
Combinational Logic Design Process
• Create truth table from specification
• Generate K-maps & obtain logic equations
• Draw logic diagram (sharing common gates)
• Simulate circuit for design verification

– Debug & fix problems when output is incorrect– Debug & fix problems when output is incorrect
• Check truth table against K-map population
• Check K-map groups against logic equation product terms
• Check logic equations against schematic• Check logic equations against schematic

• Circuit optimization for area and/or performance
– Analyze verified circuit for optimization metric– Analyze verified circuit for optimization metric

• G, GIO, Gdel, Pdel

– Use Boolean postulates & theorems

• Re-simulate & verify optimized design
C. E. Stroud ELEC 4200 1

• Re-simulate & verify optimized design

K-mapping & Minimization StepsK-mapping & Minimization Steps
Step 1: generate K-map

– Put a 1 in all specified minterms
– Put a 0 in all other boxes (optional)

Step 2: group all adjacent 1s without including any 0s
– All groups (aka prime implicants) must be rectangular and – All groups (aka prime implicants) must be rectangular and

contain a “power-of-2” number of 1s
• 1, 2, 4, 8, 16, 32, …

– An essential group (aka essential prime implicant) contains – An essential group (aka essential prime implicant) contains
at least 1 minterm not included in any other groups

• A given minterm may be included in multiple groups

Step 3: define product terms using variables common to Step 3: define product terms using variables common to
all minterms in group

Step 4: sum all essential groups plus a minimal set of
remaining groups to obtain a minimum SOP

C. E. Stroud ELEC 4200 2

remaining groups to obtain a minimum SOP

K-map Minimization GoalsK-map Minimization Goals
• Larger groups:

– Smaller product terms– Smaller product terms
• Fewer variables in common

– Smaller AND gates

• Alternate method:
�Group 0s– Smaller AND gates

• In terms of number of inputs

• Fewer groups:

Group 0s
• Could produce

fewer and/or
smaller product • Fewer groups:

– Fewer product terms
• Fewer AND gates

smaller product
terms

�Invert output
• Use NOR instead • Smaller OR gate

– In terms of number of inputs

• Use NOR instead
of OR gate

C. E. Stroud ELEC 4200 3

Circuit AnalysisCircuit Analysis
• We can implement different circuits for same logic function that are

functionally equivalent(produce the correct output response for all
input values)input values)
– Which implementation is the best?

• Depends on design goals and criteria

• Area analysis• Area analysis
– Number of gates, G (most commonly used)
– Number of gate inputs and outputs, GIO (more accurate)IO

• Bigger gates take up more area

• Performance analysis (worst case path from inputs to outputs)
– Number of gates in worst case path from input to output, Gdel– Number of gates in worst case path from input to output, Gdel

– More accurate delay measurement per gate
• Propagation delay = intrinsic (internal) delay + extrinsic (external) delay
• Relative prop delay, Pdel = # inputs to gate (intrinsic) + # loads (extrinsic)

C. E. Stroud ELEC 4200 4

• Relative prop delay, Pdel = # inputs to gate (intrinsic) + # loads (extrinsic)

Circuit Analysis Example

• From previous example: • From previous example:
Z=(A+B’)C+A’BC’
– # gates:G = 7 A A+B’

B’
2– # gates:G = 7

– # gate I/O:GIO = 19

– Gate delay:Gdel = 4
Z

B
C

A+B’
(A+B’)CB’

A’

2

2 1+1 2+1
2+1

2+0– Gate delay:Gdel = 4
• worst case path: B→Z

– Prop delay:Pdel = 12

A’BC’C’
1+1

1+1
3+1

2+0

– Prop delay:Pdel = 12
• worst case path: B→Z

C. E. Stroud ELEC 4200 5

Design Verification GuidelinesDesign Verification Guidelines
• Use all audits and analysis aids possible to help find potential design bugs

