
Extracting QuickCheck Specifications from EUnit Test Cases

Thomas Arts
Chalmers / Quviq AB, Gothenburg,

Sweden
thomas.arts@ituniv.se

Pablo Lamela Seijas
Chalmers, Gothenburg, Sweden
lamela@student.chalmers.se

Simon Thompson
University of Kent, Canterbury, UK

S.J.Thompson@kent.ac.uk

Abstract
Writing EUnit tests is more common than writing QuickCheck
specifications, although QuickCheck specifications potentially ex-
plore far more scenarios than manually written unit tests. In partic-
ular for implementations that have side-effects, writing a good set
of EUnit tests is often difficult and labour intensive.

In this paper we report on mechanisms to extract QuickCheck
specifications from EUnit test suites. We use the QSM algorithm
to infer state machines from sets of positive and negative traces
derived from the test suite. These traces can be derived either
statically or dynamically and we describe both approaches here.
Finally we show how to move from the inferred state machine
to a QuickCheck state machine. This QuickCheck state machine
can then be used to generate tests, which include the EUnit tests,
but also include many new and different combinations that can
augment the test suite. In this way, one can achieve substantially
better testing with little extra work.

Categories and Subject Descriptors D. Software [D.2 SOFT-
WARE ENGINEERING]: D.2.5 Testing and Debugging: Testing
tools

General Terms Verification

Keywords Erlang, EUnit, unit test, QuickCheck, property, infer-
ence, test-driven development, finite-state machine, StateChum

1. Introduction
Erlang programmers test their code by using, among other tools,
EUnit tests. If we follow a test-driven development approach we are
encouraged to write those tests before starting the implementation,
in order to avoid writing unnecessary code [2]. We grow the test
suite by adding tests before developing additional features. One
desirable result of this is that one has tested all the developed
features; but what is the quality of the tests and are there sufficiently
many tests to guarantee the quality of the application?

Tests form a kind of specification of what the implementation
should do and by visualising this specification as a finite state
machine (FSM), a developer can discover unspecified or untested
parts [1]. Moreover, if we only add tests for newly added features,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang’11, September 23, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0859-5/11/09. . . $5.00

errors caused by interacting features may go undiscovered, whereas
visualisation1 may hint that certain interactions are untested.

Instead of manually adding tests, we advocate to use the state
machine not only to visually check the developers intuition, but also
to generate additional tests automatically. This is elegantly done
by translating the state machine into a QuickCheck state machine
specification. This paper describes the automation of that process
of creating a QuickCheck finite state machine from a set of EUnit
tests.

The generation of the finite state machine is based on an algo-
rithm to extract regular grammars from samples of a language. The
particular algorithm that we use – the QSM (“query-driven state
merging”) algorithm [5] – takes as input two sets of words: one of
words in the language, and the other of words not in it, and infers a
regular grammar from them.

In the context of Erlang testing, a word will be a sequence of
function calls. Taking a concrete example, given the Eunit test

startstop_test() ->
?assertMatch(true,start([])),
?assertMatch(ok,stop()),
?assertMatch(true,start([1])),
?assertMatch(ok,stop()).

we can derive a “word” [start, stop, start, stop] in the
language, whereas a failing test case such as

stopFirst_test() ->
?assertError(badarg,stop()).

will give the “word” [stop] not in the language.
We have made an implicit abstraction in this description, in

that we have ignored the arguments to the function calls (and also
ignored any return values, too). In terms of modelling the pure
start / stop behaviour of the system it is entirely appropriate to
overlook the argument to start – a set of initial resources of the
system. Indeed, it would be over-specific to infer a state machine
in which the first start can only be with zero resources ([]) and the
second only with a single resource ([1]). However, in modelling
the behaviour of the system in general this argument will need to
be taken into account, as it determines the resources that the system
can allocate.

In other words, in extracting models from sets of system tests
the level of abstraction is crucial, and we need to be able to change
this according to the level of abstraction we require in each partic-
ular model.

For generation and visualisation of the state machine we previ-
ously used StateChum [1, 9], a Java implementation of the QSM

1 We use ‘visualisation’ in two senses: first, in a general sense of being able
to grasp and ‘get a picture of’ what the specification means and implies, and
secondly in the more concrete sense of building a graphical picture of the
state machine: code to do this is part of the overall distribution, available at
https://github.com/ThomasArts/Visualizing-EUnit-tests.

0

1

7

6

5

4

3

2

a

b

b

b

a

a

c

c

b

8

9

Figure 1. Initial APTA

algorithm for strings. In order to use StateChum for the generation
of QuickCheck specifications we would need to modify it so that
its “words” are built from Erlang terms and abstractions from them.
We resolved instead to re-implement the algorithm (in Erlang) so
that it deals directly with words built from Erlang terms, and so
that we are able to deal with different levels of abstraction within
the QSM algorithm in as straightforward a way as possible.

If an implementation of the system under test (SUT) is available,
then the collection of traces can be dynamic, using the inbuilt trac-
ing facilities of Erlang. Dynamic tracing allows the collection of
parameter values and function results, so that it provides complete
fidelity to the system. On the other hand, without an implementa-
tion of the SUT we can still collect information about the tests by
means of static analysis, and the two methods clearly complement
each other.

Once we have extracted a QuickCheck state machine then we
can use that to further test the SUT, and the tests generated – which
may be both positive and negative – can be added to the EUnit test
suite, interactively or by hand.

