
Combinational Logic Design Process
• Create truth table from specification
• Generate K-maps & obtain logic equations
• Draw logic diagram (sharing common gates)
• Simulate circuit for design verification

– Debug & fix problems when output is incorrect– Debug & fix problems when output is incorrect
• Check truth table against K-map population
• Check K-map groups against logic equation product terms
• Check logic equations against schematic• Check logic equations against schematic

• Circuit optimization for area and/or performance
– Analyze verified circuit for optimization metric– Analyze verified circuit for optimization metric

• G, GIO, Gdel, Pdel

– Use Boolean postulates & theorems

• Re-simulate & verify optimized design
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• Re-simulate & verify optimized design



K-mapping & Minimization StepsK-mapping & Minimization Steps
Step 1: generate K-map

– Put a 1 in all specified minterms
– Put a 0 in all other boxes (optional)

Step 2: group all adjacent 1s without including any 0s
– All groups (aka prime implicants) must be rectangular and – All groups (aka prime implicants) must be rectangular and 

contain a “power-of-2” number of 1s
• 1, 2, 4, 8, 16, 32, …

– An essential group (aka essential prime implicant) contains – An essential group (aka essential prime implicant) contains 
at least 1 minterm not included in any other groups

• A given minterm may be included in multiple groups

Step 3: define product terms using variables common to Step 3: define product terms using variables common to 
all minterms in group

Step 4: sum all essential groups plus a minimal set of 
remaining groups to obtain a minimum SOP
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remaining groups to obtain a minimum SOP



K-map Minimization GoalsK-map Minimization Goals
• Larger groups:

– Smaller product terms– Smaller product terms
• Fewer variables in common

– Smaller AND gates

• Alternate method:
�Group 0s– Smaller AND gates

• In terms of number of inputs

• Fewer groups:

Group 0s
• Could produce 

fewer and/or 
smaller product • Fewer groups:

– Fewer product terms
• Fewer AND gates

smaller product 
terms

�Invert output
• Use NOR instead • Smaller OR gate

– In terms of number of inputs

• Use NOR instead 
of OR gate
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Circuit AnalysisCircuit Analysis
• We can implement different circuits for same logic function that are 

functionally equivalent(produce the correct output response for all 
input values)input values)
– Which implementation is the best?

• Depends on design goals and criteria

• Area analysis• Area analysis
– Number of gates, G (most commonly used)
– Number of gate inputs and outputs, GIO (more accurate)IO

• Bigger gates take up more area

• Performance analysis (worst case path from inputs to outputs)
– Number of gates in worst case path from input to output, Gdel– Number of gates in worst case path from input to output, Gdel

– More accurate delay measurement per gate
• Propagation delay = intrinsic (internal) delay + extrinsic (external) delay
• Relative prop delay, Pdel = # inputs to gate (intrinsic) + # loads (extrinsic) 
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Circuit Analysis Example

• From previous example: • From previous example: 
Z=(A+B’)C+A’BC’
– # gates:G = 7 A A+B’

B’
2– # gates:G = 7

– # gate I/O:GIO = 19

– Gate delay:Gdel = 4
Z

B
C

A+B’
(A+B’)CB’

A’

2

2 1+1 2+1
2+1

2+0– Gate delay:Gdel = 4
• worst case path: B→Z

– Prop delay:Pdel = 12

A’BC’C’
1+1

1+1
3+1

2+0

– Prop delay:Pdel = 12
• worst case path: B→Z
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Design Verification GuidelinesDesign Verification Guidelines
• Use all audits and analysis aids possible to help find potential design bugs

– Investigate and correct all errors/warnings
• Simulate thoroughly but use stimuli that “eat their way into the design” • Simulate thoroughly but use stimuli that “eat their way into the design” 

testing one function at a time
– more important for complex circuits

• When circuit doesn’t work, see what works and what doesn’t to narrow 
down the search space for the problemdown the search space for the problem
– Which outputs work
– Which outputs fail and under what conditions
– Monitor lots of internal nodes– Monitor lots of internal nodes
– Additional simulations (with different vectors) can be helpful

• Remember “debugging is just solving out a puzzle”
– Also “if something doesn’t look right, stop and check it out”

• Don’t overlook potential bugs• Don’t overlook potential bugs

• Always re-run audits and simulation after correcting any problem (or after 
any changes)
– Another bug could be lurking, or
– The fix may have messed up something else
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– The fix may have messed up something else



Sequential Logic Design Steps
• Derive circuit state diagram from design specs• Derive circuit state diagram from design specs
• Create state table
• Choose flip-flops (D, T, SR, JK)• Choose flip-flops (D, T, SR, JK)
• Create circuit excitation table

– use flip-flop excitation tables– use flip-flop excitation tables

• Construct K-maps for:
– flip-flop inputs– flip-flop inputs
– primary outputs

• Obtain minimized SOP equations
• Draw logic diagram
• Simulate to verify design & debug as needed
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Flip-Flop Excitation Tables & State 
DiagramsDiagrams