– Investigate and correct all errors/warnings
• Simulate thoroughly but use stimuli that “eat their way into the design” • Simulate thoroughly but use stimuli that “eat their way into the design”

testing one function at a time
– more important for complex circuits

• When circuit doesn’t work, see what works and what doesn’t to narrow
down the search space for the problemdown the search space for the problem
– Which outputs work
– Which outputs fail and under what conditions
– Monitor lots of internal nodes– Monitor lots of internal nodes
– Additional simulations (with different vectors) can be helpful

• Remember “debugging is just solving out a puzzle”
– Also “if something doesn’t look right, stop and check it out”

• Don’t overlook potential bugs• Don’t overlook potential bugs

• Always re-run audits and simulation after correcting any problem (or after
any changes)
– Another bug could be lurking, or
– The fix may have messed up something else

C. E. Stroud ELEC 4200 6

– The fix may have messed up something else

Sequential Logic Design Steps
• Derive circuit state diagram from design specs• Derive circuit state diagram from design specs
• Create state table
• Choose flip-flops (D, T, SR, JK)• Choose flip-flops (D, T, SR, JK)
• Create circuit excitation table

– use flip-flop excitation tables– use flip-flop excitation tables

• Construct K-maps for:
– flip-flop inputs– flip-flop inputs
– primary outputs

• Obtain minimized SOP equations
• Draw logic diagram
• Simulate to verify design & debug as needed

C. E. Stroud ELEC 4200 7
• Perform circuit analysis & logic optimization

Flip-Flop Excitation Tables & State
DiagramsDiagrams

Q Q+ D T S R J K 0 1

D=1

10Q Q+ D T S R J K

0 0 0 0 0 X 0 X

0 1 1 1 1 0 1 X

0 1

0

10

T=10 1 1 1 1 0 1 X

1 0 0 1 0 1 X 1

1 1 1 0 X 0 X 0
0 1

T=1

00

1

SR=10 JK=1X

0 1

01

X00X 0 1

X1

X00X

C. E. Stroud ELEC 4200 8

01 X1

Sequential Design ExampleSequential Design Example
Design a 3-bit gray code counter with

active low synchronous reset (R)active low synchronous reset (R)

1R=0

0
State Diagram Inputs

R
Current state

(X Y Z)
Next state
(X Y Z)

0 XXX 000State order:
X Y Z

0

001

011

000

100

1

1R=1

R=0

0

0 XXX 000
1 000 001
1 001 011
1 010 110

X Y Z

101

011

010

100

11

0

00

0

1 010 110
1 011 010
1 100 000
1 101 100101 010

111 110
1

1

1

00 1 101 100
1 110 111
1 111 101

C. E. Stroud ELEC 4200 9

111 1101
State Table

3-bit Gray Code Counter

Inputs Current state Next state QX QY QZ
• Choose flip-

flops:
– Let X be a

Inputs
R

Current state
(X Y Z)

Next state
(X Y Z)

QX
Jx Kx

QY
Dy

QZ
Sz Rz

0 X X X 0 0 0 0 1 0 0 1
1 0 0 0 0 0 1 0 X 0 1 0– Let X be a

JK
– Let Y be a D
– Let Z be a

1 0 0 0 0 0 1 0 X 0 1 0
1 0 0 1 0 1 1 0 X 1 X 0
1 0 1 0 1 1 0 1 X 1 0 X
1 0 1 1 0 1 0 0 X 1 0 1– Let Z be a

SR
• Create circuit

excitation

1 0 1 1 0 1 0 0 X 1 0 1
1 1 0 0 0 0 0 X 1 0 0 X
1 1 0 1 1 0 0 X 0 0 0 1
1 1 1 0 1 1 1 X 0 1 1 0excitation

table
1 1 1 0 1 1 1 X 0 1 1 0

1 1 1 1 1 0 1 X 0 0 X 0

C. E. Stroud ELEC 4200 10

3-bit Gray Code Counter (cont)
• Generate K-Maps & obtain minimized SOPs

00 01 11 10

00
RX

YZ
00 01 11 10

00
RX

YZ
00 01 11 10

00
RX

YZ

X 1

00

01

11X X X X

00

01

11 1

00

01

11

YZ

X 1

1 X

11

10

YZ

X X X X

1

11

10
1

1 1 1

11

10

Jx = RYZ’ Dy = RYZ’ + RX’Z Sz = RXY + RX’Y’

