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Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we
will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the
development of multisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which
ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus
filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally,
conclusions are drawn and several potential future research directions are outlined.

1. Introduction

Multisensor fusion is also known as multisensor data fusion
[1, 2] or multisensor information fusion [3], which is an
emerging technology originally catering for the military
needs such as battlefield surveillance, automated target
recognition, remote sensing, and guidance and control of
autonomous vehicles. In recent years, the multisensor fusion
technology has been extensively applied to a variety of civilian
applications such as monitoring of complex machinery,
medical diagnosis, robotics, video and image processing,
and smart buildings. The essence of multisensor fusion
techniques is to combine data from multiple sensors and
related information from associated databases, to achieve
improved accuracies and more specific inferences than that
could be achieved by the use of a single sensor alone [1].

Arguably, Kalman filtering algorithm [4] is one of the
most popular multisensor fusion methods mainly due to
its simplicity, ease of implementation, and optimality in

a mean-squared error sense [2], and many important fusion
results based on it have been reported. Notably, the Kalman
filtering based multisensor fusion algorithms require either
independence or prior knowledge of the cross covariance
of estimate errors to produce consistent results [2]. Unfor-
tunately, in many practical scenarios, their cross covari-
ances are often unknown, which are usually referred to as
unknown correlations [5], unknown cross covariances [6],
or unavailable cross-correlations [7]. Unknown correlations,
if not dealt with appropriately, may significantly degrade
the system performance. It is no wonder that fusion with
unknown correlations has also drawn constant attention from
both theoretic and engineering perspectives.

Recent years have witnessed significant development in
the area of sensor networks with motivating applications
ranging from wireless camera networks [8] to simultane-
ous localization and mapping [9] to distributed multitarget
tracking [10]. The general setup is to observe the underlying
process through a group of sensors organized according
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Figure 1: The architecture of the consensus filtering algorithm.

to a given network topology, which renders the individual
observer estimates the system state based not only on its
own measurement but also on its neighbors’. Consequently,
a fundamental problem in sensor networks is to develop
distributed algorithms so as to estimate the state of interest
more effectively; such a problem is often referred to as
the distributed filtering or estimation problem [11, 12]. As
we all know, in a typical distributed filtering setting, each
node is sensing a local knowledge of the state of interest.
To combine limited information from individual nodes, a
suitable multisensor fusion is necessary to represent the state
of the object that appeared in the surrounding environment.
Besides, the scalability requirement, the lack of a fusion
center, and the limited knowledge of the whole sensor
network advocate the use of consensus approaches [13–15] to
achieve a collective fusion over the network by iterating local
fusion with neighboring nodes. It is these reasons that give
rise to the development of consensus filtering [10, 16] and its
structure is shown in Figure 1.

In fact, the idea of consensus filtering stems from [17, 18];
the term consensus filtering was first dabbed in [19, 20] in
2005. It was the time of a golden age for consensus theory
[13] and the 7th year after the first practical realization of
wireless sensor networks in 1998 by the Smart Dust project
at the University of California at Berkeley [21]. Since then, it
has triggered a newwave of researches on consensus filtering,
not only in theoretic development but also in engineering
practice.

There are several ways in the literature to design the
consensus filter. For a standard Kalman filter, consensus
scheme can be applied to either update step or prediction
step so as to construct a consensus filter without losing of
the Kalman filtering feature [27]. More broadly, consensus
filtering approaches such as consensus on estimate, consensus

on measurement, and consensus on information have been
proposed to design a variety of consensus filters [24, 28].
Recently, the 𝐻

∞
criterion has also been used to devise

the 𝐻
∞

consensus filter. Along the similar classifications as
[24, 28], we mainly cover the consensus filtering approaches
in four groups, that is, consensus on estimate, consensus on
measurement, consensus on information, and𝐻

∞
consensus.

In this paper, we mainly focus on the multisensor fusion
and consensus filtering for the distributed state estimate
problems and provide a systematic review for the advances
in these two areas. First, both theories and applications of
multisensor fusion techniques are revisited, in particular,
multisensor fusion with unknown correlations which per-
vasively exist in most of distributed filtering fashion. Next,
we classify the existing consensus filtering schemes into
four groups; both benefits and drawbacks of each group are
discussed. Furthermore, a series of newly published results on
the multisensor fusion and consensus filtering are surveyed.
Finally, some conclusion remarks are drawn and several
related future research directions are pointed out.

The remainder of this paper is outlined as follows. The
multisensor fusion algorithms with or without unknown
correlations are investigated in Section 2. In Section 3, four
commonly used consensus approaches for designing consen-
sus filters are reviewed rigorously. Several latest results on the
multisensor fusion and consensus filtering can be found in
Section 4. In Section 5, both conclusions and future research
topics are given.

Notation. We denote by R𝑛 the 𝑛-dimensional Euclidean
space. ‖⋅‖ refers to the Euclidean norm inR𝑛. For amatrix𝑀,
𝑀

𝑇 and 𝑀
−1 separately represent its transpose and inverse,

and 𝑀 > 0 means that matrix 𝑀 is positive definite and
tr{𝑀} is the shorthand for the trace of matrix 𝑀. The sensor
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nodes of the network are communicated over a connected
digraph G = (N,E), where N = {1, 2, . . . , 𝑛} is the set of
sensor nodes and E denotes the set of connections between
nodes. An edge (𝑖, 𝑗) ∈ E indicates that node 𝑗 can receive
information from node 𝑖. Further, if node 𝑖 is included in its
neighbors, we denote it as N

𝑖
(N

𝑖
= {𝑗 | (𝑗, 𝑖) ∈ E}), and

otherwise, we denote it asN
𝑖
\ {𝑖}. The notation |N| denotes

the cardinality of theN.

