RISC processors

RISC Processors

COMP375 Computer Architecture
and Organization

blue slides ©Intel Gautam Doshi

RISC Traits

Pipelined

Simple instructions
Few instructions

No microcode

Few addressing modes
Load/Store architecture
Sliding register stack
Delayed branches

Fast

Current RISC Systems

e PowerPC — The processor in the Apple
Power Mac. Produced by IBM and Apple.

e Sparc — The processor in Sun workstations
and servers. Produced by Sun
Microsystems. First commercial RISC.

* [tanium — In new servers replacing the Intel
Pentium. Produced by Intel.

Intel Itanium®

Intel’s latest RISC system.

e The current processor is the Itanium 2.

Intel seems to indicate that this is the
replacement for the Pentium chip.

Support of Pentium Instructions

* The Itanium can execute both Itanium
instructions and Pentium (IA-32) instructions

» There are jump to 1A-32/Itanium instructions

Intel” Itanium® System Envirenment

1A-32 Instructions ltanium

Instructions

Segmentation

o

Paging & Interruption
Handling in the Intel
Itanium Architecture

COMP375

intgl.

Today's Architecture Challenges

Sequential Semantics

e Program = Sequence of instructions

e Implied order of instruction execution

o Potential dependence from inst. to inst.

But ...

eHigh performance needs parallel execution
e Parallel execution needs independent insts.
eIndependent insts must be (re)discovered

Sequentiality inherent in traditional archs

Intel
Labs

RISC processors

Today's Architecture Challenges

Sequential Semantics ...

addr1=r2,r3 addr1=r2,r3
subrd=r1,r2 subrd =ri1, r2
shir5=r4, r8 shlr5=r14, r8

e Compiler knows the available parallelism

= but has no “vocabulary” to express it
e Hardware must (re)discover parallelism

Complex hardware needed to (re)extract ILP

InU. Intel

Labs

Itanium® Architecture
Performance Features

o Explicitly Parallel Instruction Semantics

e Predication and Control/Data Speculation
e Massive, Massive Resources (regs, mem)
s Register Stack and its Engine (RSE)

e Memory hierarchy management support
e Software Pipelining Support

Challenges addressed from the ground up

i Intel
II"IH. Labs

Today's Architecture Challenges

Resource Constraints

e Small Register Space

= Limits compilers ability to "express” parallelism

= Creates false dependencies (overcome by renaming)
e Shared Resources

= Condition flags, Control registers, etc.

= Forces dependencies on otherwise independent insts
e Floating-Point Resources

= Limited performance even in ILP rich applications

= Data parallel applications need flexible resources

Limited Resources: a fundamental constraint

intal. Intel
td Labs

Instruction Bundles

« Explicitly Parallel /instruction Computing
(EPIC)

« Three 41 bit instructions are grouped into a
bundle with a 5 bit template.

* There must be no dependencies within the
instructions of a bundle.

127 AT 86 46 45 5 4 o]

instruction slot 2 instruction slot 0 | template |
a1 4 &

41 5

Compiler to Processor Hints

» Every memory load and store in the
Itanium architecture has a 2-bit cache hint
field

» The compiler can provide a hint to indicate
if a branch is likely to be taken.

* Templates define which execution units
will be used and if dependencies exist.

COMP375

Predication

Traditional Arch

e —
——

—Y_]
(]

—Fr

s)
e
—

e Control flow to Data flow

Predication removes/reduces branches

intel
. T \Labs,

RISC processors

==
Predication ... =

e Unpredictable branches removed
= Misprediction penalties eliminated

e Basic block size increases
= Compiler has a larger scope to find ILP

¢ ILP within the basic block increases

= Both “then” and “else” executed in parallel

e Wider machines are better utilized

Predication enables and enhances ILP

Intel
Labs

Today's Architecture Challenges

Procedure Call Overhead

e Modular programming increasingly used
#Programs tend to be call intensive

e Register space is shared by caller and callee
o Call/Returns require register save/restores

e Software convention has its limitations
#Parameter passing limited
#Extra saves/restores when not needed

Shared resources create more overhead

Iﬂu- Intel

\Labs

Register Stacks

« Many RISC processors have a large
number of registers, not all of which are
visible at any one time.

« The mapping of register X to a hardware
register changes when a function is called.

