

COVER SHEET

This is the author version of article published as:

Boyd, Colin A. and Choo, Kim-Kwang R. and Mathuria, Anish (2006)
An extension to Bellare and Rogaway (1993) model: resetting
compromised long-term keys. In Batten, L. and Safavi-Naini, R., Eds.
Proceedings 11th Australasian Conference. on. Information Security and
Privacy - ACISP 2006 4058/2006, pages pp. 371-382, Melbourne,
Australia.

Copyright 2006 Springer

Accessed from http://eprints.qut.edu.au

An Extension to Bellare and Rogaway (1993)
Model: Resetting Compromised Long-Term

Keys?

Colin Boyd1 and Kim-Kwang Raymond Choo1 and Anish Mathuria2

1 Information Security Institute
Queensland University of Technology

GPO Box 2434, Brisbane, QLD 4001, Australia
2 Dhirubhai Ambani Institute of Information and Communication Technology

Gandhinagar, Gujarat, India
boyd@isrc.qut.edu.au; raymond.choo.au@gmail.com;

anish mathuria@da-iict.org

Abstract. A security proof in the Bellare–Rogaway model and the ran-
dom oracle model is provided for a protocol closely based on one origi-
nally proposed by Boyd (1996), which enjoys some remarkable efficiency
properties. The model is extended so that it can detect a known weak-
ness of the protocol that cannot be captured in the original model. An
alternative protocol, provably secure in the extended model and the ran-
dom oracle model, offering the same efficiency features as the original
protocol is proposed. Moreover, our alternative protocol provides key
confirmation and forward secrecy. It also allows session keys to be re-
newed in subsequent sessions without the server’s further involvement
even in the event that the long-term key or the earlier session key have
been compromised.

1 Introduction

Protocols for key establishment are a foundational element in communi-
cations security. There has been an enormous amount of research effort
expended in design and analysis of such protocols and yet there are still
worthwhile contributions to be made even in the simple scenario of two
users with an on-line server. For example, it is worthwhile to improve
upon the performance cost associated with such protocols and ensure
that the security goals can still be guaranteed.

Gong [14] has shown that protocols using timestamps require fewer
messages and rounds than protocols using nonce-based challenge-response.
? This is the full version of the conference proceedings that appears in 11th Aus-

tralasian Conference on Information Security and Privacy - ACISP 2006, Lecture
Notes in Computer Science, Springer-Verlag.

2

Boyd [8] proposed a novel method of achieving key freshness which does
not require both participants’ nonces to be passed to the server, thus re-
ducing the number of messages and rounds to the same as that required
for timestamp-based protocols. However, a known weakness of Boyd’s
protocol class is that if a user’s long-term key is compromised, then an
attacker can masquerade as that user even after the compromised key is
replaced with a new one. Moreover, Boyd’s protocol class does not have a
proof of security; its purported security is based on heuristic arguments.
The main problem with the heuristic approach is that it does not provide
a clear framework for defining a “secure” protocol and what constitutes
an “attack”. Since this approach does not account for all possible attacks,
the security guarantees are limited and often insufficient. In contrast, the
provable security paradigm for protocols provides a formal foundation for
defining a “secure” protocol and allows rigorous proofs of security to be
developed.

The many flaws discovered in published protocols for key establish-
ment and authentication over the years, have promoted the use of formal
models and rigorous security proofs. In the provable security paradigm
for protocols, the description of protocols security and the goals provided
by the protocols are formally defined.

In this paper we prove the original protocol of Boyd secure in the
widely accepted model of Bellare and Rogaway (hereafter referred to as
the BR93 model) [4]. In the BR93 model, there exists a powerful adver-
sary who can interact with all the participants, with an aim to learn some
information about one session key. Therefore, one tries to prove the indis-
tinguishability of the session key (from a random key) for the adversary.
The BR93 model has been further revised several times by several other
researchers. However, like many other users of these models, we find that
they are insufficiently rich to capture all reasonable actions of the adver-
sary. In a practical system we may expect that once the compromise of
a user has been detected, that user will be reset with a new long-term
key and then allowed to continue working. In the type of protocols we
are concerned with this scenario will allow the adversary to masquerade
as that user. However, since there is no notion of resetting in the BR93
model there is no way to observe such a possibility. Therefore we extend
the model to allow more capabilities for the adversary.

We then propose an equally efficient alternative protocol that provides
protection against the compromise of long-term keys without taking re-
course to revocation lists.

3

Contributions of Paper. The contributions of this paper are three-
fold:

1. A revised protocol of Boyd [8] is proven secure in the BR93 model and
the random oracle model (also known as the ideal hash model) [5]3.

2. The BR93 model is extended to allow more realistic adversary ca-
pabilities, under which the proven secure protocol of Boyd becomes
insecure. Protocols proven secure in the extended model will also be
secure in the original model.