2. Multisensor Fusion

The development of multisensor fusion was originally trig-
gered by the demands from military area. Later, numerous
applications in nonmilitary areas provided another impetus
to the multisensor fusion technology. In this section, we
investigate the most commonly used multisensor fusion
techniques for the local estimation errors with correlations,
without correlations, or with unknown correlations. The
important fusion rules for those three types are listed in
Table 1, where (𝑥

𝑖
, 𝑃

𝑖
)
𝑖∈N and (𝑥

𝑓
, 𝑃

𝑓
) are local and fused

estimate and error covariance pair, respectively. Let us now
conduct a systematic review on the development of multisen-
sor fusion technology during the past few decades.

2.1. Multisensor Fusion. At the beginning of the 1970s, the
US navy merged data about Soviet naval movements at data
fusion centers; the result turned out to be more accurate
than using data from single sonar [29]. This discovery has
heralded the research on multisensor fusion; since then,
voluminous results have been published during the past
several decades; see, for example, [3, 30–39]. For example,
in 1971, the multisensor fusion problem was first studied
in [30], where the estimation errors in two track files from
different sensors but corresponding to the same target were
assumed to be independent. Later, more general cases can
be found in [31, 32] including Carlson’s federated square root
filter [32]. Moreover, a decentralized linear estimator in the
presence of correlatedmeasurement noise was constructed in
[33]. Further, in 1986, [34] came up with a fusion equation
with the consideration of cross covariance between local
estimates. In 1994, [35] generalized the results in [34] and
an optimal fusion equation was deduced in the sense of
maximum likelihood estimate, but the posterior probability
density function should be of the standard normal density
function. Ten years later, this limitation was overcome by [3],
where an optimal information fusion criterion was rederived
in the linear minimum variance sense with the help of
Lagrange multiplier; from the mathematical point of view,
this fusion rule is equivalent to the best linear unbiased
estimation fusion rule in [36], or weighted least squares
fusion rule in [37]. In a recent paper [38], amultisensor fusion
schemewas devised specifically for nonlinear estimate within
the unscentedKalman filtering framework.More recently, for
the case of singular estimation errors covariances and mea-
surement noises covariances, an optimal distributed Kalman
filtering fusion strategy was proposed in [39]. Besides, if
the local estimates are generated with different rates, the
corresponding multirate fusion results were given in [40, 41].

Table 1: Multisensor fusion rules.

Types of estimation
errors Fusion rules Comments

No correlations
(independent)

𝑃
𝑓
= (

𝑛

∑

𝑖=1

𝑃
−1

𝑖
)

−1

𝑥
𝑓
= 𝑃

𝑓
(

𝑛

∑

𝑖=1

𝑃
−1

𝑖
𝑥
𝑖
)

Optimal

Known correlations
(correlated)

𝑃
𝑓
= (𝑒

𝑇

Σ
−1

𝑒)
−1

∗

𝑥
𝑓
= 𝑃

𝑓
(𝑒

𝑇

Σ
−1

𝑥)
∗

Optimal

Unknown correlations
(unknown correlated)

𝑃
𝑓
= (

𝑛

∑

𝑖=1

𝜔
𝑖
𝑃
−1

𝑖
)

−1
∗∗

𝑥
𝑓
= 𝑃

𝑓
(

𝑛

∑

𝑖=1

𝜔
𝑖
𝑃
−1

𝑖
𝑥
𝑖
)

∗∗
Suboptimal

∗

𝑒 = [𝐼, . . . , 𝐼]
𝑇, Σ = (𝑃

𝑖𝑗
), 𝑖, 𝑗 = 1, . . . , 𝑛, and 𝑥 = [𝑥

𝑇

1
, . . . , 𝑥

𝑇

𝑛
]
𝑇.

∗∗Covariance intersection rule, where 𝜔
𝑖
∈ [0, 1], ∑𝑛

𝑖=1
𝜔
𝑖
= 1, and 𝜔

𝑖
=

argmin
𝜔𝑖∈[0,1]

tr{𝑃
𝑓
}.

Nowadays, with the rapid development of sensor network
technology, the multisensor fusion over sensor network has
become an active research area. Recently, the focus of the
multisensor fusion has been shifted from centralized fusion
to distributed one mainly due to the scalability, robust-
ness to failure, structure flexibility, and less communication
resources of the distributed sensor networks; see, for exam-
ple, [17, 18]. For instance, [17] has proposed a distributed
multisensor fusion scheme that allows the nodes of a sensor
network to track the average of inverse-covariance-weighted
measurements and inverse-covariancematrices so as to reach
so-called dynamic average consensus. Almost in the same
time, [18] has also introduced a distributed multisensor
fusion scheme based on average consensus; what is different
is that the scheme diffuses information across the network
by updating each node’s data with a weighted average of its
neighbors which finally converges to the global maximum-
likelihood estimate. In fact, it was these two papers that gave
rise to the consensus filtering, which is the next focus of this
survey.

It is worth noting that the above results are obtained
within the Kalman filtering framework (broadly speaking,
the Bayesian framework), which is only a small fraction of
the whole family of multisensor fusion techniques; the other
frameworks may include but are not limit to evidential belief
reasoning [42], fuzzy reasoning [43], probabilistic fusion
[44], hybrid fusion [45], and randomset theoretic fusion [46];
the interested readers may consult the survey paper [2] for
more details.

2.2. Fusion with Unknown Correlations. Unknown correla-
tions [5] are often referred to as unknown cross covariances
[6], or unavailable cross-correlations [7]. The main causes of
unknown correlations can be categorized into the following
two groups:

(1) Lack of knowledge of the true system:

(i) Unidentified correlations: for example, corre-
lations from the observation noises, as yet
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unidentified, may occur during the moving
process of vehicle which equipped a suite of
navigation sensors [5].

(ii) Approximation implementation: it is often
assumed that the prior estimation error and the
newmeasurement error are uncorrelated, which
may introduce certain degree of unknown
correlations in the final implementation [47].

(2) Correlations that are too difficult to describe:

(i) Involving too many variables: in the applications
like map building and weather forecasting, the
processmodel could involve thousands of states,
which means maintaining a full covariance
matrix is impractical [5].

(ii) Data incest [24] or double counting problem
[48]: due to the presence of network loops, the
information is often inadvertently used several
times in a distributed fusion setting.

