Electrical Circuits II (ECE233b)

Variable-Frequency Network Performance (Part 3)

Anestis Dounavis

The University of Western Ontario
Faculty of Engineering Science

Scaling

Often the values of circuit parameters vary by orders of magnitudes
$\begin{aligned} & \text { For example: Resistors } \longrightarrow \text { units } \mathrm{MO} \\ & \text { Capacitors } \longrightarrow \text { units } \mathrm{pF} \\ & \text { Inductors } \longrightarrow 10^{6} \\ & \text { Time } \longrightarrow \text { units } \mathrm{nH} \\ & \text { Frequency } \longrightarrow \text { units } \mathrm{ns} \\ & \text { 10-12 } \\ & \text { units } \mathrm{GHz} \longrightarrow 10^{-9} \\ & 0^{-9} \\ & 10^{9}\end{aligned}$
Since computers are finite precision machines, scaling circuit parameters can result in numerically more accurate results. In addition, scaling can sometimes make the results more presentable.

There are two ways to scale circuit parameters
Can scale: Magnitude (or Impedance) scaling
Frequency scaling

Magnitude Scaling

Magnitude Scaling

$$
\begin{aligned}
R^{\prime} & \rightarrow K_{M} R \\
L^{\prime} & \rightarrow K_{M} L \\
C^{\prime} & \rightarrow \frac{C}{K_{M}}
\end{aligned}
$$

Note magnitude scaling does not affect the frequency response
Lets verify for RLC series circuit

$$
\begin{gathered}
\omega_{0}^{\prime}=\frac{1}{\sqrt{L^{\prime} C^{\prime}}}=\frac{1}{\sqrt{K_{M} L\left(\frac{C}{K_{M}}\right)}}=\omega_{0} \\
Q^{\prime}=\frac{\omega_{0}^{\prime} L^{\prime}}{R^{\prime}}=\frac{\omega_{0} K_{M} L}{K_{M} R}=Q
\end{gathered}
$$

Frequency Scaling

Note resistors are frequency independent and are unaffected by this scaling
The new inductor L^{\prime} and capacitor C^{\prime} values must have the same impedance at the scale frequency ω_{0}^{\prime} as the original circuit and must satisfy:

$$
j \omega L=j \omega^{\prime} L^{\prime} \quad \frac{1}{j \omega C}=\frac{1}{j \omega^{\prime} C^{\prime}}
$$

where $\omega^{\prime}=K_{F} \omega \quad$ and K_{F} is the frequency scaling factor

Frequency Scaling

$$
\begin{aligned}
& R^{\prime} \rightarrow R \\
& L^{\prime} \rightarrow \frac{L}{K_{F}} \\
& C^{\prime} \rightarrow \frac{C}{K_{F}}
\end{aligned}
$$

«Frequency independent

Frequency Scaling

Note that frequency scaling affects the resonant frequency and bandwidth but not the Q.

Lets verify for RLC series circuit

$$
\begin{aligned}
& \omega_{0}^{\prime}=\frac{1}{\sqrt{L^{\prime} C^{\prime}}}=\frac{1}{\sqrt{\left(\frac{L}{K_{F}}\right)\left(\frac{C}{K_{F}}\right)}}=K_{F} \omega_{0} \\
& Q^{\prime}=\frac{\omega_{0}^{\prime} L^{\prime}}{R^{\prime}}=\frac{K_{M} \omega_{0}\left(L / K_{M}\right)}{R}=Q \\
& B W^{\prime}=\frac{\omega_{0}^{\prime}}{Q^{\prime}}=K_{F}(B W)
\end{aligned}
$$

Example 14

An RLC network has the following parameters values: $\mathrm{R}=$ $10 \Omega, L=1 \mathrm{H}$ and $\mathrm{C}=2 \mathrm{~F}$. Determine the values of the circuit elements if the circuit is magnitude scaled by a factor of 100 and frequency scaled by factor of 10000.

Two types: PASSIVE and ACTIVE circuits
Passive Filters - circuits composed of passive RLC elements

Types of Filters

1. Low pass filters: allows low frequencies to pass and rejects high frequencies
2. High pass filters: allows high frequencies to pass and rejects low frequencies
3. Band pass filters: allows some particular band of frequencies to pass and rejects all frequencies outside the range
4. Band reject filters: rejects some particular band of frequencies and allows all other frequencies to pass

Ideal Characteristic of Low Pass Filter
Magnitude

Simple Low Pass Filter

$$
G_{V}(s)=\frac{V_{0}}{V_{1}}=\frac{1 /(s C)}{R+1 /(s C)}=\frac{1}{1+j \omega R C} \begin{aligned}
& \omega_{0}=\frac{1}{R C}
\end{aligned}
$$

$G_{V}(s)=\frac{V_{0}}{V_{I}}=\frac{1}{1+\frac{j \omega}{\omega_{0}}} \quad \omega_{o}=\frac{1}{R C}$
__ Bode plot approximation
............ Actual response

$$
\begin{aligned}
& M(\omega)=\frac{1}{\left[1+\left(\frac{\omega}{\omega_{0}}\right)^{2}\right]^{1 / 2}} \\
& \phi(\omega)=-\tan ^{-1}\left(\frac{\omega}{\omega_{0}}\right)
\end{aligned}
$$

