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Abstract. Webbases are database systems that enable creation of Web
applications that allow end users to shop around for products and ser-
vices at various Web sites without having to manually browse and fill out
forms at each of these sites. In this paper we describe XRover which is an
implementation of the physical layer of the webbase architecture. This
layer is primarily responsible for automatically locating and extracting
dynamic data from Web sites, i.e data that can only be obtained by form
fill-outs. We discuss our experience in building XRover using FLORA, a
deductive object-oriented system.

1 Introduction

The World Wide Web is becoming the dominant medium for information deliv-
ery and electronic commerce. The number of users who routinely use the Web
to buy goods and services continues to increase at a rapid pace. In response,
software robots (called “shopbots”) that allow consumers to quickly find out the
best prices for comparable goods and services are beginning to emerge. Infor-
mation about prices and other attributes of products are typically obtained by
filling out forms at a vendor’s site. Software robots retrieve such information by
automatically navigating to relevant sites, locating the correct forms, filling them
out and extracting the data of interest from web pages returned as the result.!
Hence tools that can do automatic form fill-outs and extract relevant information
from the data pages returned in response, are becoming very important.

One such enabling technology is a webbase [11,3,2,6], which is a database
system for managing and querying the dynamic Web content (i.e., data that can
only be extracted by filling out multiple forms). Designing webbases is an active
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area of current database research in view of the rapid proliferation of shopbots.
Managing the dynamic Web content encompasses automating several tasks that
include specifying and locating the data of interest (e.g. price information) in a
Web site and extracting and integrating information from multiple sites into a
coherent view.

In [6] we proposed a 3-layer architecture for designing and implementing
webbases — an architecture that is akin to the traditional layering of database
systems. The most significant difference between a webbase and a database is
the absence of the traditional physical layer. The actual data in webbases is the
exclusive domain of the Web server, and the only way a webbase can access it is
by filing requests to the server, such as following links or filling out forms. Hence,
the notion of wvirtual physical layer (VPL) was introduced for the lowest layer
in the webbase architecture in order to provide a unifying view of all the data
that can be retrieved by filing requests to the server. While the physical layer in
databases describes data storage, VPL specifies how to navigate to the various
data sources in the Web. In this way, VPL provides navigation independence
by shielding the user from the complexities associated with retrieving raw data
from Web sources and thereby presents a database view of the Web to the up-
per layers of the webbase architecture, namely the logical layer and the external
schema layer. While these layers are similar to the corresponding upper layers in
traditional databases, they have special semantic meaning in webbases. For in-
stance, the logical layer provides site independence in the sense that it integrates
and reconciles heterogeneous information available from different sites, which is
available through VPL in navigation-independent, but nonetheless site-specific
form.

We had proposed techniques centered around Transaction F-Logic [10, 9] that
facilitate creation of wrappers for the virtual physical layer [6]. Our architecture
makes it possible to automate data extraction from web data sources to a much
higher degree than was previously possible. But the design and implementation
of the VPL itself was left open and is the subject of this paper. Specifically we
describe our experience with implementing the XRover using FLORA [14], a
deductive object-oriented system that we recently developed.

A case for deductive object-oriented design of VPL: The first step in the design
process is to develop a suitable data model for HTML pages. Observe that an
HTML page is a semistructured data source comprising several elements, each
having a tag that identifies the type of the element. For instance, a tag can
identify an element as a paragraph, an image, a link, a table, a form, etc. We
designed a syntactic HT'ML object data model to represent the elements in a
page. In this model we define an object class corresponding to every tag. The
HTML page is parsed and its elements are assigned an object class based on
their tags.

HTML is a display-oriented mark-up language with only limited structural
capabilities. In particular, it provides no machine understandable information to
describe the contents of a page. Hence, we also need a semantic data model so
as to be able to structure the syntactic objects presented in HTML and invoke



meaningful operations on them, such as follow a link object, fill-out a form object,
or query the value of a certain attribute (say, in a table). For this purpose, we
designed a semantic navigation object model, which consists of aggregate objects
that draw information from the HTML model and enable automated navigation
in Web sites. In database terms, navigation objects are semantic views over the
purely syntactic HTML objects.

The first step, converting an HTML page into a set of objects, is a relatively
simple task. The crux of the VPL is the design of the navigation object model
and the mapping between the syntactic HTML object model and the semantic
navigation object model. One important issue in this design is the resilience of
that mapping, namely, the ability of the mapping to yield correct navigation
objects in the face of variations and changes in the page layout. We propose
a deductive rule-based approach for locating and extracting information from
objects in Web pages. Such a paradigm lets us efficiently search for objects
and their associated attributes with high degree of independence from the page
layout.

