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Dedicated to the Memory of Nobuo Yoneda

1. INTRODUCTION

1.1 A Short Summary

We propose a new random number generator, called the Mersenne Twister.
An implemented C-code, MT19937, has the period 219937 2 1 and a
623-dimensional equidistribution property, which seem to be the best ever
implemented. There are two new ideas added to the previous twisted GFSR
[Matsumoto and Kurita 1992; 1994]. One is an incomplete array (see Sect.
3.1) to realize a Mersenne-prime period. The other is a fast algorithm to
test the primitivity of the characteristic polynomial of a linear recurrence,
called the inversive-decimation method (see Sect. 4.3). This algorithm does
not even require the explicit form of the characteristic polynomial. It needs
only (1) the defining recurrence, and (2) some fast algorithm that obtains
the present state vector from its 1-bit output stream. The computational
complexity of the inversive-decimation method is the order of the algorithm
in (2) multiplied by the degree of the characteristic polynomial. To attain
higher order equidistribution properties, we used the resolution-wise lat-
tice method (see Tezuka [1990; 1994a]; Couture et al. [1993]), with Len-
stra’s algorithm [Lenstra 1985; Lenstra et al. 1982] for successive minima.

We stress that these algorithms make full use of the polynomial algebra
over the two-element field. There are no corresponding efficient algorithms
for integers.

1.2 k-Distribution: A Reasonable Measure of Randomness

Many generators of presumably “high quality” have been proposed, but
only a few can be used for serious simulations because we lack a decisive
definition of good “randomness” for practical pseudorandom number gener-
ators, and each researcher concentrates only on his particular set of
measures for randomness.

Among many known measures, the tests based on the higher dimensional
uniformity, such as the spectral test (c.f., Knuth [1981]) and the k-
distribution test, described below, are considered to be strongest.1

Definition 1.1. A pseudorandom sequence xi of w-bit integers of period
P, satisfying the following condition, is said to be k-distributed to v-bit
accuracy: let truncv (x) denote the number formed by the leading v bits of x
and consider P of the kv-bit vectors:

~truncv~x i!, truncv~x i11!, . . . , truncv~x i1k21!!~0 # i , P!.

1For the importance of k-distribution property, see Tootill et al. [1973]; Fushimi and Tezuka
[1983]; Couture et al. [1993]; Tezuka [1995; 1994a]; Tezuka and L’Ecuyer [1991]; L’Ecuyer
[1996]. A concise description can be seen in L’Ecuyer [1994].
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Then, each of the 2kv possible combinations of bits occurs the same number
of times in a period, except for the all-zero combination that occurs once less
often.

For each v 5 1, 2, . . . , w, let k(v) denote the maximum number such
that the sequence is k(v)-distributed to v-bit accuracy.

Note that the inequality 2k(v)v 2 1 # P holds because at most P patterns
can occur in one period, and the number of possible bit patterns in the most
significant v bits of the consecutive k(v) words is 2k(v)v. Since we admit a
flaw at zero, we need to add 2 1. We call this the trivial upper bound.

The geometric meaning is as follows. Divide each integer xi by 2w to
normalize it into a pseudorandom real number xi in the [0,1]-interval. Put
the P points in the k-dimensional unit cube with coordinates ( xi, xi11, . . . ,
xi1k21) (i 5 0, 1, . . . , P 2 1), i.e., the consecutive k tuples, for a whole
period (the addition in the suffix is considered modulo P). We divide
equally each [0,1] axis into 2v pieces (in other words, consider only the most
significant v bits). Thus, we have partitioned the unit cube into 2kv small
cubes. The sequence is k-distributed to v-bit accuracy if each cube contains
the same number of points (except for the cube at the origin which contains
one less). Consequently, the higher k(v) for each v assures higher-dimen-
sional equidistribution with v-bit precision. By k-distribution test, we mean
to obtain the values k(v). This test fits the generators based on a linear
recursion over the two-element field F2 (we call these generators F2-
generators).

The k-distribution also has a kind of cryptographic interpretation, as
follows. Assume that the sequence is k-distributed to v-bit accuracy and
that all the bits in the seed are randomly given. Then knowledge of the
most significant v bits of the first l words does not allow the user to make
any statement about the most significant v bits of the next word if l , k.
This is because every bit-pattern occurs with equal likelihood in the v bits
of the next word, by definition of k-distribution. Thus, if the simulated
system is sensitive to the history of the k or fewer previously generated
words with v-bit accuracy only, then it is theoretically safe.

1.3 Number of Terms in a Characteristic Polynomial

Another criterion on the randomness of F2-generators is the number of
terms in the characteristic polynomial of the state transition function.
Many F2-generators are based on trinomials, but they show poor random-
ness (e.g., GFSR rejected in an Ising-Model simulation [Ferrenberg et al.
1992], and a slight modification of trinomials [Fushimi 1990] rejected in
Matsumoto and Kurita [1994]). For defects, see Lindholm [1968]; Fredrics-
son [1975]; Compagner [1991]; Matsumoto and Kurita [1992]; Matsumoto
and Kurita [1994]; and Matsumoto and Kurita [1996].

As far as we know, all the known F2-generators satisfying the following
two criteria: (1) high k-distribution properties for each v and (2) character-
istic polynomials with many terms (not artificially extracted from a trino-
mial), are good generators [Tezuka and L’Ecuyer 1991; L’Ecuyer 1996;
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Matsumoto and Kurita 1994], according to the stringent tests and results
in the actual applications.

1.4 What We Obtained

We introduce an F2-type generator called the Mersenne Twister (MT) that
satisfies the above criteria very well, compared with any previously exist-
ing generator. It is a variant of the TGFSR algorithm introduced in
Matsumoto and Kurita [1992], improved by Matsumoto and Kurita [1994],
and modified here so as to admit a Mersenne-prime period. A set of good
parameters is implemented as portable C-code called MT19937 (see Appen-
dix C). This code can be used in any machine with a standard C compiler
(including 64-bit machines), as an integer or real number generator.
Essentially the same codes are downloadable from the Salzburg University
http-site: http://random.mat.sbg.ac.at/news/ and from the MT home page:
http://www.math.keio.ac.jp/matumoto/emt.html.