3. An alternative protocol that is efficient in both messages and rounds is
then shown to be secure in the extended BR93 model and the random
oracle model. Furthermore, it provides key confirmation and forward
secrecy4 and allows session keys to be renewed in subsequent sessions
without the server’s further involvement (i.e., re-authentication) even
in the event that the long-term key or the earlier session key have
been compromised. We remark that there are very few server-based
protocols that achieve forward secrecy and allow re-authentication in
the event that the long-term key or the earlier session key have been
compromised.

Organization of Paper. Section 2 reviews the BR93 model and the
mathematical preliminaries. Section 3 describes a protocol closely based
on one originally proposed by Boyd [8] and provides a proof of its security
in the BR93 model. Section 4 describes the limitation of the proof for the
original protocol and extends the model so that there is capability to reset
long-term keys. Section 5 describes an alternative protocol and provides
a proof of its security in the extended model. A comparative summary is
presented in Section 6. An extension to this alternative protocol allows
3 Some might argue that a proof in the random oracle model is more of a heuristic proof

than a real one. However, despite the criticism, this model is still widely accepted
by the cryptographic community. We remark that recently, the first practical and
provable-secure oblivious transfer password-based protocol whose proof of security
relies on the random oracle model was recently published [11]. In many applications,
a very efficient protocol with a heuristic security proof is preferred over a much less
efficient one with a complete security proof [9]. Moreover, as Black [7] observed,
no scheme has yet to been proven secure in the random-oracle model and broken
once instantiated with some hash function, unless that was the goal from the very
beginning.

4 When the long-term key of an entity is compromised the adversary will be able to
masquerade as that entity in any future protocol runs. However, the situation will
be even worse if the adversary can also use the compromised long-term key to obtain
session keys that were accepted before the compromise. Protocols that prevent this
are said to provide forward secrecy.

4

session keys to be renewed in subsequent sessions without the server’s
further involvement even in the event that the long-term key or the ear-
lier session key have been compromised is also described in this section.
Section 7 presents the conclusions.

2 Provable Security Paradigm for Protocols

Bellare and Rogaway provide the first formal definition for a model of
adversary capabilities with an associated definition of security (which we
refer to as the BR93 model in this paper) in their 1993 paper [4] where
they provide mathematical proofs for two-party entity authentication pro-
tocols. In the model, there exist a powerful adversary who can interact
with all the participants, with an aim to learn some information about
one session key. Therefore, one tries to prove the indistinguishability of
the session key (from a random key) for the adversary.

2.1 The Adversarial Model

Informally the adversary, A, is allowed to fully control the communication
network by injecting, modifying, blocking, and deleting any messages at
will. A can also request for any session keys adaptively. The adversary
interacts with a set of oracles, each of which represents an instance of
a principal in a specific protocol run. Each principal has an identifier,
U . An oracle, Πs

U , represents the actions of principal U in the protocol
run indexed by integer s. Formally, A can adaptively query the following
oracles, as follows:

Send(U, s,m) This query allows A to make U runs the protocol normally.
Πs

U will return to A the same next message that an honest principal,
U , would if sent message m according to the conversation so far. If
Πs

U accepts the session key or halts this is included in the response. A
can also use this query to initiate a new protocol instance by sending
an empty message m.

Reveal(U, s) This query models A’s ability to find session keys. If a session
key, Ks, has previously been accepted by Πs

U , then it is returned to
A. An oracle can only accept a key once. An oracle is called unfresh
if it has been the object of a Reveal query.

Corrupt(U) This query returns the oracle’s long-term secret key. A prin-
cipal is called corrupted if it has been the object of a Corrupt query.
Note that this query does not return the session key since session keys
can be learnt by the Reveal query or the entire internal state.

5

Test(U, s) Once Πs
U has accepted a session key, Ks, A can attempt to

distinguish it from a random key as the basis of determining security
of the protocol. A random bit b is chosen; if b = 0, then Ks is returned
while if b = 1 a random string is returned from the same distribution
as session keys. This query is only asked once by A.

2.2 Definition of Security

Definition of security in the BR93 model depends on the notion of the
partner oracles to any oracle being tested. The way of defining partner
oracles has varied in different papers using the model. Following recent
trends, we define SIDs

U as the concatenation of all messages that oracle
Πs

U has sent and received.

Definition 1. Two oracles are partnered if (1) they have accepted a ses-
sion key with the same session identifier (SID), (2) each believes that the
other is its partner, and (3) they agree on the initiator of the protocol.

Definition 2 describes the freshness definition.

Definition 2. An oracle Πs
U is fresh at the end of its execution if (1)

Πs
U has accepted with partner Πt

V (if such a partner exists), (2) Πs
U and

Πt
V are unopened, and (3) principals U and V are uncorrupted.

