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Abstract—Many sequential decision making problems re-
quire an agent to balance exploration and exploitation to
maximise long-term reward. Existing policies that address
this tradeoff typically have parameters that are set a priori
to control the amount of exploration. In finite-time problems,
the optimal values of these parameters are highly dependent
on the problem faced. In this paper, we propose adapting the
amount of exploration performed on-line, as information is
gathered by the agent. To this end we introduce a novel
algorithm, ε-ADAPT, which has no free parameters. The
algorithm adapts as it plays and sequentially chooses whether
to explore or exploit, driven by the amount of uncertainty
in the system. We provide simulation results for the one-
armed bandit with covariates problem, which demonstrate
the effectiveness of ε-ADAPT to correctly control the amount
of exploration in finite-time problems and yield rewards that
are close to optimally tuned off-line policies. Furthermore,
we show that ε-ADAPT is robust to a high-dimensional
covariate, as well as misspecified models. Finally, we describe
how our methods could be extended to other sequential
decision making problems, such as dynamic bandit problems
with changing reward structures.

Keywords-Exploration-exploitation tradeoff, sequential de-
cision making, on-line learning, one-armed bandit problem

I. INTRODUCTION

Sequential decision making problems often require an
agent to act in an environment where the potential rewards
for selecting different actions are unknown and, if selected,
are subsequently observed with noise. In such problems,
the agent must balance the need to exploit (choosing
the predicted best action) and explore (trying alternative
actions for potential future benefit), in order to maximise
cumulative reward. The simplest formulation of this prob-
lem is the multi-armed bandit [1], based on the analogy of
a slot machine or one-armed bandit, where the agent must
sequentially learn to identify the action (or arm) that yields
the highest expected reward. Bandit problems have been
extensively studied in the fields of statistics [2], machine
learning [3], economics [4] and evolutionary programming
[5] and have applications in areas as diverse as on-line
auctions [6], multi-target tracking [7], web advertising [8],
pricing goods [4] and clinical trials [9].

Several policies for selecting arms in bandit problems
have been constructed (see [3] for an overview), includ-
ing ε-greedy, ε-first, SoftMax, UCB (Upper Confidence
Bound) and Interval Estimation. All of these policies
require a parameter to be set that effectively controls the
amount of exploration. In finite-time problems, however,

the optimal values of these parameters are highly depen-
dent on the type of problem faced and the length of the
game [10], [11].

In real-world applications, where decision making prob-
lems are always finite-length, setting these parameter
values a priori to their optimal value is not feasible –
this requires prior knowledge of the problem faced, which
is precisely what the agent is trying to learn. Moreover, in
finite-time problems, certain parameter values yield poor
rewards, even though they can still converge to optimal
behaviour asymptotically [11]. For these reasons, in this
paper we propose a method for controlling exploration
in finite-time problems. In more detail, the likelihood of
exploring at each iteration is driven by the amount of un-
certainty the agent currently has – captured by calculating
statistics from past interactions with the environment.

We construct a novel algorithm, ε-ADAPT, for adapting
exploration on-line for the one-armed bandit with covari-
ates problem – which is an important special case of
the multi-armed bandit problem (see Section II for more
details). This problem is studied as it is the most basic
formulation of the exploration-exploitation tradeoff, where
there is only one action to explore – and is an important
first step in the direction of constructing autonomous
algorithms for exploration in general sequential decision
making problems.

In general, planning out an exploration policy for the
duration of a finite-length game is an intractable compu-
tation [3], scaling exponentially in the length of the game
and the number of actions available. To reduce the compu-
tation to quadratic-time, we make use of the properties of
the best performing off-line policies, such that ε-ADAPT
need only decide whether to explore or exploit for the
next time-step. Our algorithm therefore adapts as it plays
to effectively tune the exploration parameter – without the
need for any other free parameters.

This is the first such algorithm for adapting exploration
on-line. Previous research in bandit problems in general
[2], [12], and for the one-armed bandit with covariates
problem in particular [9], [13], has focused on finding
policies for selecting arms that converge to optimal be-
haviour asymptotically, and not for designing policies that
autonomously maximise reward in finite time by adapting
to the type of problem faced. Moreover, ε-ADAPT can be
generalised to control exploration in a variety of bandit
problems – including problems with multiple arms and



dynamic problems with changing reward structures, we
discuss this aspect more in Section V.