High Pass Filter

Ideal Characteristic of High Pass Filter

Simple High Pass Filter

$$
G_{V}(s)=\frac{V_{0}}{V_{1}}=\frac{R}{R+1 /(s C)}=\frac{j \omega R C}{1+j \omega R C}
$$

Magnitude $1 \uparrow$

$$
\omega_{o}=\frac{1}{R C}
$$

High Pass Filters

$$
G_{V}(s)=\frac{V_{0}}{V_{l}}=\frac{\frac{j \omega}{\omega_{0}}}{1+\frac{j \omega}{\omega_{0}}} \quad \omega_{o}=\frac{1}{R C}
$$

_— Bode plot approximation
............ Actual response

$$
\begin{gathered}
M(\omega)=\frac{\frac{\omega}{\omega_{0}}}{\left[1+\left(\frac{\omega}{\omega_{0}}\right)^{2}\right]^{1 / 2}} \\
\phi(\omega)=90^{\circ}-\tan ^{-1}\left(\frac{\omega}{\omega_{0}}\right)
\end{gathered}
$$

$$
0.1 \omega_{0} \quad \omega_{0} \quad 10 \omega_{0}
$$

Ideal Characteristic of Band Pass Filter

Simple Band Pass Filter

$$
\begin{aligned}
G_{V}(s)=\frac{V_{0}}{V_{1}} & =\frac{R}{R+s L+1 /(s C)} \\
& =\frac{R}{R+j(\omega L-1 /(\omega C))}
\end{aligned}
$$

Band Pass Filter

$G_{V}(j \omega)=\frac{V_{0}}{V_{1}}=\frac{R}{R+j(\omega L-1 /(\omega C))}$

Magnitude

$$
M(\omega)=\frac{\omega R C}{\sqrt{(\omega R C)^{2}+\left(\omega^{2} L C-1\right)^{2}}}
$$

Band Pass Filter

Magnitude

The center frequency ω_{0}

$$
\omega^{2} L C-1=0 \quad \omega_{0}=\frac{1}{\sqrt{L C}} \mathrm{rad} / \mathrm{s}
$$

Lower cut off frequency

$$
\begin{gathered}
\omega R C=-\left(\omega^{2} L C-1\right) \\
\omega_{L O}=\frac{-(R / L)+\sqrt{(R / L)+4 \omega_{0}^{2}}}{2}
\end{gathered}
$$

Upper cut off frequency

$$
\begin{gathered}
\omega R C=\left(\omega^{2} L C-1\right) \\
\omega_{\llcorner O}=\frac{(R / L)+\sqrt{(R / L)+4 \omega_{0}^{2}}}{2}
\end{gathered}
$$

Bandwidth $\rightarrow B W=\omega_{H I}-\omega_{L O}=\frac{\omega_{0}}{Q}=\frac{R}{L}$

Band Reject Filter (Notch Filter)

Ideal Characteristic of Band Reject Filter

$\omega_{\text {LO }}$	$\omega_{\text {HI }}$	ω

Simple Reject Pass Filter

$$
\begin{aligned}
G_{V}(s)=\frac{V_{0}}{V_{1}} & =\frac{s L+1 /(s C)}{R+s L+1 /(s C)} \\
& =\frac{j(\omega L-1 /(\omega C))}{R+j(\omega L-1 /(\omega C))}
\end{aligned}
$$

Magnitude

Example 15

Given the following circuit parameter values: $\mathrm{L}=159 \mathrm{mH}$, $\mathrm{C}=159 \mathrm{mF}$ and $\mathrm{R}=10 \mathrm{~W}$. Demonstrate that this circuit can be used to produce a low-pass, high-pass, or band-pass filter.

Active Filters

Drawbacks of Passive Filters

1. Inability to generate a network with a gain greater than one since passive elements cannot add energy to signals
2. Inductors are generally expensive and occupy to much space

Advantages of Active Filters

1. Active Filters are able to add energy to signals
2. Can construct inductors using resistors, capacitors and operational amplifiers (Op-amps).

Active filters

Inverting operational amplifier

Noninverting operational amplifier

Filter characteristics are determined by the choice of Z_{1} and Z_{2}.

Find the voltage gain $\mathrm{Vo} / \mathrm{V}_{1}$ for the following circuit

Example 17 (Difference Amplifier)

Find the voltage gain $\mathrm{Vo} / \mathrm{V}_{1}$ for the following circuit

Example 18

Find the input impedance for the following circuit

Inductor Replacement

Antoniou Inductance Circuit

$Z_{\text {in }}=\frac{V}{l}=s C R_{1} R_{3} R_{4} / R_{2}=s L$
where $L=C R_{1} R_{3} R_{4} / R_{2}$

Find the transfer function $V o / V_{1}$ for the circuit shown below and state what type of filter this transfer function represents

Example 20

The network shown is a circuit model for a single stage tuned transistor amplifier. Find the transfer function $\mathrm{Vo} / \mathrm{V}_{\mathrm{A}}$, and the value of C so that the center frequency is 91.1 MHz .

Example 21

Design 20db attenuation at 22.05 KHz for the following two circuits

a) Single pole low pass filter

b) Two-stage buffered low pass filter