The security of the protocol is defined by the following game, G, played
between the adversary and an infinite collection of user oracles Πs

U for
U ∈ {U1, . . . , UQ} and s ∈ N and server oracles Πs

S . Firstly, long-lived
keys are assigned to each user by running the key distribution algorithm
Kk on input of the security parameter k. Then, the adversary, A(1k), is
run. A will interact with the oracles through the queries defined above.
At some stage during the execution a Test query is performed by the
adversary to a fresh user oracle. Eventually the adversary outputs a bit
b′ and terminates. Success of the adversary, A, in this game is measured
in terms of its advantage in distinguishing the session key of the Test
query from a random key, i.e., its advantage in outputting b′ = b. This
advantage must be measured in terms of the security parameter k. If we
define success to be the event that A guesses correctly whether b = 0 or
b = 1, then AdvA(k) = 2 · |Pr[success]− 1|.

To define validity of a protocol, we use the concept of a benign adver-
sary as an adversary that faithfully relays flows between participants [4].

Definition 3. A protocol P is a secure key establishment protocol if the
following two properties are satisfied:

6

Validity. In the presence of a benign adversary partner oracles conclude
with the same key except for a negligible probability.

Indistinguishability. For every probabilistic polynomial-time adversary,
A, the function AdvA(k) is negligible.

Security of a protocol is proved by finding a reduction to some well known
computational problem whose intractability is assumed (i.e., in this pa-
per, the Computational Diffie-Hellman (CDH) problem). In addition, we
require the notion of an authenticated encryption scheme, which forms
the basis of our proof for Protocol 2 described in Section 5.

2.3 The Computational Diffie-Hellman Assumption

Let G ∈ Z∗
p be a cyclic group of prime order q and g is assumed to be

a generator of G, where G is of prime order. The security parameters, p
and q, are defined as the fixed form q|p− 1 and ord(g) = q.

Computational Diffie-Hellman (CDH) Problem. Given an instance,
(g, gx, gy), output gxy.

A Computational Diffie-Hellman (CDH) attacker, FCDH , in a finite cyclic
group G of prime order q with g as a generator, is a probabilistic machine,
4, running in time t such that the success probability of FCDH when given
random elements, gN1 ∈ G and gN2 ∈ G to output gN1N2 ∈ G, is less than
ε, where the probability is over the random choice of N1 and N2 in Z∗

q .
In other words, the CDH assumption states that the success probability
of FCDH for any t

ε is not too large.

2.4 Secure Authenticated Encryption Schemes

We now define the authenticated encryption scheme that will be employed
in the protocol that we shall prove secure in Section 3.

Let k denote the security parameter. A symmetric encryption scheme
SE = (K, E ,D) consists of three algorithms, namely: the key generation
algorithm K, the encryption algorithm E , and the decryption algorithm
D as described below.

– K is a probabilistic algorithm which, on input 1k, outputs a key K.
– E is a probabilistic algorithm which takes a key K and a message

M drawn from a message space M associated to K and returns a
ciphertext C. This is denoted by C

R← EK(M).

7

– D is a deterministic algorithm which takes a key K and a ciphertext
C and returns the corresponding plaintext M or the symbol ⊥ which
indicates an illegal ciphertext. This is denoted as x ← DK(C). We
require that DK(EK(M)) = M for every K ← K(1k).

For security we use the definitions of Bellare & Namprempre [2]. We re-
quire that the symmetric encryption scheme provides confidentiality in
the sense of indistinguishability under chosen plaintext attacks (IND-
CPA security) and provides integrity in the sense of preserving integrity
of plaintexts (INT-PTXT security). We note that each of these is the
weakest of the properties defined by Bellare and Namprempre and are
provided by either encrypt-then-MAC or by MAC-then-encrypt construc-
tions. Therefore there are many practical ways of implementing our pro-
tocol which can reasonably be expected to satisfy these assumptions. We
now define these concepts more precisely.

For any efficient (probabilistic polynomial time) adversary, X , the
confidentiality security is defined in terms of the following game, which
we call G1.

1. The challenger chooses a key K ← K(1k).
2. Given access to the encryption oracle, the adversary outputs two mes-

sages of equal length M0,M1 ∈M of her choice.
3. The challenger computes Cb

R← EK(Mb) where b
R← {0, 1}. The bit b

is kept secret from the adversary.
4. The adversary is then given Cb and has to output a guess b′ for b.

We define the advantage of the adversary, X , playing the above game as

Advind−cpa
X (k) = 2 · |Pr[b′ = b]− 1|.

Definition 4. The encryption scheme SE is IND-CPA secure if the ad-
vantage of all efficient adversaries playing game G1 is negligible.