1 1 1 1

1 1 1 1

00 01 11 10

00

01

RX
YZ

1 1 1 1

1 1 1 1

00 01 11 10

00

01

RX
YZ

Further reductions:
Rz = R’ + X⊕Y1 1 1 1

1 0 0 0

X X X X

01

11

10

1 1 1 1

X 1

1 X

01

11

10

Rz = R’ + X⊕Y
Sz = R(X⊕Y)’

= (R’ + X⊕Y)’

C. E. Stroud ELEC 4200 11

X X X X 1 X
Kx = R’ + Y’Z’ Rz = R’ + XY’ + X’Y= Rz’

3-bit Gray Code Counter (cont)3-bit Gray Code Counter (cont)
• Logic diagram
• Then design

Jx X
Kx

Y’
Z’• Then design

verification via
logic simulation

X’Clk

Kx

Dy Y

Z’

Y
Z’

logic simulation
– Debug as needed

to obtain
working circuit

Dy Y

Y’Clk

Z’

X’working circuit
– Update logic

diagram, logic
equations, etc. to

Sz Z
Rz

Clk

R

X

X’
Z

equations, etc. to
reflect fixes Z’Clk

Rz
X
Y

C. E. Stroud ELEC 4200 12

Sequential Logic ModelsSequential Logic Models
• Huffman model consists

of two types:
Primary
Inputs

Primary
OutputsComb

Logicof two types:
– Mealy model (aka Mealy

machine)
• Outputs are function inputs

Next
State

Current
State

Logic

Flip-
Flips• Outputs are function inputs

and current state
– Outputs can change when

inputs change or when
current state changes

StateFlips

Primary
PrimaryOutput

only for
Mealy

current state changes

– Moore model (aka Moore
machine)

• Outputs are function of

Inputs Primary
Outputs

Output
Logic

Next State• Outputs are function of
current state only

– Outputs can change only
when current state
changes Next

State
Current
State

Flip-
Flips

Next State
Logic

C. E. Stroud ELEC 4200 13

changes
StateState Flips

Mealy & Moore State DiagramsMealy & Moore State Diagrams
• Mealy model

– Outputs associated 001/1

Input
/

State
order
XY– Outputs associated

with state transition
– Output values shown

00
0/1 0/1

0/0

1/1
1/1

/
Output

XY

– Output values shown
with inputs

• Moore model
10 010/0

1/0
States

– Outputs associated
with states only

– Output values shown

00/1

0 0

1 1

States
/

Output

– Output values shown
with states

10/0 01/0

0 0

0

C. E. Stroud ELEC 4200 14

1

Mealy & Moore State TablesMealy & Moore State Tables
In X Y X+ Y+ DX DY OMealy OMoore

0 0 0 0 1 0 1 1 1001/1 0 0 0 0 1 0 1 1 1

0 0 1 1 0 1 0 0 0

0 1 0 0 0 0 0 1 0

00

10 01

0/1 0/1

0/0

1/1
1/1

0 1 0 0 0 0 0 1 0

1 0 0 1 0 1 0 1 1

10 010/0

1/0

1 0 1 0 0 0 0 1 0

1 1 0 0 1 0 1 0 0
00/1

0 0

1 1

0 1 1 X X X X X X
10/0 01/0

0 0

0

1
Note: next state (next state logic) is same for

C. E. Stroud ELEC 4200 15

1
Note: next state (next state logic) is same for
both Mealy & Moore – only output is different

Mealy & Moore Design ExamplesMealy & Moore Design Examples

X Y X Y

In this example the Dx and Dy circuits are the same for both Mealy and Moore
But the outputs circuits are different with the Moore being a function of X and Y only

00 01 11 10

0 0 1 X 0

1 1 0 X 0

In
X Y

00 01 11 10

0 1 0 X 1

1 1 1 X 0

In
X Y

1 1 0 X 0

DX = In’Y + InX’Y’

X Y

1 1 1 X 0

X Y

OMealy = In’Y’ + InX’