The rest of this paper is organized as follows: In Section 2 we provide an
overview of our approach to the design of the VPL. Section 3 describes the
details of the design. Section 4 discusses XRover, our implementation of VPL
using FLORA,? a recently developed deductive object-oriented system based on
F-logic [10]. Our implementation experience is discussed in Section 5.

2 Owur Approach

One of the most important tasks that a shopbot must do is to collect information
and services from different sites and present it to the customer in an integrated,
unified view. In many shopbot sites, most of this extraction happens automati-
cally, by “learning” regular expressions that match the desired information. The
learning process is guided by a set of simple heuristics, such as those described in
[12]. These techniques work well for a typical consumer site, where information
is obtained by filling out a simple keyword-based search form and the result is
presented in a simple, structured table. It is much more difficult to deal with sites
that cater to business customers where search forms allows complex parametric
queries based on multiple attributes, and results are presented in multiple re-
lated HTML segments. For instance, Figure 1 shows part of a search result page
on the Web site of a large distributor of electronic components.

The page consists of three visible tables (each providing a different kind
of information for the electronic part), many more invisible tables, one form to
enable purchase, plus a plain text header that provides classification information
for the retrieved part. Such complex result pages vary widely from site to site and,
to the best of our knowledge, no automatic techniques exist for extracting and
integrating such complex information. However, the semantic structure of Web
pages can be mapped with relative ease with the help of appropriate graphical

2 http://xsb.sourceforge.net/flora/



tools. The purpose of such a tool is to let the user identify (and specify to the
system) the objects of interest, such as the relevant tables, forms and links. The
physical virtual layer of our webbase system provides the needed infrastructure
to support the process of site mapping and complex information extraction.
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Fig. 1. A Complex Catalog Search Result Page

The architecture of the VPL is object-oriented and it is implemented using
FLORA. The approach has two main components:

1. A general mechanism for locating objects of interest on a page; and
2. An object model for describing aggregate objects in the navigation model.
Navigation objects are queried by the higher levels of the webbase.

The first mechanism is based on the object locator language (OLL) — a special
declarative language that allows the user to specify object location in a flexible
way. It is akin to the language of extended path expressions in semistructured
query languages [1]. The system includes a FLORA program that acts as an
interpreter for this language. Since FLORA implements F-logic, which in itself
is a powerful query language for semistructured data, building such an interpreter
for OLL is very easy. Thus, when the user points to an HTML object of interest,
an OLL expression must be generated in order to arrange for the subsequent
retrieval of the object.



The unique aspect of our approach is how these expressions are generated.
First, an OLL expression for the desired object is automatically created. This
expression is fairly simple-minded, as it specifies the location of the object in
rather rigid terms. This initial expression is similar to URI’s in XML: it provides
a sequence of simple navigation commands that direct the search towards the
requisite object. However, such expressions are not appropriate for locating Web
information, because the location of an object can change due to a page redesign
or simply because the page is generated dynamically, by a script. Such changes
tend to break Web extraction systems so resilience cannot be achieved by rigid,
brittle locator expressions. Thus, at the next stage, we transform the initial
OLL expression into an unambiguous and resilient expression that extracts to
the same object. Here “unambiguous” means that the expression identifies just
one object; this requirement guards against the possibility of over-generalizing
the initial OLL expressions. “Resilience” means that the expression will be able
to locate the requisite object under a large class of variations in the page layout.
Some of the techniques used to create unambiguous resilient expressions are
detailed in [7].

To illustrate the idea, consider the second visible table in Figure 1 (below the
“Component Detail” header). This table is actually part of a bigger, invisible
table, so the initial OLL expression would be generated as follows:

table, table.tr, tr.td, td.img, table, table, td,
table, img, table, text, table, table, form, text, table

The actual initial expression is much more detailed—we skipped many of the
intermediate features of the Web page. In this expression, the symbols correspond
to HTML objects, the period “” means that the search must nest inside a
complex data element, such as a table or a form, and the comma “” signifies
horizontal scan accross the siblings in the HTML tree. The above expression
tells us that in order to find the second visible table, we have to find the second
top-level table in the HTML source, go inside the table (nest), find the second
row and then start examining the fields of that row. Having found the second
field, which happens to have complex internal structure, we must nest into that
structure. Then we must scan this structure horizontally to find an image, skip
two tables, find an out-of-place <td> element (which happens to be a formatting
bug on this page), and then skip a number of images, tables, and text items to
locate the table we need.