(iii) Difficulty of calculation: for example, how to
acquire reliable correlations in the nonlinear
estimates is still an open question.

To summarize, it is widely believed that the unknown
correlations ubiquitously exist in a diverse range of multi-
sensor fusion problems. Neglecting the effect of unknown
correlations can result in grave consequence of performance
deterioration even divergence. As such, it has attracted and
sustained attention from researchers for decades. However,
owing to the intricate unknown nature, it is not easy to
come up with a satisfied scheme to address the fusion
problems with unknown correlations. If we ignore the cor-
relations directly, which is the Naive fusion [49], it may
lead to divergence of the filter. To compensate this kind
of divergence, a normal suboptimal approach is to increase
the system noise artificially. However, this heuristic requires
substantial certain expertise and compromises the integrity
of the Kalman filter framework [50].

Among existing fusion solutions for systems with
unknown correlations, it was the covariance intersection
algorithm [5], which was invented by Julier and Uhlmann
in 1997, that provides an effective tool to tackle unknown
correlations. According to [51], the covariance intersection
fusion rule has the advantages lying in the following: (i) The
identification and computation of the cross covariances are
completely avoided. (ii) It yields a consistent fused estimate,
and thus a nondivergent filter is obtained. (iii) The accuracy
of the fused estimate outperforms each local one. (iv) It
gives a common upper bound of actual estimation error
variances, which has robustness with respect to unknown
correlations. Since then, it has attracted much interest from a
wider community; see, for example, [7, 49–64]. Some of them
focused on improving the covariance intersection method-
ology. For instance, a generalized covariance intersection,
known as split covariance intersection, has been created in
[52] for the purpose of incorporating known independent
information. Reference [53] has improved the main results

in [5] by investigating the linear combination gains in an 𝑛
2-

dimensional space. Meanwhile, an information-theoretical
justification of covariance intersection rule and its general-
ization can be found in [54] and [55], respectively. Later, the
Chernoff fusion rule which includes covariance intersection
as a special case is also reviewed in [49]. Recently, [56, 57]
have separately proposed the largest ellipsoidal algorithm
and ellipsoidal intersection state fusion method which lead
to a higher accuracy for the fused estimate. Moreover, an
accuracy comparison between covariance intersection and
three different optimal fusion rules has been presented in
[58], while the others turned to apply covariance intersection
algorithm to a plethora of areas, such as target tracking [7],
fault-tolerant estimate [59], simultaneous localization and
mapping [60], image fusion [61], vehicle localization [62], and
NASAMars rover [63].

One of the significant drawbacks of covariance intersec-
tion algorithm and its variants is the computation burden.
When the number of information sources to be fused is
more than 2, this problem is exactly a nonlinear optimization
problem with constraints in Euclidean space R𝑛, and it
rapidly becomes computationally intractable, especially in
large distributed sensor networks. Therefore, there is a great
need to develop fast covariance intersection algorithm to
circumvent this issue. Fortunately, there are several solutions
that have been reported in this spirit. One of them is the
sequential covariance intersection [51], where the multidi-
mension nonlinear optimization problem was reduced to
the optimization of several one-dimensional nonlinear cost
functions by batch processing procedure.The secondmethod
is the suboptimal noniterative algorithm [50]; the method
has been further used in [64] for designing a diffusion
Kalman filtering scheme and [7] for an information-theoretic
interpretation. The third one is the ellipsoidal intersection
[57], where the obtained algebraic fusion formulas made it
computationally feasible. Different from the above methods
trying to approximate the optimal value, the fourth solution
can give an exact solution of the optimal weights in case
of low-dimensional covariance matrices by the close-form
optimization of covariance intersection [65], which reduced
the nonlinear optimization problem into the polynomial
root-finding problem.

3. Consensus Filtering Approaches

This section gives a systematic overview of recent advances
on several consensus approaches, which are suitable to design
consensus-based filters. In general, most of the publications
on consensus filtering approaches can be classified into
four groups: consensus on estimates (CE), consensus on
measurements (CM), consensus on information (CI), and
𝐻

∞
consensus; the mechanisms of these four types of con-

sensus filtering approaches for the typical linear time-varying
systems with multiple sensor observations are depicted in
Table 2. In the following, we will take a deep investigation of
these consensus filtering approaches one by one in order to
inspire more research interest.
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Table 2: The mechanisms of four consensus filtering approaches.

Types Structures of consensus filters∗ References

CE
𝑥
𝑖

𝑘
= 𝑥

𝑖

𝑘|𝑘−1
+ 𝐾

𝑖

𝑘
(𝑧

𝑖

𝑘
− 𝐻

𝑖

𝑘
𝑥
𝑖

𝑘|𝑘−1
) + 𝑢

𝑖

𝑘

𝑢
𝑖

𝑘
= 𝐶

𝑖

𝑘
∑

𝑗∈𝑁𝑖

(𝑥
𝑗

𝑘−1
− 𝑥

𝑖

𝑘|𝑘−1
)

[22, 23]

CM
Ω

𝑖

𝑘|𝑘
= Ω

𝑖

𝑘|𝑘−1
+ |N| ∑

𝑗∈N

𝜋
𝑖,𝑗

𝐿,𝑘
(𝐻

𝑗

𝑘
)
𝑇

(𝑅
𝑗

𝑘
)
−1

𝐻
𝑗

𝑘

𝑞
𝑖

𝑘|𝑘
= 𝑞

𝑖

𝑘|𝑘−1
+ |N| ∑

𝑗∈N

𝜋
𝑖,𝑗

𝐿,𝑘
(𝐻

𝑗

𝑘
)
𝑇

(𝑅
𝑗

𝑘
)
−1

𝑧
𝑗

𝑘

[20, 22]

CI
Ω

𝑖

𝑘|𝑘
= ∑

𝑗∈N

𝜋
𝑖,𝑗

𝐿,𝑘
[Ω

𝑗

𝑘|𝑘−1
+ (𝐻

𝑗

𝑘
)
𝑇

(𝑅
𝑗

𝑘
)
−1

𝐻
𝑗

𝑘
]

