.1 and shown in
Fig. 8.3 a).

3 Is the finite-state machine of the simple traffic light control given as
object number 1 realizable? Are there missing phases, and, if yes, how
many such phases exist?

Exercise 8.10 (Check of the Realizability of a Finite-state Machine –
Extended Traffic Light). Analyze the realizability of the finite-state ma-
chine for the extended road work traffic lights defined in Exercises 8.2. De-
tailed information about this finite-state machine is given in the mentioned
Exercise. Practical tasks:

3. Design 203

1 Load the final TVL system of Exercise 8.2.

2 What type of finite-state machines possesses the global list of phases of
the extended traffic light control specified in Exercises 8.2 and shown in
Fig. 8.3 b).

3 Is the finite-state machine of the extended traffic light control given an
object number 1 realizable? Are there missing phases, and, if yes, how
many such phases exist?

3. Design
The basic design task for finite-state machines is the calculation of the

structure of a sequential circuit that realizes a given behavior. The most
common behavioral description is the system function F (x, s, sf ,y) that
describes the allowed input-output phases.

The realizability of a given finite-state machine is a precondition of
the design of a sequential circuit. In Exercise 8.8 this precondition was
verified for the finite-state machine of Fig. 8.7. In the practical Task 5
of Exercise 8.7 it was found that the states (111) and (101) can not be
reached from any other state. Such states outside of the main behavior
can be used to simplify the circuit structure.

We assume for the next exercises that the states (111) and (101) are
not necessary for the behavior of the finite-state machine of Fig. 8.7.
Often such states fill up the required number of states to the next higher
number a power of 2. In order to get some freedom for optimization we
allow that any other state coded by the used 3 state variables can be the
reached state of the following time step for these two inessential states.
Exercise 8.11 (Definition of a Non-deterministic Finite-state Machine).
Define the allowed behavior of a non-deterministic finite-state machine by
means of a global list of phases. In the 6 states (s1, s2, s3) equal to (000),
(100), (110), (010), (011), and (001) the deterministic behavior must be
identical to the global list of phases given in Fig. 8.6. In the additional states
(s1, s2, s3) equal to (111) and (101) any of the necessary other states may
be reached in the following time step. In these two states any output pattern
is allowed. Practical tasks:

1 Why is the finite-state machine specified in this exercise a non-determi-
nistic machine?

2 Prepare a PRP that defines a space large enough to allow the design of
this non-deterministic finite-state machine completely.

3 Define the global list of phases for the non-deterministic finite-state ma-
chine, described in this Exercise, as object number 1.

204 8 FINITE-STATE MACHINES

4 Add variable tuples for inputs as object number 2, state variables as
object number 3, state variables for the following time step as object
number 4, and outputs as object number 5.

5 Execute the PRP and store the TVL system as e8301.sdt for later use.

In the next exercises the controlling functions of the flip-flop inputs
will be calculated. In order to get more routine several types of flip-flops
are used. For reasons of comparability the same types of flip-flops as
used in Fig. 8.2 were selected.

Subtasks of the next exercises require the design of the combinatorial
circuits based on the mark functions of ON-sets q(x, s) and OFF-sets
r(x, s). These subtasks can be solved by bi-decomposition as studied in
Sect. 3.. Alternatively the function can be selected from the Karnaugh-
maps and simplified using algebraic transformation rules.
Exercise 8.12 (Controlling Functions j1 and k1). The memory function
sf1 of the non-deterministic finite-state machine defined in Exercise 8.11
shall be realized by a JK-flip-flop. Calculate the controlling functions j1 and
k1 taking into consideration the freedom of the specified non-deterministic
behavior. Restrict the behavior of the finite-state machine regarding the
selected controlling functions j1 and k1. Practical tasks:

1 Load the final TVL system of Exercise 8.11. Object number 1 includes
the non-deterministic system function F (x, s, sf ,y) for which the circuit
structure of the memory function sf1 must be calculated.

2 Map the behavior of the memory function sf1 to the behavior of con-
trolling functions j1 and k1 using an appropriate list of phases of a JK-
flip-flop taken from Table 8.3 in [18]. The system function F1(x, s, sf ,y,
j1, k1) will be created.

3 Restrict F1(x, s, sf ,y, j1, k1) to the allowed behavior of the controlling
functions j1 and k1 which results in F1jk(x, s, j1, k1).

4 Calculate the list of phases F1j(x, s, j1) for the controlling function j1

of the JK-flip-flop.

5 Calculate the don’t-care function j1ϕ(x, s).

6 Calculate the function j1q(x, s) that describes the ON-set of the incom-
pletely specified function j1 and show the associated Karnaugh-map.

7 Calculate the function j1r(x, s) that describes the OFF-set of the incom-
pletely specified function j1 and show the associated Karnaugh-map.

8 Select a simple function for the controlling functions j1.

3. Design 205

9 Restrict F1(x, s, sf ,y, j1, k1) to the allowed behavior with regard the
selected controlling functions j1.

10 Restrict the new system function F1(x, s, sf ,y, j1, k1) into the allowed
behavior F1jk(x, s, j1, k1) of the controlling functions j1 and k1.

11 Calculate the list of phases F1k(x, s, k1) for the controlling function k1

of the JK-flip-flop.

12 Calculate the don’t-care function k1ϕ(x, s).

13 Calculate the function k1q(x, s) that describes the ON-set of the incom-
pletely specified function k1 and show the associated Karnaugh-map.

14 Calculate the function k1r(x, s) that describes the OFF-set of the incom-
pletely specified function k1 and show the associated Karnaugh-map.

15 Select a simple function for the controlling function k1.

16 Restrict F1(x, s, sf ,y, j1, k1) to the allowed behavior with regard the
selected controlling function k1.

17 Remove all information about j1 and k1 from the final system func-
tion F1(x, s, sf ,y, j1, k1) and store the restricted result F (x, s, sf ,y) as
object number 6.

18 Which effect has the selection of the controlling functions j1 and k1 to
the remaining system function F (x, s, sf ,y)?

19 Store the TVL system as e8302.sdt for later use.

Exercise 8.13 (Controlling Functions d2 and v2). The memory function
sf2 of the non-deterministic finite-state machine restricted in Exercise 8.12
shall be realized by a DV -flip-flop. Calculate the controlling functions d2 and
v2 taking into consideration the freedom of the non-deterministic specified
behavior. Restrict the behavior of the finite-state machine regarding the
selected controlling functions d2 and v2. Practical tasks:

1 Load the final TVL system of Exercise 8.12. Object number 6 includes
the non-deterministic system function F (x, s, sf ,y) for which a circuit
structure of the memory function sf2 must be calculated.

2 Map the behavior of the memory function sf2 to the behavior of con-
trolling functions d2 and v2 using an appropriate list of phases of a DV -
flip-flop taken from Table 8.3 in [18]. The system function F2(x, s, sf ,y,
d2, v2) will be created.