The problem with this addressing schema is that it is too brittle. It will get
us the desired table for a particular instance of the page, but a page generated
for a different catalog search request might look slightly different and the above
address might then point to a wrong item (or not point anywhere at all). This
problem was addressed in [7]. Combining the techniques described in that work
with other heuristics, we can create a much more resilient OLL expression:

x.text[contents — ' * Component'], table

This expression says that in order to find the desired table, we must find a text
object that matches the word “Component” at any level of nesting and then



scan horizontally to the first table. This expression is much more resilient to
changes in the page contents than the original one, and it stands a much better
chance of being able to fetch the right object regardless of the actual search
parameters, even in the presence of many types of page layout changes. Not
only is the above expression more resilient, but it also can be processed faster
using a deductive system, such as FLORA, because we can build an index on
the contents attribute of the text class.

The second layer in our architecture, the aggregate navigation objects that
unify the information scattered in disparate HTML segments, is essentially a
view over the basic HTML model of a Web page. This view is specified using
the page extraction map, which itself is a set of F-logic objects that use the OLL
expressions to tell the system where the individual components of the navigation
object are coming from. Page extraction maps are composed together to form a
site map for the Web site.

The page extraction map object corresponding to the second table in the
above example looks as follows:

011 (*.text [contents -> ’*Component*’],table) : normal_tablel[
column_names -> rel_oll( .tr(1) );
init_row -> 2;
row(Row) -> rel_oll( .tr(Row) );
total_rows -> rel_oll( .last )

011 (*.text[contents -> ’*Component*’],table.tr(1))

: header_row([
column_name (Column) -> rel_oll( .th(Column).text );
width -> rel_oll( .last )

011 (*.text[contents -> ’*Component*’],table.tr(Row))

: data_row[
column(Column) -> rel_oll( .td(Column).text );
width -> rel_oll( .last )

1.

The above specifies that the HTML segment pointed to by
x.text[contents — ' * Component*'|, table

is a mormal_table in the navigation object model and its header column can be
extracted from the segment pointed to by the OLL expression

*.text[contents — ' * Componentx'], table.tr(1)

where tr(1) means the first row in the table. The rows can be extracted from the
segment pointed to by *.text[contents — '«Component«’], table.tr(Row) where
Row is a parameter. The second extraction map object is interpreted similarly.



Some of the navigation objects extracted with the help of this extraction
map object are as follows:

nav_obj3 : normal_table. nav_obj4 : header_row.
nav_obj3[ nav_obj4[
column_names -> nav_obj4; column_name (1) -> ’Attribute’;
row(l) -> nav_obj5; column_name(2) -> ’Value’;
row(2) -> nav_obj6; width -> 2
... ].
total -> 10
1.
nav_objb : data_row. nav_obj6 : data_row.
nav_obj5[ nav_obj6[
column(1) -> ’Mfg Pt No’; column(1l) -> ’Manufacturer’;
column(2) -> ’290217; column(2) -> ’LOCTITE CORP.’;
width -> 2 width -> 2
] ]

We discuss navigation objects in further detail in subsequent sections.

3 Architecture of the Virtual Physical Layer (VPL)

There are two aspects in VPL implementation:

1. Site Mapping which is done once per site.
2. Run-time query processing driven by the site maps.

We first explain the process of site map construction.

Site Map Construction. The process is shown in Figure 2. XRover begins by
using an HTTP library to fetch the Web page. This page is then parsed by an
HTML parser that translates the page into a set of F-Logic objects, and for
each object its OLL expression is computed. For instance, the following objects
describe two consecutive tables in an HTML page:

htmlobj3 : table. htmlobji1l :  table.
htmlobj3[ htmlobj11[
parent -> htmlobj2; parent -> htmlobj2;
position -> O; position -> 1;
rows -> htmlobj4; rows —-> htmlobjl2;
0ll -> [table]; oll -> [table,table];
width -> 640;

border -> 0
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Fig. 2. Site Map Construction

Next, a page extraction map is created using a graphical editor by drag
and drop operations on the HTML object tree, such as the one illustrated in
Figure 3. The oll’s in the page map are then optimized and made more resilient
as described in Section 2. This process is repeated for every page of interest,
including those dynamically generated by scripts.