This generator has a tremendously large prime period 219937 2 1, while
consuming a working area of only 624 words. The sequence is 623-
distributed to 32 bits accuracy. This has a huge k-distribution property to
v-bit accuracy for each v, v 5 1, 2, . . . , 32 (see Table II in Sect. 2.2).
These values are at least ten times larger than any other implemented
generators, and are near the trivial upper bound. Although we do not list
them, the k-distributions of the least significant bits are also satisfactorily
large. For example, the least significant six bits of MT19937 are 2492-
dimensionally equidistributed. The characteristic polynomial has many
terms (roughly 100 or more), and has no obvious relation with a trinomial.

MT19937, as a 32-bit random integer generator, passed the diehard tests
developed by Marsaglia [1985]. S. Wegenkittl from the PLAB group [Hellek-
alek et al. 1997] at the University of Salzburg tested MT19937 empirically
using Load Tests and Ultimate Load Tests, and reported that MT19937
passed them.

We compare the speed of MT19937 with other modern generators (Table
I) in a Sun workstation. MT is comparable to other generators,2 which have
much shorter periods.

We conclude that MT is one of the most promising pseudorandom number
generators at the present time. However, it is desirable to apply other
statistical tests, too. Stringent tests to scrutinize MT are welcome.

2Wegenkittl reported that the speed of MT19937 in the Dec-Alpha machine is even faster than
rand. This high-speed is probably due to the modern hardware architecture like cache memory
and pipeline processing, to which MT19937 fits well.

Table I. Cpu Time for 107 Generations and Working Area

6 • M. Matsumoto and T. Nishimura

ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998.



1.5 Comparison with Other Generators

Table I compares the speed of MT with other generators. The combined
generators COMBO and KISS are downloaded from Marsaglia’s http-site
(http://stat.fsu.edu/;geo/diehard.html). The generator ran array is Lüs-
cher’s method for discarding a lagged-Fibonacci generator, recommended in
Knuth [1997]. The rand generator is a C-library standard random number
generator. The generator taus88 is a combined Tausworthe generator3

[L’Ecuyer 1996; c.f., Tezuka and L’Ecuyer 1991]. TT800, a small cousin of
MT19937, is a TGFSR generator4 [Matsumoto and Kurita 1994].

We measured the time consumed in generating 107 random numbers on a
Sun workstation. Since ran array discards 90% of the generated sequence, it
is much slower than the others.

MT19937 and ran array consume more memory,5 but it would not be a
major problem in simulations where not that many random number gener-
ators run in parallel. MT19937 has the longest period.

1.6 Limitations and Hints for Use

This generator, as it is, does not create cryptographically secure random
numbers. For cryptographic purposes, one needs to convert the output with
a secure hashing algorithm (see, for example, Rueppel [1986]). Otherwise,
by a simple linear transformation (T21 where T is the tempering matrix
given by (2.2)–(2.5) in Sect. 2.1), the output of MT19937 becomes a linear
recurring sequence given by (2.1) in Sect. 2.1. One can then easily guess the
present state from output of a sufficiently large size. (See the conditions in
Proposition 4.2, and note that the recurrence satisfies these conditions.)

This generator is developed for generating [0,1]-uniform real random
numbers, with special attention paid to the most significant bits. The
rejected generators in Ferrenberg et al. [1992] are exactly the generators
whose most significant bits have a defect (see Tezuka et al. [1993] for SWB,
and the weight distribution test in Matsumoto and Kurita [1992] for the
trinomial GFSR). Thus, we think our generator would be the most suitable
for a Monte Carlo simulation such as that of Ferrenberg et al. [1992]. If one
needs (0,1]-random numbers, simply discard the zeros; if one needs 64-bit
integers, simply concatenate two words.

3This is a very fast and economical generator, which has optimized k-distribution.
4TT800 in Matsumoto and Kurita [1994] is designed as a real number generator, and has a
defect at the least significant bits. The downloadable version of TT800 at Salzburg University
^http://random.mat.sbg.ac.at/news/& has been improved in this regard. This generator and
taus88 were the two flawless generators in the Load Tests in Hellekalek [1997], in which most
short-period linear congruential generators and some of the inversive generators are rejected.
The TGFSR were also tested by Matsumoto and Kurita [1992; 1994]. We got many favorable
email messages from users of TT800. As far as we know, no test has rejected this generator,
due to its good k-distribution property.
5Perhaps the figure for the working area of ran array is a bit misleading. A figure of 1000
words was attained by choosing “the safest method” in Knuth [1997], namely, discarding 90%
and using Knuth’s code. It is easy to reduce the figure to 100 by rewriting the code, but then it
becomes slower.
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2. MT ALGORITHM

2.1 Description of MT

Throughout this paper, bold letters, such as x and a, denote word vectors,
which are w-dimensional row vectors over the two-element field F2 5 {0, 1},
identified with machine words of size w (with the least significant bit at the right).

The MT algorithm generates a sequence of word vectors, which are
considered to be uniform pseudorandom integers between 0 and 2w 2 1.
Dividing by 2w 2 1, we regard each word vector as a real number in [0,1].

The algorithm is based on the following linear recurrence

xk1n :5xk1m % ~xk
uuxk11

l ! A, ~k 5 0, 1, . . .!. (2.1)

We explain the notation: We have several constants, an integer n, which is
the degree of the recurrence, an integer r (hidden in the definition of xk

u),
0 # r # w 2 1, an integer m, 1 # m # n, and a constant w 3 w matrix
A with entries in F2. We give x0, x1, . . . , xn21 as initial seeds. Then, the
generator generates xn by the above recurrence with k 5 0. By putting k 5
1, 2, . . . , the generator determines xn11, xn12, . . . . On the right-hand side
of the recurrence, xk

u means “the upper w 2 r bits” of xk, and xk11
l “the

lower r bits” of xk11. Thus, if x 5 ( xw21, xw22, . . . , x0), then, by
definition, xu is the w 2 r bits vector ( xw21, . . . , xr), and xl is the r bits
vector ( xr21, . . . , x0). Thus (xk

uuxk11
l ) is just the concatenation; namely, a

word vector obtained by concatenating the upper w 2 r bits of xk and the
lower r bits of xk11 in that order. Then the matrix A is multiplied from the
right by this vector. Finally, add xk1m to this vector (Q is bitwise addition
modulo two), and then generate the next vector xk1n.