For any efficient adversary, F , the integrity security is defined in terms
of the following game, which we call G2.

1. Choose a key K ← K(1k).
2. The adversary, F is given access to the encryption oracle and also a

verification oracle which on input a ciphertext C outputs 0 ifDK(C) =⊥
and outputs 1 if C is a legitimate ciphertext.

3. The adversary wins if it can find a legitimate ciphertext C∗ such
that the plaintext M = DK(C∗) was never used as a query to the
encryption oracle. In this case we say the event forgery has occurred.

8

We define the advantage of the adversary playing the above game as

Advint−ptxt
F (k) = 2 · Pr[forgery].

Definition 5. The encryption scheme SE is INT-PTXT secure if the
advantage of all efficient adversaries playing game G2 is negligible.

3 A Provably-Secure Revised Protocol of Boyd

3.1 The Revised Protocol of Boyd

Protocol 1 is a server-based protocol in which users A and B as well as
the server S contribute to the key value. All parameter choices depend on
a security parameter k. In Protocol 1, the following notations are used:
{m}K denotes an authenticated encryption of some message m under
symmetric key K; S denotes a server who shares long-term symmetric
keys KAS and KBS with A and B, respectively; NA, NB, and KS denote
nonces generated by A, B and S, respectively; and H is modelled as a
random oracle. The session key obtained by A and B at the end of the
protocol execution is denoted as KAB.

A S B

NA ∈R {0, 1}k A, B, NA−−−−−−−→ KS ∈R {0, 1}k
{A, B, KS}KAS , {A, B, KS}KBS , NA−−−−−−−−−−−−−−−−→

NB ∈R {0, 1}k

Decrypt {A, B, KS}KBS

Decrypt {A, B, KS}KAS

{A, B, KS}KAS , NB←−−−−−−−−−−−−−−−−
SIDA = NA ‖ NB SIDB = NA ‖ NB

KAB = H(KS ‖ SIDA) KAB = H(KS ‖ SIDB)

Status: ACCEPTED Status: ACCEPTED

Protocol 1: A revised key agreement protocol of Boyd

Protocol 1 is very similar to that proposed by Boyd [8]. Differences
are as follows.

1. In the earlier protocol of Boyd, the session key is determined by a
MAC function so that the session key is KAB = MACKS

(NA, NB).
2. There is no partnering mechanism (e.g., session identifiers) specified

in the earlier protocol of Boyd. Message exchanges in the real world

9

are seldom conducted over secure channels. Therefore, it is realistic to
assume that any adversary is able to modify messages at will, which
is the case in the Bellare–Rogaway style models. As Goldreich and
Lindell [12, Section 1.3] have pointed out, such an adversary capabil-
ity means that the adversary is able to conduct concurrent executions
of the protocol (one with each party). Therefore, without such part-
nering mechanism, communicating parties will be unable to uniquely
distinguish messages from different sessions. Hence, in Protocol 1, we
define partnership using the notion of session identifiers, SID5.

3. The key confirmation messages have been removed, which consist of
a handshake using the shared secret. These can easily be added in a
standard way [3]. The session key itself must not be used to authenti-
cate the key confirmation messages, otherwise the adversary can use
them to easily distinguish the session key.

3.2 Security Proof

The proof follows that of Bellare and Rogaway [6] quite closely; differ-
ences include the use of a combined authenticated encryption scheme (as
opposed to separate encryption and MAC functions) described in Sec-
tion 2.4 and the different partnering function used. The general idea of
the security proof is to assume that the protocol adversary can gain an
advantage and use this to break the assumptions about the security of the
encryption algorithm. Since the adversary relies on its oracles to run we
simulate the oracles so that we can supply the answers to all the queries
the adversary might ask. We cannot supply answers which rely on knowl-
edge of the encryption keys that we are trying to break, so we use the
integrity of plaintexts to show that these queries would, almost certainly,
not be answered by any oracle running the protocol. As long as the sim-
ulation works with non-negligible probability the assumption about the
encryption scheme fails.

Following Bellare and Rogaway [6] we need to extend the definition
of a secure encryption scheme to allow the adversary to obtain multi-
ple encryptions of the same plaintext under many different independent
encryption keys. Such an adversary is termed a multiple eavesdropper.
A multiple eavesdropper, ME , is allowed to obtain encryptions of the
same plaintext under two different independent encryption keys. We can

5 The security proof of Protocol 1 does not hinge on the difficulty of predicting a valid
session identifier. In fact, we may assume that session identifiers are made publicly
available when the status of the principal becomes “ACCEPTED”.

