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Abstract
Software transactional memory (STM) has made it significantly eas-
ier to write correct concurrent programs in Haskell. Its performance,
however, is limited by several inefficiencies. While safe concurrent
computations are easy to express in Haskell’s STM, concurrent
data structures suffer unfortunate bloat in the implementation due
to an extra level of indirection for mutable references as well as
the inability to express unboxed mutable transactional values. We
address these deficiencies by introducing TStruct to the GHC run-
time system, allowing strict unboxed transactional values as well as
mutable references without an extra indirection. Using TStruct we
implement several data structures, discuss their design, and provide
benchmark results on a large multicore machine. Our benchmarks
show that concurrent data structures built with TStruct out-scale
and out-perform their TVar-based equivalents.
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ming structures;
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1 Introduction
The Haskell programming language, as implemented by the Glas-
gow Haskell Compiler (GHC), has many innovative features, includ-
ing a rich run-time system to manage the unique needs of a pure
functional language with lazy evaluation. Since its introduction
by Harris et al. [5], GHC’s STM has grown increasingly popular.
Most uses are not performance critical, but rather focus on ensur-
ing correctness in the face of concurrency from user interaction or
system events. Transactional memory (TM) based concurrent data
structures are less common and little effort has been invested in
the sort of performance tuning that has characterized STM work
for imperative languages [6, chap. 4].
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In comparison to most of those imperative implementations,
GHC’s TM is unusual in its use of explicit transactional variables
called TVars. Inspecting or manipulating these variables outside
of the context of a transaction is not allowed. There is no special
compiler support for STM beyond the existing type system. STM
is supported instead by the run-time system. Inside transactions,
execution is restricted to operations on TVars and the usual pure
functional computations. TVar operations consist of creation (with
an initial value), reading, and writing.

In our work we expand from TVars to TStructs, allowing users
to express transactional computations on structures with word and
reference fields. This change can significantly reduce the memory
overhead of TM data structures, speed up execution, and in some
cases reduce contention by decreasing the number of synchroniza-
tion operations. At this time we are still working on compiler and
language support to make programming with TStruct as easy as
programming with TVars, but we expect support to be possible (see
preview in Appendix A), and the performance results reported here
confirm the effort to be worthwhile.

In this paper we

1. describe extensions to GHC’s fine-grain locking STM to sup-
port transactional structures containing a mix of words and
pointers while maintaining the features (retry and orElse)
and properties of the STM (no global bottlenecks; no locks
for read-only transactions).

2. implement several data structures with both TStruct and
TVar to explore where performance improves or degrades.

3. provide results from data structure microbenchmarks on a
large multicore machine.

Section 2 provides background information on GHC’s existing
fine-grain locking STM implementation as well an overview of the
stm library’s interface for writing transactions. In Section 3 we
describe deficiencies in the existing implementation, and introduce
the TStruct interface and implementation as a means of address-
ing these deficiencies. In Section 4 we explain how our extensions
ensure program correctness (strict serializability). In Section 5 we
present four concurrent data structures built using TStruct, and
characterize the behavior of their methods. We describe our bench-
marking techniques and present performance results in Section 6.
We finish with discussion of future work in Section 7.

2 Background
While most of the details in Harris et al. [5] remain true of GHC’s
STM implementation, some details are missing that are relevant
to our work. In this section we give an overview of the existing
implementation (with some simplification and abstraction to make
the description more clear).
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instance Monad STM where . . .

data TVar a = . . .
instance Eq (TVar a) where . . .

newTVarIO : : a → IO (TVar a)
newTVar : : a → STM (TVar a)

readTVar : : TVar a → STM a
writeTVar : : TVar a → a → STM ( )

atomically : : STM a → IO a

retry : : STM a
orElse : : STM a → STM a → STM a

Figure 1. API for STM with TVars.

struct TVar {
Header header
Word version
WatchList∗ watchList
HeapObject∗ value

}
struct TStruct {
Header header
Word lock
Word lockCount
Word version
WatchList∗ watchList
Word words
Word ptrs
union { Word word, HeapObject∗ ptr } payload[]

}

Figure 2. STM implementation for TVars and TStructs.

2.1 STM Interface
GHC Haskell’s STM API is given in Figure 1. The STM type resem-
bles the IO type, but with only the TVar-manipulating actions. The
atomically function takes an STM action and gives an IO action
which, when executed, will perform the transaction atomically,
so that other threads see either all or none of the transaction’s
effects. New variables are made with newTVar, taking an initial
value for the variable. The IO variant is useful for creating top-level
global variables, as atomically currently cannot be nested under
unsafePerformIO. The retry and orElse combinators support
condition synchronization (blocking) and composition of transac-
tions.

2.2 STM Implementation
The run-time system supports STM at several levels. We focus on
the library level (written in C) and the garbage collection support.
Transactions proceed in two phases: execution and commit. The
execution phase must track both read and write accesses to TVars,
recording writes and providing the new values in subsequent reads.

The commit phase double-checks to make sure that the transaction
observed a consistent view of memory, acquires locks for TVars
being updated, and performs the actual updates. If problems are
encountered in either phase, the transaction will discard its work
and start again from the beginning.