The reason why we chose the complicated recurrence (1) will become
clear in Sect. 3.1. Here we note that if r 5 0, then this recurrence reduces
to the previous TGFSR proposed in Matsumoto and Kurita [1992; 1994],
and if r 5 0 and A 5 I, it reduces to GFSR [Lewis and Payne 1973].

We choose a form of the matrix A so that multiplication by A is very fast.
Here is a candidate:

A 5 1
1

1
· · ·

1
aw21 aw22 · · · · · · a0

2 ,

then the calculation of xA can be done using only bit operations:

xA 5 H shiftright~x!

shiftright~x! % a
if x0 5 0
if x0 5 1

,

where a 5 (aw21, aw22, . . . , a0), x 5 ( xw21, xw22, . . . , x0). Also, xk
u and

xk11
l of the recurrence (2.1) can be calculated with a bitwise AND opera-
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tion. Thus the calculation of the recurrence (2.1) is realized with bitshift,
bitwise EXCLUSIVE-OR, bitwise OR, and bitwise AND operations.

To improve k-distribution to v-bit accuracy, we multiply each generated
word by a suitable w 3 w invertible matrix T from the right (called
tempering in Matsumoto and Kurita [1994]). For the tempering matrix x °
z 5 xT, we chose the following successive transformations:

y :5 x % ~x .. u! (2.2)

y :5 y % ~~y ,, s! AND b! (2.3)

y :5 y % ~~y ,, t! AND c! (2.4)

z :5 y % ~y .. l !, (2.5)

where l, s, t, and u are integers, b and c are suitable bitmasks of word
size, and (x .. u) denotes the u-bit shiftright and (x ,, u) the u-bit
shiftleft. The transformations (2.3) and (2.4) are the same as those used in
Matsumoto and Kurita [1994]. The transformations (2.2) and (2.5) are
added so that MT can improve6 the least significant bits.

For executing the recurrence (2.1), it is enough to take an array of n
words as a working area, as follows. Let x[0 : n 2 1] be an array of n
unsigned integers of word size, i be an integer variable, and u, ll, a be
unsigned constant integers of word size.

Step 0. u 4
1 · · · 1Ç
w 2 r

0 · · · 0Ç
r

;~bitmask for upper w 2 r bits!

ll 4
0 · · · 0Ç
w 2 r

1 · · · 1Ç
r

;~bitmask for lower r bits!

a 4 aw21aw22 · · · a1a0 ;~the last row of the matrix A!

Step 1. i 4 0

x@0#, x@1#, . . . , x@n 2 1# 4 “any nonzero initial values”

Step 2. y 4 ~x@i# AND u! OR ~x@~i 1 1! mod n# AND ll!

;~computing ~x i
uux i11

l !!

Step 3. x[i] 4 x[(i 1 m) mod n] XOR ( y ..1)

XORH 0
a

if the least significant bit of y 5 0
if the least significant bit of y 5 1

;~multiplying A!

6These do not exist in the TT800 code in Matsumoto and Kurita [1994]. The code at the
Salzburg http was improved in this regard by adding (2.5).
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Step 4. ;~calculate x@i#T!

y 4 x@i#

y 4 y XOR~y .. u! ;~shiftright y by u bits and add to y!

y 4 y XOR ~~y ,, s! AND b!

y 4 y XOR ~~y ,, t! AND c!

y 4 y XOR ~y .. l !

output y

Step 5. i 4 ~i 1 1! mod n

Step 6. Goto Step 2.

By rewriting the whole array at one time, we can dispense with modulo-n
operations. Thus, we need only very fast operations (see the code in
Appendix C).

We have the following two classes of parameters: (1) period parameters,
determining the period: integer parameters w (word size), n (degree of
recursion), m (middle term), r (separation point of one word), and a vector
parameter a (matrix A); (2) tempering parameters for k-distribution to v-bit
accuracy: integer parameters l, u, s, t and the vector parameters b, c.

2.2 Good Parameters with Large k-Distributions

Table II lists some period parameters that yield the maximal period 2nw2r

2 1, and tempering parameters with a good k-distribution property. The
trivial upper bound k(v) # (nw 2 r)/v is also shown. The table shows
that we could not attain these bounds even after tempering. One sees that
k(v) tends to be near a multiple of n. We prove this only for k(v) less than
2(n 2 1) (see Proposition B.2). This proposition explains why k(v) cannot
be near the bound (nw 2 r)/v if (nw 2 r)/v , 2(n 2 1). We conjecture
a more general obstruction, as in the case of Matsumoto and Kurita [1994].

One may argue that the gap between the bounds and the attained values
is a problem, see Tezuka [1994a]. In our opinion, “to attain a larger k(v)” is
usually more important than “to attain the upper bound in a limited
working area” (although this depends on the memory restriction). The
number of terms in a characteristic polynomial is also shown under the
ID.
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3. WHY MT?

3.1 How We Reached MT

As is the case for any F2-linear generating method, the MT algorithm is just
an iteration of a fixed linear transformation on a fixed vector space. In the

Table II. Parameters and k Distribution of Mersenne Twister
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case of MT, the vector space is the set of the following type of arrays of
(0,1)-entries, with r bits missing at the upper-right corner.

We call this object an (n 3 w 2 r)-array or an incomplete array.
The state transition is given by the following linear transformation B

where xn is obtained by the defining recurrence (2.1) for k 5 0. By a
general theory of linear recurrence (see Appendix A), each entry of the (n 3
w 2 r)-array is a linear recurring sequence satisfying the recurrence
corresponding to the characteristic polynomial wB(t) of the transformation
B. The sequence attains the maximal period 2p 2 1 5 2nw2r 2 1, if and
only if wB(t) is primitive, i.e., t generates the multiplicative group (F2[t]/
wB(t))3.

Attaining this bound has the great advantage that the state vector
assumes every bit-pattern in the (n 3 w 2 r)-array once in a period,
except for the zero state. Consequently, the sequence {xn} is (n 2 1)-
distributed. Since any initial seed except zero lies on the same orbit, the
choice of an initial seed does not affect the randomness for the whole
period. This is very different than the original GFSR, in which the
initialization is critical [Fushimi and Tezuka 1983].