206 8 FINITE-STATE MACHINES

3 Restrict F2(x, s, sf ,y, d2, v2) to the allowed behavior of the controlling
functions d2 and v2 which results in F2dv(x, s, d2, v2).

4 Calculate the list of phases F2d(x, s, d2) for the controlling function d2

of the DV -flip-flop.

5 Calculate the don’t-care function d2ϕ(x, s).

6 Calculate the function d2q(x, s) that describes the ON-set of the incom-
pletely specified function d2 and show the associated Karnaugh-map.

7 Calculate the function d2r(x, s) that describes the OFF-set of the incom-
pletely specified function d2 and show the associated Karnaugh-map.

8 Select a simple function for the controlling functions d2.

9 Restrict F2(x, s, sf ,y, d2, v2) to the allowed behavior with regard the
selected controlling function d2.

10 Restrict the new system function F2(x, s, sf ,y, d2, v2) to the allowed
behavior F2dv(x, s, d2, v2) of the controlling functions d2 and v2.

11 Calculate the list of phases F2v(x, s, v2) for the controlling function v2

of the DV -flip-flop.

12 Calculate the don’t-care function v2ϕ(x, s).

13 Calculate the function v2q(x, s) that describes the ON-set of the incom-
pletely specified function v2 and show the associated Karnaugh-map.

14 Calculate the function v2r(x, s) that describes the OFF-set of the incom-
pletely specified function v2 and show the associated Karnaugh-map.

15 Select a simple function for the controlling function v2.

16 Restrict F2(x, s, sf ,y, d2, v2) to the allowed behavior with regard to the
selected controlling function v2.

17 Remove all information about d2 and v2 from the final system func-
tion F2(x, s, sf ,y, d2, v2) and store the restricted result F (x, s, sf ,y) as
object number 7.

18 Which effect has the selection of the controlling functions d2 and v2 to
the remaining system function F (x, s, sf ,y)?

19 Store the TVL system as e8303.sdt for later use.

Exercise 8.14 (Controlling Function d3). The memory function sf3 of
the non-deterministic finite-state machine restricted in Exercise 8.13 shall

3. Design 207

be realized by a D-flip-flop. Calculate the controlling function d3 taking
into consideration the freedom of the non-deterministic specified behavior.
Restrict the behavior of the finite-state machine regarding the selected con-
trolling function d3. Practical tasks:

1 Load the final TVL system of Exercise 8.13. Object number 7 includes
the non-deterministic system function F (x, s, sf ,y) for which a circuit
structure of the memory function sf3 must be calculated.

2 Map the behavior of the memory function sf3 to the behavior of the
controlling function d3 using an appropriate list of phases of a D-flip-
flop taken from Table 8.3 in [18]. The system function F3(x, s, sf ,y, d3)
will be created.

3 Restrict F3(x, s, sf ,y, d3) to the allowed behavior of the controlling func-
tions d3 which results in F3d(x, s, d3).

4 Calculate the don’t-care function d3ϕ(x, s).

5 Calculate the function d3q(x, s) that describes the ON-set of the incom-
pletely specified function d3 and show the associated Karnaugh-map.

6 Calculate the function d3r(x, s) that describes the OFF-set of the incom-
pletely specified function d3 and show the associated Karnaugh-map.

7 Select a simple function for the controlling functions d3.

8 Restrict F3(x, s, sf ,y, d3) to the allowed behavior with regard the se-
lected controlling function d3.

9 Remove the information about d3 from F3(x, s, sf ,y, d3) and store the
restricted system function F (x, s, sf ,y) as object number 8.

10 Which effect has the selection of the controlling functions d3? to the
remaining system function F (x, s, sf ,y).

11 Store the TVL system as e8304.sdt for later use.

In order to complete the design of the finite-state machine the circuit
structure for the output functions must be calculated.
Exercise 8.15 (Output Functions y1 and y2). Calculate output functions
y1 and y2 of the non-deterministic finite-state machine restricted in Exer-
cise 8.14. Restrict the behavior of the finite-state machine regarding the
selected output functions y1 and y2, respectively. Practical tasks:

1 Load the final TVL system of Exercise 8.14. Object number 8 includes the
non-deterministic system function F (x, s, sf ,y) for which the a circuit
structure of the output functions y1 and y2 must be calculated.

208 8 FINITE-STATE MACHINES

2 Restrict F (x, s, sf ,y) to the allowed behavior of the output functions y1

and y2 which results in Fy(x, s,y).

3 Calculate the list of phases Fy1(x, s, y1) for the first output function y1.

4 Calculate the don’t-care function y1ϕ(x, s).

5 Calculate the function y1q(x, s) that describes the ON-set of the incom-
pletely specified function y1 and show the associated Karnaugh-map.

6 Calculate the function y1r(x, s) that describes the OFF-set of the incom-
pletely specified function y1 and show the associated Karnaugh-map.

7 Select a simple function for the output y1.

8 Restrict F (x, s, sf ,y) to the allowed behavior with regard to the selected
output function y1.

9 Restrict the new system function F (x, s, sf ,y) to the allowed behavior
Fy(x, s,y) of the output functions y1 and y2.

10 Calculate the list of phases Fy2(x, s, y2) for the output function y2.

11 Calculate the don’t-care function y2ϕ(x, s).

12 Calculate the function y2q(x, s) that describes the ON-set of the incom-
pletely specified function y2 and show the associated Karnaugh-map.

13 Calculate the function y2r(x, s) that describes the OFF-set of the incom-
pletely specified function y2 and show the associated Karnaugh-map.

14 Select a simple function for the output functions y2.

15 Restrict F (x, s, sf ,y) to the allowed behavior with regard to the selected
output function y2 and store the restricted result F (x, s, sf ,y) as object
number 9.

16 Which effect has the selection of the controlling functions y1 and y2 on
the remaining system function F (x, s, sf ,y)?

17 Store the TVL system as e8305.sdt for later use.

The function of the circuit of Fig. 8.2 was analyzed. The associated
behavior was extended to a non-deterministic finite-state machine in
Exercise 8.11 and re-designed using the same three types of flip-flops. In
order to do this, the method of merging behaviors of finite-state machine
and the used flip-flops was applied, followed by the subtask of solving
equations with regard to variables. In order to optimize the circuit the

3. Design 209

degrees of freedom of both the non-deterministic behavior of the finite-
state machine and the control functions for the flip-flop were exploited.
The detailed results were calculated in Exercises 8.12 . . . 8.15.
Exercise 8.16 (Technology Mapping and Verification). Draw both the
graph that describes the behavior of the sequential circuit and the circuit
structure calculated in Exercises 8.12 . . . 8.15. Verify whether the behavior
of the designed structure is covered by the allowed behavior defined in
Exercise 8.11. Compare both the required numbers of gates and the depth of
the designed structure with the given sequential circuit of Fig. 8.2. Practical
tasks:

1 Load the TVL system e8305.sdt of Exercise 8.15. This TVL system in-
cludes the system function F (x, s, sf ,y) of the given non-deterministic
finite-state machine as object number 1 and the respective system func-
tion F (x, s, sf ,y) of the designed sequential circuit as object number
9.