Our contribution in this paper is to complete the automation
of the whole process from EUnit tests to QuickCheck state ma-
chine. We implemented the QSM algorithm in Erlang, defined a
way to use QuickCheck to test our implementation against the ex-
isting StateChum implementation and ensured that our implemen-
tation performed appropriately. We implemented abstraction in the
QSM algorithm, so that we can relate details of the tests with the
more abstract state machine. To collect traces, we implemented a
dynamic method, i.e., running the tests, and a static method, i.e.,
interpreting the source code to automatically obtain the traces. We
then used these traces to generate state machines that can be visu-
alised. Finally, we implemented a transformation of the obtained
finite state machines into QuickCheck finite state machine speci-
fications, which can then be used for further testing, from which
further EUnit tests may be generated.

The paper is organised as follows. In Section 2 we introduce the
QSM algorithm in Erlang, and in Section 3 we show how this im-
plementation was tested against the original StateChum implemen-
tation. Section 4 gives an overview of trace extraction from EUnit
tests, while Sections 5 and 6 explain how traces can be inferred stat-
ically or collected dynamically from EUnit tests. Section 7 explains
how this information is incorporated into a QuickCheck state ma-
chine, and Section 8 explains how new EUnit tests can be derived
by testing using this state machine. We describe some related work
in Section 9 and draw some conclusions in Section 10.

2. Erlang QSM
We were unable to access the source code of the existing query-
driven state merging (QSM) implementation, StateChum, but we
were able to consult two papers written by its developers [10,
11]. These papers describe how an implementation of the QSM

algorithm [5] is used to reverse engineer software. We used the
description in those three papers to re-implement the algorithm in
Erlang, and we describe that in this section. We were also able to
use the original implementation to test our re-implementation, as
we explain in Section 3.

The algorithm works in terms of regular languages, when using
it to reverse-engineer a program, we will consider traces (execution
sequences) as words in the language. The QSM algorithm takes
two sets of words, one set of words from the language – valid
sequences of events – and one of words that do not belong to
the language – invalid sequences . With one peculiarity, invalid
sequences are invalid strictly because of its last symbol, thus, if we
remove the last event from an invalid word, we should get a valid
one. This corresponds to an implementation raising an exception as
last action in a trace. There is no point in considering what happens
after the exception is thrown. From the input consisting in two sets
of words, QSM will try to produce the most general automaton that
complies with the traces, and this will hopefully give us an idea of
the completeness of our tests.

In our implementation we take as event any Erlang term. Nev-
ertheless, for explaining the algorithm and for testing purposes, we
used atoms as events, thus, a trace corresponds to a list of atoms,
and the input to the algorithm is a tuple of two lists of lists of atoms,
(the positive ones first).

In this section we will use this set as example:

Positive [a,b,a]
[b,b,a,b]

Negative [a,b,c,c]

Which is represented by the Erlang term:

{[[a,b,a], [b,b,a,b]], [[a,b,c,c]]}

The QSM algorithm roughly consists of two phases [5]. In the
first one, called initialization, we create a finite state machine with
a tree structure, the Augmented Prefix Tree Acceptor (APTA) that
will accept all positive traces and reject all negative ones. In the
second phase, state merging, we merge nodes of the tree in order
to get a smaller finite state machine which is still deterministic and
accepts and rejects the initial sets of positive and negative traces.

2.1 Initialization
The Augmented Prefix Tree Acceptor is the tree that we will use
as our initial FSM. It must necessarily have a tree shape, it must
accept all positive traces and reject all negative traces and it must
also be deterministic (this is, there cannot be two branches with the
same symbol departing from the same node). For example, from
the previous traces we would get the APTA in Figure 1 in which 0
is the initial state and 8 is a failing one.

In order to generate this in Erlang we create an initial state with
all the traces in it and extract the first event from each trace. Then
we create as many states as different events we extracted and divide
the rests of the traces between the new states.

In the first iteration of our example we would get:

State Kind of trace New trace
1 (from a) Positive [b, a]

Negative [b, c, c]
2 (from b) Positive [b, a, b]

We repeat the process with every new generated state until the
states we generate do not contain traces. When we arrive to the
end of a positive trace we just remove the trace, but when we fetch
the last event of a failing trace we generate a new failing state and
check that there are no traces left to expand from that state.

The target is to obtain the automaton as a record with the fields:
initial state, alphabet, states, transitions and failing states. The

breathfirst(Apta, _State, [], _Map) ->
Apta;

breathfirst(Apta, State, Traces, Map) ->
{Accept, Ts1} =

lists:partition(fun(Trace) -> Trace==[pos] end,
Traces),

{Reject, Ts2} =
lists:partition(fun(Trace) -> Trace==[neg] end,

Ts1),
SameEs =

splitonhead(lists:usort([Map(E) || [E|_]<-Ts2]),
Ts2,Map),

{NextState,Transitions} =
lists:foldl(fun({Hd,Tls},{NS,Trs}) ->

{NS+1,[{Hd,NS,Tls}|Trs]}
end,{Apta#agd.lastSt,[]},SameEs),

NewApta =
Apta#agd{aSt = ifadd(Apta#agd.aSt,Accept,State),

rSt = ifadd(Apta#agd.rSt,Reject,State),
lastSt = NextState},

lists:foldr(fun({Hd,NS,Tls},A) ->
NewA = [{State,Hd,NS}|A#agd.tr]
breathfirst(A#agd{tr = NewA},

NS, Tls, Map)
end,NewApta,Transitions).

Figure 2. The breadthfirst function

transitions are stored using the labelled transition system (LTS), as
a list of tuples in the form: origin, event, destination. In our example
the transitions would look like:

[{0,a,1}, {0,b,2}, {1,b,3}, {2,b,4}, ..., {7,b,9}]

We also decided to keep some order in the numbers of the states
to simplify the implementation of the state merging later, this way
the number of a state in a given level would always be smaller than
the number of a state in a deeper level. This implied a breadth-first
processing which made the functions more complex and added the
need to keep a lot of information in the parameters.