Extraction maps for individual pages are put together to form a site map,
which encodes all access paths to the data of interest. A site map can be viewed
as a labeled directed graph where the nodes represent the extraction map objects,
and the labeled edges represent possible actions on the navigation objects (i.e.,
following a link or filling out a form) that can be executed from that page.

The overall structure of a site-map for an electronics catalog could be as
depicted in Figure 4.

The above represents a simple site map with three nodes: pagel, page2 and
page3. There is an edge from pagel to page?2 labeled table(2).tr(2).td(2).form(1)
which corresponds to a form invocation. The items attribute of the form in the
page extraction map would describe its queriable attributes. Also, there is an
edge from page?2 to page3 with the label table(2).tr(1).td(1).a.action which
represents a link that could be followed to retrieve additional part information
such as the information presented in Figure 1.

Runtime query processing. The purpose of this sub-system is to automatically
extract data in response to user queries. Its overall operation is as depicted
in Figure 5. When a user query arrives, the navigation planner determines the
sequences of pages to be followed using the site maps and navigation objects
that are needed to answer the user’s query. It then constructs a navigation plan
for the query. For example, if the user just requests pricing information for an
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electronic part then only the pricing table needs to be extracted from the HTML
page of Figure 1.

Next, the navigation plan is passed to the plan evaluator which accesses the
actual Web pages. It parses and translates page contents into FLORA HTML
objects. From these objects, the Fxtractor module extracts the navigation objects
of interest using the page extraction map, and the cycle repeats until the entire
query plan evaluation is completed. The resulting navigation objects are returned
to the user or to the higher levels of XRover.

4 XRover Implementation: Status and Statistics

XRover was built using FLORA, a deductive object-oriented system imple-
mented through source-to-source translation into XSB [13], which is a fast deduc-
tive engine that is based on tabled resolution approach. This technique is known
to produce fast executable code and combines the advantages of top-down and
bottom-up query processing.

The overall system is about 1,500 lines of FLORA code and it took less than
two man months to implement. The average size of a site map is under 100 lines.

We also developed a graphical site-mapping tool to facilitate the job of build-
ing site maps. Using this tool one can construct the extraction map for a page
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Fig. 5. Run-time query processing.

by dragging and dropping the relevant objects from the HTML parse tree. The
site-mapping GUI was written entirely in Java using the Swing library.

Even though both FLORA and XRover are just prototypes, we observed
that the system has very acceptable performance. A typical number of XRover
accesses per Web site is three pages, and results are returned within 3 seconds.
In most cases, the response time is dominated by network delays.

So far we have built two applications with XRover — a direct mail marketing
service for a large pharmaceutical company and a electronic parts portal for the
U.S. Defense Logistics Agency. In the former we extract names and addresses
of potential customers from phone directories posted at the web sites of various
medical institutions. The parts portal provides price, availability and technical
data of electronic parts from various vendor and OEM catalogs on the Web.

5 Conclusion

We described the object-oriented architecture of the virtual physical layer of
XRover, a Web based information system that presents a unified database view
over multiple Web sites. The implementation was done using FLORA — a
DOOD system based on F-logic. The experience gained during the course of
this project is perhaps the most interesting part, because DOOD systems are
still rare and there are not that many applications developed with them. As
expected, the use of a high-level DOOD language significantly reduced the im-
plementation effort: the entire VPL layer was implemented in less than two
man-months. Despite the fact that both XRover and the FLORA programming
environment are just prototypes, the performance is quite acceptable — about
3 seconds per site — and further significant optimizations are possible.



The support for object-oriented design in FLORA was crucial for helping
us produce clear and concise data models at several levels of detail, and the
deductive nature of FLORA made it easy to implement the query evaluator and
the various interpreters (e.g., the OLL interpreter). The high-level, declarative
nature of FLORA made it easy to glue the various pieces of the system together.

Even more important is what was learned about the shortcomings of FLORA
as implementation platform. First, a practical DOOD system requires a good
module system that can simplify the task of developing multi-file projects. Sec-
ond, the current implementation of FLORA relies on the underlying XSB system
to do most of the optimization. It has been realized that significant speedup can
be achieved through F-logic-specific source transformation techniques [14]. Fi-
nally, we discovered that DOOD systems need better support for declarative
update primitives, such as the ones proposed for Transaction Logic [4, 5]. These
features are being added in the upcoming implementation of FLORA 2.0 [14].
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