Since (n 2 1) is the order of equidistribution, we would like to make n as
large as the memory restriction permits. We think that in recent computers
n up to 1000 is reasonable. On the other hand, one may claim that n up to
10 is enough. However, one SWB [Marsaglia and Zaman 1991] for example,
is 43-distributed since the orbit is one; but it failed in the Ising-Model test
[Ferrenberg et al. 1992]. The system simulated has a “good memory,”
remembering a large number of previously generated words. There are
applications where the n-dimensional distributions for very large n become
important.

In TGFSR, an essential bound on n comes from the difficulty of factoriza-
tion. We have to certify that the order of t modulo wB(t) is 2p 2 1, but then
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we need all the proper factors of 2p 2 1. Even a modern technique can
factorize 2p 2 1 for around p , 2000 only (for example, Brillhart et al.
[1988]). For TGFSR, p 5 nw and 2nw 2 1 can never be prime, unless n or
w is 1. Thus, we need to factorize it.

On the other hand, the test for the primality of an integer is much easier.
So there are many Mersenne primes found (i.e., primes of the form 2p 2 1)
that are up to p 5 1398269 (see http://www.utm.edu:80/research/primes/
mersenne.shtml#known).

If we eliminate r bits from the (n 3 w)-array, as in MT, then the
dimension of the state space is nw 2 r. One can attain any number in this
form, including Mersenne exponents. Then we do not need factorization.
This is the reason we use an (n 3 w 2 r)-array.

In determining the next state, each bit of x0
u and x1

l must be fully
reflected, since otherwise the state space is smaller. Thus, the recurrence
(2.1).

Knuth [1996] also informed us of the following justification for this
recurrence. One might have used (xk11

l uxk
u) instead of (xk

uuxk11
l ) in the

recurrence (2.1). The former seems more natural, since, for example, the
matrix S in Appendix A coincides with A. But he noticed that when r 5
w 2 1, then the sequence can never have maximal period. Actually, it is
easy to check that the most significant bit of each generated word satisfies
a trinomial linear recurrence with order n, and this does not satisfy the
maximality.

3.2 Primitivity is Easy for MT

Another justification for the recurrence (2.1) is that primitivity can easily
be checked by inversive-decimation methods (Sect. 4.3). Since we chose a
Mersenne exponent p 5 nw 2 r as the size of the incomplete array, there
is an algorithm to check primitivity with O(lp2) computations, where l is
the number of nonzero terms in the characteristic polynomial. The easiest
case is l 5 3, and accordingly there is a list up to p 5 132049 for trinomials
[Heringa et al. 1992]. One can implement a recurrence with such a
characteristic trinomial in an incomplete array.

However, the trinomials and its “slight” modifications always show
erroneous weight distributions, as stated in Sect. 1.3. Thus, what we desire
is a linear recurrence such that its characteristic polynomial has many
terms and is easily checked for primitivity.

The recurrence of MT satisfies this. Its characteristic polynomial has
experimentally ;100 terms (see Table II), and in spite of the many terms
and because of the peculiar form of the recurrence (2.1), primitivity can be
checked with O( p2) computations (see Sect. 4.3).

Note that for large-modulus generators, the primitivity check is a hard
number-theoretic task (e.g., Marsaglia and Zaman [1991]). This is an
advantage of F2-generators over integer-operation generators.
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3.3 k-Distribution is Easy for MT

It was discovered by Tezuka [1994b] that the k-distribution to 2-bit
accuracy for TGFSR in Matsumoto and Kurita [1992] is very low. A follow
up to this failure was satisfactorily completed by Matsumoto and Kurita
[1994].

For the same reason, the k-distribution property of the raw sequence
generated by the recurrence (2.1) is poor, so we need to modify the output
by multiplying by a matrix T (i.e., tempering, see Sect. 5). We then succeed
in realizing good k-distributions.

We must comment here that spectral tests with dimension more than 100
are almost impossible for computational reasons for any existing genera-
tors based on large-modulus calculus. On the other hand, for MT, we can
execute k-distribution tests to v-bit accuracy for k more than 600. This is
another advantage of F2-generators over large-modulus generators.

3.4 MT is One of Multiple-Recursive Matrix Methods (MRMM)

Soon after TGFSR was proposed, Niederreiter developed a general class of
random number generators, including TGFSR, multiple-recursive matrix
methods (MRMM) [Niederreiter 1993; 1995]. MRMM is to generate a
random vector sequence over F2 by the linear recurrence

xk1n :5 xk1n21An21 1 · · · 1 xk11A1 1 xkA0 ~k 5 0, 1, . . .!,

where xk are row vectors and Ai are w 3 w matrices. MT belongs to this
class because the defining recurrence (2.1) can be written as

xk1n 5 xk1m 1 xk11S 0 0
0 Ir

D A 1 xkS Iw2r 0
0 0 D A,

where Ir, Iw2r is the identity matrix of size r, w 2 r, respectively.
Even after tempering, the generated sequence still belongs to this class.

It is easy to see from the definition that a sequence of word vectors belongs
to this class if and only if xk1n is determined by a linear transformation
from the preceding n vectors xk1n21, xk11, . . . , xk. (This is nothing but a
linear recurring sequence of vector values, as stated in Niederreiter [1993].
The important point in Niederreiter [1995] is the analysis of properties
such as discrepancy.) Since the tempering matrix is a linear isomorphism,
it preserves this property. Thus, MT can be said to be a neat implementa-
tion of the general concept MRMM.

Unfortunately, the detailed investigation in Niederreiter [1995] is not
applicable as it is, since he mainly considered the case with the maximal
period 2nw 2 1 only. Modification of Niederreiter’s work to cover MT would
be possible and valuable. We guess that MT’s performance would not be
much different than those in Niederreiter [1995].
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4. HOW TO FIND PERIOD PARAMETERS

4.1 Difficulty in Obtaining the Period

Since we have chosen n and r so that nw 2 r 5 p is a large Mersenne
exponent, primitivity can be checked by (for example, Heringa [1992]):

H t2 Ó t mod wB~t!

t2p

; t mod wB~t!
.