This can be seen in one of the lowest level functions of the
bluefringe_apta module: expandTrace/2. The only purpose
of this function is to remove the first symbol from a trace and to
add the related information to the automaton record.

We need to remember the kind of the trace, positive or negative,
the last state number granted, the alphabet used (to add new sym-
bols to it), the defined rejection states, and a separate buffer with
the already expanded transitions from the current node, (in case
our symbol already has a transition). To do this we wrote the func-
tion breathfirst that updates the APTA recursively; as shown in
Figure 2.

2.2 State merging
Now we generalize the FSM by merging states. To merge two
states we just move the transitions from one state to the other. For
example, if we merge in the APTA above the states 1 and 2 we get
the machine illustrated in Figure 3.

If non-determinism appears we continue merging, 3 with 4, then
5 with 7 and we would get the machine illustrated in Figure 4.

After merging, we check that the original traces are still valid.
If any trace is lost we undo the merge. In our implementation this is
done by throwing an exception which interrupts the merging when
this happens.

To decide which nodes should be merged first we use the blue-
fringe strategy. This strategy consists in considering two zones of

Figure 3. State machine merging: stage 1

Figure 4. State machine merging: stage 2

0

1

7

6

5

4

3

2

a

b

b

b

a

a

c

c

b

8

9

Red Zone

Blue Zone

Figure 5. State machine merging: stage 3

the FSM. The red zone has the nodes that cannot be reduced and
the blue zone has the immediate neighbours, which will be used as
candidates to merge with the red zone.

We start setting the initial state as red and its neighbours as
blue. At each step we compute the score for every possible pair
of candidates to merge, (pairs consisting on one node from the
red zone and one node from the blue zone). The score for a pair
of candidates is given by the number of extra merges that we
would be forced to carry out in order to restore determinism after
hypothetically merging that pair itself.

Pair (0, 1) (0, 2)
Score 1 3

Two states are incompatible if one of them is a failing state, and
the other is not. If a pair of candidates is incompatible or if it forces
us to make an incompatible merge (in order to restore determinism)
its score will be −1.

We must also check that all the positive traces are accepted and
all the negative traces are rejected before actually committing any
merge.

If a blue node cannot be merged with any of the red nodes, it
becomes red and the blue zone is updated accordingly to match all
the immediate neighbours of the new red zone.

The process ends when the whole FSM is red and we wrap up
by merging all the failing states in one. This last merging should not
produce indeterminism since there should not be transitions starting
in any failing state.

2.3 Additional considerations
QSM was initially designed to be interactive, here we only focus
in the non-interactive version. The main difference is that the in-
teractive version is intended to generate sample traces during the
merging process and to ask the user if those are valid, in order
to avoid over-generalization. Nevertheless, the same results can be
achieved with the passive implementation. The user only has to add
new tests to the input and to run the algorithm again, and this is sup-
ported by the integration described in Section 8. Alternatively the
algorithm could learn from running additional tests, but this is not
implemented at present.

Having the QSM algorithm implemented in Erlang gives us a
better integration with the test code than would be possible with
other languages, (e.g. Java, in the case of StateChum), since for ex-
ample it allows us to use arbitrary Erlang terms as traces, which
allows fine control of the abstraction mechanism in model forma-
tion as explained below.

After finishing the implementation, we also noticed that it exe-
cutes faster than the original StateChum, since it does not need to
start an extra virtual machine for this sole purpose.

3. Testing
In order to verify correctness of our new implementation we have
used QuickCheck to test it against StateChum [9] because we
wanted it to have the same behaviour as this already well-tested
implementation.

We test that, for a given set of positive and negative traces,
our implementation and StateChum give similar state machines. In
other words, we use StateChum as an oracle for our model based
testing.

3.1 QuickCheck testing
To test our implementation of QSM we first used a property that
should hold after the execution of the algorithm. The positive traces
that were provided as input must be accepted by the output automa-
ton. And the negative traces must be rejected exactly at their last
symbol, this is, they must drive us precisely from the initial state to
a failing one.

Implementing just this property in QuickCheck would be simple
if we only generated completely random sets of traces. But, if we
do it that way, most of the generated sets of traces that we would
get would lead to meaningless automata that would have nothing
to do with the ones we would find in a real scenario. To solve this
issue we decided to generate random automata instead, and then
walk through them randomly. This implementation could result in
unreachable states, but this is not a problem since the input to the
algorithms is just the trace sets and they will not contain any such
states.

An automaton in the testing module is represented by a tuple of
the form:

{list of states,
initial state (init),
failing state (bad),
list of events,
list of transitions}

and each transition is as usual another tuple:

automata() ->
?LET({States,Events},

{set(elements([a,b,c,d,e,f,g])),
non_empty(set(elements([x,w,y,z])))},

?LET(Trs, transitions(Events,States),
{[init,bad] ++ States,init,bad,Events,Trs})).

transitions(Events, States) ->
ExtStates = [bad|States],
?LET(Trs,

[{init,elements(Events),oneof(ExtStates)}|
normal_transitions([init|States], Events,

[init|ExtStates])],
determinize(Trs)).

Figure 6. Generators for automata and transitions

{Origin, Event, Destination}

and QuickCheck generators for automata and transitions are given
in Figure 6.

In the transitions/2 function we make sure that we get at
least one transition so that later we can generate at least one trace.

In order to make valid and useful automata we have to treat
the initial state (init) and the failing state (bad) separately and to
make sure that we do not generate transitions that start in the failing
state.