When a transaction starts, a transactional record (TRec) is cre-
ated. The TRec maintains a chunked linked list of entries recording
each TVar read, the value seen when first encountered, and any new
value written to the TVar. Executing readTVar will first search the
TRec for a matching entry and use any new value as the value read.
If there is no entry for the TVar then a new entry is created and the
value is read directly from the TVar. The value field in each TVar
can double as a lock variable: the locking thread stores a pointer to
its transactional record instead of the actual value. When adding a
new TRec entry we must first check to see if the pointer already
refers to a TRec. If so, we spin until the value changes. We will see
later that locks are never held for unbounded time, so deadlock
is not possible. Performing a writeTVar is similar to reading: we
start by searching for an entry or adding a new one; then we record
the value being written in the TRec entry. The structure of a TVar
heap object is shown at the top of Figure 2.

After a transaction finishes execution, it is validated by compar-
ing TRec entry values with the values in the TVars. It is committed
by acquiring locks and writing values from TRec entries back into
the TVars. Details about validation and commit are given in Sec-
tion 4.

3 Adding Transactional Structs
In this section we discuss some problems with TVars and explain
how TStruct overcomes them. We also give details of our imple-
mentation and the various parts of GHC that were modified.

3.1 Indirection with TVars
Consider a red-black tree. A node of such a tree will typically consist
of pointers to children, a parent pointer, fields for key and value, and
a field for the color of the node. The simplest insertion will search
to find the insertion location, make a new node, and link it to its
parent. Linking mutates the pointer field of the parent node. When
a rebalance is needed, however, several pointers will be reassigned
as well as color fields. We could choose to keep the color fields as
pure values and make new nodes whenever the color changes, but
this can be difficult to manage as each new node must be relinked.
Making the color mutable by storing the color value in a TVar

adds significant memory overhead and indirection. Each TVarmust
point to a heap object, not an unboxed value. To store the color, we
have a pointer to a TVar in the node object and a pointer in the
TVar to a boxed value, a significant amount of overhead for one bit
of information.

3.2 Mutable Unboxed Values
We avoid many of the indirection problems with TVars by introduc-
ing a new built-in transactional structure we call TStruct. Every
TStruct can be allocated with a fixed number of word-sized fields
and pointer fields, each of which can be written and read trans-
actionally. We can then such store fields as key, value, and color
as words in the structure and pointers to other nodes as pointer
fields. Perhaps more important than saving space, TStructs avoid
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data TStruct a = . . .

instance Eq ( TStruct a) where . . .

newTStructIO : : Int → Int → a → IO ( TStruct a)
newTStruct : : Int → Int → a → STM ( TStruct a)

readTStruct : : TStruct a → Int → STM a
writeTStruct : : TStruct a → Int → a → STM ( )

readTStructWord : : TStruct a → Int → STM Word
writeTStructWord : : TStruct a → Int → Word → STM ( )

lengthTStruct : : TStruct a → Int
lengthTStructWords : : TStruct a → Int

Figure 3. API for TStruct.

indirection. By keeping the words and pointers close together they
allow us to touch fewer cache lines than we would if we followed
pointers to get to values.

Unfortunately, pointer fields of a TStruct often still entail a level
of indirection to accommodate sum types like Node, which may be
either true nodes or Nil. For the true node case, the implementation
is simply an indirection word that points to the TStruct for that
node.

3.3 Implementation Details
3.3.1 Haskell API
Our implementation of TStruct is based on GHC’s small array sup-
port, specifically the SmallMutableArray# type. Each TStruct has
three parts: metadata, words, and pointers. The metadata includes
size fields that indicate the number of word and pointer fields, to-
gether with STM metadata that mirrors that of a TVar: a lock word,
a lock counter, and a version number. Figure 2 (bottom) shows the
structure of a TStruct heap object. The size of a TStruct never
changes and for many uses it will be known at compile time. As part
of ongoing efforts, we are working to exploit compiler knowledge
of TStruct layout for better performance. For now we make use of
“unsafe” read and write operations to avoid bounds checks when
appropriate.

Garbage collection of TStruct objects follows the pointer fields
as it would in a SmallMutableArray#. In our initial implementa-
tion we noticed an increase in time spent garbage collecting over a
TVar version of the same structure. We fixed this by enabling eager
promotion [11] for TStruct objects, a generational GC feature that
is disabled for other mutable primitive objects. A common muta-
ble array based workload will loop over array entries computing
new values that will be live only until replaced in the next loop
iteration. In this context the array will be long lived, but the values
held by the array will not and should not be promoted eagerly. As
we are using TStruct to build concurrent data structures, it will
be common for the values written to a TStruct to have the same
lifetime as the TStruct itself. We suspect that TVars do not suffer
from opting out of eager promotion because the indirections that
point to TVars eagerly promote the TVar. With TStruct we have
removed the indirection and do not get this side benefit.

A simple API for working with TStruct is given in Figure 3.
The newTStruct actions create a new struct with parameters for
number of words and number of pointers and an initializing value
for the pointers. Note that we are limited to one type of pointer.
Nothing in the implementation requires this restriction, however,
and we use this simple API along with unsafeCoerce to build
a richer API specific to particular data structures. Transactional
reading and writing work similarly to TVar but with an index. Out
of range indices will raise an exception. Lengths in TStructs are
immutable so we have pure functions that give the number of
pointers and words. While simple, the current API requires the use
of unsafe features; this limitation could be removed with language
extensions (see Appendix A) or type-indexed products.