The structure of the paper is as follows. In Section II,
we provide a background on bandit problems in general,
and the one-armed bandit with covariates problem. We
also motivate the need for adapting exploration on-line
with some simple examples. In Section III, we describe ε-
ADAPT and provide pseudo-code. We perform a detailed
numerical analysis of ε-ADAPT in Section IV, including
high-dimensional problems and misspecified models. Sec-
tion V concludes and discusses future work.

II. BACKGROUND ON THE BANDIT PROBLEM

In the k-armed bandit problem an agent must, at each
iteration t, pull an arm ai from the set A = (a1, . . . , ak).
The agent receives a noisy reward rai(t), which in the
simplest case is Bernoulli {0, 1} with some unknown
probability [2] or an unknown fixed constant with added
noise [10]. The objective of the agent is to find a policy
for selecting arms ai at each time-step t to maximise the
cumulative reward R(T ) where:

R(T ) =
T∑

t=1

rai(t), (1)

and T is the length of the game. The rewards are
sometimes discounted over time in order to guarantee
convergence of an action selection policy (for example,
see [12]), but this is not a requirement in our work.
Nevertheless, the unknown relationship between selecting
an action and the potential reward received, is the reason
why the agent must balance exploration with exploitation
in order to maximise R(T ).

The simplest policy for selecting actions is to use a
greedy strategy and select the action that is expected to
yield the highest reward, given the information the agent
has. This is a pure exploitation policy – and the lack of
exploration has been shown to yield suboptimal results
for a variety of bandit problems [3], but perform well
in problems where rewards are non-noisy or the agent
naturally selects each action sufficiently while exploiting
[14]. A natural extension is the ε-greedy policy [3], which
selects the greedy action with probability 1 − ε and
uniformly picks another action with probability ε. The ε
parameter is often decreased over time [11] as the agent
is more certain of the optimal action, although this feature
often requires a second parameter value to be set. Another
variant is ε-first [3] which uniformly explores for the first
ε fraction of plays and is then greedy for the remainder
of play. A SoftMax policy [3], selects an action with a
weighted probability based on the likelihood of it being
optimal. Finally, the Interval Estimation [3], UCB [11] and
Poker [10] policies select the action which has the highest
optimistic reward estimate, which is inflated the most for
under-explored actions.

In a variety of empirical studies [10], [11], [14], well-
tuned ε-greedy and ε-first policies were found to outper-
form all other policies in terms of maximising cumulative
reward (or minimising regret). In particular, an optimally

tuned ε-first policy is difficult to beat in static problems
(where the relationships between actions and their rewards
do not change over time), as the benefit of any exploration
is largest if performed early in the game. The same studies,
however, found that the performance of ε-greedy and ε-
first policies degraded the most rapidly as the parameter
moves away from its optimal value. Due to its simplicity
and potential for large reward, we use the ε-first approach
as the building block of our algorithm, and expect notice-
able benefits from controlling exploration on-line.

In this paper we construct an algorithm for adapting ex-
ploration for the special case of the one-armed bandit with
covariates problem, where the agent must choose between
an arm with unknown expected reward and an arm with
known expected reward. The agent receives additional side
information, represented in the form of a covariate, prior
to each action selection decision. The one-armed bandit
problem was first studied in [15] for sequential clinical
trials and generalised to include covariates in [9], where
it was argued that side information is likely to be present
in many applications. For example, covariate information
such as age, sex, height and weight could influence the
probability of success of a drug in sequential clinical trials
[13]. More recent studies of bandits with covariates have
included [16], [17], [18]. Indeed covariates have been used
in a variety of applications for sequential decision making
problems including matching advertisements to web-page
content, adaptive generation of multimedia messages and
video compression (see [19] and references therein). Two
important properties of the aforementioned applications
are first, that the covariate value affects the reward of the
chosen action immediately and second, the selected action
does not alter the subsequent realisation of covariates1 –
which motivates the reward structures used in [14], [18].