2 Show the global lists of phases of both the given non-deterministic finite-
state machine of object number 1 and the designed deterministic finite-
state machine of object number 9.

3 Draw the graph of the designed finite-state machine and describe the
visualized behavior in comparison to the graph of Fig. 8.7.

4 Draw the structure of the sequential circuit calculated by solving equa-
tions with regard to variables in Exercises 8.12. . . 8.15. As in Fig. 8.2
the number of inputs of the gates is restricted to three.

5 Verify whether the behavior of the structure of the sequential circuit is
covered by the allowed behavior defined in Exercise 8.11.

6 Compare both the required numbers of gates and the depth of the de-
signed circuit structure with the given sequential circuit of Fig. 8.2.

In the next Exercise the circuit structure for a deterministic finite-
state machine will be calculated. The used JK-flip-flops lead to incom-
pletely specified controlling functions for the memory inputs.
Exercise 8.17 (Complete Circuit Design of the Simple Control for a
Road Work Traffic Light). Design the sequential circuit of a simple control
for a road work traffic light and verify the result of the synthesis. Use the
same method as applied in the previous exercises. The behavioral model is
given in Fig. 8.1 and the result of Exercise 8.1. Practical tasks:

1 Load the TVL system e8101.sdt of Exercise 8.1. This TVL system
includes the system function F (s, sf ,y) of the given deterministic finite-
state machine as object number 1.

210 8 FINITE-STATE MACHINES

2 Calculate all required controlling functions using JK-flip-flops. Calculate
additionally the output functions and the resulting global list of phases.
Check the correctness of each calculated memory and output function
immediately.

3 Verify whether the designed sequential circuit realizes the required be-
havior.

In the final exercise the circuit structure for a non-deterministic finite-
state machine will be calculated. The behavior description of this finite-
state machine is not realizable and must be extended before the design
can start. Both the non-deterministic behavior and the used DV -flip-
flops contribute to incompletely specified controlling functions for the
memory inputs.
Exercise 8.18 (Complete Circuit Design of the Extended Control for
a Road Work Traffic Light). Design the sequential circuit of an extended
control for a road work traffic light and verify the result of the synthesis. Use
the same method as applied in the previous exercises. The behavioral model
is given in Fig. 8.3 b), and the result of Exercise 8.2, and the associated
graph in Fig. 8.4. Practical tasks:

1 Load the TVL system e8102.sdt of Exercise 8.2. This TVL system
includes the system function F (x, s, sf ,y) of the given non-deterministic
finite-state machine as object number 1.

2 It is known from Exercise 8.10 that this finite-state machine is not realiz-
able. Extend the finite-state machine such that from each state not used
so far any of the used states is allowed to be reached and for security
reasons of the traffic light all output functions must be 0 which means
the controlled lights are off. Solve this task by appropriate XBOOLE
operations.

3 Verify whether the completed finite-state machine of the extended con-
trol for a road work traffic light is realizable.

4 Calculate all required controlling functions using DV -flip-flops. Calculate
additionally the output functions and the resulting global list of phases.
Check the correctness of each calculated memory and output function
immediately.

5 Verify whether the designed sequential circuit realizes the required be-
havior.

6 Draw the graph of the realized finite-state machine of an extended con-
trol for a road work traffic light and compare it with the given behavior
of Fig. 8.4.

4. Solutions 211

Figure 8.3 Behavior of the finite state machine of a traffic light to control the a
road work: a) simple version with green phases, b) extended version with controllable
green phases

4. Solutions
Exercise 8.1.

1 There are 16 states and 24 = 16. Hence 4 variables are required to code the states.

2 space 32 1 3 Figure 8.3 a) shows the 16 phases of the finite state machine.

4 vtin 1 3
s3 s2 s1 s0.

vtin 1 4
sf3 sf2 sf1 sf0.

vtin 1 5
r1 y1 g1 r2 y2 g2.

sts e8101.sdt

Exercise 8.2.

1 The graph of the extended finite state machine is
shown in Fig. 8.4. The required outputs for the
added states are shown in the table on the right.

state tl1 tl2

16, 17, 18 g r
24, 25 r g

2 There are 21 states and (24 = 16) < 21 < (25 = 32). Hence 5 variables are
required to code the states.

3 space 32 1 4 Figure 8.3 b) shows the 84 phases of the finite state machine.

5 vtin 1 2
x1 x2.

vtin 1 3
s4 s3 s2 s1 s0.

vtin 1 4
sf4 sf3 sf2 sf1 sf0.

vtin 1 5
r1 y1 g1 r2 y2 g2.

sts e8102.sdt

Exercise 8.3.

1 The three flip-flops of the sequential circuit code 23 = 8 states.

212 8 FINITE-STATE MACHINES

Figure 8.4 Behavior of a synchronous finite-state machine of an extended control for
a road work traffic light

2 space 64 1
avar
x1 x2 s1 s2 s3 sf1 sf2 sf3 y1 y2 nx1 nx2 ns1 ns2 ns3 j1 k1 d2 v2 d3
g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18 g19.

3 sbe 1 1
nx1=/x1,
nx2=/x2,
ns1=/s1,
ns2=/s2,
ns3=/s3,
j1=g2,
g2=g1&ns3,
g1=x1#s2,

k1=g3,
g3=/g2,
d2=ns2,
v2=g4,
g4=g5+g6,
g5=nx1&g7,
g6=x1&g11,
g7=s1#ns2#g8,
g8=g9&g10,

g9=nx2&ns1,
g10=ns2&ns3,
g11=g12+g13,
g12=g10&s1,
g13=s2&s3,
d3=g14,
g14=g15+g16,
g15=nx1&ns1&ns2,
g16=x1&s2&g17,

g17=g18+g19,
g18=nx2&ns1,
g19=ns1&ns3,
sf1=j1&ns1+/k1&s1,
sf2=/v2&s2+d2&v2,
sf3=d3,
y1=/(s1+s3),
y2=/(s2+s3).

4 vtin 1 2
x1 x2.
vtin 1 3
s1 s2 s3.

vtin 1 4
sf1 sf2 sf3.
vtin 1 5
y1 y2.

vtin 1 6
nx1 nx2 ns1 ns2 ns3 j1 k1 d2 v2 d3
g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11
g12 g13 g14 g15 g16 g17 g18 g19.

sts e8103

4. Solutions 213

Exercise 8.4.