It is possible to calculate this directly, as was done previously (see Appen-
dix A.1 for the explicit form of wB(t)). However, this is an O(lp2)-calcula-
tion, where l is the number of terms. To take the square modulo wB(t), we
need to divide a polynomial of degree 2p by wB(t). We need O( p)-times
subtraction by wB(t) and each subtraction requires O(l )-operations. We
iterate this p times, which amounts to O(lp2). In our case, p is very large
(.10000), and according to our experiment, the direct computation may
need several years to catch a primitive polynomial.

We contrived an algorithm called the inversive-decimation method with
O( p2) operations for the primitivity test for MT, which took only two weeks
to find one primitive polynomial for MT with degree 19937. This algorithm
may be used for other generators as well if the generator satisfies the
condition of Proposition 4.2, below.

4.2 A Criterion for Primitivity

Let 6` denote the F2-vector space of all infinite sequences of 0,1. That is,

6` :5 $x 5 ~. . . , x5 , x4 , x3 , x2 , x1 , x0! uxi [ F2%.

Let D (delay operator) and H (decimation operator) be linear operators
from 6` to 6` defined by

D~. . . , x4 , x3 , x2 , x1 , x0! 5 ~. . . , x5 , x4 , x3 , x2 , x1!,

H~. . . , x4 , x3 , x2 , x1 , x0! 5 ~. . . , x10 , x8 , x6 , x4 , x2 , x0!.

Let w(t) be the characteristic polynomial of a linear recurrence. Then, x
satisfies the recurrence if and only if w(D)x 5 0.

It is easy to check that

DH 5 HD2.

Since the coefficients are in F2, we have w(t2) 5 w(t)2, thus if w(D)x 5 0,
then

w~D! Hx 5 Hw~D2!x 5 Hw~D!2x 5 0,
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i.e., Hx also satisfies the same recurrence.
It is easy to see that if the period of x [ 6` is 2p 2 1, then Hpx 5 x; but

the converse may not be true. However, the following theorem holds.

THEOREM 4.1. Let w(t) be a polynomial over F2 whose degree p is a
Mersenne exponent. Take x [ 6` such that w(D)x 5 0 and Hx Þ x. Then
w(t) is primitive if and only if Hpx 5 x.

PROOF. Let V be the p-dimensional linear space

V :5 $x [ 6`uw~D!x 5 0%,

and t be a linear mapping from 6` to F2 defined by

t~. . . , x2 , x1 , x0! 5 x0 .

We consider a bilinear pairing (a ub) defined by

F2@t#/w~t! 3 V 3 F2

~ g~t!, x! ° ~ g~t! ux! :5 t~ g~D!x!.

This is well-defined, and nondegenerate because if t( g(D)x) 5 0 for all
g(D), then x 5 0 follows from t(Dnx) 5 0 for all n.

Let F be a mapping from F2[t]/w(t) to F2[t]/w(t) given by F( g(t)) 5
g(t)2. Then it is easy to check that F is the adjoint of H, i.e.,

~F~ g~t!! ux! 5 ~ g~t! uHx!

holds (it is enough to consider the case of g(t) 5 ti ).
A condition of the theorem is

Ker~Hp 2 1! Ý Ker~H 2 1!,

which is now equivalent to

Ker~Fp 2 1! Ý Ker~F 2 1!.

This means the existence of g(t) [ F2[t]/w(t) such that g(t)2p

5 g(t) and
g(t)2 Þ g(t).

Let l ($1) be the smallest integer such that g(t)l11 5 g(t). Then, since
g(t)2p

5 g(t), it follows that l u2p 2 1, and l Þ 1 by assumption. Since p is
a Mersenne exponent, l must be at least 2p 2 1. Since 0 is an orbit, all
nonzero elements lie on one orbit, and it is purely periodic. Since this orbit
contains 1, g(t) is invertible and it must generate (F2[t]/w(t))3. Moreover,
the order of (F2[t]/w(t))3 must be 2p 2 1. Then F2[t]/w(t) is a field, so w(t)
is primitive. e
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4.3 Inversive-Decimation for Primitivity Testing

PROPOSITION 4.2 (Inversive-decimation-method). Let V, the state space of
the generator, be a p-dimensional vector space over F2, where p is a
Mersenne-exponent. Let f : V 3 V be a linear state transition map. Let b :
V 3 F2 be a linear map (e.g., looking up one bit from the state). Assume
that f and b are computable in O(1)-time. Assume that F : V 3 F2

p, given
by

F : S ° ~bf p21~S!, bf p22~S!, . . . , bf~S!, b~S!!,

is bijective, and that the inverse map is computable with time complexity
O( p).

Then, primitivity of the characteristic polynomial of f can be tested with
time complexity O( p2).

Note that the last condition is essential. The other conditions are automat-
ically satisfied for most efficient F2-generators. In order to apply this
algorithm, finding a good b satisfying the last condition is crucial.

PROOF. Let x be the infinite sequence (. . . , bf 2(S), bf(S), b(S)). Since
F is invertible with order O( p), we can choose an S with H(x) Þ x.

By Theorem 4.1, it is enough to show that the first p bits of Hm11(x) can
be obtained from the first p bits of Hm(x) with an O( p)-calculation. From
the first p bits of Hm(x), we can obtain a state Sm which yields Hm(x) by
using the inverse of F with O( p) computations. From this state, we can
generate the first 2p bits of Hm(x) with an O(2p) calculation, since f and b
are of O(1). Then decimate these 2p bits. Now we obtain the first p bits of
Hm11, with an O( p) calculation. e

The above proposition can be applied to MT in the following way. For
simplicity, assume r . 0. Put S 5 (xn21, . . . , x1, x0

u), i.e., an initial (n 3
w 2 r)-array.

Let b be the map that takes the upper-right corner of this incomplete
array. Thus, b(S) 5 x1,0, the least significant bit of x1. We have to find an
inverse morphism to F, which calculates from ( xp,0, xp21,0, . . . , x1,0) the
state S that produces this p-bit stream at the least significant bit, with
only O( p)-calculation.

If xp2n11,0, xp2n1m,0 and xp,0 are known, we can calculate xp2n11,1 if
r . 1, or xp2n,1 if r # 1. This is because by step 2 and step 3 of the
algorithm in Sect. 2.1, the following equation holds between xp2n11,0,
xp2n1m,0, xp,0 and xp2n11,1.

xp2n11,1 5 H xp2n1m,0 % xp,0

xp2n1m,0 % xp,0 % a0

if xp2n11,0 5 0
if xp2n11,0 5 1.