The agent must select between actions {a1, a2}, where
the rewards for each action are given by:

ra1(t) =f(X(t), α) + ηt, (2)

ra2(t) =g(X(t), β) + νt, (3)

where X(t) is the p-dimensional covariate observed at
time t. ηt and νt are i.i.d. noise processes assumed to
be centred Gaussians with variance σ2

η and σ2
ν respectively

(both unknown to the agent). It is assumed the agent knows
the functions f and g and the parameters of the known
arm β but not the parameter values of the unknown arm
α – this is precisely what the agent must learn. As in
[18], the covariate is assumed to be drawn from a known
distribution, with unknown parameters (for example a
multivariate Gaussian with unknown mean vector μX and
unknown covariance matrix ΣX ). The objective of the
agent is to correctly partition the covariate space between
areas where each arm is optimal – the agent hence has
to learn this decision boundary accurately and quickly to
achieve a high reward.

Exploration in the one-armed bandit with covariates
problem involves selecting unknown arm a1, when arm

1As a result, the agent is not facing the full reinforcement learning
problem (see [3]).
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Figure 1. Expected reward of the ε-first policy (averaged over 10,000
repeats) for 0 ≤ ε ≤ 0.25 in the 10-dimensional setup used in Section
IV. We include results for various values of the noise variance σ2

η . The
rewards are normalised such that the highest achievable reward is 1. The
game length is 100 iterations.

a2 is expected to yield a larger reward, given the observed
covariate X(t). To illustrate the need to control the amount
of exploration performed in this problem, in Fig. 1 we
show expected rewards using the ε-first policy with the 10-
dimensional covariate problem studied in Section IV, for
various values of the noise variance σ2

η . The optimal value
of ε (denoted by a star) is highly dependent on the level of
noise variance, and furthermore the performance of ε-first
can degrade quickly for badly tuned ε, particularly when
the amount of noise is low – this motivates the construction
of an algorithm to control exploration on-line, which we
describe in the next section.

III. ε-ADAPT - AN ALGORITHM FOR CONTROLLING

EXPLORATION

In this section, we construct an on-line algorithm, ε-
ADAPT, that learns to effectively control the amount of
exploration in the one-armed bandit with covariates prob-
lem. At each iteration, the agent updates its predictions
of the unknown parameters of the reward function and
the covariate. For example, with a multivariate Gaussian
covariate, the agent maintains estimates μ̂X and Σ̂X , along
with α̂ and σ̂2

η , using the sample estimates from the past
history of interactions. These statistics indicate the likeli-
hood of each arm being optimal for future covariate values
and the amount of uncertainty the agent has regarding this.
It is this uncertainty that dictates the likelihood with which
the agent will explore or exploit at each iteration.

In an on-line setting, the agent only needs to select an
action for the next iteration, and does not have to submit
a policy for the remainder of the game. Nevertheless,
the agent cannot ignore the possible action choices that
follow the current one, which presents the agent with an
intractable calculation. To combat this issue, we use the
ε-first policy as the building block of our algorithm (as
motivated in Section II). In particular, we make use of
Theorem 1 – a new Theorem regarding the optimality
of ε-first policies in finite time. RεF (A, εA) denotes the
expected cumulative reward of an ε-first policy for a game
of length A that has an initial exploration phase of length
εA (where action a1 is always selected).

Theorem 1. RεF (T, c) > RεF (T, 0) and c ≥ 1 ⇒
RεF (T, 1) > RεF (T, 0) (for all T, c ∈ Z+).

This Theorem states that if an ε-first policy that explores
for 1 or more iteration outperforms a greedy policy then
an ε-first policy that explores for exactly 1 iteration also
outperforms a greedy policy. This property can be clearly
seen in Fig. 1.

Proof (sketch): Suppose that RεF (T, 1) < RεF (T, 0). It
follows that if the game were to be 1 iteration shorter,
then RεF (T − 1, 1) < RεF (T − 1, 0) as shorter games
require less exploration (to see this consider removing the
last action at time T – this will subtract more from the
reward of RεF (T, 1) than RεF (T, 0)). It then follows that
RεF (T, 2) < RεF (T, 1) (as adding an extra exploration
step at the beginning will add more reward to RεF (T −
1, 0)). We can then consider a game 2 iterations shorter
and continue this inductive process (c− 1 times) to show
RεF (T, c) < RεF (T, 0), which completes the proof.

