
AREVA Multibrid Experience and Outlook

Antje Kiel Senior Sales Manager Bergen, May 4th 2010

... becoming a global player

Objective

- Industrialize the M5000 turbine technology with focus on reliability and standardization
- ▶ Become an important market player in the offshore wind market
- Extend presence into markets like UK, Scandinavia, US and China
- Increase of wind turbine production capacity
 - ♦ 80 to 100 wind turbines in Bremerhaven workshop
 - Production capacity extension under planning in Germany
 - Additional facility in US or China
- Strategic investments in supply chain (blades,...)
- ► Recruitment plan for high-skilled personnel

Lightweigt

- Nacelle and Rotor together weight only 349 tons
- It can be lifted offshore onto the tower as a complete unit
- Cost-effective tower and foundation structures

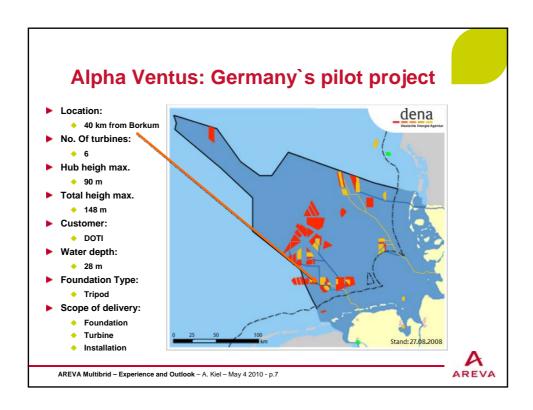
▶ Compact

- Intelligent integration of the rotor bearing, gearbox and generator
- The small plant dimensions lead to short paths for load transmission to the tower head

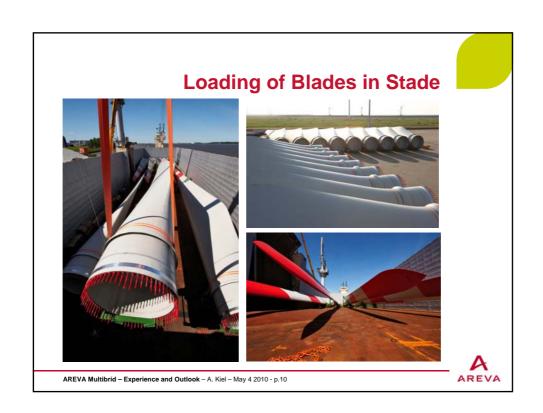
► Reliable

- The low rotational speed and the low number of rotating parts and roller bearings reduce the risk of damage to the central drive train of the M5000
- ♦ All key auxiliary aggregates and sensors are installed in duplicate
- A special system permanently monitors the status of key components and reliably reports any irregularity.

Protected


 M5000 is equipped with a patented air treatment system to protect the plant technology. It sucks in the surrounding air and filters out the corrosive particles.

AREVA Multibrid – Experience and Outlook – A. Kiel – May 4 2010 - p.5


Main technical data

General		Gearbox		
Rated power	5,000 kW	Туре	1 step-planetary gear, helical	
Cut-in wind speed	4 m/s	Rated power	5,540 kW	
Rated wind speed	12,5 m/s	Rated torque	3,575 kNm	
Cut-out wind speed	25 m/s	Ratio	1: 10	
Design life time	20 years			
Type class	GL 2005 -TC 1			
Rotor		Generator and Converter		
Rotor diameter	116 m	Generator type	synchronous, permanentmagnet	
Number of blades	3	Rated voltage	3,000 V	
Rotor area	10,568 m ²	Rated power genera	ator 5,315 kW	
Speed range	4.5 -1 4.8 rpm ± 10%	Speed range	45.1 – 148.5 rpm	
Rated speed	14.8 rpm	Protection class	IP 54	
Tilt angle	5°	Converter type	4-quadrant-converter	
Cone angle	-2°	Power factor (grid)	0.9 ind 0.9 cap.	
Pitch system		Masses		
Principle	electrical single pitch	Blade	16,500 kg	
Power control	blade speed control	Hub	62,000 kg	
		Nacelle	233,000 kg	
Tower				
Tyne	tuhular steel			

