Combinational Logic Design Process

- Create truth table from specification
- Generate K-maps \& obtain logic equations
- Draw logic diagram (sharing common gates)
- Simulate circuit for design verification
- Debug \& fix problems when output is incorrect
- Check truth table against K-map population
- Check K-map groups against logic equation product terms
- Check logic equations against schematic
- Circuit optimization for area and/or performance
- Analyze verified circuit for optimization metric
- $G, G_{I O}, G_{d e l}, P_{d e l}$
- Use Boolean postulates \& theorems
- Re-simulate \& verify optimized design

K-mapping \& Minimization Steps

Step 1: generate K-map

- Put a 1 in all specified minterms
- Put a 0 in all other boxes (optional)

Step 2: group all adjacent 1 s without including any 0 s

- All groups (aka prime implicants) must be rectangular and contain a "power-of-2" number of 1 s
- $1,2,4,8,16,32, \ldots$
- An essential group (aka essential prime implicant) contains at least 1 minterm not included in any other groups
- A given minterm may be included in multiple groups

Step 3: define product terms using variables common to all minterms in group
Step 4: sum all essential groups plus a minimal set of remaining groups to obtain a minimum SOP

K-map Minimization Goals

- Larger groups:
- Smaller product terms
- Fewer variables in common
- Smaller AND gates
- In terms of number of inputs
- Fewer groups:
- Fewer product terms
- Fewer AND gates
- Smaller OR gate
- In terms of number of inputs
- Alternate method:
>Group 0s
- Could produce fewer and/or smaller product terms
$>$ Invert output
- Use NOR instead of OR gate

Circuit Analysis

- We can implement different circuits for same logic function that are functionally equivalent (produce the correct output response for all input values)
- Which implementation is the best?
- Depends on design goals and criteria
- Area analysis
- Number of gates, G (most commonly used)
- Number of gate inputs and outputs, $G_{I O}$ (more accurate)
- Bigger gates take up more area
- Performance analysis (worst case path from inputs to outputs)
- Number of gates in worst case path from input to output, $G_{d e l}$
- More accurate delay measurement per gate
- Propagation delay $=$ intrinsic (internal) delay + extrinsic (external) delay
- Relative prop delay, $P_{\text {del }}=$ \# inputs to gate (intrinsic) + \# loads (extrinsic)

Circuit Analysis Example

- From previous example: $\mathrm{Z}=\left(\mathrm{A}+\mathrm{B}^{\prime}\right) \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$
- \# gates: $G=7$
- \# gate I/O: $G_{I O}=19$
- Gate delay: $G_{d e l}=4$
- worst case path: $\mathrm{B} \rightarrow \mathrm{Z}$
- Prop delay: $P_{\text {del }}=12$

- worst case path: $\mathrm{B} \rightarrow \mathrm{Z}$

Design Verification Guidelines

- Use all audits and analysis aids possible to help find potential design bugs
- Investigate and correct all errors/warnings
- Simulate thoroughly but use stimuli that "eat their way into the design" testing one function at a time
- more important for complex circuits
- When circuit doesn't work, see what works and what doesn't to narrow down the search space for the problem
- Which outputs work
- Which outputs fail and under what conditions
- Monitor lots of internal nodes
- Additional simulations (with different vectors) can be helpful
- Remember "debugging is just solving out a puzzle"
- Also "if something doesn't look right, stop and check it out"
- Don't overlook potential bugs
- Always re-run audits and simulation after correcting any problem (or after any changes)
- Another bug could be lurking, or
- The fix may have messed up something else

Sequential Logic Design Steps

- Derive circuit state diagram from design specs
- Create state table
- Choose flip-flops (D, T, SR, JK)
- Create circuit excitation table
- use flip-flop excitation tables
- Construct K-maps for:
- flip-flop inputs
- primary outputs
- Obtain minimized SOP equations
- Draw logic diagram
- Simulate to verify design \& debug as needed
- Perform circuit analysis \& logic optimization
C. E. Stroud

ELEC 4200

Flip-Flop Excitation Tables \& State

 Diagrams| $\mathbf{Q} \mathbf{Q +}$ | \mathbf{D} | \mathbf{T} | $\mathbf{S} \mathbf{R}$ | $\mathbf{J} \mathbf{K}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | $0 \times$ |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | \times |

Sequential Design Example

Design a 3-bit gray code counter with active low synchronous reset (R)

Inputs R	Current state (X Y Z)	Next state (X Y Z)
0	XXX	000
1	000	001
1	001	011
1	010	110
1	011	010
1	100	000
1	101	100
1	110	111
1	111	101

State Table

3-bit Gray Code Counter

- Choose flipflops:
- Let X be a JK
- Let Y be a D
- Let Z be a SR
- Create circuit excitation table

Inputs R	Current state (X Y Z)	Next state (X Y Z)	QX Kx Jx	QY Dy	QZ Sz Rz
0	X X X	000	01	0	01
1	000	001	0 X	0	10
1	001	011	0 X	1	X 0
1	010	110	1 X	1	0 X
1	011	010	0 X	1	01
1	100	000	X 1	0	0 X
1	101	100	X 0	0	01
1	110	111	X 0	1	10
1	111	101	X 0	0	X 0