Note that these generators can cause a trace to be both positive
and negative, leading to inconsistency. This corresponds to a neg-
ative test, since both StateChum and our implementation should
reject such examples. As long as this happens infrequently, which
it does, the few negative tests take little effort from the total testing
time.

After generating a random automaton, we just do a series of
random walks through the automaton (starting at the initial state),
give them as input to the algorithm, and check that the output
automaton complies with the input traces.

This helped us to find some misunderstandings in the implemen-
tation. For example: we thought at first that just by taking care of
not merging a normal state and a failing one, the collapsed automa-
ton would properly accept or reject all the input traces, but this was
proved to be false when we ran this test. We fixed it by checking
the traces with each merge. But even though these tests were useful,
it would still pass if we had only implemented the APTA genera-
tion, and consequently we are not actually testing that the merging
mechanism and the blue-fringe implementation work properly.

3.2 Interfacing StateChum
Specifically, we wanted to know if our implementation generated
minimal automata. We could not find an alternative way to check if
the resulting automaton was in fact minimal, since that is the actual
purpose of the QSM algorithm. But we did know StateChum, an
already tested implementation, that does give a minimal automaton.
So we checked instead that our implementation gave similar results.
In order to do this, we first wrote an interface to StateChum that
would allow us to provide lists of atoms as input, and then parse the
resulting automaton to an Erlang entity. This could be done thanks
to the text mode of StateChum.

By exporting StateChum’s automaton in text format, we can
parse it and compare it to our own automaton. However, State-
Chum’s output does not specify the initial state or transitions that
end in a failing state, or the failing state at all. Because of this, we
first only compared the number of non-failing states.

Already this simple check allowed us to realize a misunder-
standing of the semantics of the algorithm. For example: blue states

0

1

2 3

4 5 9

8
z

y
y

y zz

z

y

6
y

7

Red Zone

Blue Zone

Figure 7. Alternative APTA

0 2
z y3

y

z

y

7

Figure 8. Irreducible automaton version 1

need to be transformed to red immediately after they become im-
possible to merge with the red ones, instead of trying to merge all
possible blue states first.

Another example is that in the original pseudo-code there are
instructions of the kind for all X where the list X grows while
execution is inside the loop. After testing we discovered that these
changes should be taken into account by performing extra iterations
at the end.

3.3 Differences from StateChum
We needed to fix a few errors in our QSM implementation, but
even after that, we found out that in some cases the results were
still different despite being both correct according to the QSM
specification. For example, the traces

{[[y,z,y,z],[z,y,z,y]],[[z,y,y]]}

result in the APTA tree shown in Figure 7. Then we apply the blue-
fringe strategy and compute the scores for all possible combina-
tions:

Pair (0, 1) (0, 2)
Score 3 3

One obvious question arises: If several pairs of nodes have the same
score, which pair shall we merge first?

If we choose the pair (0, 1), (as StateChum apparently does in
this case), we will form a loop with the y symbol transitioning to
state 0 and continuing with the algorithm we will end up with an
irreducible automaton shown in Figure 8, where state numbers may
differ.

On the other hand, if we chose the pair (0, 2), (as our imple-
mentation does in this case), we will form a loop with the z symbol
transitioning to state 0 and we will get a slightly smaller, also irre-
ducible automaton, shown in Figure 9.

Given this choice in implementation, the question arises whether
any of the choices is better than the other? In order to find out, we
used QuickCheck again. We generated a large number of inputs and

0 y

z

7

y

z
1

Figure 9. Irreducible automaton version 2

tested the two algorithms on these inputs and compared the size of
the resulting automata. With the QuickCheck collect() func-
tion we collected statistics on how many times our implementation
produces similar results, how many times StateChum produces a
smaller example, and, how many times our implementation results
in a smaller automaton. The result for 1000 iterations was:

OK, passed 1000 tests
89% draw
5% sc
5% qsm
true

where sc indicated that the output from StateChum was smaller,
qsm that the output from our tool was smaller and draw that both
outputs had the same size.

From this we can conclude that, despite the fact that the decision
does affect the size of the resulting automaton, our choice outputs
approximately the same number of automata bigger and smaller
than StateChum and, approximately ninety percent of the time both
implementations result in automata of the same size.

4. From EUnit tests to traces
EUnit [3, 6] is the Erlang unit test framework in the style of JUnit,
CUnit, etc. In this framework one can specify unit tests and check
that their results are correct by using some preprocessor macros
provided by the EUnit library. By using this tool we can later run
all the unit tests at once and get a summary of those results.

EUnit modules contain a series of functions that can in princi-
ple contain any Erlang expression, these expressions are evaluated
when the tests are run. Because of this, the tests can have arbitrarily
complex structures, which makes it difficult, (and in some cases im-
possible) to analyse them statically. We could instead trace calls to
the subject under test. But this is not always possible since we may
not have the implementation, and thus, the tests may not be pos-
sible to execute. In fact, when we follow test driven development,
some of the tests are always ahead of the implementation and need
be statically analysed instead of traced. Thus, depending on the use
case for our tool, we would like to have both static analysis as well
as dynamic analysis and combinations thereof.

4.1 Possible scenarios
From the syntactic point of view, the tests in EUnit are given by
normal Erlang functions with a name that ends with the suffix test
or test_. They are also expected to contain calls to some of the
EUnit macros like ?assertMatch() or ?assertException()
which are defined in the header file eunit/include/eunit.hrl
from the EUnit distribution.

Execution flow may vary in terms of the returned values from
other functions. These other functions may be auxiliary test func-
tions or they may indeed be in the target code that we want to test,
and so they may not yet even be defined.