𝑞
𝑖

𝑘|𝑘
= ∑

𝑗∈N

𝜋
𝑖,𝑗

𝐿,𝑘
[𝑞

𝑗

𝑘|𝑘−1
+ (𝐻

𝑗

𝑘
)
𝑇

(𝑅
𝑗

𝑘
)
−1

𝑧
𝑗

𝑘
]

[24, 25]

𝐻
∞

consensus

𝑥
𝑖

𝑘
= 𝐴

𝑘
𝑥
𝑖

𝑘−1
+ 𝐾

𝑖

𝑘
(𝑧

𝑖

𝑘
− 𝐻

𝑖

𝑘
𝑥
𝑖

𝑘−1
) + 𝑢

𝑖

𝑘

𝑢
𝑖

𝑘
= 𝐶

𝑖

𝑘
∑

𝑗∈𝑁𝑖

(𝑥
𝑗

𝑘−1
− 𝑥

𝑖

𝑘−1
)

1

𝑛
∑

𝑖∈N

󵄩󵄩󵄩󵄩󵄩
�̃�
𝑖
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛾
2

{‖V‖2
2
+

1

𝑛
∑

𝑖∈N

(𝑒
𝑖

0
)
𝑇

𝑆
𝑖

𝑒
𝑖

0
}

∗∗

[11, 26]

∗Throughout the table, 𝐴
𝑘
is the systems matrix. For each node 𝑖, 𝐻𝑖

𝑘
, 𝑅𝑖

𝑘
, and 𝑧

𝑖

𝑘
are, respectively, measurement matrix, covariance matrix of measurement

noise, and measurement output, 𝐾𝑖

𝑘
and 𝐶

𝑖

𝑘
are the filter and consensus gains to be determined, and 𝜋

𝑖,𝑗

𝐿,𝑘
is the consensus weight after 𝐿 step consensus.

Further, denote Ω
𝑘|𝑘

≜ (𝑃
𝑘|𝑘
)
−1 and 𝑞

𝑘|𝑘
= (𝑃

𝑘|𝑘
)
−1

𝑥
𝑘|𝑘

as information matrix and information vector and (𝐻𝑖

𝑘
)
𝑇

(𝑅
𝑖

𝑘
)
−1

𝑧
𝑖

𝑘
and (𝐻𝑖

𝑘
)
𝑇

(𝑅
𝑖

𝑘
)
−1

𝐻
𝑖

𝑘
as innovation

pair. ∗∗Where �̃�𝑖 and 𝑒𝑖
0
are the filtering error and initial error for node 𝑖, respectively. 𝛾 is the disturbance attenuation level, and V represents noise, while 𝑆𝑖 is

the given positive definite matrix.

3.1. Consensus on Estimates. Theconsensus approach belong-
ing to the first group is the consensus on estimates (CE),
in which only state estimates are averaged out to reach
consensus. It is the most basic consensus filtering approach,
in the early stage of CE (�̇�

𝑖
(𝑡) = ∑

𝑗∈𝑁𝑖

𝑎
𝑖,𝑗
(𝑥

𝑗
(𝑡) − 𝑥

𝑖
(𝑡)) +

∑
𝑗∈𝐽𝑖

𝑎
𝑖,𝑗
(𝑢

𝑗
(𝑡) − 𝑥

𝑖
(𝑡)), where 𝑥

𝑖
(𝑡) and 𝑢

𝑖
(𝑡) are the current

state and measurement of node 𝑖, resp., 𝑁
𝑖
denotes the set

of neighbors of node 𝑖, while 𝐽
𝑖
denotes the set of inclusive

neighbors of node 𝑖, and 𝑎
𝑖,𝑗
is the (𝑖, 𝑗) entry of the adjacency

matrix of the associated communication graph) [19]; each
sensor node was treated as an agent, and with this respect,
the full-fledged consensus theory in multiagent systems can
be directly applied to the distributed filters plus one extra
consensus term to reflect the measurement features. This
consensus algorithmwas furthermodified to theKalman-like
distributed estimator that combined updated state estimate
and consensus term, which is also called Kalman consensus
filter [22, 23]. It should be noticed that the CE is not limited
to the Kalman-like filters (following the same definition as in
[23], we refer to any recursive estimator that has the similar
filter structure as Kalman filter as Kalman-like filters); in
fact, the well-known 𝐻

∞
consensus can also be included

in this group. However, due to its ever-growing importance
and influence in a variety of engineering areas, we treat it
as a separate consensus filtering approach for the purpose of
better discussing these issues.

From the algorithm perspective, it does not necessarily
require the information of local error covariance matrix or
local probability density functions. It is no wonder that CE
and its variants have been employed to design an extensive
body of consensus filters; see, for example, [12, 23, 66–72].

For instance, by using the consensus strategy, [66] has
constructed a local estimate based on its own measurements
and on the estimates from its neighbors, and [67] has
introduced a consensus-based filter that can provide reliable
estimate despite of the existence of missing observations and
communication faults. In [68], with the help of the theory
of synchronization and consensus in complex networks and
systems, a novel CE consensus has been born with the
pinning observers. Further, a CE term has been embedded
in the penalty function [69, Equation (10)] to increase the
accuracy of the local estimates, which is fundamental to
guarantee convergence of the state estimates to the state of
the observed system. More specifically, [12] has devised a
consensus filter in two steps. In the first step, an update
was produced using a Luenberger-type observer. In the
second step called consensus step, every sensor computed
a convex combination between its local update and the
updates received from its neighbors. Meanwhile, in [70], two
different distributed consensus filters have been integrated in
the proposed distributed sensor fusion algorithm to achieve
cooperative sensing among sensor nodes. Recently, based on
the CE, [71] has designed two types of consensus filters for
target tracking problem over heterogeneous sensor networks,
and their unbiasedness and optimality were discussed as well.
Lastly, [72] has presented a decentralized observer with a
consensus filter that blended with its neighborhood, so that
the state estimate of each agent can reach consensus after 𝑟

times of iterations at each time interval.