1 tin 1 10
x1 nx1.
01
10.
tin 1 11
x2 nx2.
01
10.
tin 1 12
s1 ns1.
01
10.

tin 1 13
s2 ns2.
01
10.
tin 1 14
s3 ns3.
01
10.
tin 1 15
g2 j1.
00
11.

tin 1 16
g1 ns3 g2.
0-0, 100
111.
tin 1 17
x1 s2 g1.
000, 011
101, 110.
tin 1 18
g3 k1.
00
11.

tin 1 19
g2 g3.
01
10.
tin 1 20
ns2 d2.
00
11.
tin 1 21
g4 v2.
00
11.

tin 1 22
g5 g6 g4.
000, 011
1-1.
tin 1 23
nx1 g7 g5.
0-0, 100
111.
tin 1 24
x1 g11 g6.
0-0, 100
111.

tin 1 25
s1 ns2 g8 g7.
0000
0011
0101
0110
1001
1010
1100
1111.

tin 1 26
g9 g10 g8.
0-0, 100
111.

tin 1 29
g12 g13 g11.
000, 011
1-1.

tin 1 32
g14 d3.
00, 11.
tin 1 33

tin 1 35
x1 s2,
g17 g16.
0--0, 10-0,

tin 1 38
ns1 ns3 g19.
0-0, 100
111.

tin 1 41
d3 sf3.
00, 11.
tin 1 42

tin 1 27
nx2 ns1 g9.
0-0, 100
111.
tin 1 28
ns2 ns3 g10.
0-0, 100
111.

tin 1 33
g10 s1 g12.
0-0, 100
111.
tin 1 31
s2 s3 g13.
0-0, 100
111.

g15 g16 g14.
000, 011
1-1.
tin 1 34
nx1 ns1 ns2
g15.
0–0, 10-0
1100, 1111.

1100, 1111.
tin 1 36
g18 g19 g17.
000, 011
1-1.
tin 1 37
nx2 ns1 g18.
0-0, 100
111.

tin 1 39
j1 k1 s1 sf1.
1-01, -011
0-00, -110.
tin 1 40
d2 v2 s2 sf2.
-000, -011
01-0, 11-1.

s1 s3 y1.
001, 010
1-0.
tin 1 43
s2 s3 y2.
001, 010
1-0.

2 sts e8104

Exercise 8.5.

1 The output of the sequential circuit in Fig. 8.2 depends on the state variables
only. Hence, it is a finite-state machine of the Moore-type.

2 22+3 = 25 = 32 phases exist.

3 Execute the PRP prepared in Exercise 7.1. Fig. 8.5 shows the calculated global
list of phases.

4 lds e8103
maxk 1 6 7
obbc 7 7

Using the variable tuple 6 of the unessential internal variable
defined in Exercise 8.3, the 32 phases of the finite-state machine
could be expressed by 16 orthogonal ternary vectors as shown
in Fig. 8.6.

5 sts e8201

6 The graph of the finite-state machine is shown in Fig. 8.7. There is a cycle of
the length 6. If x1 = 1 and x2 = 0, the finite-state machine follows the states
(000) → (100) → (110) → (010) → (011) → (001) and returns to (000). In case
of x1 = 0 and x2 = 0 the reverse direction of the same cycle is used. If x2 = 1,
the state (001) is excluded from the cycle such that the remaining length is equal
to 5. The states (111) and (101) cannot be reached. Starting from these states the
state (000) is reached.

214 8 FINITE-STATE MACHINES

Figure 8.5 Global list of phases that describes the behavior of the sequential circuit
given in Fig. 8.2

Exercise 8.6.

1 lds e8201

2 Execute the PRP prepared in Exercise 8.4.

3 isc 10 11 50
isc 50 12 50
isc 50 13 50
isc 50 14 50
isc 50 15 50
isc 50 16 50
isc 50 17 50

isc 50 18 50
isc 50 19 50
isc 50 20 50
isc 50 21 50
isc 50 22 50
isc 50 23 50
isc 50 24 50

isc 50 25 50
isc 50 26 50
isc 50 27 50
isc 50 28 50
isc 50 29 50
isc 50 30 50
isc 50 31 50

isc 50 32 50
isc 50 33 50
isc 50 34 50
isc 50 35 50
isc 50 36 50
isc 50 37 50
isc 50 38 50

isc 50 39 50
isc 50 40 50
isc 50 41 50
isc 50 42 50
isc 50 43 50
syd 50 1 51

4 syd 50 1 51 The empty TVL 51 verifies that both structural models describe
the same behavior of a finite-state machine.

Exercise 8.7.

1 lds e8201.sdt

4. Solutions 215

Figure 8.6 Global list of phases that describes the behavior of the sequential circuit
given in Fig. 8.2 restricted to the essential variables and minimized

Figure 8.7 Behavior of a finite-state machine of the sequential circuit given in Fig. 8.2
– the states are labeled by (s1, s2, s3) − y1 = 1 in the states (000) and (010), y2 = 1
in the states (000) and (100)

2 tin 1 10
x1 x2.
00.
isc 7 10 11
obb 11 11

tin 1 12
x1 x2.
01.
isc 7 12 13
obb 13 13

tin 1 14
x1 x2.
10.
isc 7 14 15
obb 15 15

tin 1 16
x1 x2.
11.
isc 7 16 17
obb 17 17

The partial behaviors for all four possible input pattern are shown in Fig. 8.8.
More clearly the different cycle lengths of 6 (5) for x2 = 0 (x2 = 1) and the
different directions in the cycles for x1 = 0 (x1 = 1) are visible.

216 8 FINITE-STATE MACHINES

Figure 8.8 Global list of phases that describes the behavior of the sequential circuit
given in Fig. 8.2 for each fixed input pattern

3 tin 1 20
s1 s2 s3.
000.
isc 7 20 21
obb 21 21

tin 1 22
s1 s2 s3.
100.
isc 7 22 23
obb 23 23

tin 1 24
s1 s2 s3.
101.
isc 7 24 25
obb 25 25

TVL 21 indicates 3 reachable states from
(000), in detail (011), (001), and (100).
TVL 23 indicates 2 reachable states from
(100), in detail (110), and (000). TVL 25
indicates that only the state (000) is reach-
able from (101).

4 tin 1 30
sf1 sf2 sf3.
000.
isc 7 30 31
obb 31 31

tin 1 32
sf1 sf2 sf3.
100.
isc 7 32 33
obb 33 33

tin 1 34
sf1 sf2 sf3.
101.
isc 7 34 35
obb 35 35

TVL 31 indicates 5 states from which the
state (000) is reachable, in detail (100),
(011), (111), (101) and (001). TVL 33 indi-
cates two states from which the state (100)
is reachable, in detail (000), and (110).
TVL 35 indicates that there is a state from
which the state (101) is reachable.

5 isc 7 34 35
obb 35 35
maxk 7 2 40
maxk 40 3 40

maxk 40 5 40
cpl 40 41
obb 41 41
sts 8203

TVL 41 indicates that 2 states are not
reachable from any state controlled by any
input pattern. These two states are (111),
and (101).

Exercise 8.8.

1 lds e8201.sdt

2 maxk 7 4 10
maxk 10 5 10
cpl 10 11

The empty TVL 11 confirms that the analyzed finite-state ma-
chine is realizable.