Before a Function Call

« Assume the assembly language programmer
sees 32 registers.

« Before a function call, arguments and the

return address are put in registers R24 to
R31.

RO R7 | R8 R15 |[R16 R23|R24 R31

After a Function Call

« After a function call, the input arguments and
the return address are available in registers R8
to R15.

» R16 to R23 are used for local variables.
* R24 to R31 contain arguments to next function

RO R7 R8 R15 |R16 R23|R24 R31

After another Function Call

After another function call, the input arguments
and the return address are again available in
registers R8 to R15.

Return values are also put in R8 to R15 upon
function return.

RO R7 R8 R15 |R16 R23|R24 R31

COMP375

RISC processors

Itanium Register Stack

¢ The Itanium uses a sliding register system
« After the function return, the return values are somewhat similar to the generic description

available in registers R24 to R31. » General registers 0 through 31 are termed
the static general registers.

» General registers 32 through 127 are
termed the stacked general registers.

¢ A function can specify how many of the

After Function Return

stacked general registers the system is to
RO R7 R8 R15 [R16 R23|R24 R31 h|ft
S .
« GPO is always zero.
ltanium Registers Register Stack Engine (RSE)
APPLICATION REGISTER SET
General Registers Floasn int Regesters Predicotes Branch Regrsters Apphcaton Regelers
= : e ulw’”.” q%"I i .E ,:p[‘-‘ v g:] e Automatically saves/restores stack
lH i 4 | registers without software intervention
:,‘;_—_:D PRI N 1 L —— an [P = Provides the illusion of infinite physical registers
gt £ — A by mapping to a stack of physical registers in memory

Ingtruction Painsar
o o

P = Overflow: Alloc needs more registers than available

= Underflow: Return needs to restore frame saved in memory

Preaf]

ar
Curreqt Frame Marker ar
CFM

* RSE may be designed to utilize unused

1, o er———1 e
iy T memory bandwidth to perform register
I o onter "o spill and fill operations in the background
Address Table Pr:f‘esacr I:Ie'wf:els Data H—-gu.-.nu-.r:m :::{WT{
=5] e s RSE eliminates stack management overhead
e N e T L — M[T} I Intel
=] ntgl. " \Labs
Itanium Floating Point Floating-Point Architecture
. . . . Fused Multiply Add Operation
» The Itanium has 128 floating-point registers E Al Py ; bora
= An efficient core computation unit
i EaCh register hOIdS an 82'b|t f|0atlng p0|nt # Abundant Register resources
value. = 128 registers (32 static, 96 rotating)
« Values are rounded as they are stored as e High Precision Data computations
32 bit floats or 64 bit doubles. = 82-bit unified internal format for all data types

» Software divide/square-root
= High throughput achieved via pipelining

FP: High performance and___ high precision

iI"IU. Intel

\Labs

COMP375

RISC processors

Traditional Arch

| divide |

Example: Software divide
ZA, =N/

Software divide
breaks a single divide y
into several FMA operations

Slightly greater latency of each |
divide, but much greater
< | throughput

H'MZA_-‘ Performance scales as machine

becomes wider and has more

EMA execution units execution | &x

| unit ! ! unit

The Software divide provides much greater
throughput on FP loops

intl.

Intel

Itanium® Architure

Labs

Endian

¢ The Itanium can execute in Big Endian or
Little Endian mode.

« Instruction fetches are always Little Endian

[tanium OS Support

Redhat Linux servers will run on the
[tanium. The desktop does not.

Microsoft Windows Servers will run on the
Itanium. Windows XP Professional will
not.

Sun Solaris runs on 64 bit Sparc
processors, but not on the Intel Itanium.

PowerPC Registers

General-purpose Floating-point
Tegisters registers Condition register XER register
GPRO (32/64) FPRO (64) ‘ CR(3) ‘ ‘ XER (32} ‘
GPRI (32/64) FPRI (64)
Floating-point status Link register
and control register R (260
FPSCR (32)
Count register
GPR31 (32/64) FPR31 (64) CTR (3264)

PowerPC Branches

Every jump instruction has two extra bits
AA bit

— 1 (use absolute address)

— 0 (use relative address)

LK bit

—0 (no link --- branch)

—1 (link --- turns branch into a procedure call)

COMP375