3.2. Consensus on Measurements. The CE does not involve
the error covariance matrices, which may lead to certain
degree of conservatism in designing consensus filter within
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the Kalman-like filter framework. It is well known that the
error covariance matrices may contain valuable information
which has been successfully used to improve the filter
performance. Taking this into account, another consensus
approach, that is, consensus on measurements (CM), is
proposed for fulfilling this requirement. It performs a con-
sensus on local measurements or, more specifically, local
innovation pairs so as to approximate, in a distributed way,
the correction step of the centralized Kalman filter. It is
worth noticing that the stability of CM consensus filtering
can be ensured only when a sufficiently large number of
consensus steps are carried out during each sampling interval,
so that the local information provided by the innovation
pairs has time to spread throughout the whole network.
Besides, this kind of approach relies on the assumption that
the measurement errors coming from different sensors are
mutually independent, and this approach is limited to the
Kalman-like filters.

During the last decade, the CM has been broadly used in
both the signal processing and control communities; see, for
example, [20, 22, 73–77].The idea of CMconsensus originally
appeared in [20] to solve the data fusion problems in a
distributed way by using low-pass and band-pass consensus
filters. A modified version of this consensus approach was
presented in [22,Algorithm 1], where two identical consensus
filters were employed and it is applicable to sensor network
with different observation matrices. Further, [73] showed
that CM can guarantee that the local estimates of the error
covariance matrix and local estimates of the state converge
to their centralized ones. Later, this consensus approach was
applied to design consensus filter for jump Markov systems
[74] and discrete-time nonlinear systems with non-Gaussian
noise [75]. In a following paper [76], a pseudo-measurement
matrix was reconstructed by embedding a statistical linear
error propagation approach [78], which facilitates the use of
CM in the unscented Kalman filtering fashion. Recently, CM
was interpreted as likelihood consensus and applied to the
distributed particle filtering setting [77].

3.3. Consensus on Information. Due to the facts that only
one or few consensus iterations per time can be afforded
in order to reduce the communication overhead for higher
energy efficiency in particular wireless sensor network envi-
ronment and there could not be enough time to wait for
CM to convergence [79], consequently, an alternative con-
sensus approach, namely, consensus on information (CI),
was recently invented to circumvent these issues. From an
algorithm standpoint, CI is nothing but forming a local
average on information matrices and information vectors.
The approach can guarantee stability for any number of
consensus steps (even for single one) but its mean-squared
estimation error performance may be hampered since the
fusion rule adopts a conservative point of view by assuming
that the correlations between local estimates are completely
unknown [28]. It was originally introduced in [25] for a
distributed state estimation problem; later, a mathematical
rigorous treatment of it was detailed in [24], where CI
is interpreted as a consensus on probability density func-
tions in the Kullback-Leibler average sense. Following the

same consensus paradigm, [10] presented a novel consensus
cardinalized probability hypothesis density filter to study
the distributed multitarget tracking problem over a sensor
network, and [80] designed a consensus-based multiple-
model Bayesian filter for the distributed tracking task of a
maneuvering target. More recently, [81] applied CI to design
the distributed unscented Kalman filters for systems with
state saturations and sensor saturations.

3.4. 𝐻
∞

Consensus. It should be pointed out that the afore-
mentioned consensus filtering algorithms are mainly based
on the traditional Kalman filtering theory which requires
the statistic information about plant model to be known
perfectly; unfortunately, the practical systems are often
accompanied with parameter uncertainties and exogenous
disturbances. Consequently, there is a great impetus to
develop consensus filtering scheme as robust as possible.
With these needs considered, the 𝐻

∞
consensus has been

recently introduced and has been widely recognized; see, for
example, [11, 26, 82–88].

The term 𝐻
∞

consensus was officially coined by [11];
the main intuition behind it arises from the notion of 𝐻

∞

disagreement between adjacent nodes to quantify consensus
performance of the filter network [85]. In [11], the 𝐻

∞

consensus performance requirement has been defined to
quantify bounded consensus regarding the filtering errors
(agreements) over a finite horizon; the paper has con-
sidered a distributed 𝐻

∞
consensus filtering problem for

sensor networks with multiple missing measurements. In the
similar vein, [26] has studied the distributed 𝐻

∞
filtering

with randomly occurring saturation and successive packet
dropout. Furthermore, the𝐻

∞
consensus approach has been

utilized for solving control problems of multiagent systems,
for example, in a novel fuzzy model setting [83] and system
with missing measurements [82]. Most recently, [84] has put
forward distributed event-triggered 𝐻

∞
consensus filtering

problems in mobile sensor networks where the transmission
of each sensor was triggered by an event. At about the
same time as [11], Ugrinovskii followed a different path to
investigate the 𝐻

∞
consensus by using vector dissipativity

methodology; see, for example, [85–88]. For instance, by
pursuing 𝐻

∞
consensus on estimates, the distributed robust

filtering problems have been discussed for uncertain systems
with measurement uncertainty [85], a nonvanishing nonlin-
ear disturbance with unbounded energy [86], and switching
topologies [87]; lately, [88] has laid out 𝐻

∞
consensus-

based synchronization protocol scheduled for each agent to
synchronize with a reference parameter-varying system.

4. Latest Progress

Very recently, the research on multisensor fusion and con-
sensus filtering is receiving an increasing attention; many
inspiring results have been published. Here, we highlight
some of the newest work with respect to this topic.

(1) Fusion with Incomplete Information. Due to limited
capacity of signal transmission through networked
systems, the incomplete information [89] (such as
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missing measurement, packet dropout, quantiza-
tion, saturation, and networked-induced delay) is
inevitable in most of real implementations. These
phenomena may potentially deteriorate the system
performance; accordingly, the multisensor fusion for
systems with incomplete information becomes pop-
ular. For example, [90] has developed fusion strate-
gies for communication between the sensors and
the estimation center was subject to random packet
loss. When sensors experience randomly delayed
measurements and sensor failures, [91] has devised
a robust information fusion estimator. Lastly, [92]
has designed an optimal distributed fusion Kalman
filter with the consideration of missing sensor mea-
surements, random transmission delays, and packet
dropouts. Very recently, [93] was concerned with the
distributed Kalman filtering problem for a class of
networked multisensor fusion systems with commu-
nication bandwidth constraints.