For some data structures, we provide data structure specific ini-
tialization actions that are non-transactional. When TVars are cre-
ated there is only one field to initialize and this initialization is done
non-transactionally. That is, the write is not delayed until commit,
but is immediately set in the TVar (since that TVar is not yet visible
to any other thread). With TStruct there are several fields that may
need initialization. Non-transactional writes are also not atomic
and are only used for initialization before the TStruct is visible to
multiple threads. In future work we would like to explore an API
that gives static guarantees that these non-transactional accesses
happen only on private structures. An example of code written
using TStruct primitive operations can be found in Appendix A.

3.3.2 Run-Time System Details
To support TStruct, the existing STM runtime is augmented with
a separate list of TRec entries to track TStruct accesses. The
TStruct entries contain an additional field to indicate the accessed
index within the TStruct. The offset can be compared with the
number of pointer fields to determine if the access is a word ac-
cess or a pointer access (this is essential for garbage collection to
correctly handle TRecs). Details about the commit are in Section 4.

4 STM Correctness with TStruct
Haskell’s STM has its roots in the OSTM of Fraser and Harris [3, 4];
TStruct builds on this implementation. In this section we will
show that our TStruct implementation (and the original GHC
STM implementation) are strictly serializable, meaning that for any
concurrent STM execution there exists some total order on transac-
tions that is consistent with “real time” (if transaction T1 finishes
before transaction T2 in the implementation, then T1 precedes T2
in the total order) and that would have produced the same results
if executed sequentially.

4.1 Commit Overview
As noted above, we can think of transactions as executing in two
phases. The first phase executes the code of the transaction and
builds the transactional record (TRec). Interactionwith sharedmem-
ory in this phase consists only of the initial reads of TVars and
TStructs; subsequent reads are satisfied from—and writes recorded
in—the TRec. At the end of this phase the TRec captures the data
that were read and the changes to shared state that would need to
occur to make the transaction “happen.”

The second phase is the commit, which puts into effect the
changes in the TRec, but only if the state of shared memorymatches
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the view recorded in the TRec. That is, commit should happen only
if it would be consistent with stopping the world and performing
the execution while directly mutating shared memory. We must
show that the view of shared memory in a successfully committing
transaction is the same as the view during execution, that this
view is internally consistent, and that other transactions will be
prevented from committing conflicting changes concurrently.

The commit phase comprises three steps: validate, read check,
and update. If either validate or read check fails, the transaction
will release its locks and restart without having made any changes.
If the update step is reached, the transaction will always make its
changes and then release its locks. This implies that two conflicting
transactions must never both reach their update step (two trans-
actions conflict if they use the same memory location and at least
one writes to it).

4.2 TVar Commit
Pseudocode for the existing GHC STM commit operation appears
in Figure 4. As in OSTM, the value word in a TVar is also the lock
variable. As TVars hold only references to heap objects, a locked
state can be indicated by referencing a special heap object that
cannot be referenced by user code. As described in Section 2.2,
the special heap object used is the locking transaction’s TRec. In
a simplification of OSTM, GHC does not share access to TRecs
among threads: OSTM leverages shared access to ensure that when
conflicting transactions are committing at the same time one of
them succeeds (thus ensuring lock-free progress). GHC’s STM ad-
mits the possibility of livelock: when a TRec pointer is read from
a TVar, the current thread releases any locks it holds and retries.
When a transaction first reads a TVar it must load the current value
from the TVar. If that load sees a TRec it spins, waiting for the
locking transaction to complete. This read barrier is safe because,
as we shall see later, locks are held only for a finite number of steps
(assuming OS threads are scheduled with some fairness).

In addition to the value/lock field, TVars contain a version field
which is incremented with every update. The validation step needs
to do three things: acquire locks for TVars in the write set, check
that the view of memory seen during execution is still the state
of memory, and record version numbers for all the TVars in the
read set. The read check step ensures that the view of memory
seen during both execution and validation is consistent, and further
that no other committing transactions conflict. Finally the update
increments version numbers, writes new values, and releases locks.

4.3 The Need for Read Check
Consider the timeline given in Figure 5. Transaction T0 reads two
TVars, x and y, initially both zero. Between its reads of x and y,
transaction T1 fully executes and commits, updating both x and y
to one and giving T0 an inconsistent view of memory with x = 0
and y = 1. If T0’s commit were to continue without any other
transactions doing work, this inconsistency would be discovered in
the validate step, when the expected value, zero, stored in the TRec
for x , failed to match the value, one, in the TVar. Other transactions,
however, can commit while T0 is validating, leading to validation
seeing the same inconsistent view of memory as execution. The read
check detects this by checking the version numbers stored in the
validate step, together the values (again). For the check to succeed,
x must be set back to zero (by T4 in the diagram), but this cannot

happen without the version number also increasing (subscript 4 in
the read of x in read check).

We might be tempted to store the version numbers during exe-
cution. This, however, would remove an important benefit of value-
based validation. Consider a program in which multiple threads are
handling events that arrive in a series of queues ordered by priority,
and an execution in which a thread T sees all the highest priority
queues empty and starts handling a low-priority event. While T is
handling its event, new high-priority events arrive and are quickly
handled by other worker threads. When T starts validation all the
high-priority queues are again empty, but their version numbers
have all been incremented. As a result, T will be unable to com-
mit, even though logically it should be able to. By storing version
numbers in the validate step, we narrow the window for conflicting
commits considerably.