4. Solutions 217

3 maxk 7 5 20
maxk 20 〈sf2 sf3〉 21
derk 21 〈sf1〉 22
cpl 22 22

maxk 20 〈sf1 sf3〉 23
derk 23 〈sf2〉 24

cpl 24 24

maxk 20 〈sf1 sf2〉 25
derk 25 〈sf3〉 26

cpl 26 26

The empty TVLs 22, 24, and 26 confirm that all three memory functions of the
analyzed finite-state machine are uniquely defined.

4 maxk 7 4 30 maxk 30 〈y2〉 31
derk 31 〈y1〉 32

cpl 32 32

maxk 30 〈y1〉 33
derk 33 〈y2〉 34

cpl 34 34

The empty TVLs 32, 34 confirm that both result functions of the analyzed finite-
state machine are uniquely defined.

Exercise 8.9.

1 lds e8101.sdt

2 The finite-state machine of the simple traffic light does not depend on any input
variables. Hence, it is a finite-state machine of the Moore-type, more in detail an
autonomous one.

3 maxk 1 4 10
maxk 10 5 10
cpl 10 11

The empty TVL 11 confirms that the analyzed finite-state ma-
chine is realizable. There are no missing phases.

Exercise 8.10.

1 lds e8102.sdt

2 The finite-state machine of the extended traffic light depends on 2 input variables.
Hence, it can be a finite-state machine of the Mealy-type or of the Moore-type. It
is necessary to check whether at least one of the outputs depends for any state on
the inputs. This can be analyzed using the Δ-operator of the Boolean Differential
Calculus.

maxk 1 4 10 mink 10 2 11
maxk 10 2 12
syd 11 12 13

The empty TVL 13 confirms that no out-
put depends on any input. Hence, it is a
finite-state machine of the Moore-type.

3 maxk 1 4 20
maxk 20 5 20
cpl 20 21

The TVL 21 is not empty. Hence the given finite-state ma-
chine of the extended traffic light is not realizable. There are
44 missing phases. The reason is the extension by one state
variable that allows 16 additional states. Only 5 of them are
used. The behavior of the remaining states must be defined in
order to realize this finite-state machine by a sequential circuit.

Exercise 8.11.

1 More than one phase is allowed for each input pattern in the states (s1, s2, s3)
equal to (111) and (101).

2 space 32 1

218 8 FINITE-STATE MACHINES

Figure 8.9 Karnaugh-maps of the mark functions to control the JK-flip-flop: a) j1q

as object 16, b) j1r as object 17, c) the selected function j1, d) k1q as object 26, e)
k1r as object 27, f) the selected function k1

3 tin 1 1
x1 x2 s1 s2 s3
sf1 sf2 sf3 y1 y2.
1-00010011

1-10011001

1-11001000

1-01001110

1101100000

1001100100

1-00100000

0000000111

0100001111

0-00101100

0-01101000

0-01011010

0-11010000

0-10000001

--1-1--0--

--1-10-1--.

4 vtin 1 2
x1 x2.
vtin 1 3
s1 s2 s3.
vtin 1 4
sf1 sf2 sf3.
vtin 1 5
y1 y2.

5 sts e8301
After
execution of
the PRP the
TVL system
is stored as
file “e8301.sdt”.

Exercise 8.12.

1 lds e8301.sdt

2 tin 1 10
j1 k1 s1 sf1.
1-01, -011

0-00, -110.

isc 1 10 11

3 maxk 11 4 12
maxk 12 5 12

4 maxk 12 〈k1〉 13
obbc 13 13

5 sbe 1 14
j1 = 1.
mink 13 14 15
obb 15 15
don’t-care
function j1ϕ

6 isc 13 14 16
maxk 16 14 16
dif 16 15 16
obb 16 16
j1q see
Fig. 8.9 a)

4. Solutions 219

Figure 8.10 Karnaugh-maps of the mark functions to control the DV -flip-flop: a) d2q

as object 36, b) d2r as object 37, c) the selected function d2, d) v2q as object 46, e)
v2r as object 47, f) the selected function v2

7 cpl 14 14
isc 13 14 17
maxk 17 14 17
dif 17 15 17
obb 17 17
j1r see
Fig. 8.9 b)

8 selected j1 see
Fig. 8.9 c)
sbe 1 18
j1 = (x1#s2)&/s3.

9 isc 11 18 21

10 maxk 21 4 22
maxk 22 5 22

11 maxk 22 〈j1〉 23
obbc 23 23

12 sbe 1 24
k1 = 1.
mink 23 24 25
obb 25 25
don’t-care
function k1ϕ

13 isc 23 24 26
maxk 26 24 26
dif 26 25 26
obb 26 26
k1q see
Fig. 8.9 d)

14 cpl 24 24
isc 23 24 27
maxk 27 24 27
dif 27 25 27
obb 27 27
k1r see
Fig. 8.9 e)

15 selected k1 see
Fig. 8.9 f)
sbe 1 28
k1 = /j1.

16 isc 21 28 29

17 maxk 29 〈j1 k1〉 6
obbc 6 6

18 syd 1 6 100
The TVL 100 shows
that 64 of the 192
non-deterministic
phases are removed.

19 sts e8302.sdt

Exercise 8.13.

1 e8302.sdt

220 8 FINITE-STATE MACHINES

Figure 8.11 Karnaugh-maps of the mark functions to control the D-flip-flop: a) d3q

as object 56, b) d3r as object 57, c) the selected function d3

2 tin 1 30
d2 v2 s2 sf2.
-000, -011

01-0, 11-1.

isc 6 30 31

3 maxk 31 4 32
maxk 32 5 32

4 maxk 32 〈v2〉 33
obbc 33 33

5 sbe 1 34
d2 = 1.
mink 33 34 35
obb 35 35
don’t-care
function d2ϕ

6 isc 33 34 36
maxk 36 34 36
dif 36 35 36
obb 36 36
d2q see
Fig. 8.10 a)

7 cpl 34 34
isc 33 34 37
maxk 37 34 37
dif 37 35 37
obb 37 37
d2r see
Fig. 8.10 b)

8 selected d2 see
Fig. 8.10 c)
sbe 1 38
d2 = /s2.

9 isc 31 38 41

10 maxk 41 4 42
maxk 42 5 42

11 maxk 42 〈d2〉 43
obbc 43 43

12 sbe 1 44
v2 = 1.
mink 43 44 45
obb 45 45
don’t-care
function v2ϕ

13 isc 43 44 46
maxk 46 44 46
dif 46 45 46
obb 46 46
v2q see
Fig. 8.10 d)

14 cpl 44 44
isc 43 44 47
maxk 47 44 47
dif 47 45 47
obb 47 47
d2r see
Fig. 8.10 e)

15 selected v2 see
Fig. 8.10 f)
sbe 1 48
v2=
s3&(/x1#s2)
+s1&(x1#s2)
+/x1&x2&/s1&/s2.