(2) Hybrid CMCI. In [28], a new class of consensus
filters (named Hybrid CMCI) which enjoy the com-
plementary benefits from two existing consensus
filtering approaches, that is, CM and CI, have been
introduced for distributed state estimation over sen-
sor networks. The results have claimed that, under
minimal requirements (i.e., collective observability
and network connectivity), the guaranteed stability
of the Hybrid CMCI filter can be achieved. The idea
first appeared in [94]; more recently, a mathematical
rigorous analysis of the Hybrid CMCI consensus for
extended Kalman filtering setting has been given in
[95].

(3) Set-Theoretic Consensus. In [96], under the assump-
tion of unknown but bounded measurement errors,
a set-theoretic/set-membership consensus has been
formulated in a set-theoretic framework. Further, the
paper has analyzed the consensus algorithms in the
case of undirected and stationary communication
graphs. The result has shown that, for both types of
protocols, asymptotic consensus cannot be guaran-
teed with respect to all possible noise realizations, but
the disagreement among the agent states is asymptot-
ically bounded.

(4) WeightedAverageConsensus-BasedUnscentedKalman
Filtering. Reference [97] has investigated the consen-
sus-based distributed state estimation problems for
a class of sensor networks within the unscented
Kalman filter framework. Without approximating
a pseudo-measurement matrix, a weighted average
consensus-based unscented Kalman filtering algo-
rithm has been developed which directly imple-
mented consensus on state vectors and error covari-
ance matrices, and its estimation error was proven to
be bounded in mean square.

(5) Distributed 𝐻
∞

Consensus Filtering for Piecewise
Discrete-Time Linear Systems. Reference [98] has

studied the distributed 𝐻
∞

consensus filtering prob-
lem for a class of piecewise discrete-time linear
systems. First, the modes and their transitions of aug-
mented piecewise linear systems as well as distributed
filters have been formulated. Next, the structure of
augmented distributed filter gains has been presented
in virtue of the adjacent matrix of sensor networks.
Besides, a set of sufficient conditions have been
provided for the distributed filter to ensure that its
dynamics were global asymptotically stable with the
𝐻

∞
consensus performance constraint.

(6) Distributed Kalman Consensus Filter with Intermit-
tent Observations. Reference [99] has considered the
distributed state estimation problem for linear time-
varying systems with intermittent observations. In
the paper, an optimal Kalman consensus filter has
been developed by minimizing the mean-squared
estimation error for each node. To derive a scalable
algorithm for the covariance matrices update, a sub-
optimal filter has also been proposed by omitting the
edge covariance matrices among nodes. Besides, a
sufficient condition was presented for ensuring the
stochastic stability of the suboptimal filter by using
the Lyapunov-based approach.

(7) Information Weighted Consensus. As noted in [8],
the consensus estimate is suboptimal when the cross
covariances between the individual state estimates
across different nodes are not incorporated in the
distributed filtering framework. The cross covariance
is usually neglected because of the limitations of
the computational and bandwidth requirements. As
such, a consensus filtering scheme should guarantee
convergence to the optimal centralized estimate as
well as maintaining low computation and commu-
nication resource requirements. Motivated by the
above discussions, [8] has proposed the information
weighted consensus algorithm which can secure the
optimal estimate by proper weighting of the prior
state and measurement information.

5. Conclusion and Future Directions

In this paper, we have introduced both classic results and
recent advances developed inmultisensor fusion and consen-
sus filtering. First, we recalled some important results in the
development of multisensor fusion technology, in particular,
multisensor fusionwith unknown correlations. Next, we gave
a systematic review of several consensus filtering approaches
which are widely used to design consensus filter. Further,
some latest progress on multisensor fusion and consensus
filtering was also presented. To conclude this survey paper,
based on the literature reviewed, we will offer readers a
glimpse of several future directions that may spark their
interest.

(1) Further Divide the Unknown Correlations. Although
the reasons causing unknown correlations are abun-
dant, in many real situations, we can obtain the par-
tial information about unknowns such as uncertain
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system matrix [100, 101], uncertain-covariance noise
[102], nonfragile filter [103], and uncertain stochastic
nonlinearity [100, 104], which can be tackled by
robust filtering [100], extendedKalman filtering [105],
recursive filtering [106], and 𝐻

∞
robust filtering

[107]. Therefore, according to the unknown nature of
unknown correlations, it is necessary to further divide
them into two groups: partial unknown correlations
and complete unknown correlations. Based on that,
it is possible to develop new fusion mechanisms or
improve the existing ones to get a better solution for
fusion with unknown correlations.

(2) Mathematical Characterization of Unknown Correla-
tions. Due to the intricate unknown nature, most of
publications involving unknown correlations are just
labeling the error cross covariance 𝑃

𝑖,𝑗
as unknown

without giving their structures, which, unfortunately,
did not capture the information of correlations, and
their fusion results are inevitably leading to certain
degree of conservatism. Reference [57] has made a
few attempts to provide an explicit characterization
for unknown correlation; however, the derivation is
complex and not intuitive. Hence, it is still an open
question to get a general yet concise mathematical
model to describe the unknown correlations.

(3) Consensus Filtering with Unknown Correlations. The
unknown correlations are ubiquitously existing in
general distributed filtering problems; they are also
the major source for the “data insect” phenomenon
in the network. It is therefore of great importance
to study the consensus filtering problem for systems
with unknown correlations. Despite its significance,
the progress on this topic is slow. Take the covari-
ance intersection rule, for example, how to design
consensus filter which involves information matrices,
information vectors, and optimal weights simultane-
ouslywithout comprising its performance, it would be
another interesting topic.