The significance of this result is that all the agent now
needs to compute at time t is which policy is expected to
yield a larger reward: RεF (T ∗, 0) or RεF (T ∗, 1), where
T ∗ = T − t + 1 (the length of the game remaining).
This follows because if any more exploration needs to
be performed in a static problem, it should be performed
immediately. Therefore, from Theorem 1, the agent needs
to explore if and only if an ε-first policy with 1 initial ex-
ploration step outperforms a greedy policy (or ε-first with
0 initial exploration steps). If the agent could calculate this
exactly, the optimal on-line policy follows Algorithm 1.

Algorithm 1 Optimal on-line policy
for t = 1 to T do

Observe X(t) {Covariate}
Update unknown parameters of covariate distribution
if t ≤ D or Rεf (T ∗, 1) > Rεf (T ∗, 0) or E[r(a1|X(t), α̂) >
E[r(a2|X(t), β) then

Select action a1 and receive reward ra1 (t)
Update α̂ and σ̂2

η {Only updated when a1selected}
else

Select action a2 and receive reward ra2 (t)
end if

end for
D is the required length of initialisation for sample estimates to exist.

This policy receives exactly the same reward as the opti-
mally tuned off-line ε-first policy, but requires knowledge
of the unknown parameters. The challenge therefore lies in
approximating the unknown expected rewards, Rεf (T ∗, 1)
and Rεf (T ∗, 0). We use sample estimates so that the agent,
at time t, can perform a Monte Carlo (MC) simulation
of the rest of the game, to see which policy yields
the highest expected cumulative reward. This involves
generating future covariate values and rewards (Y (s) and
r̄ai(s|Y (s), α̂, σ̂2

η) for s = 1, . . . , T ∗), and then simulating
the game with each policy to see which performs better.

The shortcoming of this approach, however, is that if
we simulate the rest of the game from time t using the
sample estimates, then the greedy approach will always
outperform ε-first as the MC estimate of α̂ (denoted ᾱ) will
already have converged to α̂ and exploration is deemed



not to be required. To avoid this, we need to introduce
uncertainty in the estimate of α̂, which reflects the un-
certainty in the true game. So in addition to simulating
the rest of the game, we also regenerate covariate values
and rewards that were used to estimate α̂ prior to time t,
such that the MC estimate ᾱ is perturbed from the true
sample estimate. This creates uncertainty in the simulated
game that mimics the uncertainty in the true game, and
provides a reason to explore. The on-line approximation
of Rεf (T ∗, 0) (and Rεf (T ∗, 1)) follows Algorithm 2.

Algorithm 2 On-line MC approximation of Rεf (T ∗, 0)
(and Rεf (T ∗, 1))

Inputs: t (current time-step), T (length of game) C (no. of times a1

selected prior to time t), sample estimates (α̂, σ̂2
η , . . .)

for s = 1 to T ∗ + C do
Generate Y (s) {New Covariate}
if s = C + 1 then

Y (s) = X(t) {True covariate value kept at time t only}
end if
if s ≤ C1 or E[r̄(a1|Y (s), ᾱ) > E[r̄(a2|Y (s), β) then

Select action a1 and receive reward r̄a1 (s). Update ᾱ
else

Select action a2 and receive reward r̄a2 (s)
end if

end for
Rεf (T ∗, 0) =

∑T∗+C
s=C+1 r̄ai (s) {MC approximation}

1 Replace C with C + 1 to calculate approximation of Rεf (T ∗, 1).

Our algorithm for controlling exploration on-line, ε-
ADAPT, follows Algorithm 1, with Rεf (T ∗, 0) and
Rεf (T ∗, 1) approximated using Algorithm 2.

Notice that the covariate value at time t is not replaced
by a new sample in Algorithm 2, but kept at the true ob-
served value – a key component of ε-ADAPT. This allows
ε-ADAPT to decide which regions of the covariate space
are worth exploring and which are not. For example, if the
expected reward of the unknown arm is only marginally
smaller than the known arm (given the covariate value),
then the benefits of exploration (through increased learning
of parameters α and σ2

η) can outweigh the costs (the
myopic loss of selecting a sub-optimal action). Whereas
with other covariate values the short-term costs might
exceed the long-term benefits.

This includes a notion of cost-inclusive exploration to
ε-ADAPT, where at earlier steps the algorithm is willing to
forego a lot of reward for 1 exploration step whereas later
exploration is only worthwhile if the cost to the reward is
negligible. In this sense, ε-ADAPT attempts to detect when
best to explore and not just how much. This is something
that ε-greedy and ε-first policies are not able to do, as they
are off-line policies, and this further motivates the use of
an on-line exploration algorithm.