10

bound the advantage of a multiple eavesdropper by considering it as a
special case of the multi-user setting analysed by Bellare, Boldyreva and
Micali [1]. In their notation we have the case of qe = 1, meaning that
the adversary can only obtain one encryption for each encryption key.
Specialising their main theorem gives the following.

Lemma 1. Suppose that an adversary has advantage at most ε(k) for
encryption scheme (E ,D). Then a multiple eavesdropper has advantage
not more than n · ε(k).

Notice that since an authenticated encryption scheme is also a secure
encryption scheme in the sense defined by this result, it also holds for
an authenticated encryption scheme. This allows us to define a variant of
game G1 described in Definition 4 which we call G′1. The only difference
between these is that in G′1 the adversary is given access to two encryption
oracles for two independently generated keys, and its challenge consists
of two encryptions of either m0 or m1 under the two keys.

The idea of the proof is to consider the situation when the adversary
at some stage forges a message successfully. When this occurs we can
use the adversary to break the integrity of the authenticated encryption
scheme. When this does not occur we use the adversary to break the con-
fidentiality. More formally, define forge to be the event that the protocol
adversary, A produces a ciphertext C associated with an uncorrupted
entity U such that DK(C) 6=⊥ where K is the long term key of entity U .
Noting that Pr(successA) ≤ Pr(forge)+Pr(successA|forge) we can split the
proof up by showing that each of the two terms on the right is negligible.

3.2.1 Integrity Breaker Assume that A is an adversary against the
protocol. We use A to construct a forger F for the authenticated en-
cryption scheme SE described in Definition 4. We will say that the event
successF occurs if F wins game G2 against SE .

Lemma 2. There is an efficient algorithm F defined using A such that
if forge occurs with non-negligible probability then successF occurs with
non-negligible probability .

In order to prove Lemma 2 we describe how F is constructed. When F
runs it receives access to the encryption and verification oracles of the
authenticated encryption scheme SE . Its output must be a forged cipher-
text for a message m which was not previously input to the encryption
oracle.

11

In order to obtain the forgery F runs A by first choosing a user Ui

for i ∈R [1, Q]. This user will be simulated as though its long-term key is
the one used in SE . For all other j ∈ [1, Q] with j 6= i, F generates the
long-term shared key using the key generation algorithm Kk. This allows
F to answer all the oracle queries from A as follows.

Send(U, s,M) For any well-formed queries to S, F can reply with valid
ciphertexts, by choosing the session key and forming the ciphertexts,
either directly using the known key or using the encryption oracle in
the case of Ui. For queries to initiate a protocol run, F can generate
a random nonce and answer appropriately. Finally, consider a query
to either an initiator or responder oracle including a claimed server
message (corresponding to protocol messages 2 or 3). The relevant
ciphertext can be verified either directly using the known key or using
the verification oracle. If the ciphertext is verified correctly then the
oracle accepts and this information is returned to A.

Reveal(U, s) Since all the session keys are known from running the Send
queries the query can be trivially answered with the correct session
key (if accepted).

Corrupt(U) As long as U 6= Ui all the private information is available and
the query can be answered. In the case U = Ui then the query cannot
be answered and F will abort and fail.

Test(U, s) Since all the accepted session keys are known from running the
Send(U, s,M) queries the query can be trivially answered by identify-
ing the correct session key.

F continues the simulation until a forgery event against SE occurs, or
until A halts. Note that as long as F does not abort then the simulation
is perfect. If forge occurs then the probability that the user involved is Ui

equals 1/Q. In this case the event successF occurs. Futhermore, in this
case F does not abort since Ui cannot be corrupted before the forge event.
Therefore we arrive at the following upper bound.

Pr(forge) ≤ Q · Pr(successF) (1)

3.2.2 Confidentiality Breaker Now assume that A gains an advan-
tage without producing a forgery. This time we useA to form an algorithm
X which has a non-negligible advantage in the encryption scheme.

Lemma 3. There is an efficient algorithm X defined using A such that
if success occurs but forge does not occur, then X wins game G′1.

12

Two random keys K and K ′ are chosen by the challenger for SE and X is
given access to the encryption oracles for these keys. First X chooses two
users Ui and Uj for i, j ∈R [1, Q]. For all other k ∈ [1, Q], X generates the
long-term key using the key generation algorithm Kk. Next A chooses two
random session keys K0 and K1. The two messages that X asks of the
challenger for SE are M0 = (Ui, Uj ,K0) and M1 = (Ui, Uj ,K1). The chal-
lenger responds with a ciphertext pair Cb, C

′
b which are the authenticated

encryptions of either M0 or M1 under the two keys K and K ′. Suppose
that QS is the maximum number of Send queries that A will ask of the
server and QH is the maximum number of hash queries that A will ask
of the server. X chooses a value s0 randomly in [1, QS]. The idea is that
X will inject the ciphertexts Cb, C

′
b into a random server Send(U, s,M)

query. X proceeds to simulate responses for A as follows.