4.4 TStruct Commit
In TVars, the lock and the value were conflated. We cannot use the
same technique in TStructs because they include word values in
addition to references. Instead, we can conflate the lock and the ver-
sion number. Odd values indicate that the TStruct is locked, with
the high order bits identifying the thread that holds the lock. Even
values indicate that the TStruct is unlocked, with the high order
bits specifying a version number. Pseudocode for TStruct commit
appears in Figure 4. An additional field is included in TStructs
for a lock count, as multiple fields in a TStruct may be written
in a transaction. Validation must now handle the possibility that
multiple entries—reads and writes—will be protected by a single
lock and a single version number. Reads will check the value, but
in contrast to the TVar case this will not simultaneously check the
lock status. A separate check for the lock is needed. The TStruct
could already be locked by this transaction, however. If it is, we
must not treat the lock field as a version number! When the lock is
first acquired, the version number is stored for later use in unlock-
ing (by writing that version number incremented by two). If the
committing transaction does not hold the lock, the entry is a read,
the old value matches, and the lock is not held, then we record the
version number for the TStruct. In the read check we again check
each entry in the read set for a matching value and for either a lock
held by this transaction or a matching version number (the version
number cannot change if we hold the lock). When updating, we
write the new value first and then unlock with the next version
number.

4.5 Correctness
Consider a single TVar location x and the ways in which valida-
tion, read check, and update steps for that location can interleave.
Updates first acquire the lock in the validate step, then increment
the version and unlock by writing the new value in the update
step. Because updates are guarded by locking and unlocking the
location, we know that all updates are ordered. We can understand
the interaction of these updates with a transaction T0 that is com-
mitting and only reads x by considering two parallel timelines, one
for T0 and one for the ordered updates to x , as shown in Figure 6.
Transaction T0 will value check x , read the version, then value
check x again in the validate step. Later in the read check step, T0
will value check x and then check that the version matches. During
the span between T0’s reads of x ’s version, we know immediately
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commit(TRec∗ trec )
validate ( trec )
read check ( trec )
update ( trec )

bool value check ( entry∗ e )
return e→tvar→value == e→old value

validate (TRec∗ trec )
for ( e in trec )

i f ( is write ( e ) )
abort i f ( ! try lock (e ) | | ! value check (e ) )

else
abort i f ( ! value check (e ) )
e→version = e→tvar→version
abort i f ( ! value check (e ) )

read check (TRec∗ trec )
for ( e in read set ( trec ) )

abort i f ( ! value check (e )
| | e→tvar→version , e→version )

update (TRec∗ trec )
for ( e in write set ( trec ) )
e→tvar→version++
e→tvar→value = e→new value

commit(TRec∗ trec )
validate ( trec )
read check ( trec )
update ( trec )

bool value check ( entry∗ e )
return e→ tstruct→payload[e→index]

== e→old value

validate (TRec∗ trec )
for ( e in trec )

i f ( is write ( e ) )
abort i f ( ! try lock (e ) | | ! value check (e ) )

else
abort i f ( ! value check (e ) )
version lock = e→ tstruct→ lock
i f ( version lock , this lock )
abort i f ( is locked ( version lock )

| | ! value check (e ) )
e→version = version lock

read check (TRec∗ trec )
for ( e in read set ( trec ) )

version lock = e→ tstruct→ lock
abort i f ( ( version lock , e→version

&& version lock , this lock )
| | ! value check (e ) )

update (TRec∗ trec )
for ( e in write set ( trec ) )
e→ tstruct→payload[e→index] = e→new value
e→ tstruct→ lock = e→ tstruct→version+2

Figure 4. Commit pseudocode for TVars on the left and TStructs on the right.

Update

y = 15
read

y = 1
x = 1
T5

x = 04
read

y = 0
x = 0
T4

Read Check

y = 13
read

y = 1
x = 1
T3

x = 02
read

y = 0
x = 0
T2

Validate

y = 11
read

y = 1
x = 1
T1

x = 00
read

ExecuteT0

Figure 5. Timeline illustrating a sequence of commits that could lead to committing with an inconsistent view of memory. This diagram
is from the perspective of T0’s execution and commit. Reads of shared memory (with values subscripted with the corresponding version
number) are noted above the line; successful commits from other transactions and their updates are noted below the line. In any consistent
view of memory, x and y will always have the same value.
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BA

x = z
write

v
inc

x = L
write

T2

x = y
write

v
inc

x = L
write

T1

V

Update

v
read

x
read

Read Check

x
read

v
read

x
read

Validate

x
read

ExecuteT0

Figure 6. Timeline of possible interactions with a committing read-only transaction T0 and other transactions T1 and T2 with respect to a
TVar with value/lock field x and version field v . Ranges A and B cannot overlap with each other due to locking x and any overlap of these
ranges with a read of x in T0 will be detected. If any increments of v happen between T0’s reads of v (range V ) it will also be detected.

that an increment to x ’s version will be detected. This leaves only a
few possible combinations that may happen. An update could start
between the value check and the version read in validate, locking
x and incrementing its version immediately before T0’s version
read. With x locked, however, it will fail the value check before
the second version read, so the lock release must happen before
this value check. The value check will then fail because the value
will be different (if it isn’t, there is no conflict). The only remaining
possibility is a second update to x that puts the old value back.
The value, however, will not be updated until after the version is
incremented. Therefore if we successfully reach the end of the read
check for x we know that no updates have happened to x between
the version reads and that x has the same value seen in execution.