(4) Hybrid Consensus. The increasing complexity of sys-
tem dynamics and high demands for filter perfor-
mance call for the design of the consensus filter
which should be as good as possible. In this spirit,
the hybrid consensus filtering scheme which bene-
fits from different consensus approaches may meet
these requirements. Although initial interests have
appeared in recent years, see, for example, [94, 95],
it is a trend that more and more hybrid consensus
filtering schemes, which blend two ormore consensus
filtering approaches, will be constructed in the com-
ing future.

(5) Stochastic Stability Analysis of Kalman-Like Consensus
Filter. In a Kalman-like filter, there are two primary
sources for error in the estimation: initialization
error and stochastic errors due to the process and
measurement noise [108]. However, most work has
ignored the process and measurement noise when
analyzing the stability of the consensus filter, which is

hardly a reasonable treatment.The stochastic stability
lemma [109] may provide a possible solution and has
been used as an effective tool for analyzing the single
Kalman-like filter; see, for example, [109–112], but for
the distributed case, its stochastic stability analysis
remains to be established.

(6) Beyond Consensus. Even though the consensus is
the mostly used strategy for the distributed filtering
problems, it may not be the best solution for certain
circumstance; for example, the diffusion strategy
[113] is particularly suited for problems involving the
recursive minimization of cost functions as opposed
to consensus strategy. It is therefore of significant
engineering importance to find new strategy or
make a trade-off between different strategies for the
distributed filtering problems with new network-
induced phenomena such as randomly occurring
nonlinearities and fading measurements [114, 115].
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sensus based overlapping decentralized estimationwithmissing
observations and communication faults,” Automatica, vol. 45,
no. 6, pp. 1397–1406, 2009.

[68] W. Yu, G. Chen, Z. Wang, andW. Yang, “Distributed consensus
filtering in sensor networks,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 6, pp.
1568–1577, 2009.

[69] M. Farina, G. Ferrari-Trecate, and R. Scattolini, “Distributed
moving horizon estimation for linear constrained systems,”
IEEE Transactions on Automatic Control, vol. 55, no. 11, pp.
2462–2475, 2010.

[70] H. M. La and W. Sheng, “Distributed sensor fusion for scalar
field mapping using mobile sensor networks,” IEEE Transac-
tions on Cybernetics, vol. 43, no. 2, pp. 766–778, 2013.

[71] S. Zhu, C. Chen, W. Li, B. Yang, and X. Guan, “Distributed
optimal consensus filter for target tracking in heterogeneous
sensor networks,” IEEE Transactions on Cybernetics, vol. 43, no.
6, pp. 1963–1976, 2013.
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“Likelihood consensus and its application to distributed particle
filtering,” IEEE Transactions on Signal Processing, vol. 60, no. 8,
pp. 4334–4349, 2012.

[78] T. Lefebvre, H. Bruyninckx, and J. D. Schutter, “Comment on
‘a new method for the nonlinear transformation of means and
covariances in filters and estimators’,” IEEE Transactions on
Automatic Control, vol. 47, no. 8, pp. 1406–1409, 2002.

[79] G. Battistelli, L. Chisci, and C. Fantacci, “Parallel consensus on
likelihoods and priors for networked nonlinear filtering,” IEEE
Signal Processing Letters, vol. 21, no. 7, pp. 787–791, 2014.

[80] G. Battistelli, L. Chisci, C. Fantacci, A. Graziano, and A.
Farina, “Consensus-basedmultiple-model Bayesian filtering for
distributed tracking,” IET Radar, Sonar & Navigation, vol. 9, no.
4, pp. 401–410, 2015.

[81] W. Li, G.Wei, and F. Han, “Consensus-based unscented Kalman
filter for sensor networks with sensor saturations,” in Proceed-
ings of the International Conference onMechatronics and Control
(ICMC ’14), pp. 1220–1225, Jinzhou, China, July 2014.

[82] Z.Wang,D.Ding,H.Dong, andH. Shu, “𝐻
∞
consensus control

for multi-agent systems with missing measurements: the finite-
horizon case,” Systems & Control Letters, vol. 62, no. 10, pp. 827–
836, 2013.

[83] Y. Zhao, B. Li, J. Qin, H. Gao, and H. R. Karimi, “𝐻
∞
consensus

and synchronization of nonlinear systems based on a novel
fuzzy model,” IEEE Transactions on Cybernetics, vol. 43, no. 6,
pp. 2157–2169, 2013.

[84] L. Ding and G. Guo, “Distributed event-triggered 𝐻
∞

consen-
sus filtering in sensor networks,” Signal Processing, vol. 108, pp.
365–375, 2015.

[85] V. Ugrinovskii, “Distributed robust filtering with𝐻
∞
consensus

of estimates,” Automatica, vol. 47, no. 1, pp. 1–13, 2011.
[86] V. Ugrinovskii and C. Langbort, “Distributed 𝐻

∞
consensus-

based estimation of uncertain systems via dissipativity theory,”
IET Control Theory & Applications, vol. 5, no. 12, pp. 1458–1469,
2011.

[87] V. Ugrinovskii, “Distributed robust estimation over randomly
switching networks using 𝐻

∞
consensus,” Automatica, vol. 49,

no. 1, pp. 160–168, 2013.
[88] V. Ugrinovskii, “Gain-scheduled synchronization of parameter

varying systems via relative 𝐻
∞

consensus with application to
synchronization of uncertain bilinear systems,”Automatica, vol.
50, no. 11, pp. 2880–2887, 2014.

[89] B. Shen, Z. Wang, J. Liang, and Y. Liu, “Recent advances on
filtering and control for nonlinear stochastic complex systems
with incomplete information: a survey,”Mathematical Problems
in Engineering, vol. 2012, Article ID 530759, 16 pages, 2012.

[90] A. Chiuso and L. Schenato, “Information fusion strategies and
performance bounds in packet-drop networks,” Automatica,
vol. 47, no. 7, pp. 1304–1316, 2011.