Q Q+ D T S R J K 0 1

D=1

10Q Q+ D T S R J K

0  0 0 0 0 X 0 X

0  1 1 1 1 0 1 X

0 1

0

10

T=10  1 1 1 1 0 1 X

1  0 0 1 0 1 X 1

1  1 1 0 X 0 X 0
0 1

T=1

00

1

SR=10 JK=1X

0 1

01

X00X 0 1

X1

X00X
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Sequential Design ExampleSequential Design Example
Design a 3-bit gray code counter with

active low synchronous reset (R)active low synchronous reset (R)

1R=0

0
State Diagram Inputs

R
Current state

(X Y Z)
Next state
(X Y Z)

0 XXX 000State order:
X Y Z

0

001

011

000

100

1

1R=1

R=0

0

0 XXX 000
1 000 001
1 001 011
1 010 110

X Y Z

101

011

010

100

11

0

00

0

1 010 110
1 011 010
1 100 000
1 101 100101 010

111 110
1

1

1

00 1 101 100
1 110 111
1 111 101
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3-bit Gray Code Counter

Inputs Current state Next state QX QY QZ
• Choose flip-

flops:
– Let X be a 

Inputs
R

Current state
(X Y Z)

Next state
(X Y Z)

QX
Jx Kx

QY
Dy

QZ
Sz Rz

0 X X X 0 0 0 0 1 0 0 1
1 0 0 0 0 0 1 0 X 0 1 0– Let X be a 

JK
– Let Y be a D
– Let Z be a 

1 0 0 0 0 0 1 0 X 0 1 0
1 0 0 1 0 1 1 0 X 1 X 0
1 0 1 0 1 1 0 1 X 1 0 X
1 0 1 1 0 1 0 0 X 1 0 1– Let Z be a 

SR
• Create circuit 

excitation 

1 0 1 1 0 1 0 0 X 1 0 1
1 1 0 0 0 0 0 X 1 0 0 X
1 1 0 1 1 0 0 X 0 0 0 1
1 1 1 0 1 1 1 X 0 1 1 0excitation 

table
1 1 1 0 1 1 1 X 0 1 1 0

1 1 1 1 1 0 1 X 0 0 X 0
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3-bit Gray Code Counter (cont)
• Generate K-Maps & obtain minimized SOPs

00  01  11  10

00
RX

YZ
00  01  11  10

00
RX

YZ
00  01  11  10

00
RX

YZ

X 1

00

01

11X X X X

00

01

11 1

00

01

11

YZ

X 1

1 X

11

10

YZ

X X X X

1

11

10
1

1 1 1

11

10

Jx = RYZ’ Dy = RYZ’ + RX’Z Sz = RXY + RX’Y’

1 1 1 1

1 1 1 1

00  01  11  10

00

01

RX
YZ

1 1 1 1

1 1 1 1

00  01  11  10

00

01

RX
YZ

Further reductions:
Rz = R’ + X⊕Y1 1 1 1

1 0 0 0

X X X X

01

11

10

1 1 1 1

X 1

1 X

01

11

10

Rz = R’ + X⊕Y
Sz = R(X⊕Y)’

= (R’ + X⊕Y)’
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3-bit Gray Code Counter (cont)3-bit Gray Code Counter (cont)
• Logic diagram
• Then design 

Jx X
Kx

Y’
Z’• Then design 

verification via 
logic simulation

X’Clk

Kx

Dy Y

Z’

Y
Z’

logic simulation
– Debug as needed 

to obtain 
working circuit

Dy Y

Y’Clk

Z’

X’working circuit
– Update logic 

diagram, logic 
equations, etc. to 

Sz Z
Rz

Clk

R

X

X’
Z

equations, etc. to 
reflect fixes Z’Clk

Rz
X
Y
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Sequential Logic ModelsSequential Logic Models
• Huffman model consists 

of two types:
Primary
Inputs

Primary
OutputsComb

Logicof two types:
– Mealy model (aka Mealy 

machine)
• Outputs are function inputs 

Next
State

Current
State

Logic

Flip-
Flips• Outputs are function inputs 

and current state
– Outputs can change when 

inputs change or when 
current state changes

StateFlips

Primary
PrimaryOutput

only for 
Mealy

current state changes

– Moore model (aka Moore 
machine)

• Outputs are function of 

Inputs Primary
Outputs

Output
Logic

Next State• Outputs are function of 
current state only

– Outputs can change only 
when current state 
changes Next

State
Current
State

Flip-
Flips

Next State
Logic
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changes
StateState Flips



Mealy & Moore State DiagramsMealy & Moore State Diagrams
• Mealy model

– Outputs associated 001/1

Input
/

State 
order
XY– Outputs associated 

with state transition
– Output values shown 

00
0/1 0/1

0/0

1/1
1/1

/
Output

XY

– Output values shown 
with inputs

• Moore model
10 010/0

1/0
States

– Outputs associated 
with states only

– Output values shown 

00/1

0 0

1 1

States
/

Output

– Output values shown 
with states

10/0 01/0

0 0

0
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Mealy & Moore State TablesMealy & Moore State Tables
In X Y X+ Y+ DX DY OMealy OMoore