16 isc 41 48 49

17 maxk 49 〈d2 v2〉 7
obbc 7 7

18 syd 1 7 101 The TVL 101 shows that 128 of the 192
non-deterministic phases are removed.

19 sts e8303.sdt

Exercise 8.14.

1 e8303.sdt

4. Solutions 221

Figure 8.12 Karnaugh-maps of the mark functions of the outputs y1 and y2: a) y1q

as object 66, b) y1r as object 67, c) the selected function y1, d) y2q as object 76, e)
y2r as object 77, f) the selected function y2

2 tin 1 50
d3 sf3.
00

11.

isc 7 50 51

3 maxk 51 4 52
maxk 52 5 52
obbc 52 53

4 sbe 1 54
d3 = 1.
mink 53 54 55
obb 55 55
don’t-care
function d3ϕ

5 isc 53 54 56
maxk 56 54 56
dif 56 55 56
obb 56 56
d3q see
Fig. 8.11 a)

6 cpl 54 54
isc 53 54 57
maxk 57 54 57
dif 57 55 57
obb 57 57
d3r see
Fig. 8.11 b)

7 selected d3 see
Fig. 8.11 c)
sbe 1 58
d3=
/x1&/s1&/s2
+x1&/s1&s2
&(/x2+/s3).

8 isc 51 58 59

9 maxk 59 〈d3〉 8
obbc 8 8

10 syd 1 8 102
The TVL 102 shows
that 160 of the 192
non-deterministic
phases are removed.

11 sts e8304.sdt

Exercise 8.15.

1 e8304.sdt

222 8 FINITE-STATE MACHINES

Figure 8.13 Behavior of a finite-state machine: a) given non-deterministic global list
of phases as object number 1, b) deterministic global list of phases as object number
9 of the designed sequential circuit

2 maxk 8 4 62 4 sbe 1 64
y1=1.

5 isc 63 64 66
maxk 66 64 66

6 cpl 64 64
isc 63 64 67

3 maxk 62 〈y2〉 63 mink 63 64 65
obb 65 65
don’t-care
function y1ϕ

dif 66 65 66
obb 66 66
y1q see
Fig. 8.12 a)

maxk 67 64 67
dif 67 65 67
obb 67 67
y1r see
Fig. 8.12 b)

7 selected y1 see
Fig. 8.12 c)
sbe 1 68
y1=/s1&/s3.

9 maxk 71 4 72

10 maxk 72 〈y1〉 73
obbc 73 73

11 sbe 1 74
y2=1.
mink 73 74 75
obb 75 75
don’t-care
function y2ϕ

12 isc 73 74 76
maxk 76 74 76
dif 76 75 76
obb 76 76
y2q see
Fig. 8.12 d)

8 isc 8 68 71

13 cpl 74 74
isc 73 74 77
maxk 77 74 77
dif 77 75 77
obb 77 77
y2r see
Fig. 8.12 e)

14 selected y2 see
Fig. 8.12 f)
sbe 1 78
y2 = /s2&/s3.

15 isc 71 78 9
obbc 9 9

16 syd 1 9 103
The TVL 103 shows that 184 of the
192 non-deterministic phases are re-
moved. The remaining 8 phases de-
scribe the deterministic behavior in the
states (111) and (101) for each of the
four input patterns. Hence, a de-
terministic finite-state machine is de-
signed.

17 sts e8305.sdt

4. Solutions 223

Figure 8.14 Behavior of a finite-state machine of the sequential circuit designed in
Exercises 8.12 . . . 8.15 – the states are labeled by (s1, s2, s3) – y1 = 1 in the states
(000) and (010), y2 = 1 in the states (000) and (100)

Exercise 8.16.

1 e8305.sdt

2 Figure 8.13 a) shows the global lists of phases of the given non-deterministic
finite-state machine of object number 1, and Fig. 8.13 b) shows the global lists of
phases the designed deterministic finite-state machine of object number 9, respec-
tively. The rows 15 and 16 show how the non-deterministic behavior in the states
(101) and (111) was specified during the design process into a fixed deterministic
behavior.

3 Figure 8.14 depicts the graph of the designed finite-state machine. In comparison
with the graph of Fig. 8.7 on page 215 of the basic finite machine only the edge
starting from the state (101) was redirected from the state (000) to the state (010)
such that the working cycle is reached from this inessential state in one time step.

4 Figure 8.15 shows the structure of the sequential circuit calculated in Exer-
cises 8.12 . . . 8.15. The number of inputs of the gates is restricted to three.

5 dif 9 1 80
The empty TVL 80 confirms that the behavior of the structure of the sequential
circuit given in object number 9 is covered by the allowed behavior defined in
Exercise 8.11 and given in object number 1.

maxk 9 〈sf2 sf3 y1 y2〉 81
derk 81 〈sf1〉 82
cpl 82 82

maxk 9 〈sf1 sf3 y1 y2〉 83
derk 83 〈sf2〉 84

cpl 84 84

maxk 9 〈sf1 sf2 y1 y2〉 85
derk 85 〈sf3〉 86
cpl 86 86

The empty TVLs 82, 84, and 86 confirm
that the memory functions sf1, sf2, and
sf3 are uniquely defined.

224 8 FINITE-STATE MACHINES

Figure 8.15 Structure of the designed finite-state machine using three types of flip-
flops and AND-, OR-, and EXOR-gates restricted to three inputs

maxk 9 〈sf1 sf2 sf3 y2〉 87
derk 87 〈y1〉 88

cpl 88 88

maxk 9 〈sf1 sf2 sf3 y1〉 89
derk 89 〈y2〉 90
cpl 90 90

The empty TVLs 88 and 90 confirm that the output functions y1 and y2 are
uniquely defined.

6 Figure 8.15 depicts the circuit structure of the designed finite-state machine which
differs in one inessential phase from the circuit structure given in Fig. 8.2. The
circuit structures to control the JK-flip-flop FF1 are identical. This indicates the
high quality of both designs. Nevertheless the number of gates in the designed
circuit structure was reduced by 6 gates from 23 gates to 17 gates. The longest
path between the inputs of the circuit and the inputs of the flip-flops is reduced

4. Solutions 225

by two gates from 6 gates to 4 gate. Hence, the clock frequency of the designed
circuit can be 150 percent of the given sequential circuit.

Exercise 8.17.

1 lds e8101.sdt

2 sbe 1 6
j0=1,
k0=1,
j1=s0,
k1=s0,
j2=s0&s1,
k2=s0&s1,
j3=s0&s1&s2,
k3=s0&s1&s2,

r1=(s2+s3)#(/s0&/s1&/s3),
y1=/s0&/s1&/s3,
g1=(s0+s1)&/s2&/s3,
r2=(s2+/s3)#(/s0&/s1&s3),
y2=/s0&/s1&s3,
g2=(s0+s1)&/s2&s3,

sf0=j0&/s0+/k0&s0,
sf1=j1&/s1+/k1&s1,
sf2=j2&/s2+/k2&s2,
sf3=j3&/s3+/k3&s3.