[91] B. Chen, L. Yu, W.-A. Zhang, and A. Liu, “Robust information
fusion estimator for multiple delay-tolerant sensors with differ-
ent failure rates,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 60, no. 2, pp. 401–414, 2013.

[92] B. Chen,W.-A. Zhang, and L. Yu, “Distributed fusion estimation
with missing measurements, random transmission delays and
packet dropouts,” IEEE Transactions on Automatic Control, vol.
59, no. 7, pp. 1961–1967, 2014.

[93] B. Chen, W. Zhang, L. Yu, G. Hu, and H. Song, “Distributed
fusion estimation with communication bandwidth constraints,”
IEEETransactions onAutomatic Control, vol. 60, no. 5, pp. 1398–
1403, 2015.

[94] G. Battistelli, L. Chisci, G. Mugnai, A. Farina, and A. Graziano,
“Consensus-based algorithms for distributed filtering,” in Pro-
ceedings of the 51st IEEE Conference on Decision and Control
(CDC ’12), pp. 794–799, Maui, Hawaii, USA, December 2012.

[95] G. Battistelli and L. Chisci, “Stability of consensus extended
Kalman filtering for distributed state estimation,” in Proceedings
of the 19th IFAC World Congress, pp. 5520–5525, Cape Town,
South Africa, August 2014.

[96] A. Garulli and A. Giannitrapani, “Analysis of consensus pro-
tocols with bounded measurement errors,” Systems & Control
Letters, vol. 60, no. 1, pp. 44–52, 2011.

[97] W. Li, G.Wei, F. Han, and Y. Liu, “Weighted average consensus-
based unscented Kalman filtering,” IEEE Transactions on Cyber-
netics, 2015.

[98] F. Han, G. Wei, Y. Song, andW. Li, “Distributed𝐻
∞
-consensus

filtering for piecewise discrete-time linear systems,” Journal of
the Franklin Institute, vol. 352, no. 5, pp. 2029–2046, 2015.

[99] W. Li, Y. Jia, and J. Du, “Distributed Kalman consensus filter
with intermittent observations,” Journal of the Franklin Institute,
vol. 352, no. 9, pp. 3764–3781, 2015.

[100] G. Wei, Z. Wang, and H. Shu, “Robust filtering with stochastic
nonlinearities and multiple missing measurements,” Automat-
ica, vol. 45, no. 3, pp. 836–841, 2009.

[101] F. Yang, Z. Wang, and Y. S. Hung, “Robust Kalman filtering
for discrete time-varying uncertain systems with multiplicative
noises,” IEEE Transactions on Automatic Control, vol. 47, no. 7,
pp. 1179–1183, 2002.

[102] Z. Dong and Z. You, “Finite-horizon robust Kalman filtering
for uncertain discrete time-varying systems with uncertain-
covariance white noises,” IEEE Signal Processing Letters, vol. 13,
no. 8, pp. 493–496, 2006.

[103] G.-H. Yang and J. L. Wang, “Robust nonfragile Kalman filtering
for uncertain linear systems with estimator gain uncertainty,”
IEEE Transactions on Automatic Control, vol. 46, no. 2, pp. 343–
348, 2001.

[104] E. E. Yaz and Y. I. Yaz, “State estimation of uncertain nonlinear
stochastic systems with general criteria,” Applied Mathematics
Letters, vol. 14, no. 5, pp. 605–610, 2001.

[105] J. Hu, Z. Wang, H. Gao, and L. K. Stergioulas, “Extended
Kalman filtering with stochastic nonlinearities and multiple
missing measurements,” Automatica, vol. 48, no. 9, pp. 2007–
2015, 2012.

[106] J. Hu, Z. Wang, and H. Gao, “Recursive filtering with random
parameter matrices, multiple fading measurements and corre-
lated noises,” Automatica, vol. 49, no. 11, pp. 3440–3448, 2013.

[107] B. Shen, Z. Wang, H. Shu, and G. Wei, “Robust 𝐻
∞

finite-
horizon filtering with randomly occurred nonlinearities and
quantization effects,” Automatica, vol. 46, no. 11, pp. 1743–1751,
2010.

[108] M. B. Rhudy and Y. Gu, “Online stochastic convergence analysis
of the Kalman filter,” International Journal of Stochastic Analysis,
vol. 2013, Article ID 240295, 9 pages, 2013.

[109] K. Reif, S. Günther, E. Yaz, and R. Unbehauen, “Stochastic
stability of the discrete-time extended Kalman filter,” IEEE
Transactions on Automatic Control, vol. 44, no. 4, pp. 714–728,
1999.



12 Discrete Dynamics in Nature and Society

[110] K. Xiong, H. Y. Zhang, and C. W. Chan, “Performance evalua-
tion of UKF-based nonlinear filtering,” Automatica, vol. 42, no.
2, pp. 261–270, 2006.

[111] S. Wang, J. Feng, and C. K. Tse, “A class of stable square-root
nonlinear information filters,” IEEE Transactions on Automatic
Control, vol. 59, no. 7, pp. 1893–1898, 2014.

[112] L. Li and Y. Xia, “Stochastic stability of the unscented Kalman
filter with intermittent observations,”Automatica, vol. 48, no. 5,
pp. 978–981, 2012.

[113] F. S. Cattivelli and A. H. Sayed, “Diffusion strategies for
distributedKalman filtering and smoothing,” IEEETransactions
on Automatic Control, vol. 55, no. 9, pp. 2069–2084, 2010.

[114] D.Ding, Z.Wang, J. Lam, and B. Shen, “Finite-horizon𝐻
∞
con-

trol for discrete time-varying systems with randomly occurring
nonlinearities and fading measurements,” IEEE Transactions on
Automatic Control, vol. 60, no. 9, pp. 2488–2493, 2015.

[115] D. Ding, Z. Wang, B. Shen, and H. Dong, “Envelope-
constrained 𝐻

∞
filtering with fading measurements and ran-

domly occurring nonlinearities: the finite horizon case,” Auto-
matica, vol. 55, pp. 37–45, 2015.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