It is clear that the same relation holds between xi2n11,0, xi2n1m,0, xi,0 and
xi2n11,1 for i 5 n, n 1 1, . . . , p. Thus from x1,0, . . . , xp,0, we can
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calculate x1,1, . . . , xp2n11,1. In general, for i 5 n, n 1 1, . . . , p, j 5 1,
2, . . . , w 2 1, the following equations hold:

If x1,0, . . . , xk,0 and xm, j, xm11, j, . . . , xk1n21, j (n # k 1 n 2 1 # p)
are known, then x1, j11, x2, j11, . . . , xk, j11 (if j , r 2 1), or x0, j11, x1, j11,
. . . , xk21, j11 (if j $ r 2 1) can be calculated. Furthermore, from ( xi, j21,
. . . , xi,0), ( xi2n1m, j21, . . . , xi2n1m,0), and xi2n11,0, we can calculate
( xi2n, j, . . . , xi2n,r, xi2n11,r21, . . . , xi2n11,1, xi2n11,0), i.e., the lower
( j 1 1) bits of (xi2n

u uxi2n11
l ) at the same time, by

~ xi2n, j , . . . , xi2n,r , xi2n11,r21 , . . . , xi2n11,1 , xi2n11,0! 5

~0, 0, . . . , 0, xi2n11,0!

1 ~ xi, j21, . . . , xi,1 , xi,0 , 0!

1 ~ xi2n1m, j21 , . . . , xi2n1m,1 , xi2n1m,0 , 0!

1 H0
~aj21 . . . , a1 , a0 , 0!

if xi2n11,0 5 0
if xi2n11,0 5 1

.

So, by setting y0 5 0, yi 5 (0, . . . , 0, xi,0) (i 5 1, . . . , p) and repeating the
following recurrence from i 5 p until i 5 n,

y 4 y i 1 y i2n1m 1 H 0
a

if the least significant bit of y i2n11 5 0
if the least significant bit of y i2n11 5 1

~y i2n
u uy i2n11

l ! 4 shiftleft~y! 1 ~0, · · · , 0, xi2n11,0!
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we get S 5 (yn21, . . . , y0). Now Proposition 4.2 can be applied.
We now summarize the algorithm. Let x[0 : 2p 2 1], initial[0 : n 2 1]

be arrays of unsigned w-bit integers, i, j, k be integer variables, and u, ll,
a, unsigned w-bit integers.

Step 1. u 4
1 · · · 1Ç

w 2 r
0 · · · 0Ç

r

ll 4
0 · · · 0Ç

w 2 r
1 · · · 1Ç

r
a 4 aw21aw22 · · · a1a0
for j 4 0 to n21 do

begin
x[j] 4 some initial value such that x[2] Þ x[3]
initial[j] 4 x[ j]

end
Step 2. for i 4 0 to p21 do begin

Generate 2p2n times
x[j] 4 x[2j21](j51, 2, 3, . . . , p)
for k 4 p to n do
begin

y 4 x[k] Q x[k 2 n 1 m]

% H0
a

if the least significant bit of x@k 2 n 1 1# 5 0
if the least significant bit of x@k 2 n 1 1# 5 1

y 4 shiftleft(y).
Set the least significant bit of y to that of x[k 2 n 5 1]
x[k 2 n 1 1] 4 (u AND x[k 2 n 1 1]) OR (ll AND y)
x[k 2 n] 4 (u AND y) OR (ll AND x[k 2 n])
k 4 k21

end
i 4 i 1 1
end

Step 3. if (x[0] AND u) 5 (initial[0] AND u) and initial[ j] 5 x[ j]
( j 1 1, 2, . . . , n 2 1) then the period is 2p 2 1 else the period is
not 2p 2 1.

5. HOW TO FIND TEMPERING PARAMETERS

5.1 Lattice Methods

To compute k(v) we use the lattice method developed by Tezuka [1990];
Couture et al. [1993]; Tezuka [1994a] with the algorithm by Lenstra [1985]
to find the successive minima in the formal power series over F2. In
Matsumoto and Kurita [1994] we computed the k-distribution by obtaining
the rank of a matrix, but this time we could not do so because of the
computational complexity O( p3).

Here, we briefly recall the method to obtain k(v) by using the lattice. Let
x1, x2, . . . , xi, . . . be a sequence in which each bit satisfies one common
linear recurrence with a primitive characteristic polynomial w(t). Thus, if
we put xi 5 ( xi,w21, . . . , xi,0), then the infinite sequences xw21 5
( x0,w21, x1,w21, . . . , xi,w21, . . .), . . . , x0 5 ( x0,0, x1,0, . . . , xi,0, . . .) are
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subject to the recurrence given by w(t) (MT satisfies this, see Appendix
A.2).

Now, the l-th k-tuple up to v-bit accuracy is (firstk(Dlxw21), . . . ,
firstk(Dlxw2v)), where firstk denotes the first k bits of the sequence. Hence,
k-distribution to v-bit accuracy is equivalent to the surjectivity of

l ° ~firstk~Dl~xw21!!, . . . , firstk~Dlxw2v!!),

as a map from the integers to the nonzero vectors in the (v 3 k)-
dimensional space over F2. (Then the multiplicity in one small cube would
be 2’s power to the difference between the dimension of the state space and
v 3 k.) To obtain the maximal k 5: k(v) so that the above map is
surjective, we use the lattice structure. Let K be the field of Laurent power
series:

K 5 H O
j52n

`

a jt2jua j [ F2 , n [ ZJ .

We identify each x i with a Laurent power series by

x i :5 O
j50

`

xj,it2j.

Let A be the polynomial ring F2[t] , K, and consider the sub A-module L
of Kv spanned by the (v 1 1) vectors

~xw21 , xw22 , . . . , xw2v!, ~1, 0, . . . , 0!, ~0, 1, 0, . . . , 0!, · · · , ~0, . . . , 0, 1!.

This can be proved to be a v-dimensional free A-submodule, i.e., a lattice.
We define the successive minima of L as follows. Define a nonArchimedean
valuation to x [ K by

ux u 5 H 0
2k

if x 5 0
if x Þ 0 and k is the largest exponent of nonzero terms.