3 maxk 6 〈j0 k0 j1 k1 j2 k2 j3 k3〉 7
syd 1 7 8
The empty TVL 8 confirms that the designed sequential circuit realizes the be-
havior of the simple control for a road work traffic light given in Fig. 8.1.

Exercise 8.18.

1 lds e8102.sdt

2 maxk 1 2 6
maxk 6 4 6
maxk 6 5 6
cco 6 3 4 7
cpl 6 8
isc 7 8 9
obbc 9 9

tin 1 10
r1 y1 g1 r2 y2 g2.
000000.
isc 9 10 11
uni 1 11 12
obbc 12 12

TVL 6 includes all states used so far. TVL
9 includes the phase (s, sf) which com-
pletes the finite-state machine. TVL 11
extends these phases by the allowed out-
put values. TVL 12 is the realizable non-
deterministic finite-state machine to de-
sign.

3 maxk 12 4 13
maxk 13 5 13

cpl 13 13 The empty TVL 13 confirms that the com-
pleted finite-state machine is realizable.

4 sbe 1 20
d0=/s0,
v0=/s1&/s2&/s3&s4
+((/s0+/s4)
#(x1&/s0&/s1&/s2&/s4&(/x2#s3))),
d1=s0&/s1,
v1=s0&/s4+/s2&/s3&s4&(s0#s1),
d2=/s2,
v2=s0&s1,
d3=/s3,
v3=s0&s1&s2,
d4=/s0&/s1&/s2,
v4=s1+s2+s3&s4
+x1&/s2&/s4&(x2#/s3),

r1=s3&/s4+/s3&/s4
&(s2#(/s0&/s1))+/s1&/s2&s3,
y1=/s0&/s1&/s3&/s4,
g1=/s2&/s3&(/s4&(s0+s1)
+s4&(/s0+/s1)),
r2=/s3&/s4+/s4&
(s2#(/s0&/s1))+/s2&/s3&(/s0+/s1),
y2=/s0&/s1&s3&/s4,
g2=/s2&s3&(/s1&s4+/s4&(s0+s1)),
sf0=/v0&s0+d0&v0,
sf1=/v1&s1+d1&v1,
sf2=/v2&s2+d2&v2,
sf3=/v3&s3+d3&v3,
sf4=/v4&s4+d4&v4.

226 8 FINITE-STATE MACHINES

Figure 8.16 Behavior of the realized synchronous finite-state machine of an extended
control for a road work traffic light

5 maxk 20 〈d0 v0 d1 v1 d2 v2 d3 v3 d4 v4〉 21
obbc 21 21
dif 21 12 22

maxk 21 4 23
maxk 23 5 23
cpl 23 23

The empty TVL 22 confirms that the circuit described by the system of logic
equations in object number 20 behaves as allowed in the behavioral description
12. The empty TVL 23 confirms that this finite-state machine is realizable.

6 Figure 8.16 shows the graph of the realized finite-state machine of an extended
control for a road work traffic light. It can be seen that the given behavior of
Fig. 8.4 is embedded and a unique deterministic behavior was selected by the
designed sequential circuit.

References

[1] D. Bochmann, F. Dresig, and B. Steinbach. A new decomposition method for multilevel
circuit design. In European Conference on Design Automation, pages 374–377, Amster-
dam, Holland, 1991.

[2] D. Bochmann and B. Steinbach. Logikentwurf mit XBOOLE. Verlag Technik, Berlin,
1991.

[3] E. Böhl. Ein Beitrag zur Theorie dynamischer Fehlererscheinungen in kombinatorischen
und sequentiellen Schlatnetzwerken. PhD thesis, University of Technology, Karl-Marx-
Stadt (Chemnitz), Germany, 1975

[4] F.M. Brown. Boolean Reasoning: The Logic of Boolean Equations. Kluwer Academic
Publishers, Boston, 1990

[5] R.E. Bryant. Graph-based algorithms for boolean function manipulation. C-35, 1986
[6] M. Davio, J.-P. Deschamps, and A. Thayse. Discrete and Switching Functions. McGraw-

Hill International, New York, 1978
[7] D.L. Dietmeyer. Logic Design of Digital Systems. Allyn and Bacon Inc., Boston, 2 edi-

tion, 1978
[8] F. Dresig, N. Kümmling, B. Steinbach, and J. Wazel. Programmmieren mit XBOOLE.

Number 5 in Wissenschaftliche Schriftenreihe. Technische Universität, Chemnitz, Ger-
many, 1992

[9] G.P. Gavrilov and A.A. Sapozhenko. Problems and Exercises in Discrete Mathematics.
Springer, Berlin, June 30, 1996

[10] D.H. Green. Modern Logic Design. Addison-Wesley Publishing Company, New York,
1986

[11] G.D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms. Kluwer
Academic Publishers, Boston, 1996

[12] M.A. Harrison. Introduction to Switching and Automata Theory. McGraw-Hill, New
York, 1965

[13] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, New York, 1970
[14] G.D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, Inc., New

York, 1994
[15] R.E. Miller. Switching Theory. Wiley, New York, 1965
[16] A. Mishchenko, B. Steinbach, and M. Perkowski. An algorithm for bi-decomposition of

logic functions. In Proceedings of the 38th Design Automation Conference, pages 103–
108, Las Vegas (Nevada) USA, 2001

[17] S. Muroga. Logic Design and Switching Theory. Wiley, New York, 1979
[18] C. Posthoff and B. Steinbach. Logic Functions and Equations – Binary Models for

Computer Science. Springer, Dordrecht, The Netherlands, 2004
[19] T. Sasao. Switching Theory for Logic Synthesis. Kluwer Academic Publishers, Norwell,

MA, 1999
[20] F. Somenzi. CUDD: CU Decision Diagram Package Release 2.4.1. Department

of Electrical and Computer Engineering – University of Colorado at Boulder.
http://vlsi.colorado.edu/∼fabio/CUDD/

227

http://vlsi.colorado.edu/$sim $fabio/CUDD/

228 References

[21] B. Steinbach. XBOOLE – A toolbox for modelling, simulation, and analysis of large
digital systems. System Analysis and Modelling Simulation, 9:297–312, 1992

[22] B. Steinbach. Decision Diagram Technique for Micro- and Nanoelectronic Design. Chap-
ter: Decomposition Using Decision Diagrams, pages 509–544. CRC PRESS, Boca Raton,
London, New York, 2006

[23] B. Steinbach, F. Schumann, and M. Stöckert. Power and Timing Modelling for Perfor-
mance of Integrated Circuits. Chapter: Functional Decomposition of Speed Optimized
Circuits, pages 65–77. IT Press, Bruchsal, 1993

[24] B. Steinbach and M. Stöckert. Design of fully testable circuits by functional decomposi-
tion and implicit. In Test Pattern Generation. Proceedings of the 12th IEEE VLSI Test
Symposium, pages 22–27, Cherry Hill (New Jersey) USA, 1994