0 0 0 0 1 0 1 1 1001/1 0 0 0 0 1 0 1 1 1

0 0 1 1 0 1 0 0 0

0 1 0 0 0 0 0 1 0

00

10 01

0/1 0/1

0/0

1/1
1/1

0 1 0 0 0 0 0 1 0

1 0 0 1 0 1 0 1 1

10 010/0

1/0

1 0 1 0 0 0 0 1 0

1 1 0 0 1 0 1 0 0
00/1

0 0

1 1

0 1 1 X X X X X X
10/0 01/0

0 0

0

1
Note: next state (next state logic) is same for
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1
Note: next state (next state logic) is same for
both Mealy & Moore – only output is different



Mealy & Moore Design ExamplesMealy & Moore Design Examples

X Y X Y

In this example the Dx and Dy circuits are the same for both Mealy and Moore
But the outputs circuits are different with the Moore being a function of X and Y only

00 01 11 10

0 0 1 X 0

1 1 0 X 0

In
X Y

00 01 11 10

0 1 0 X 1

1 1 1 X 0

In
X Y

1 1 0 X 0

DX = In’Y + InX’Y’

X Y

1 1 1 X 0

X Y

OMealy = In’Y’ + InX’

00 01 11 10

0 1 0 X 0

In
X Y

00 01 11 10

0 1 0 X 0

In
X Y

1 0 0 X 1

DY = InX + In’X’Y’

1 1 0 X 0

OMoore = X’Y’
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Mealy & Moore Design ExamplesMealy & Moore Design Examples
DX = In’Y + InX’Y’

D = InX + In’X’Y’
OMealy = In’Y’ + InX’ OMoore = X’Y’

DY = InX + In’X’Y’

XY

In

XY

In

X
Y
X

X

X
Y
X

XY

Y

X

Y
X

Y

Y

X

Y
X

ClkClk

Y

X OMoore
Y

X

OMealy

ClkClk
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X
Note: OMealy is a function of In but OMoore is not a function of In



Flip-Flop InitializationFlip-Flop Initialization
• Preset (aka set) => Q+ = 1
• Clear (aka reset) => Q+ = 0
• Some flip-flops have:

Typical logic symbol
with active high preset
and active low clear
Cannot determine sync• Some flip-flops have:

– Both preset and clear (set and reset)
– A preset or a clear

D Q

Pre
Cannot determine sync
or async from symbol

– A preset or a clear
– Neither (JK & SR flops have set/reset functions)

• Preset and/or clear can be
– Active high or active low

D

Clk

Q

Q
– Active high or active low
– Synchronous => with respect to active edge of clock
– Asynchronous => independent of clock edges

• Initialization important for:
Clr

• Initialization important for:
– logic simulation to remove undefined logic values

• 2, 3, U, etc.
– system operation to put system in a known state
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– system operation to put system in a known state



Synchronous vs. AsynchronousSynchronous vs. Asynchronous
• Synchronous => 

states of memory 
D Q

Pre

Example: assume 
active high sync states of memory 

elements change 
only with respect to 
active edge of clock

D

Clk

Q

Q

active high sync 
preset
and active low active edge of clock

• Asynchronous => 
states of memory 
elements can 

Clr

async clear

Clkelements can 
change without an 
active edge of clock

Clk

D

Pre– Asynchronous 
designs often have 
timing problems

Pre

Clr

Q
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System-Level TimingSystem-Level Timing
• System set-up time: Pdel + Pbufi + tsu - Pclk(min)

�Pdel + Pbufi + tsu�Pdel + Pbufi + tsu

• System hold time: th + Pclk - Pdel(min) - Pbufi(min)
� th + Pclkh clk

• System clock-to-output: tco + Pdel + Pbufo + Pclk

• Minimum times are difficult to guarantee
– Typically assume 0– Typically assume 0

comb 
logic

Data comb 
logic

Outputtsu tco
logic
Pdel

Data

Clock

logic
Pdel

Outputtsu tco
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System-Level TimingSystem-Level Timing
•• System setSystem set--up time: up time: PPbufibufi + + ttsusu(latch) (latch) -- PPclkclk(input)min(input)min

•• System hold time: System hold time: tthh(latch)(latch) ++ PPclkclk(input) (input) -- PPbufibufi(min)(min)•• System hold time: System hold time: tthh(latch)(latch) ++ PPclkclk(input) (input) -- PPbufibufi(min)(min)

•• System clockSystem clock--toto--output: output: ttcoco + + PPbufobufo ++ PPclkclk(output)(output)

•• Improvement techniques:Improvement techniques:•• Improvement techniques:Improvement techniques:
–– ReRe--clock signals onto/off clock signals onto/off subcircuitsubcircuit, chip, PCB, or system, chip, PCB, or system
–– FanoutFanout clock into input, main, and output clocksclock into input, main, and output clocks
–– 00--holdhold--time latches on input signalstime latches on input signals–– 00--holdhold--time latches on input signalstime latches on input signals

comb 
logic

Data comb 
logic

Output
logic
Pdel

Data

Clock

logic
Pdel

Output
LAT
en
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