Loading of Nacelle in Bremerhaven

AREVA Multibrid – Experience and Outlook – A. Kiel – May 4 2010 - p.11

2nd Step Installation Tripods

1st Step

2nd Step ` Apr - Mai 3rd Step Jun -Jul 4th Step Jul - Aug 5th Step August

- Mobilization of the jack-up barge ODIN for the tripod installation
- On 23rd April after four days the first tripod was installed
- On 30th May the last Tripod is installed.

Installation of the 1st Tripod

AREVA Multibrid – Experience and Outlook – A. Kiel – May 4 2010 - p.13

3rd Step Erection of the Tower Segments S3 & S2

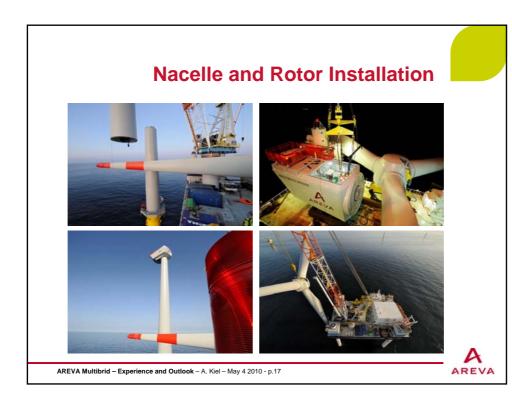
1st Step Mrz - Jul 2nd Step Apr - Mai 3rd Step Jun -Jul 4th Step Jul - Aug 5th Step August

- Remobilization ODIN for tower installation
- On 15th June are the first tower segments S3 & S2 installed
- On 3rd July the last tower segments are installed
- ► Demobilization ODIN

Erection Tower Segments S2 & S3

AREVA Multibrid - Experience and Outlook - A. Kiel - May 4 2010 - p.15

4th Step Nacelle and Rotor Installation


1st Step

2nd Step Apr - Mai 3rd Step Jun -Jul 4th Step Jul - Aug 5th Step August

- ► Mobilization Jack-Up Barge JB-114
- ► The first WEC was installed on 15th July
- The last WEC was erected on 15th August
- ▶ Demobilization JB-114

5th Step Commissioning of the first German offshore WEC

1st Step Mrz - Jul 2nd Step Apr - Mai 3rd Step Jun -Jul 4th Step Jul - Aug 5th Step August

- ► Commissioning in 3 phases
 - Pre Commissioning
 - ♦ Cold Commissioning
 - Hot Commissioning
- On 4th August the AV9 producing first German offshore KWh
- On 27th August all WEC are commissioned

AREVA Multibrid – Experience and Outlook – A. Kiel – May 4 2010 - p.19

Markets and new challenges

AREVA

AREVA Multibrid - Experience and Outlook - A.~Kiel - May ~4~2010 - p.20

Markets and new challenges

- ▶ In order to harness the offshore wind potential of deeper waters such as those off the Norwegian coast, the Atlantic Ocean or the Mediterranean Sea, floating designs are required.
 - Three demonstrators are available in Europe today: the Hywind concept from Statoil Hydro (consists of a steel jacket filled with ballast); the Blue H concept, an integrated solution for a 5 MW floating turbine
 - The Sway concept, which is developed in partnership with Statkraft and Shell in particular. It is based on a floating elongated pole far below the water surface with ballast at the bottom part.
- Optimisation and adaptation of M5000 for new markets like Scandinavia, Baltic Sea and Mediterranean region and US

A

AREVA Multibrid - Experience and Outlook - A. Kiel - May 4 2010 - p.21

Thank you for your attention

AREVA

AREVA Multibrid – Experience and Outlook – A. Kiel – May 4 2010 - p.22