ε-ADAPT is based on the ε-first policy, but does not
require any parameters to be set a priori that govern the
amount of total exploration. In fact, ε-ADAPT has no
free parameters whatsoever – apart from the parameters
used within the estimation module, which are recursively
estimated during play, and do not need to be set a priori.
Occasionally ε-ADAPT might undershoot (due to poor
sample estimates and/or error from the MC approximation)
and start exploiting too early. For these reasons, we

continue to decide whether to explore or exploit at every
iteration until the end of the game. In this way, ε-ADAPT
is naturally self-correcting and will explore at a later
stage (if necessary) to compensate for any lack of earlier
exploration.

ε-ADAPT is computationally efficient, scaling quadrat-
ically in T (as the MC approximation in Algorithm 2
is of maximum length T and is repeated T times). The
relationship with the dimensionality of the covariate p
depends on the inference procedure used to estimate α.
For linear reward models, least squares can be used (order
p3) or recursive least squares (order p2) if a further saving
is required (at a marginal increase to the error of the esti-
mates for low sample-length data). The MC computation
given in Algorithm 2 can be repeated several times to
smooth the estimates of the two competing policies, but
this is not necessary for our algorithm to work. In fact, in
the simulations performed in Section IV, the MC estimate
was only repeated twice at each iteration, as more repeats
had no particular extra benefit.

ε-ADAPT can handle non-linear reward functions, pro-
vided consistent estimation procedures are available. In
addition, our algorithm can deal with non-Gaussian co-
variates and error terms by either explicitly coding them
in (where tractable) or by using bootstrapping techniques.

IV. NUMERICAL RESULTS

In this section, we test ε-ADAPT for the one armed bandit
with covariates problem. We use linear reward functions
with a 5-dimensional covariate (Section IV-A) and 10-
dimensional covariate (Section IV-B), to test the ability
of ε-ADAPT to learn from a high-dimensional covariate.
Linear reward functions are considered because, with the
appropriate design of covariates, it is often the case that the
reward function of an action can be well approximated by
a linear function [3], [14], [19]. We assume the observation
noise is Gaussian and centred at zero, although we also
test the robustness of ε-ADAPT to a misspecified noise
model (Section IV-C).

Throughout this section, we generate our covariate from
a multivariate Gaussian distribution, X(t) ∼ N (μX , ΣX)
(see also [14], [18]), as this distribution can accurately
model several real-world data sources [20], but again this
is not a requirement for our algorithm to work.

A. 5-dimensional Covariate

The reward function of action a1 and a2 are given by:

ra1(t) =
p∑

i=1

αiXi(t) + ηt, ra2(t) =
p∑

i=1

βiXi(t) + νt,

where β is known and α is unknown. p is the dimension of
the covariate where X1(t) = 1 (so that α1 becomes the in-
tercept of the reward plane) and X2,...,p(t) ∼ N (μX , ΣX).
We tested ε-ADAPT over 10,000 repeated simulations for
a game of length 100 with the following parameter values:

α =






0
−0.2
−0.2
−0.1
−0.1




μX =




−0.1
−0.2
−0.3
−0.3



ΣX =




−1 −0.1 −0.2 −0.5
−0.1 −0.2 −0.2 0
−0.2 −0.2 −0.4 −0.1
−0.5 0 −0.1 −0.8







The parameter values are selected such that each arm
is optimal in approximately 50% of the covariate space.
We simulated the problem for various values of the noise
variance σ2

η and quantify this using the covariance to
noise ratio [14], CNR= ‖ΣX‖1

σ2
η

, where ‖ΣX‖1 is the 1-
norm of ΣX . The larger the CNR, the more informative
observations are about α, making the learning problem
easier. The only other parameters we could change are the
reward coefficients – this has a similar effect to changing
the CNR though, in that separating the distance between
arms dissipates the effect of noise (and vice-versa). We
choose to report CNR values, however, as this allows our
results to be commensurate across dimensions.