Given that each read-only location of T0 has a span in which
no updates have happened, and the entire read set is visited in
the validate step before it is visited again in the read check step,
there exists some point in the intersection of those spans where all
the values hold and all the locks for the write locations are held.
We do not know that this point exists until the end of the read
check. Even if values have changed at that point, we know that
the updates could only have happened in a transaction that did
not access any of T0’s written locations, because those locations
were locked. The updates can then be ordered afterT0. Any updates
that would lead to an inconsistent view of memory are ruled out
because they would require some update to the version before T0’s
read check finishes.

For TStruct we have equivalent properties but several details
change, because it is the lock and the version that are conflated
instead of the lock and the value. Updates write values first, then
versions, because the version is written at lock release. The version
is still the field that is increasing with every update, and updates are
still ordered due to the lock acquire and release. The span between
version reads to a read set location x will detect any overlap with an
update. Successfully reaching the end of the read check then has the
same implication as with TVars: the view of memory matches the
view seen in execution, and no conflicting updates can happen until

after a point at which the locks were held and simultaneously the
values matched. Updates to multiple locations in a TStruct result
in the lock being held longer—not multiple acquires or releases—so
this does not introduce any additional complexity for correctness.

5 Data Structures with TStruct
In this section we discuss our TStruct-based implementations
of four data structures: red-black trees, skip lists, cuckoo hash
tables, and hashed array mapped tries. We chose these structures
because each demands a unique set of features from our TStruct
implementation. Experience with these structures helped to guide
our implementation to be robust and featureful.

5.1 Red-Black Tree
Red-black trees achieveO (logn) operations by “coloring” each node,
requiring the same number of black nodes on every path from the
root to a leaf, and forbidding consecutive red nodes on any such
path (thereby ensuring that no two paths differ in length by more
than a factor of two). Among the data structures we implemented,
the red-black tree has the simplest constituent nodes: each contains
only a key and value, a color, and pointers to the parent and two
children. Moreover each node points only to nodes of the same type
and layout, and every node is the same size. Code for the red-black
tree is quite complex, however, due to its rebalancing operations,
which provide good worst-case performance without relying on
probabilistic outcomes.

Significant effort has been devoted to concurrent red-black trees,
including transactional versions [2, 3, 12]. The transactional mem-
ory approach makes it easy to write concurrent data structures that
are difficult to express with fine-grain locks, while maintaining the
potential for a high degree of concurrency. Moreover, transactions
allow an arbitrary set of operations to be composed into a single
atomic operation. Even with high concurrency, however, transac-
tional memory introduces instrumentation and (in Haskell) indi-
rection overhead that can significantly compromise performance.
TStructs allow transactions to operate on nodes containing both
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references and values, thereby decreasing memory overhead and
increasing locality of reference.

5.2 Skip List
Skip lists [18] achieve performance comparable to that of a bal-
anced tree by relying on randomization rather than rebalancing.
This strategy leads to substantially simpler code. Like red-black
trees, skip lists have been a fruitful target for concurrency research,
including transactional versions [7].

A skip list implementation requires a source of pseudorandom
numbers.While we could keep the state for a random number gener-
ator in a transactional variable, we want to avoid both inter-thread
contention and the overhead of transactional accesses; we therefore
employ a separate generator for each thread and ensure that each
is on a separate cache line. We must be careful with the generator
accesses, which are non-transactional, due to the implementation
of retry, which waits for a change to one of the variables in the
transaction’s read set before reawakening the thread. If the decision
to execute retry were predicated on a non-transactional access,
deadlock could occur, as the run-time system has no way to tell that
the non-transactional state has changed. We use unsafeIOToSTM
to perform non-transactional accesses, and take care not to leak
information from the state of the random number generator. Note
that nondeterminism is already common in transactions, since the
schedule of transaction execution may influence program outcome.

A skip list node is implemented as a single TStruct with the key
and value in word slots and levels of pointers in pointer slots. The
number of words is fixed in this use of TStruct while the number
of pointers varies from node to node. Skip list nodes are slightly
more complicated than the red-black tree nodes due to the varying
number of levels. The code is much simpler, however, with the only
difficult aspect being the source of random numbers.

5.3 Cuckoo Hash Table
The Cuckoo hash table [15] is an open addressing hash structure
in which a pair of hash functions is used to give two locations for a
particular key. On insertion, if both locations are full, one of the
existing entries will be evicted to make room for the new entry. The
evicted item will then go to its alternate location, possibly leading
to further evictions. If the chain of evictions is too long, the table is
resized. Our implementation follows Herlihy and Shavit [8], with a
pair of tables, one for each hash function.

In a concurrent setting, the Cuckoo hash table is appealing be-
cause lookups need to look in only two locations and deletions only
change one location. Insertions look for a free bucket among the
two locations and often will be done with a small change at the
chosen location: updating the size and writing the value into the
bucket.

Our TVar-based implementation is structured as an array of
mutable TVars that reference immutable buckets. On an insertion
or deletion, a new bucket is created, copying appropriate entries. In
the TStruct-based implementation, we have an immutable array
of pointers to mutable TStruct buckets. Insertions and deletions
simply update entries in the bucket. The TStruct buckets are a
fixed size, containing a size field, keys as words, and values as
pointers.

5.4 Hashed Array Mapped Trie
The Hashed Array Mapped Trie (HAMT) [1] is commonly used in
Haskell in its pure functional form as the underlying structure in
the unordered-containers package for the Map and Set abstrac-
tions [20].