H(K||SIDk
i) For queries H(K||SIDk

i), if this query was asked before,
then return the previous answer. Otherwise, return a random value,
v ∈R {0, 1}k. In addition, store this answer together with the query
in a list of DH-tuples.

Send(U, s,M) First consider Send queries to the server. X must simulate
responses from the server with ciphertexts for two users A and B.
There are three cases:
– Neither A nor B is equal to Ui. The session key KS is chosen

randomly by X and the required tickets can be generated by X
using the long-term keys chosen.

– One of A or B is equal to Ui and the other is not equal to Uj .
X chooses the session key randomly and obtains the ticket for Ui

using the encryption oracle and generates the ticket for the other
user with the known long-term key.

– One of A or B is equal to Ui and the other is equal to Uj . If s = s0

then A uses Cb and C ′
b as the two tickets for Ui and Uj . Otherwise

X chooses the session key randomly and obtains the tickets for Ui

and Uj using the encryption oracles.
Now consider Send queries sent to users. Queries to initiate a protocol
run are trivially simulated. Queries that include ciphertexts must be
answered by either accepting or rejecting depending on whether the
ciphertext is valid. Because forge does not occur we know that A
cannot form a valid ciphertext unless it was output as a result of a Send
query to the server. Therefore X has seen every valid ciphertext before
and can respond with acceptance when these are seen. Ciphertexts
that X has not seen are rejected.

13

Reveal(U, s) X knows all session keys that have been accepted, with the
possible exception of the one that has been injected in Cb and C ′

b. If
A asks for the key for this special case then X aborts with failure.
Otherwise X can return the correct key.

Corrupt(U,K) X generated all the long-term keys except for those of Ui

and Uj . If either of these two parties is corrupted then X aborts with
failure. Otherwise X can return the correct long-term key.

Test(U, s) Suppose that the two tickets Cb and C ′
b were accepted by ora-

cles Πsi
Ui

and Π
sj

Uj
. If (U, s) /∈ {(Ui, si), (Uj , sj)} then X halts and fails.

Otherwise, X returns the key or a random value.

Eventually A halts and outputs a bit b. X returns that same bit to the
challenger.

This completes the description of X . Let lucky be the event that X does
not fail during the Test query. When lucky occurs, X wins game G′1 when-
everA is successful. This means that Pr(successX |lucky) ≥ Pr(successA|forge).
We also have Pr(lucky) ≥ 1/(Q2 ·QS). Putting these together we obtain:

Pr(successA|forge) ≤ Q2 ·QS ·QH · Pr(successX). (2)

3.2.3 Conclusion of Security Proof We know that N , QS , and
QH are polynomial in the security parameter k and ε is negligible by
definition. Combining equations 1 and 2 we obtain the following result,
which shows that if the authenticated encryption algorithm used in the
protocol is secure, then the protocol is also secure.

Theorem 1 Let A be any polynomial time adversary against the security
of the protocol and H is modelled as a random oracle. Then there is an
integrity adversary, F , and a confidentiality adversary, X against the
encrypted authentication algorithm such that

Pr(successA) ≤ Q · Pr(successF) + Q2 ·QS ·QH · Pr(successX).

4 An Extension to the BR93 Model

Despite Theorem 1 being proven in the previous section, Protocol 1 has
a significant weakness in a realistic setting (similar to the weakness ac-
knowledged by Boyd in his protocol [8]). It is inevitable that from time to
time long-term keys of users will be compromised, e.g., theft of a device
containing the key. It seems natural that in such a case the user should be

14

re-issued with a new long-term private key and then allowed to continue
using the protocol. For many server-based protocols this procedure will
not influence the protocol security. However, for Protocol 1 this is not
the case. It is easy to see that an adversary who obtains a long-term key
of a user can continue to use it to masquerade as that user even after a
new long-term key has been issued. The reason that this attack is possi-
ble even though we have proven the protocol secure, is that there is no
notion of replacing a long-term key in the BR93 model: once a party has
been corrupted it must remain so. In other words, once a party, say U1,
is corrupted and its long-term key revealed to the adversary, A, U1 is no
longer considered fresh in the sense of Definition 2.

One of the motivations for this work is to remove a known weakness of
the protocol of Boyd [8] under the effect of a compromise of a long-term
key. That is, even if the adversary, A, has corrupted some party, say U1,
A should not be able to impersonate U1 using the compromised long-term
key (of U1) after a new long-term key has been issued to U1. In order to
take into account this sort of attack we add a new query called Reset to
the list of actions that an adversary is allowed to perform and adjust the
definition of freshness.