Table I displays results for ε-ADAPT and several ε-first
policies (where ε is set with consideration of the data) for
various CNR values. The rewards are normalised between
0 and 1, where 1 is the expected reward to an oracle that
knows all parameters and 0 is the expected reward to a
random policy. This allows results between experiments to
be comparable and regret can be calculated by subtracting
the rewards from 1. The standard errors of all average
rewards reported in this section are less than 1 × 10−3.

Lower CNR values correspond to lower rewards for
each policy, as the learning problem is more difficult. For
each CNR value, however, ε-ADAPT performs close to the
best performing ε-first policy. Moreover, ε-ADAPT is the
best overall when the rewards are averaged, even though
these problems naturally favour exploration rates of 5-10%
(which will not always be the case).

Table I
AVERAGE REWARDS WITH A 5-DIMENSIONAL COVARIATE

CNR ε = 0 0.02 0.05 0.1 0.15 0.2 ε-ADAPT
100 0.847 0.859 0.850 0.816 0.774 0.729 0.857
50 0.773 0.797 0.803 0.783 0.749 0.709 0.799
20 0.632 0.668 0.692 0.695 0.679 0.653 0.688
10 0.501 0.533 0.565 0.587 0.586 0.575 0.573
5 0.381 0.408 0.437 0.467 0.476 0.471 0.453

Avg. 0.627 0.653 0.669 0.670 0.653 0.627 0.674

Table II compares ε-ADAPT with the optimally tuned
off-line ε-first policy from the same set of experiments.
The reward is always within 95% of the off-line optimal,
although the performance degrades as the noise increases –
this is because the error in the sample estimates are larger,
yielding on-line approximations (see Algorithm 2) that are
not as accurate. Nevertheless, lower values of the CNR
require more exploration from the agent, and ε-ADAPT
has responded to this by performing more exploration
steps on average (last column).

Table II
COMPARISON OF ON-LINE AND OPTIMAL OFF-LINE POLICIES

CNR
Off-line (ε-first) On-line (ε-ADAPT)
Opt. ε Reward % Optimal Avg. exp. steps

100 0.02 0.859 99.8% 3.99
50 0.04 0.804 99.4% 5.19
20 0.08 0.697 98.8% 6.79
10 0.11 0.589 97.4% 7.80
5 0.15 0.476 95.3% 8.61

To gain yet more insight, in Fig. 2 we show the average
amount of exploration performed at each time-step t for
various CNR values. Notice that the amount of exploration
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Figure 2. Average amount of exploration performed at time t using ε-
ADAPT, for various CNR values. The first 6 iterations correspond to the
initialisation phase, where ε-ADAPT explores to gain sample estimates.

0 5 10 15 20
0

1000

2000

Number of exploration steps
0 5 10 15 20 25

0

500

1000

1500

Number of exploration steps

Figure 3. Histograms showing the total number of exploration steps for
CNR values of (left) 100 (low noise) and (right) 5 (high noise).

performed is naturally higher for low CNR values and
furthermore, decreases as the game is played. This happens
automatically as ε-ADAPT is more certain of its estimates
and the horizon draws closer so exploration becomes more
costly. Exploration continues until the end, as covariate
values that are expected to yield only marginally subopti-
mal rewards to arm a1 can be worth exploring even at a
late stage of the game. Fig. 3 displays histograms of the
number of exploration steps performed within a game – the
spread is due to both the noise in the sample estimates (and
subsequent MC approximation) and the circumstances of
each game (a favourable start to the game means less
exploration needs to be performed later and vice-versa).

B. 10-dimensional Covariate

We repeat the same experiments for a 10-dimensional
covariate with parameters:

α =
[
−0.1 −0.4 −0.4 −0.5 −0.4 −0.2 −0.4 −0.3 −0.1 −0.1

]
,

μX =
[
−0.5 −0.2 −0.1 −0.4 −0.2 −0.4 −0.5 −0.3 −0.3

]
,

ΣX = diag(
[
−0.5 −0.3 −0.7 −0.1 −0.9 −0.8 −0.1 −1.0 −0.1

]
).

We choose a diagonal matrix for ΣX to maximise the
effect of the increased dimensionality on the learning
problem, and α is set such that each covariate has a
different impact on the reward function. Tables III and
IV display the expected rewards for the same on-line and
off-line policies, where the magnitude of CNR values has
been deliberately reduced by increasing the noise. This
is because higher dimension problems require less explo-
ration (see [14] for a detailed explanation). ε-ADAPT has
again yielded a reward that is within 95% of the optimal
and furthermore, has performed best on average against the
range of ε-first policies considered. The performance of ε-
ADAPT has not been affected by the increased number of
parameters it is required to learn as the algorithm is robust
to any p-dimensional covariate.