The “Hashed” part of the HAMT name indicates that the key is
hashed before indexing to ensure a uniform distribution, thereby
avoiding (as in a skip list) the need for rebalancing. The “Trie” part
of the name indicates that the key is broken into fixed size chunks
of n bits each. Each chunk is an index for a level of the tree. The
corresponding node at that level can be indexed by the chunk to
find the next node for that key. Nodes can either be levels or leaves,
where the levels point to further nodes and leaves contain key-value
pairs. As an example consider the key 42 = 1010102 in a trie with
n = 3 bits per level. Each node will have 23 = 8 entries with the
root indexed by the first three bits 010 and (if needed) the next level
indexed by 101, the third and sixth entries in the nodes respectively.
While the maximum depth of the trie is fixed for a given length
of key, levels tend to become more and more sparse as one moves
down the tree (especially with a good hash function), and lower
levels may not be needed at all.

Variable sparsity argues for a representation that avoids allo-
cating space for unused pointer fields. The “Array Mapped” part
of the HAMT name indicates a technique that does just that, by
storing a population bitmap with 2n bits and as many pointers to
lower levels as there are bits set in the bitmap. A trie level node
in our example above with two children would have to have six
wasted entries, where the “Array Mapped” scheme would need only
8 bits to indicate the dead ends. A trade-off with array mapping
is that adding or removing an entry typically requires an entirely
new node. With immutable nodes such replacement is expected.
There is ample room for intermediate designs, however, with some
extra space for anticipated growth. In a similar vein, mutation can
be used for removal by marking dead ends rather then removing
nodes. We leave the exploration of these designs to future work.

5.4.1 Transactional Implementation
We use an existing Haskell implementation of HAMT found in the
stm-containers package [21], with the minor change of ensuring
that insertions of duplicate keys leave the existing value rather than
replacing it (thus allowing the transaction to remain read-only). The
layout of our TVar-based HAMT and corresponding code is given
in Figure 7a. Each Node is a sum type with a Nodes constructor for
levels and two leaf constructors, one for single entries and the other
for entries with hash collisions. Mutation in this structure happens
only at the TVar referenced in the Nodes constructor. The bitmap
for array indexing is given in the Bitmap field in NodeArray.

In our TStruct-based HAMT, nodes are either a Nodes level or
Leaves leaf, as shown in Figure 7b. Mutation happens in the array
part when, for instance, a child is replaced by an expanded node
on insert and the parent reference is updated to the new child. To
remove unneeded indirection in this structure we implement the
whole node as a TStruct with an explicit tag field.

5.4.2 HAMT Comparison
The HAMT falls somewhere in between the red-black tree and skip
list in complexity. Most of the difficult aspects of HAMT lie in the
data representation. Here TStructmakes things somewhat simpler
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(b) The TStruct-based node data type.

Figure 7. The TVar-based (a) and TStruct-based (b) node data types and diagrams showing two level nodes and a leaf node of an HAMT.

although (in the absence of compiler support) with significantly
less safety—more on this in Section 7. HAMT nodes come in several
forms and sizes.

Prokopec et al. [16, 17] have explored concurrent versions of
the HAMT. Interestingly, their implementation includes an extra
indirection, as in the TVar-based version. This indirection facil-
itates low-cost snapshots. A Haskell version of this concurrent
HAMT can be found in the ctrie package [19]; we include it in
the performance experiments of Section 6.

6 Performance Evaluation
Our modifications were made to the 8.0.2 version of GHC. Results
were obtained on a 2-socket, 36-core, 72-thread Intel Xeon E5-2699
v3 running Fedora 24. To achieve consistent results we augmented
GHC’s thread pinning mechanism to allow assignment of Haskell
execution contexts to specific cores, and experimented with dif-
ferent assignments as we increased the number of threads. The
best performance was achieved by first filling all the cores on one
socket, then moving to the second socket, and finally using the
second hardware context (hyperthread) on each core.

6.1 Data Structure Throughput
Our microbenchmarks focus on steady-state data structure through-
put. Figures 8 and 9 plot this throughput for a mix of operations on
data structures representing a set which initially has 50,000 entries.
During execution, each thread repeatedly performs a transaction
that searches for a random key (from a key space of 100,000) 90% of
the time, inserts a random key 5% of the time, and deletes a random
key the remaining 5% of the time. Due to the mix of operations, the
key space, and the initial occupancy, the structure is expected to

keep its size regardless of the length of the run. Given this stability,
we can expect half of insertions and deletions to follow a read-only
path (with respect to the Haskell transaction), where an insertion
finds that the entry in question already exists, or a deletion finds
that it does not.

For all four data structures, TStruct results in noticeably better
performance, especially at high thread counts. Details vary with
the structure. In the red-black tree, TVars actually out-perform
TStructs by a small amount until hyperthreads are introduced,
after which TVar performance is flat but TStruct continues to
improve, eventually outperforming TVar by 21%. Several factors
may contribute to this behavior, including false conflicts introduced
by TStructs. For example, consider a transaction that is updating
the color of a grandparent node д after an insertion. In the TVar
version this color update does not conflict with another transaction
that reads д. In the TStruct version there can be a conflict if the
read (either the initial read or a read during commit) happens while
the updating transaction is committing. The whole TStruct is
locked for the write to the color field. We hope to explore different
lock granularity for TStruct in future work.

The skip list and cuckoo hash table implementations show even
larger benefits for TStruct, peaking at 58% and 41% increases in
throughput respectively. The decreased memory use due to elim-
inated indirection allows the benchmark to benefit from hyper-
threads despite the shared L1 cache.