On the other hand, in some cases we may find that all the ex-
ternal functions are surrounded by macros like ?assertMatch()
or ?assertException, and in those cases we would know the ex-

pected return value. This gives us three possibilities to obtain traces
of tests:

1. Dynamically running all tests and collecting the traces. We
describe our approach to this in Section 6.

2. Dynamically running the part of the tests that is in the same
module and inferring the return values from the EUnit macros
when possible.

3. Statically parsing the EUnit code and trying to infer the execu-
tion flow when possible.

None of the three would work for all possible cases, but we chose
to implement the first and the last one to show the different ap-
proaches that can be used, the former to give maximum fidelity to
the implementation and the latter to achieve the maximum indepen-
dence from the tested code. Section 5 covers static extraction and
Section 6 covers dynamic trace collection.

5. Static trace extraction from EUnit
EUnit can be considered to be a domain specific language for test-
ing. Common Erlang test patterns are encapsulated in a comprehen-
sive set of macros. We do not need to expand the macros in the same
way as they are define in EUnit. In fact, this expansion makes the
analysis harder, since we use the semantics of the macros (the do-
main specific language) to be able to determine the possible traces.

In order to derive trace information statically, we need to parse
an EUnit file without expansion of the macros. Erlang offers a
parser, but that requires pre-processing, which expands the macros.
Therefore, we replace the EUnit macro expansion by our own
macro expansion, and then analyze the resulting code. In fact, we
use the EUNIT_HRL macro, which is defined in the EUnit header
files purely to be able to replace the existing macros by other vari-
ants. So, if defined, we can use our own macro expansions, if not
defined, we use EUnit’s macro expansion. Our macro definitions
are very simple, and consist basically in a tuple with an atom and
the code inside the macro.

-define(’_assertMatch’(P1, Trace), Trace).
-define(assertMatch(P1, Trace), Trace).
-define(’_assertError’(P1, Trace),

{fsm_eunit_parser_negative, Trace}).
-define(assertError(P1, Trace),

{fsm_eunit_parser_negative, Trace}).
-define(’_assertExit’(P1, Trace),

{fsm_eunit_parser_negative, Trace}).
-define(assertExit(P1, Trace),

{fsm_eunit_parser_negative, Trace}).
-define(’_assertException’(P1, P2, Trace),

{fsm_eunit_parser_negative, Trace}).
-define(assertException(P1, P2, Trace),

{fsm_eunit_parser_negative, Trace}).
-define(’_assertThrow’(P1, Trace),

{fsm_eunit_parser_negative, Trace}).
-define(assertThrow(P1, Trace),

{fsm_eunit_parser_negative, Trace}).

After removing the EUnit macros we look at the syntax tree
and parse the result. We analyse the syntax tree recursively using
pattern matching and carrying two lists (one for positive traces and
one for negative traces). The tuples that represent EUnit macros are
recognised by the pattern matching and the name of the function
inside them is added to one list or the other depending on the tuple.

We also recognise EUnit’s generators, like the special tuples
foreach and setup as well as the equivalent foreach_ and
setup_ that take EUnit test generators as arguments. In the case of

startstop_INORDER_test_() ->
{inorder,
[?_assertMatch(true,start([])),

?_assertMatch(ok,stop()),
?_assertMatch(true,start([1])),
?_assertMatch(ok,stop())]}.

stopFirst_test() ->
?assertError(badarg,stop()).

startTwice_test_() ->
[{setup,

fun () -> start([]) end,
fun (_) -> stop() end,
?_assertError(badarg,start([]))
}].

Figure 10. EUnit tests

foreach, each of the elements of the list will be considered as a
different test and, thus, it will produce a different trace.

If the EUnit module complies with this format, our tool will
extract a tuple with the two lists of traces (positive and negative) in
the format

{module, function, [argument1, argument2, ...]}

For example, processing the first EUnit test given in the introduc-
tion results in the tuple:

{[[{frequency,start,[[]]},
{frequency,stop,[]},
{frequency,start,[[1]]},
{frequency,stop,[]}]],

[]}

6. Dynamic trace collection from EUnit
In Section 5 we presented a mechanism for inferring traces from
EUnit tests independently of any implementation. As was ex-
plained there, this can only be applied in a limited set of cases:
for instance, if a result of a test function is used as an argument of
a subsequent call, then this result will not generally be deducible
statically, and so the test case cannot be executed symbolically. The
advantage of this method is, of course, that no implementation is
needed for the method to be applied. On the other hand, if an im-
plementation of the system under test (SUT) is available, then the
EUnit tests can be run to yield traces.

In this section we describe how to gather sets of positive and
negative traces by running EUnit tests. The implementation does
not require that EUnit is modified, and so EUnit is simply used as
a library; this section explains the details of the implementation.

6.1 The Erlang function call trace
We use the Erlang tracing mechanism to collect trace data from
the execution of EUnit tests. Running tracing on calls to the API
functions of the SUT allow us to see which functions are called,
as well as the arguments on which they are called. Running all the
Eunit tests will give us a single (Erlang) trace, which needs to be
analysed in two ways.

• We need to be able to split the trace into a series of traces, one
for each EUnit test.

• We also need to be able to distinguish between positive traces
and negative traces.