00 01 11 10

0 1 0 X 0

In
X Y

00 01 11 10

0 1 0 X 0

In
X Y

1 0 0 X 1

DY = InX + In’X’Y’

1 1 0 X 0

OMoore = X’Y’

C. E. Stroud ELEC 4200 16

Mealy & Moore Design ExamplesMealy & Moore Design Examples
DX = In’Y + InX’Y’

D = InX + In’X’Y’
OMealy = In’Y’ + InX’ OMoore = X’Y’

DY = InX + In’X’Y’

XY

In

XY

In

X
Y
X

X

X
Y
X

XY

Y

X

Y
X

Y

Y

X

Y
X

ClkClk

Y

X OMoore
Y

X

OMealy

ClkClk

C. E. Stroud ELEC 4200 17

X
Note: OMealy is a function of In but OMoore is not a function of In

Flip-Flop InitializationFlip-Flop Initialization
• Preset (aka set) => Q+ = 1
• Clear (aka reset) => Q+ = 0
• Some flip-flops have:

Typical logic symbol
with active high preset
and active low clear
Cannot determine sync• Some flip-flops have:

– Both preset and clear (set and reset)
– A preset or a clear

D Q

Pre
Cannot determine sync
or async from symbol

– A preset or a clear
– Neither (JK & SR flops have set/reset functions)

• Preset and/or clear can be
– Active high or active low

D

Clk

Q

Q
– Active high or active low
– Synchronous => with respect to active edge of clock
– Asynchronous => independent of clock edges

• Initialization important for:
Clr

• Initialization important for:
– logic simulation to remove undefined logic values

• 2, 3, U, etc.
– system operation to put system in a known state

C. E. Stroud ELEC 4200 18

– system operation to put system in a known state

Synchronous vs. AsynchronousSynchronous vs. Asynchronous
• Synchronous =>

states of memory
D Q

Pre

Example: assume
active high sync states of memory

elements change
only with respect to
active edge of clock

D

Clk

Q

Q

active high sync
preset
and active low active edge of clock

• Asynchronous =>
states of memory
elements can

Clr

async clear

Clkelements can
change without an
active edge of clock

Clk

D

Pre– Asynchronous
designs often have
timing problems

Pre

Clr

Q
C. E. Stroud ELEC 4200 19

Q

System-Level TimingSystem-Level Timing
• System set-up time: Pdel + Pbufi + tsu - Pclk(min)

�Pdel + Pbufi + tsu�Pdel + Pbufi + tsu

• System hold time: th + Pclk - Pdel(min) - Pbufi(min)
� th + Pclkh clk

• System clock-to-output: tco + Pdel + Pbufo + Pclk

• Minimum times are difficult to guarantee
– Typically assume 0– Typically assume 0

comb
logic

Data comb
logic

Outputtsu tco
logic
Pdel

Data

Clock

logic
Pdel

Outputtsu tco

C. E. Stroud ELEC 4200 20
Cbig ⇒ Pclk

System-Level TimingSystem-Level Timing
•• System setSystem set--up time: up time: PPbufibufi + + ttsusu(latch) (latch) -- PPclkclk(input)min(input)min

•• System hold time: System hold time: tthh(latch)(latch) ++ PPclkclk(input) (input) -- PPbufibufi(min)(min)•• System hold time: System hold time: tthh(latch)(latch) ++ PPclkclk(input) (input) -- PPbufibufi(min)(min)

•• System clockSystem clock--toto--output: output: ttcoco + + PPbufobufo ++ PPclkclk(output)(output)

•• Improvement techniques:Improvement techniques:•• Improvement techniques:Improvement techniques:
–– ReRe--clock signals onto/off clock signals onto/off subcircuitsubcircuit, chip, PCB, or system, chip, PCB, or system
–– FanoutFanout clock into input, main, and output clocksclock into input, main, and output clocks
–– 00--holdhold--time latches on input signalstime latches on input signals–– 00--holdhold--time latches on input signalstime latches on input signals

comb
logic

Data comb
logic

Output
logic
Pdel

Data

Clock

logic
Pdel

Output
LAT
en

C. E. Stroud ELEC 4200 21
Cbig ⇒ Pclk