Finally, in HAMT, TStruct outperforms TVar by 23% on a single
thread and 15% at 18 threads, where throughput peaks. Neither
the second socket nor the use of hyperthreads enables additional
throughput for HAMT.
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(a) Red-black tree.
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(b) Skip list.
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(c) Cuckoo Hash Table.

Figure 8. Operations on data structures with roughly 50,000 entries where 90% of the operations are lookups and the rest are split between
insertions and deletions (note the differing scales on the y-axis).

1 18 36 72
0

1

2

3

4

5

·107

Threads

O
pe
ra
tio

ns
pe
rs

ec
on

d

TVar TStruct CTrie Pure TVar Pure CAS

Figure 9. Operations on HAMT as in Figure 8. Also included are a
fine-grain IORef-based concurrent CTrie and pure functional struc-
tures accessed transactionally (Pure TVar) or through an IORef
(Pure CAS).

For comparison purposes, we also include in Figure 9 the per-
formance of three alternative algorithms. The first is a concur-
rent implementation of HAMT (CTrie) that uses compare-and-
swap (CAS) operations on IORefs in each node. The other two are
pure functional implementations from the unordered-containers
package, one accessed through an IORef and the other through a
TVar. The IORef is updated using atomicModifyIORefCAS from
the atomic-primops package [13]. This operation attempts a spec-
ulative evaluation of the update to the data structure before per-
forming a CAS. If unsuccessful, it falls back to atomicModifyIORef,
which atomically swaps in a thunk of the update before evaluating.
The TVar version is transactional, supporting the same features
and composition as any other transactional version, but with global

granularity. Note that neither CTrie nor Pure CAS supports trans-
actional blocking or composition, focusing instead on single data
structure performance. As expected, these two alternatives provide
the highest throughput at low thread counts. CTrie has better scal-
ability, beating out Pure CAS after 12 threads and continuing to
improve until moving to the second socket. The cost of the global
bottleneck increases significantly with the second socket, greatly
degrading performance. The pure TVar version fails to scale, with
increased threads only harming performance.

We also instrumented the run-time system to track the amount
of memory allocated during a transaction. Our methods were very
lightweight, simply taking a snapshot of the heap pointer at the be-
ginning and end of a transaction and recording amounts requested
from allocate (such as STMmetadata). Values from certain corner
cases—such as when GC happens in the middle of a transaction—
are detected and ignored, leading to modest imprecision in our
measurements. When developing our benchmarks, we used this
instrumentation to guide our coding and to reduce allocations of
unneeded intermediate structures such as wrappers around unlifted
heap objects. We focused our attention on the read path of each
benchmark as it was significantly less code and it was executed
the majority of the time. In all cases the TStruct version of each
benchmark allocated less: 32% as much as TVar in HAMT; 52% as
much in red-black tree; 41% as much in skip list; 10% as much in
the cuckoo hash table.

Without eager promotion, the TStruct red-back tree and HAMT
both had peak performance matching that of their respective TVar
versions. In both cases if we ignoredGC time and calculated through-
put as transactions committed per second of mutator time, the
TStruct versions had higher throughput. For the cuckoo hash ta-
ble and skip list, eager promotion made no significant difference to
performance. This is unsurprising, at least in the cuckoo hash case:
the mutable buckets contain only references to keys and values,
not to further structure.

7 Future Work
While we have seen performance improvements for applications
with TStruct, we have not been satisfied with the code that had to
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be written to achieve this. We are therefore working on compiler
support for transactional structs, to improve the quality of gener-
ated code and to provide better safety and simplicity to program-
mers. As mentioned in Section 3.3.1, non-transactional initialization
of TStructs can be guaranteed to be safe in common scenarios. In
ongoing work we are exploring an API that exposes these accesses
safely. Specifically, we are building on a recent proposal by Simon
Marlow to add data types with mutable fields [10]. In this proposal,
data constructors with mutable fields are IO, ST, or STM actions,
while pattern matching on a constructor introduces references to
mutable fields rather than to values. These references are repre-
sented internally as the pairing of an offset with a pointer to the
heap object. Additional actions allow reading and writing to fields
within the proper context. Simple extensions to generalized alge-
braic data type (GADT) syntax give a clean way to express these
data types with the context required for their access and creation.
Some details and a small example are given in Appendix A.

We also hope to explore more data structures that can bene-
fit from transactional structs. This will likely lead us to explore
improved transactional array support as well. There are several vari-
ations on the HAMT data structure that we hope to explore, given
that we have more freedom to perform mutation in the context
of STM and TStructs. For instance, we may be able to avoid allo-
cating new nodes and copying when an item is deleted by instead
marking the entry with a sentinel value or a deletion bitmap. We
could also explore over-allocating some levels of the HAMT, trad-
ing compact nodes for the expectation that nodes high in the tree
will later become saturated. Of course these may also compromise
performance due to increased conflicts.

Previous work has suggested that performance may be improved
by using a different data structure for the transactional record [9].
Additionally, the granularity of STMmetadata could be explored for
further improvements. A related direction we have begun to explore
is TStruct alignment. By aligning all allocations and GC copy
operations of TStruct heap objects we can avoid false conflicts
that increase inter-core communication and degrade performance.
This optimization trades off some space to internal fragmentation,
but may improve performance for some concurrent workloads.