Index

4-fold View, 6, 13

A
AND-OR circuit, 137
antivalence equation, 62
antivalence normal form, 32
antivalence polynomial, 28
Append Ternary Vector(s)..., 13
arithmetic representation, 28
asynchronous finite-state machine, 89

B
binary vector, 23
Boolean Differential Calculus, 83
Boolean space, 9
button Create, 12
button K, 7
button Single Step, 17
button T, 7

C
circuit behavior, 140
circuit model, 135, 195
circuit structure, 135
CLB, 151
clocked sequential circuit, 198
closed sphere, 25
combinatorial circuit, 135
combinatorial properties, 26
command avar, 17
command language, 13
command line, 7, 13
command obb, 17
complement, 62
complement (CPL), 62

complement of the symmetric difference
(CSD), 63

complete system of functions, 37

completely specified circuit, 137

composition of functions, 30

configurable logic block, 151

conjunctive form, 31

conjunctive normal form, 31

conjunctively degenerated functions, 33

connected component, 76

Context Help, 9

control function, 204

Create TVL..., 9, 11

critical transition, 89

D

decimal equivalent, 23

Define Space..., 9

degeneration of functions, 33

Delete Protocol, 16

dependency on variables, 91

derivative, 82

Derivatives, 14

design, 203

difference (DIF), 62

differential, 75

differential minimum Min(x3,x4) f(x), 80

differential representation, 76

disjunctive form, 31

disjunctive normal form, 31

disjunctively degenerated functions, 33

dual function, 34, 91

229

230 Index

E
edit mode, 13
entry

subentry, 1
equivalence equation, 63
equivalent formula, 29
essential variable, 37
Execute PRP... , 16
Extended Operation, 14
extension sdt, 5

F
finite-state machine, 195
flip-flop, 195
function ‖x‖, 24
function vector, 32
functional hazard, 89

G
gate, 135
General, 10
graph equation, 75, 77

H
help information, 9
Help Topics, 9, 13

I
implication, 30, 63, 65
incompletely specified function, 144
Index of Commands (ordered by

topics), 14
inequality, 65
intersection (ISC), 62
irredundant disjunctive form, 35
ISP, 144

K
Karnaugh map, 7

L
linear function, 93
linear with regard to xi, 93
linearly degenerated functions, 33
List of the Commands, 14
local list of phases, 137
logic equations, 61
logic expression, 25
logic formula, 25
logic function, 3, 25
logic gate, 195
logic modeling, 27

look-up table, 151

LUT, 151

M

m-fold derivative, 82, 87

m-fold differential maximum operation,
82

m-fold differential minimum operation,
81

m-fold differential operation, 81

m-fold maximum, 87

m-fold minimum, 87

mark function, 96

Matrices, 14

matrices, 61

maximum clause, 67

menu ‘?’, 13

menu bar, 5

minimization, 35

minimized disjunctive normal form, 35

monotone function, 34, 92

monotonously decreasing with regard to
xi, 92

monotonously increasing with regard to
xi, 92

N

non-deterministic finite-state machine,
203

NOR-NOR circuit, 137

normal form, 27

O

OBB Orthogonal Block Building, 32

OBBC Orthogonal Block Building and

Change, 32

Object Management, 14

Objects, 9

Open PRP..., 16

open sphere, 25

operation derk, 83, 87

operation derv, 83, 84

operation maxk, 83, 87

operation maxv, 83, 84

operation mink, 83, 87

operation minv, 83, 84

orthogonal disjunctive/antivalence
(ODA) form, 7

orthogonality, 32

Index 231

P
partial behavior, 201
partial differential d(x3,x4)f(x), 80
partial differential maximum

Max(x3,x4) f(x), 80
partial differential operation, 80
partial solution, 65
prime implicant, 35
problem program, 6
problem program (PRP), 16
protocol, 6
PRP, 6

R
relations, 23

S
SAT-problem, 63
satisfiability, 67
Save protocol as PRP..., 16
sdt-file, 5
self-dual function, 34, 91
sensible path, 162
sequential circuit, 195
sequential representation, 76
Sets, 14
sets, 61
Shegalkin polynomial, 32
shell of a sphere, 25
simple derivative, 82
simulation, 141
Single View, 6, 13
solution set, 62
solution with regard to variables, 66
Solve Boolean Equation, 25
sound reflections, 3
Spaces/Objects, 7
special formulas, 30
special normal form, 32
sphere with center c, 25
stable state, 89
static functional hazard, 89

stuck-at-0 error, 162
stuck-at-1 error, 162
subequation, 65
subfunction, 33
Summary of the toolbars, 11
Survey of the Toolbars, 11
symmetric difference, 29
symmetric difference (SYD), 62
symmetric function, 34, 92
system function, 137
system of equations, 66

T
tautology, 28
toolbar, 6, 10
toolbar icon, 10
toolbar Objects, 10
toolbars, 10
total differential dxf(x), 77
total differential maximum Maxx f(x),

77
total differential minimum Minx f(x), 77
total differential operation, 77
transformation rule, 29
tuple VT, 7
TVL, 6
TVL mode, 13

U
union (UNI), 62

V
vectorial derivative, 82, 84
vectorial derivative operation, 86
vectorial differential operation, 86
vectorial maximum, 84
vectorial minimum, 84
vtin, 15

X
XBOOLE help system, 8
XBOOLE Library, 3
XBOOLE Monitor, 3

	cover-large.tif
	front-matter.pdf
	Contents
	List of Figures
	List of Tables
	Preface
	Foreword
	Introduction

	front-matter_2.pdf
	Ihskip 1emBasic Software

	fulltext.pdf
	XBOOLE MONITOR
	XBOOLE Preliminaries
	The XBOOLE Window Structure
	XBOOLE Menu
	Toolbars
	Command Line
	Problem Program
	XBOOLE Library

	fulltext_2.pdf
	BASICS AND LOGIC FUNCTIONS
	Combinatorial Considerations in B and Bn
	Logic Functions, Formulas and Expressions
	Special Functions and Representations
	Minimization
	Complete Systems of Functions
	Partially Defined Functions
	Solutions

	fulltext_3.pdf
	LOGIC EQUATIONS
	Logic Equations
	Solutions

	fulltext_4.pdf
	BOOLEAN DIFFERENTIAL CALCULUS
	Differentials
	Derivatives
	Applications
	Solutions

	fulltext_5.pdf
	THE SOLUTION OF LOGIC EQUATIONS
	Tasks
	Solutions

	front-matter_3.pdf
	IIhskip 1emAPPLICATIONS

	fulltext_6.pdf
	LOGICS AND ARITHMETICS
	Propositional Logics
	Solutions

	fulltext_7.pdf
	COMBINATORIAL CIRCUITS
	The Circuit Model
	Analysis
	Design
	Test
	Solutions

	fulltext_8.pdf
	FINITE-STATE MACHINES
	The Circuit Model
	Analysis
	Design
	Solutions

	back-matter.pdf
	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