[{eunit_tracing,open,[inorder]},
{eunit_tracing,open,[test]},
{frequency,start,[[]]},
{eunit_tracing,close,[test]},
{eunit_tracing,open,[test]},
{frequency,stop,[]},
{eunit_tracing,close,[test]},
{eunit_tracing,open,[test]},
{frequency,start,[[1]]},
{eunit_tracing,close,[test]},
{eunit_tracing,open,[test]},
{frequency,stop,[]},
{eunit_tracing,close,[test]},
{eunit_tracing,close,[inorder]},
{eunit_tracing,open,[test]},
{frequency,stop,[]},
{eunit_tracing,test_negative,[ok]},
{eunit_tracing,close,[test]},
{eunit_tracing,open,[list]},
{eunit_tracing,open,[setup]},
{eunit_tracing,open,[test]},
{frequency,start,[[]]},
{eunit_tracing,close,[test]},
{eunit_tracing,open,[test]},
{frequency,start,[[]]},
{eunit_tracing,test_negative,[]},
{eunit_tracing,close,[test]},
{eunit_tracing,open,[test]},
{frequency,stop,[]},
{eunit_tracing,close,[test]},
{eunit_tracing,close,[setup]},
{eunit_tracing,close,[list]}]

Figure 11. Tracing EUnit function calls

In order to do this we ensure that the Erlang trace also contains
information about calls to dummy functions that record the begin-
ning and end of each EUnit test by calls to the functions open/1
and close/1. We also mark the tests for a negative outcome by a
call to test_negative.

An Erlang trace of this form is fully parenthesised by matching
pairs of calls to open/1 and close/1, and so it is straightforward
to write a recursive-descent parser to parse the Erlang traces into
sets of positive and negative test traces. For example, the tests in
Figure 10 when executed with our instrumentation gives the trace of
Erlang function calls shown in Figure 11. As can be seen from the
function calls in the trace, we’re able to record Eunit test objects,
such as inorder, parallel and setup since these objects have
different semantics. For instance, a sequence of tests executed in
order constitute a single test, whereas the same group executed in
parallel gives a set of separate tests.2

Once analysed, this gives rise to three test traces, one positive

[{frequency,start,[[]]},
{frequency,stop,[]},
{frequency,start,[[1]]},
{frequency,stop,[]}]

and two negative traces

[{frequency,start,[[]]},
{frequency,start,[[]]}]

2 Despite the fact that a simple sequence of test objects is not guaranteed to
be executed in any particular order in EUnit, many tests in fact only make
sense if executed inorder.

-define(assertErrorTrace(X, Y),
eunit_tracing:test_negative(?assertError(X, Y))).

-define(’_assertErrorTrace’(X, Y),
eunit_tracing:negative_wrap(?’_assertError’(X, Y))).

% Also includes definitions of assertExitTrace, etc.

startstop_INORDER_test_() ->
eunit_tracing:test__wrap({inorder,

[?_assertMatch(true, (start([]))),
?_assertMatch(ok, (stop())),
?_assertMatch(true, (start([1]))),
?_assertMatch(ok, (stop()))]}).

stopFirst_test() ->
eunit_tracing:test_wrap(fun () ->

?assertErrorTrace(badarg, (stop()))
end).

startTwice_test_() -> ...

Figure 12. frequency_tests.erl transformed

[{frequency,stop,[]}]

In each case note that we have recorded the information about the
actual arguments to the calls, which can be elided or not according
to the degree of abstraction we wish to incorporate into the model.

6.2 Building the Erlang function call trace
EUnit uses the Erlang macro system, and to modify its behaviour
to produce the Erlang function traces seen in Section 6.1 there are
at least two possibilities.

• We could modify the implementation of EUnit, adding calls to
the macro definitions. This has the advantage that we don’t need
to modify the SUT or its test suite, but has the considerable
disadvantage that it will require maintenance each time EUnit
is updated.

• On the other hand, we can provide a mechanism which modifies
the SUT and its tests so that when these are run with the
standard EUnit we get the required results; this is the option
that we have chosen, and which we describe now.

EUnit tests for a module module.erl are expected to appear in that
file or in the file module_tests.erl; these tests will be written
by the authors of the system. Based on the tests in these files, we
automatically build an instrumented variant of the file. Using the
facilities of Erlang to compile, load and purge code we then execute
this variant, and then gather and process the results of the tracing
into sets of positive and negative test traces.

Taking the running example for this section, our transformed
file frequency_tests.erl is shown in Figure 12. The tests and
test objects themselves are transformed by embedding them in calls
to the functions

eunit_tracing:test_wrap

and

eunit_tracing:test__wrap

respectively. EUnit macros assertXXX that denote negative tests
are replaced by calls to the corresponding macros assertXXXTrace,
the effect of which is to wrap the test in a call to

test_wrap(F) ->
test_start(),
F(),
test_end().

test__wrap(F)
when is_function(F) ->

fun () ->
test_start(),
F(),
test_end()

end;
test__wrap(F)

when is_tuple(F) ->
case F of

{setup,Setup,Tests} ->
{setup,
open_(setup),
close_(setup),
{setup,test__wrap(Setup),test__wrap(Tests)}};

...
_ ->

map_tuple(fun test__wrap/1,F)
end;

...

negative_wrap(F)
when is_function(F) ->

fun () ->
F(),
test_negative()

end;
...

Figure 13. Test wrapping functions

eunit_tracing:test_negative

the definitions of these macros are added to the test file.
The syntax_tools library for Erlang is used to accomplish

the transformation of the file. This library provides a high-level
interface for the analysis and transformation of parse trees for
Erlang programs.

The test wrapping functions are defined in eunit_tracing and
include these definitions: first the functions that are traced

test_start() ->
open(test).

test_end() ->
close(test).

test_negative(Test) ->
Test.

Figure 13 shows the test wrapping functions. First, test_wrap
wraps a simple test, secondly test__wrap wraps a test object,
which needs a deep traversal of nested tuples and lists as well as
functions. Finally negative_wrap wraps a negative test (or test
object) in a similar way except that a call to test_negative/0
needs to be inserted.