3-bit Gray Code Counter (cont)

- Generate K-Maps \& obtain minimized SOPs

C. E. Stroud
Further reductions:

$$
\begin{aligned}
\mathrm{Rz} & =\mathrm{R}^{\prime}+\mathrm{X} \oplus \mathrm{Y} \\
\mathrm{Sz} & =\mathrm{R}(\mathrm{X} \oplus \mathrm{Y})^{\prime} \\
& =\left(\mathrm{R}^{\prime}+\mathrm{X} \oplus \mathrm{Y}\right)^{\prime} \\
& =\mathrm{Rz}{ }^{\prime}
\end{aligned}
$$

ELEC 4200

3-bit Gray Code Counter (cont)

- Logic diagram
- Then design verification via logic simulation
- Debug as needed to obtain working circuit
- Update logic diagram, logic equations, etc. to reflect fixes

Sequential Logic Models

- Huffman model consists of two types:
- Mealy model (aka Mealy machine)
- Outputs are function inputs and current state
- Outputs can change when inputs change or when current state changes
- Moore model (aka Moore machine)
- Outputs are function of current state only
- Outputs can change only when current state changes

Mealy \& Moore State Diagrams

- Mealy model
- Outputs associated with state transition
- Output values shown with inputs
- Moore model
- Outputs associated with states only
- Output values shown with states

Mealy \& Moore State Tables

	In	X		X +	Y+	D_{x}	D_{Y}	$\mathrm{O}_{\text {Mealy }}$	$\mathrm{O}_{\text {Moore }}$
00	0	0		0	1	0	1	1	1
01/ 0/1	0	0		1	0	1	0	0	0
10 0/0 01	0	1	0	0	0	0	0	1	0
1/0	1	0	0	1	0	1	0	1	1
	1	0		0	0	0	0	1	0
1	1	1	0	0	1	0	1	0	0
4	0	1	1	X	X	X	X	X	X

Note: next state (next state logic) is same for both Mealy \& Moore - only output is different
C. E. Stroud ELEC 4200

Mealy \& Moore Design Examples

In this example the Dx and Dy circuits are the same for both Mealy and Moore But the outputs circuits are different with the Moore being a function of X and Y only

$\mathrm{O}_{\text {Moore }}=\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$

Mealy \& Moore Design Examples

$$
\mathrm{O}_{\text {Mealy }}=\operatorname{In}^{\prime} \mathrm{Y}^{\prime}+\operatorname{In} X^{\prime}
$$

$$
\mathrm{D}_{\mathrm{X}}=\operatorname{In}{ }^{\prime} \mathrm{Y}+\operatorname{In} X^{\prime} \mathrm{Y}^{\prime}
$$

$$
D_{Y}=\operatorname{In} X+\operatorname{In}^{\prime} X^{\prime} Y^{\prime}
$$

$$
\mathrm{O}_{\mathrm{Moore}}=\mathrm{X}^{\prime} \mathrm{Y}^{\prime}
$$

Note: $\mathrm{O}_{\text {Mealy }}$ is a function of In but $\mathrm{O}_{\text {Moore }}$ is not a function of In
C. E. Stroud

Flip-Flop Initialization

- Preset (aka set) => $\mathbf{Q}^{+}=1 \quad$ Typical logic symbol
- Clear (aka reset) $=>Q^{+}=0$
- Some flip-flops have:
- Both preset and clear (set and reset)
- A preset or a clear
- Neither (JK \& SR flops have set/reset functions)
- Preset and/or clear can be
- Active high or active low
- Synchronous => with respect to active edge of clock
- Asynchronous => independent of clock edges

- Initialization important for:
- logic simulation to remove undefined logic values
- 2, 3, U, etc.
- system operation to put system in a known state

Synchronous vs. Asynchronous

- Synchronous => states of memory elements change only with respect to active edge of clock
- Asynchronous => states of memory elements can change without an active edge of clock
- Asynchronous designs often have timing problems

System-Level Timing

- System set-up time: $P_{d e l}+P_{b u f i}+t_{s u}-P_{c l k(m i n)}$ $>P_{d e l}+P_{\text {bufi }}+t_{s u}$
- System hold time: $t_{h}+P_{c l k}-P_{d e l(m i n)}-P_{\text {bufi(min })}$ $>t_{h}+P_{c l k}$
- System clock-to-output: $t_{c o}+P_{d e l}+P_{b u f o}+P_{c l k}$
- Minimum times are difficult to guarantee
- Typically assume 0

System-Level Timing

- System set-up time: $P_{b u f i}+t_{\text {su(latch })}-P_{c l /(\text { (input }) \text { min }}$
- System hold time: $t_{n(\text { latch })}+P_{c l / k(i n p u t)}-P_{\text {bufi(min) }}$
- System clock-to-output: $t_{c o}+P_{\text {bufo }}+P_{c l k(o u t p u t)}$
- Improvement techniques:
- Re-clock signals onto/off subcircuit, chip, PCB, or system
- Fanout clock into input, main, and output clocks
- 0-hold-time latches on input signals