C. Misspecified Noise Models

In this section, we explore the behaviour of ε-ADAPT
when assumptions fail (as they would in the real world).
In particular, we look at two common departures from



Table III
AVERAGE REWARDS WITH A 10-DIMENSIONAL COVARIATE

CNR ε = 0 0.02 0.05 0.1 0.15 0.2 ε-ADAPT
20 0.833 0.833 0.816 0.777 0.732 0.686 0.832
10 0.787 0.794 0.785 0.755 0.715 0.672 0.790
5 0.718 0.731 0.734 0.715 0.684 0.647 0.731
2 0.587 0.605 0.617 0.623 0.608 0.583 0.617
1 0.470 0.490 0.508 0.522 0.520 0.506 0.512

Avg. 0.679 0.691 0.692 0.678 0.652 0.619 0.696

Table IV
COMPARISON OF ON-LINE AND OPTIMAL OFF-LINE POLICIES

CNR
Off-line (ε-first) On-line (ε-ADAPT)
Opt. ε Reward % Optimal Avg. exp. steps

20 0.01 0.835 99.6% 3.36
10 0.02 0.794 99.5% 4.31
5 0.04 0.734 99.6% 5.46
2 0.07 0.625 98.8% 6.86
1 0.11 0.522 98.1% 7.74

a Gaussian noise model – asymmetric and heavy-tailed
noise distributions. Specifically, we generate the noise pro-
cess using t(3) (heavy-tailed) and gamma(2, θ) (skewed)
distributions (where the first parameter of the gamma
distribution is the shape parameter and the second is
the scale). This allows us to check whether ε-ADAPT is
robust to misspecified noise models. We ran simulations
for the 10-dimensional covariate with the alternative noise
models, and scaled the noise so that we used the same
range of CNR values. The results are presented in Table
V. The performance of ε-ADAPT has not been affected
despite false assumptions regarding the noise model –
which is a particularly desirable type of robustness if these
methods were to be applied to real-world problems.

Table V
PERFORMANCE OF ε-ADAPT WITH MISSPECIFIED NOISE MODELS

t(3) noise gamma(2,θ) noise

CNR ε-first ε-ADAPT ε-first ε-ADAPT
Opt. ε Reward % Opt. Opt. ε Reward % Opt.

20 0.01 0.841 99.7% 0.01 0.836 99.5%
10 0.01 0.805 99.7% 0.02 0.799 99.3%
5 0.03 0.751 99.8% 0.03 0.743 99.4%
2 0.06 0.649 99.6% 0.07 0.634 99.0%
1 0.09 0.554 98.9% 0.10 0.532 98.7%

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented ε-ADAPT, the first algo-
rithm that controls exploration on-line in bandit problems.
ε-ADAPT decides at each iteration whether to explore or
exploit and this is driven by the amount of uncertainty in
the system. We have presented numerical results for the
one-armed bandit with covariates problem, and demon-
strated that ε-ADAPT is competitive with the optimal ε-
first policy, which requires the exploration parameter to be
set a priori. The amount of exploration performed by ε-
ADAPT naturally decreases over time (in a static system),
as the agent becomes more certain of the game it is playing
and the horizon draws closer. We have shown that ε-
ADAPT is robust to high-dimensional and misspecified
models and explained how it can also work with non-linear
and non-parametric reward functions.

Future work includes investigating bandit problems with
multiple arms – where we extend ε-ADAPT such that the
agent sequentially calculates the value of exploitation and
also the value of exploration for each suboptimal action
individually. The action with the highest value is then

selected – in a similar vein to the Gittins indices [12],
constructed for a different version of the bandit problem.
Preliminary evidence suggests that this method is effective
in adapting exploration on-line. Also of interest is ex-
tending ε-ADAPT to dynamic problems where parameters
suddenly change or drift over time [18]. ε-ADAPT is
already naturally suited to such a problem, as dynamics
in the system will increase the uncertainty of the running
estimates, which will subsequently increase exploration.
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