7. Creating QuickCheck Specifications
The final step of the transformation is to produce a template for
the state machine in QuickCheck. We transform the automaton

-module(frequency_eqc).

-include_lib("eqc/include/eqc.hrl").
-include_lib("eqc/include/eqc_fsm.hrl").

-compile(export_all).

initial_state() -> state_init.

state_init(_) ->
[{state_error, {call,?MODULE,stop,[]}},
{state_1,

{call,?MODULE,start,[oneof([[],[1]])]}}].

state_1(_) ->
[{state_init, {call,?MODULE,stop,[]}},
{state_error, {call,?MODULE,start,[[]]}}].

state_error(_) -> [].

Figure 14. QuickCheck FSM

postcondition(_, state_error, _S, _Call, R) ->
case R of

{’EXIT’, _} -> true;
_ -> false

end;
postcondition(_, _, _S, {call,_,start,[_]}, _R) ->

true;
postcondition(_, _, _S, {call,_,stop,[]}, _R) ->

true.

prop_frequency() ->
?FORALL(Cmds, (commands(?MODULE)),

begin
{_History, _S, Res} =

run_commands(?MODULE,Cmds),
Res == ok

end).

Figure 15. QuickCheck postconditions and property

into a QuickCheck finite state machine as defined by the eqc_fsm
library. States are defined as functions and we always have an initial
state and error state. For each additional state in the automaton, we
introduce an additional state function.

The transitions are easily specified, but care is taken to collect
the set of arguments with which a function can be called. In the
automaton one abstracts from the actual arguments of the function
and one transition can be caused by a number of different events in
the trace. When writing the QuickCheck state machine, we collect
these possible events and join them with a oneof generator.

For example, the tests explained in the previous section result
in three states, the initial state in which one can perform a start
operation, a first state (state_1) in which one can either return
to the initial state by a stop operation or transit to the error state
with another start operation. The generated code for these state
transitions is shown in Figure 14.

Since we use both start([]) and start([1]) as commands
to start the server, we automatically get a oneof([[],[1]]) in our
QuickCheck state machine.

Note that we do not call the functions in the frequency module
directly, but add local functions to our specification to ensure that
asserted exceptions are caught and tested.

start(X1) -> catch frequency:start(X1).

stop() -> catch frequency:stop().

Preconditions in QuickCheck state machines are used to prevent
certain commands being included in a test sequence. Since we start
off with test cases, we do not really have any such preconditions
and hence they default to true. The actual matching on assertions
is done in the postconditions, and the property is the standard
property that generates a sequence of commands and evaluates that
sequence’ both are shown in Figure 15. Note that even with this
simple state machine, we have more tests then the original example,
since we start the server many times with zero and one resource.

Note that we at the moment do not use the asserted values. This
is a matter of putting more information in the trace and abstracting
from it in the right way when creating the automaton. Since we
now do have an implementation of the QSM algorithm in Erlang,
we can now add that extension.

8. Improving EUnit tests with QuickCheck
We can now use the QuickCheck specification to generate and run
tests. This is very much in line with the original idea of the State
Chum tool, which would generate new traces and ask for user
feedback on whether such a trace is positive or negative. In our
case, we output test cases and shrink these test cases to minimal
ones. When adding these test cases to the EUnit test suite, we
get a more complete QuickCheck state machine. Surely, one could
also add the necessary information directly in the QuickCheck state
machine, but we envision users that are more familiar with EUnit
than with QuickCheck.

When running QuickCheck on the state machine created in the
previous section it fails, stating either that we cannot do only a
stop operation nor only a start operation. This seems strange,
since we have EUnit tests stating that we raise an exception when
stopping and we should definitely be able to just start. The problem
is that we did not implement the cleanup code in the QuickCheck
state machine. A test may end in a state with a server still running,
whereas the QuickCheck model starts from the assumption that the
server is not running; hence the obtained results are interpreted as
errors.

For the moment, we manually have to add cleanup code to the
QuickCheck state machine. We use the fact that we have a local
command that catches possible errors when doing the cleanup.

prop_frequency() ->
?FORALL(Cmds, (commands(?MODULE)),

begin
stop(),
{_History, _S, Res} =

run_commands(?MODULE,Cmds),
Res == ok

end).

After this change, all QuickCheck tests pass.
The reason that all tests pass is that we exploited all possi-

ble sequences of starting and stopping the server. Normally, one
would not have all positive and negative tests in place at once. In
those cases, QuickCheck is a great help in providing new, alterna-
tive EUnit tests. As an example, we add the following test to our
frequency_tests module:

allocate1_test_() ->
{setup,

fun () -> start([1]) end,
fun (_) -> stop() end,
?_assertMatch({ok,_},allocate())

}.

After creating the QuickCheck state machine and adding the
cleanup code stop() we can run QuickCheck and get the follow-
ing counter example:

Shrinking.(1 times)
[{set,{var,1},{call,frequency_eqc,start,[[1]]}},
{set,{var,2},{call,frequency_eqc,allocate,[]}},
{set,{var,3},{call,frequency_eqc,allocate,[]}}]

false

This means that allocating twice with one resource fails. We could
now add this as an EUnit test to our test suite and repeat the
procedure. In this way we get a more and more refind QuickCheck
model and soon test much more than what is present in the EUnit
tests from the beginning.