For each v-dimensional vector X 5 ( x1, . . . , xv) [ Kv, define its norm by

iXi 5 max1#i#vuxiu.

Definition 5.1 Let X1, . . . , Xv be points in a lattice L [ Kv of rank v.
We call X1, . . . , Xv a reduced basis of L over F2 if the following properties
hold:

(1) X1 is a shortest nonzero vector in L.
(2) Xi is a shortest vector among the vectors in L but outside the K-span

^X1, . . . , Xi21&K, for each 1 # i # v.
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The numbers s i 5 iXii are uniquely determined by the lattice, and si 5
log2 s i i 5 1, . . . , v are called its successive minima.

THEOREM (Couture et al. 1993; Tezuka 1994a). The sequence x1, x2, . . . ,
xi, . . . is (2sv)-distributed to v-bit accuracy, where sv is the v-th successive
minimum of the lattice L in Kv associated with the sequence.

Thus the calculation of k(v) is reduced to obtaining the successive
minima. There is an efficient algorithm for this [Lenstra 1985]. Since the
dimension of the state space is large for MT, we need several programming
techniques for an efficient implementation.

We make only one comment: we adopted “lazy evaluation.” We keep only
one (n 3 w 2 r)-array for describing one vector in K v, and calculate the
coefficients of t2k by generating k words. Here again, we depend on the
ease of generating the MT sequence.

The time complexity of Lenstra’s algorithm is O(v4p2) (see Lenstra
[1985]; Tezuka [1994a]), which might be larger than time complexity O( p3)
in obtaining the rank of a p 3 p matrix for large v. However, according to
our experiments, Lenstra’s algorithm is much faster. This could be because
(1) we need p2 ; 4 3 108 bits of memory for the rank of matrix, which may
invoke swapping between memory and disk and (2) O(v4p2) is the worst
case, and on average the order seems to be less.

5.2 Tempering

To attain k(v) near the trivial bound, we multiply the output vector by a
tempering matrix T. We could not make the realized values meet the trivial
bound. We show a tighter bound (Appendix B), but we could not attain that
bound either. In addition, we have no efficient algorithm corresponding to
the one in Matsumoto and Kurita [1994]. So, using the same backtracking
technique, accelerated by Tezuka’s resolution-wise lattice, we searched for
parameters with k(v) as near to (nw 2 r)/v as possible.

Let {xi} be an MT sequence, and then define a sequence {zi} by

z i :5 x iT,

where T is a regular F2-matrix representing the composition of the trans-
formations (2.2), (2.3), (2.4), and (2.5) described in Sect. 2.1. Since T is
regular, the period of {zi} is the same as that of {xi}. About the peculiar
form of tempering and how to search the tempering parameters, please
refer to Matsumoto and Kurita [1994]. The parameter in (2.5) is chosen so
that the least significant bits have a satisfactory k-distribution.

6. CONCLUSION

We propose a pseudorandom number generator called Mersenne Twister. A
portable C-code MT19937 attains a far longer period and far larger k-
distributions than any previously existing generator (see Table II). The
form of recurrence is cleverly selected so that both the generation and the
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parameter search are efficient (Sect. 3). The initialization is care-free. This
generator is as fast as other common generators, such as the standard
ANSI-C rand, and it passed several statistical tests including diehard. Thus
we can say that this is one of the most promising generators at the present
time.

As a final remark, we stress that we used efficient algorithms unique to
F2[t]. These algorithms enabled us to obtain better performance than
integer-large-modulus generators, from the viewpoint of longer periods
(Proposition 4.2) and higher k-distribution property (lattice methods in
Sect. 5).

APPENDIX A

A.1 Explicit Form of Matrix B

The explicit form of the ((nw 2 r) 3 (nw 2 r))-matrix B in Sect. 3.1 is as
follows:

B 5 1
0 Iw 0 0
0 0 Iw 0
···

· · ·
0
Iw

0
···

· · ·
0 0 Iw 0
0 0 0 Iw2r

S 0 0 0

2 , S :5 S 0 Ir

Iw2r 0 DA.

For l 5 0, 1, . . . ,

~xl1n , xl1n21 , · · · , xl11
u ! 5 ~xl1n21 , xl1n22 , · · · , xl

u! B,

holds; see the recurrence (2.1).
It is not hard to see that

wB~t! 5 ~tn 1 tm!w2r~tn21 1 tm21!r 1 a0~tn 1 tm!w2r~tn21 1 tm21!r21

1 · · · 1 ar22~tn 1 tm!w2r~tn21 1 tm21! 1 ar21~tn 1 tm!w2r

1 ar~tn 1 tm!w2r21 1 · · · 1 aw22~tn 1 tm! 1 aw21 ,

where the ais are as in Sect. 2.1.
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A.2 Relation between an MT Sequence and its Subsequences

Let wB(t) be the characteristic polynomial B, and S be a state. Since
wB(B)S 5 0, each entry of the incomplete array (i.e., an entry in S, BS,
B2S, . . .) constitutes a bit-stream that is a solution to the linear recurrence
associated with wB(t). Thus we get the following proposition.

PROPOSITION A.1. For an MT sequence (. . . , x2, x1, x0
u), its ith-bit

subsequence (. . . , x3,i, x2,i, x1,i) satisfies the same linear recurring
equation corresponding to wB(t) independently of the choice of i.

Thus, an MT sequence (. . . , x2, x1, x0
u) attains the maximal period 2p 2

1 if and only if its i-th bit subsequence (. . . , x3,i, x2,i, x1,i) attains the
maximal period 2p 2 1.

Appendix B. Obstructions to Optimal Distribution

We show here some obstructions preventing MT from achieving the trivial
bound on k(v).

PROPOSITION B.1 Let j , n be an integer. If

j~ j 1 3!

2
v . ~ j 1 1!w 2 r

holds, then the order of equidistribution k(v) to v-bit accuracy of the MT
sequence is at most jn 2 1.

This says that if v . w 2 (r/ 2) then k(v) is at most n 2 1, and that if v .
(3w 2 r)/5 then k(v) is at most 2n 2 1. The former is much more
restrictive than k(v) # (nw 2 r)/v), for large r, such as MT19937 in
Table II.