Reset Query. The Reset(Ui,KNew) query captures the notion of replace-
ment for a compromised long-term key of principal Ui with a new ran-
domly distributed key, KNew. When a corrupted Ui is being asked such
a Reset query,

– player Ui is re-considered fresh in the sense of Definition 2,
– any oracle(s) ΠU1

i
, . . . ,ΠUδ−1

i
that were activated before the Reset

query are unfresh in the sense of Definition 2, and
– subsequent oracles ΠUδ

i
,ΠUδ+1

i
, . . . are considered fresh in the sense of

Definition 2 (unless U1 is corrupted again).

An adversary, A who has access to this new query can always defeat
Protocol 1 as follows.

1. A uses Send queries to run the protocol between A and B.
2. Then A issues a Corrupt(A) query to obtain the long-term key of A.

This enables A to decrypt the ticket {A,B, KS}KAS
sent to A during a

previous protocol run with B, and hence obtain the key KS contained
in it.

3. A now resets A and masquerades as S, replaying the ticket originally
sent to B together with any random value for NA. This activates a

15

fresh oracle Πs
B, that will choose a nonce NB and accept the session

key H(KS ‖ NA ‖ NB).
4. Consequently, A knows the value of this accepted key, in violation of

Definition 3.

In order to avoid the problem, one method is to introduce a validity
period for tickets and to issue a blacklist for tickets that have been com-
promised. This is the method suggested by Crispo, Popescu, and Tanen-
baum [10] whereby they show that a large number of users can be ac-
commodated in a practical system. It is easily checked that this prevents
the above attack, since revoked tickets cannot be replayed by the ad-
versary. However, such an approach entails a considerable infrastructure
(not unlike a public key infrastructure) and might not scale well to a more
realistic environment with a large number of participating entitites.

5 An Efficient and Provably-Secure Protocol in the
Extended Model

5.1 An Efficient Protocol

Protocol 2 describes our proposed key agreement protocol. In Protocol 2,
H0 and H1 are modelled as random oracles, [·]MK denotes the compu-
tation of some MAC digest using MAC key, MK, {·}KUS

denotes the
encryption of some message using encryption key, KUS , that is being
shared by some user and the server, and || denotes the concatenation of
messages. We assume that G, q, g, H0, H1 are fixed in advance and known
to the entire network, and that each party Pi has a long-term symmetric
key, KPiS , shared with the server, S.
Informally, Protocol 2 removes the known weakness of Protocol 1, as
described below.

1. Upon completion of an execution of Protocol 2, A and B have accepted
session keys of the same value, KAB = H0(A||B||gNA ||gNB ||gNBNA).

2. Suppose the adversary, A, compromises the long-term key of A, KAS .
With knowledge of KAS , A can decrypt {A,B, gNA}KAS

and learn
gNA . A also knows gNB from observing the Protocol 2’s execution.
However, finding gNBNA is equivalent to solving the CDH problem
(recall that NA has been deleted from the internal state of A upon
completion of the execution of Protocol 2). Moreover, this implies that
Protocol 2 provides forward secrecy since the knowledge of the com-
promised long-term keys, KAS or KBS , does not allow the adversary
to find the session key, KAB = H0(A||B||gNA ||gNB ||gNBNA).

16

A S B

NA ∈R {0, 1}k
{A, B, gNA}KAS−−−−−−−→

{A, B, gNA}KBS−−−−−−−→
NB ∈R {0, 1}k; SIDB = gNA ||gNB

MKAB = H1(A||B||SIDB ||(gNA)NB)

KAB = H0(A||B||SIDB ||(gNA)NB)

SIDA = gNA ||gNB
gNB , [“1”, B, A, SIDB]MKAB←−−−−−−−−−−−−−−−− Delete NB

MKAB = H1(A||B||SIDA||(gNB)NA)

Verify received MAC digest, [“1”, B, A, SIDB]MKAB

KAB = H0(A||B||SIDA||(gNB)NA)

Delete NA

[“2”, A, B, SIDA]MKAB−−−−−−−−−−−−−−−−→ Verify [“2”, A, B, SIDA]MKAB

Status: ACCEPTED Status: ACCEPTED

Protocol 2: A new key agreement protocol with key confirmation and forward secrecy

5.2 Security Proof

Theorem 2 Assuming the Computational Diffie-Hellman (CDH) assump-
tion is satisfied in G, Protocol 2 is a secure key agreement protocol provid-
ing key confirmation and forward secrecy when H0 and H1 are modeled as
random oracles and if the underlying message authentication scheme and
encryption scheme are secure in the sense of existential unforgeability un-
der adaptive chosen-message attack and indistinguishable under chosen-
plaintext attack respectively.