We can also run QuickCheck several times with the same state
machine to obtain a number of EUnit tests that we potentially could
add, or to get more insight in what we should test. For example, the
other counterexamples for the tests we have so far is:

Shrinking..(2 times)
[{set,{var,1},{call,frequency_eqc,start,[[]]}},
{set,{var,2},{call,frequency_eqc,allocate,[]}}]

false

Different from using the graphical representation to have a user
evaluate whether certain ’traces’ are positive or negative (cf. [1]),
we present tests that the developer has to judge as valid or invalid
tests. With little effort we can pretty print the test as Erlang code
with the actual return values of the calls as left-hand sides of
matches.

9. Related Work
The QSM algorithm is one of many in the field of grammar in-
ference, which has been a well-established field for some twenty
years or more, and in particular results in this area are presented at
a series of biennial conferences, the most recent being the tenth [8].

Recent work has seen the transfer of results from this field into
model inference, adapting techniques as necessary. For example,
competitions have been used to drive research in grammar infer-
ence, but these need to be adapted to work in the model inference
environment [12].

Other approaches to property inference include QuickSpec [4],
which infers equational properties by comparing the values of ex-
pressions under sets of randomly generated values, and clone iden-
tification and elimination, which can be used to find general prop-
erties from instances within a test suite [7].

10. Conclusion
We have presented a standalone way to automate the visualisation
of state-based EUnit tests, as well as a mechanism for extracting a
state machine from such tests using traces derived either statically
or collected dynamically. In the former case this can be done
without an implementation, but may not give full coverage of the
test set, whereas in the latter case a faithful rendering of the test set
can be given, based on an implementation of the system under test.
We have also shown how the extracted state machine can be turned
into a QuickCheck state machine template that forms the starting
point for modelling the system in QuickCheck.

As we said in the introduction, finding QuickCheck properties is
a hurdle to its adoption, and the work reported here can help users
to find properties of existing systems by giving them the starting

point of a QuickCheck state machine. The machine can also be
seen to give independent feedback on the adequacy of test suites,
as we argued in [1].

We can envisage improvements to the state machine extraction,
such as the parallelisation of the QSM algorithm or integration of
the state-machine representation, that will make this implementa-
tion more effective. Other improvements in QSM algorithm, and
the implementation of similar algorithms, would also benefit from
the approach that we used in this work.

We have examined github for examples of open source projects
in Erlang to which this extraction can be applied. Most of these
projects have test directories of some sort, many of them contain
only minimal tests, and very few include any negative tests. This
is a sad reflection on the (documented) testing that has taken place
in these projects, but reflects a wider point that negative testing
tends to be neglected even in the test-driven development commu-
nity. Nonetheless, where negative tests are present, our techniques
provide a powerful test evaluation and generation mechanism.

Another direction for future work is to look at FSM extraction
from sets of positive tests alone, but it is fair to say that the state
of the art in this area is less advanced than the case where both
positive and negative tests are available.

The mechanisms explained in the paper concern Erlang and
EUnit. We could envisage a similar analysis of tests written using
the Common Test framework, or indeed tests which are written
without benefit of EUnit macros; of course in the latter case we
would rely more heavily on heuristic analysis of the test code. We
also envisage that similar approaches would be possible for other
languages and toolsets, in particular object-oriented languages like
Java and C#.

Acknowledgements
We are very grateful to Neil Walkinshaw and Kirill Bogdanov both
for writing the StateChum system and for their help and advice
on getting it running for us. We would also like to thank Hans
Svensson for his contribution to StateChum interfacing and testing.

We acknowledge the European Commission for its support of
the ProTest project, Framework 7 project 215868.

References
[1] T. Arts and S. Thompson. From test cases to FSMs: augmented test-

driven development and property inference. In Proceedings of the 9th
ACM SIGPLAN workshop on Erlang, pages 1–12. ACM, 2010.

[2] K. Beck. Test-driven development: by example. Addison-Wesley
Professional, 2003.

[3] Richard Carlsson and Mickaël Rémond. EUnit: a lightweight unit
testing framework for Erlang. In Proceedings of the 2006 ACM
SIGPLAN workshop on Erlang, ERLANG ’06, New York, NY, USA,
2006.

[4] Koen Claessen, Nicholas Smallbone, and John Hughes. QuickSpec:
guessing formal specifications using testing. In Proceedings of the
4th international conference on Tests and proofs, TAP’10. Springer-
Verlag, 2010.

[5] P. Dupont, B. Lambeau, C. Damas, and A. van Lamsweerde. The
QSM algorithm and its application to software behavior model
induction. Applied Artificial Intelligence, 22(1):77–115, 2008.

[6] EUnit User’s Guide. http://www.erlang.org/doc/apps/eunit/chapter.html.

[7] Huiqing Li, Simon Thompson, and Thomas Arts. Extracting
Properties from Test Cases by Refactoring. In Steve Counsell, editor,
Proceedings of the Refactoring and Testing Workshop (RefTest 2011).
IEEE digital library, 2011.

[8] José Sempere and Pedro García, editors. Grammatical Inference:
Theoretical Results and Applications; 10th International Colloquium,
ICGI 2010, Valencia, Spain, volume 6339 of Lecture Notes in
Computer Science. Springer-Verlag, 2010.

[9] StateChum. http://statechum.sourceforge.net/.

[10] N. Walkinshaw and K. Bogdanov. Inferring Finite-State Models with
Temporal Constraints. In Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering, ASE
’08, Washington, DC, USA, 2008. IEEE Computer Society.

[11] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S. Salahuddin.
Reverse engineering state machines by interactive grammar inference.
In Working Conference on Reverse Engineering, pages 209–218,
2007.

[12] Neil Walkinshaw, Kirill Bogdanov, Christophe Damas, Bernard
Lambeau, and Pierre Dupont. A Framework for the Competitive
Evaluation of Model Inference Techniques. In 1st International
Workshop on Model Inference In Testing, 2010.