PROOF. k-distribution to v-bit accuracy is equivalent to the surjectivity
of the linear mapping:

~x0
u, x1 , . . . , xn21! ¡

f
~x1 , x2 , . . . , xk!1

TQ
TQ

· · ·
TQ

2 ,

where T denotes the (w 3 w)-tempering matrix and Q denotes the matrix

taking the upper v bits, i.e., Q 5 SIv

0D. Although we used the recurrence

(2.1), as far as the surjectivity of this mapping is concerned, we get the
same result even if we use the recurrence

xk1n :5 ~xk
uuxk11

l ! A, ~k 5 0, 1, · · ·!,
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by the same argument as in the proof of Theorem 2.1 in Matsumoto and
Kurita [1994]. So, from now on, we use this recurrence. Now, the dependen-
cies of the xis are described by the following diagram.

x0
u x1 x2 x3 · · · xn21

2 , 2 , 2 , 2 · · · , 2
4 xn xn11 xn12 xn13 · · · x2n21 4

2 , 2 , 2 , 2 · · · , 2
4 x2n x2n11 x2n12 x2n13 · · · x3n21 4

2 , 2 , 2 , 2 · · · , 2
4 x3n x3n11 x3n12 x3n13 · · · x4n21 4

2 , 2 , 2 , 2 · · · , 2
···

···
···

··· · · ·
···

Then, for an integer j , n, the part (x0
u, x1, . . . , xj) of the initial values

determines the left-upper triangular region in the diagram:

~x0
u, x1 , . . . . . . . . . , x j ,

xn , xn11 , . . . , xn1j21 ,

···

x jn).

Then, if k(v) $ jn, the multiplication by TQ on each vector must be
surjective as a whole. Thus the dimension of the domain ( j 1 1)w 2 r is at
least that of the target [ j( j 1 3)/ 2]v. This shows that if k(v) $ jn then
[ j( j 1 3)/ 2]v # ( j 1 1)w 2 r. e

PROPOSITION B.2 If k(v) $ n 1 max{r, w 2 r} 2 1, then k(v) $ 2(n 2
1).

This shows that k(v) tends to be near to n (at most max{r, w 2 r} distance)
if it is less than 2(n 2 1). This partly explains the absence of intermediate
values of k(v) in Table II.

PROOF. We apply the simplification of the recurrence as in the above
proof. Moreover, instead of the initial vector (x0

u, x1, . . . , xn21), we use
(x0

u, x̃1, . . . , x̃n21), where ˜ denotes the mapping (xuuxl) ° (xluxu), i.e., the
multiplication of

R :5(
0 Iw2r

Ir 0
).

Then, when we explicitly write down the matrix that gives the upper v bits
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of the first n 2 1 1 l values from the initial value, it becomes

where (A4

A2) is the matrix RTQ (T: tempering matrix), partitioned into the
first r rows and the last w 2 r rows, and (A3

A3) is the matrix RATQ,
partitioned to w 2 r and r. Let us assume that k(v) 5 n 1 j for n 1 j ,
2(n 2 1). This is equivalent to saying that the rank of the matrix Ml with
l 5 j is equal to its width, but the rank with l 5 j 1 1 is not.

The former condition is equivalent to the triviality of the kernel of Ml,
when applied to column vectors from the left. So we now obtain the kernel
of these matrices for l 5 1, 2, . . . .

Let V1, V2 denote the v-dimensional vector space of row vectors, and W,
W9 denote the row vector space of dimension w 2 r, r, respectively. We
first consider the kernel of

S A1

A2 A3
D : V2 % V1 3 W % W9.

The existence of A1 implies that the V1 component is in A1
21(0), where 21

means the inverse image. Then the V1 component should be mapped by A3
to an image of A2, so the projection to the V2 component of the kernel of M1
is

A2
21 A3 A1

21~0!.

The sequence satisfies k(v) 5 n 2 1 if and only if M2 has nontrivial
kernel, i.e., the kernel of A4 has nontrivial intersection with A2

21 A3A1
21(0).

If we denote by

F :5 A2
21 A3 A1

21 A4

the corresponding map from the set of subspaces of V1 to itself, then this
can be stated as Ker( A4) ù F(0) Þ 0.

It is not difficult to check that the kernel of Ml is nontrivial if and only if
Ker( A4) ù F l(0) Þ 0, so the smallest such l # 2(n 2 1) gives k(v) 5 n 1
l 2 2, if it exists. Thus, to prove the proposition, it is enough to show that
Fl11(0) 5 F l(0) for l $ max{r, w 2 r} 1 1, since then the smallest l with
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Ker(A4) ù Fl(0) Þ 0 should satisfy l # max{r, w 2 r} 1 1, and then k(v) 5
n 1 l 2 2 implies the proposition. To prove the above stability, we note
that F is a monotonic function with respect to the inclusion. So

0 , F~0! , F2~0! , · · · .

Now the corresponding subspaces in W, W9 are increasing, but the dimen-
sions of W, W9 are w 2 r, r, respectively. So after applying max{w 2 r, r}
iterations of F, they will be stable. By returning to V1, we know that one
more application of F stabilizes the space. e

Appendix C. C Program

The C-code for MT19937 follows on the next page. This code works both in
32-bit and 64-bit machines. The function genrand( ) returns a uniformly
distributed real pseudorandom number (of type double, with 32-bit preci-
sion) in the closed interval [0, 1]. The function sgenrand( ) sets initial
values to the array mt[N]. Before using genrand( ), sgenrand( ) must be
called with a nonzero unsigned long integer as a seed.

The generator can be modified to a 32-bit unsigned long integer genera-
tor by changing two lines, namely, the type of the function genrand( ) and
the output scheme. See the comment inside.

The magic numbers are put in the macros so that one can easily change
them according to Table II. Essentially the same code is downloadable from
the http-site, Salzburg University (see http://random.mat.sbg.ac.at/news/).

Topher Cooper kindly enhanced the robustness in the initialization
scheme. Marc Rieffel (marc@scp.syr.edu), who uses MT19937 in a plasma
simulation, reported that by replacing the function calls by the macros, the
runtime could be reduced by 37%. His code is available from ftp.scp.syr.edu/
pub/hawk/mt19937b-macro.c, which also improves several other points.
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