Our original motivation for TStruct was to improve perfor-
mance of a hybrid transactional memory implementation, in which
transactions are first attempted using hardware transactional mem-
ory. The idea was that reduced indirection would reduce the fre-
quency with which transactions overflowed their limited hardware
buffers. Along the way we discovered that TStruct improved per-
formance of software-only transactional memory on some data
structures. In future work we hope to find ways to use hardware
transactions to yield additional performance improvements, and to
understand the factors that lead to good and poor performance of
Haskell code in hardware transactions.

While we get better or similar performance by enabling eager
promotion for TStructs, we would like to better characterize when
this will be a benefit and when it will harm performance. For exam-
ple we expected some benefit for skip lists but we saw none. With
a better characterization we may be able to develop GC policies
that can suit a broad set of workloads.

Given our focus on microbenchmarks, it is not yet clear how our
results will translate to real-world applications. Few existing appli-
cations make significant use of STM data structures, even though

STM is widely used for synchronization—retry-based condition
synchronization in particular. It is unclear if STM data structures
are avoided simply due to their poor performance. Typical current
applications use a pure functional data structure and gain mutation
by accessing the whole structure through a single mutable cell,
with appropriate synchronization (usually atomicModifyIORef).
This pattern works well on low core counts, but fails to scale as the
single cell inevitably becomes a bottleneck [14].

A STMMutable Fields
In writing our data structure implementations with TStruct we
sacrificed safety in several ways. In this appendix we look at the
HAMT node representation and some of the safety lost, and then
show how an extension to the mutable fields proposal can recover
safety while giving opportunities for better code generation.

Figure 7b shows the TStruct node representation for HAMT.
Each Nodes will point to either another Nodes level or a Leaves,
while Leaves will always point to values held by the data structure.
Normally we would use a sum type to encode these possible chil-
dren but this would introduce an indirection, as user declared sum
types cannot be mutable. Instead we keep a tag field to indicate
the constructor as the first word in the TStruct, as seen in the
diagram in Figure 7b. This tag field is immutable; the child refer-
ences may change as children are updated. It would be costly to
access immutable fields transactionally so we provide two API’s
for accessing TStructs, transactional and non-transactional (suf-
fixed NT). Consider the following code for a contains function on
a TStruct HAMT based set:

contains : : Key → Level → Node Key → STM Bool
contains k leve l (Node tstruct #) = do
tag ← readTStructWordNT# tstruct# 0#
case tag of

0 → do −− A Nodes object
let i = hashIndex leve l (hash k)
bitmap ← readTStructWordNT# tstruct# 1#
i f testBit bitmap i
then do

let ( I # p#) = position bitmap i
child ← readTStructPtr# tstruct# p#
contains k ( leve l+1) (Node (unsafeCoerce# child ) )

else return False
1 → do −− A Leaves object
h ← readTStructWordNT tstruct# 1#
i f hash k == h
then find k tstruct#
else return False

This representation sacrifices safety in four ways:
1. While our use of a non-transactional read of the bitmap

field is safe, nothing enforces the immutability of that field.
For example, we could consider implementing deletion of a
child from Nodes where the child array is compacted and the
bitmap is updated. This change would require a transactional
read.

2. The tag, bitmap, and hash fields are always accessed with
constant offsets that must be correct. No bounds check is per-
formed and out of bounds accesses would lead to undefined
behavior.
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3. Similarly the value from the tag field must be handled con-
sistently in several places.

4. We use the highly dangerous unsafeCoerce# as we keep
references to unlifted TStructs in Nodes objects and refer-
ences to lifted values in Leaves. Even small modifications
to this code can quickly lead to mistakes.

The mutable fields proposal [10] with a few extensions addresses
all of these issues. First we extend the available contexts for muta-
tion to include the STMmonad. We also allow a single mutable array
field, marked by the mutableArray keyword, as the last entry in a
constructor. This will be represented as an array of fields at the end
of the object. The size of this array and initial values are provided
at creation time. When a mutableArray is pattern matched, the
name is bound to a reference to the array that can be accessed by
a transactional API (in the context of STM). We also allow sum
types mixing mutable and immutable constructors. The HAMT data
declaration with our mutable fields syntax would be the following:
data Node a where
Nodes : : Bitmap → mutableArray (Node a) → STM (Node a)
Leaf : : Hash → a → Node a
Leaves : : Hash → mutableArray a → STM (Node a)

We recover the singleton Leaf constructor from the original
version found in Figure 7a. If we had included this in our TStruct
version we would have lost any benefit in TStruct metadata over-
head. With this Node type we can write contains as follows:

contains : : Key → Level → Node Key → STM Bool
contains k leve l (Nodes bitmap ns ) = do

let i = hashIndex leve l (hash k)
i f testBit bitmap i
then do

child ← readArrayRef ns ( position bitmap i )
contains k ( leve l+1) child

else return False
contains k ( Leaf k ' ) = k == k '
contains k (Leaves h l s )
| hash k /= h ' = False
| otherwise = find k l s

What were previously non-transactional accesses (safety issue 1)
are now fields in a data constructor which are inherently immutable
and safely accessible, even outside STM. The case statement match-
ing on the tag field is now a pattern match giving us bindings (safety
issue 2) and exhaustiveness warnings (safety issue 3). Finally we
have no need for unsafeCoerce# as our data declaration expresses
exactly the types we need for each constructor (safety issue 4). We
are optimistic that an implementation based on mutable fields will
give us the performance benefits of TStruct while still allowing
concise, robust, and safe code.
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