The validity of Protocol 2 is straightforward to verify and we concen-
trate on the indistinguishability requirement. The security is proved by
finding a reduction to the security of the underlying message authen-
tication scheme and the underlying encryption scheme. The security of
Protocol 2 is based on the CDH problem in the random oracle model.
An adversary, A, can get information about a particular session key
Kij = H0(i||j||SIDk

i ||gNiNj) if A has queried the random oracle on the
point i||j||SIDk

i ||gNiNj . This will allows us to solve the CDH problem
with probability related to that of A’s success probability.

The general notion follows that of the proof presented in Section 3.2.
For consistency, let Q be the upper bound of the number of parties in G,
QS be the maximum number of Send queries that A will ask of the server,
and QH be the maximum number of hash queries that A will ask of the
server. The proof is divided into two parts since the adversary, A, can

17

either gain her advantage against Protocol 2 while forging a MAC digest
or gain her advantage against Protocol 2 without forging a MAC digest.

The proof then concludes by observing that AdvA(k) is negligible when
H0, and H1 are modeled as random oracles and if the underlying message
authentication scheme and encryption scheme are secure in the sense of
existential unforgeability under adaptive chosen-message attack and in-
distinguishable under chosen-plaintext attack respectively, and therefore
Protocol 2 is also secure.

5.2.1 Integrity Breaker We assume that there exists an adversary,
A, against Protocol 2. We then construct an integrity breaker, F1, that
make use of A to break the underlying message authentication scheme.
Let Forge be the event that, for some instance Πk

i with partner Pj , the
adversary queries Send(i, k,m) and (1) neither Pi nor Pj were ever cor-
rupted; (2) m was never sent by Pj and (3) Πk

i computes a valid session
key.

Lemma 4. There is an efficient algorithm F1 defined using A such that
if Forge occurs with non-negligible probability then successF1 occurs with
non-negligible probability.

Similar to the proof presented in Section 3.2, the integrity breaker, F1,
is able to simulate the view of A and answers all the oracle queries of A.
F1 will continue the simulation until either the event that Forge occurs
or until A halts.

Let Pr(Forgei,j) be the probability that Forge occurs for a specific pair
of parties i, j. Clearly, we have Pr(Forge) ≤ N2 ·Pr(Forgei,j) since we can
embed an instance of the CDH problem within the one-time MAC key.
Now, if we replace the key, Kij = gU1U2 by a random element from G,
this does not affect Pr(Forgei,j) by more than a factor loss of ε. However,
the probability that Pr(Forgei,j) occurs when Kij is truly random is at
most ε′ by the security of the MAC. Therefore, we arrive at the upper
bound Pr(Forge) ≤ N2(ε + ε′).

All queries by the adversary, A, can be answered normally by F1. F1

continues the simulation until Pr(Forge) happens or until A terminates.
Thus, the simulation is perfect so long F1 does not terminate. We then
arrive at the following upper bound.

Pr(Forge) ≤ Q ·N2(ε + ε′) · Pr(successF1). (3)

18

5.2.2 Confidentiality Breaker We construct a confidentiality breaker,
X1, using A, as shown in the attack game, GX1 . The idea underlying this
proof follows that presented in Section 3.2.2. X1 is given access to the en-
cryption oracles associated with the two random keys K and K ′. X1 then
generates the long-term key for all users, except two randomly selected
users, Ui and Uj .

Let Pr(SuccessA|Forgei,j) be the probability that the adversary, A,
manages to gain an advantage without forging a MAC digest for a specific
pair of parties i, j. Clearly, we have Pr(SuccessA) ≤ N2·Pr(SuccessA|Forgei,j)
since we can embed an instance of the CDH problem. Now, if we re-
place the key, Kij = gU1U2 by a random element from G, this does not
affect Pr(Forgei,j) by more than a factor loss of ε. However, the prob-
ability that Pr(Forgei,j) occurs when Kij is truly random is at most ε′

by the security of the MAC. Therefore, we arrive at the upper bound
Pr(Forge) ≤ N2(ε + ε′).
X1 runs A and answers all oracle queries from A, as follows:

– For queries H0(i||j||SIDk
i ||Z), if this query was asked before, then

return the previous answer. Otherwise, return a random value, v ∈R

{0, 1}k. In addition, store this answer together with the query in a list
of DH-tuples.

– For Send, Reveal, Corrupt, and Test queries, X1 answer them honestly.
– In the event that a Reset(U) query is asked, X1 is also able to answer

this correctly by returning a new random long-term key generated
using the key generation algorithm Kk. X1 has to maintain a table
containing the internal state associated with U .
1. If U has been corrupted, then the status of U is updated to be

fresh. Otherwise, X1 halts the simulation.
2. Then any oracle(s) U1, . . . , U δ−1

i that were activated before the
Reset query are considered unfresh, while subsequent oracles U δ

i ,
U δ+1

i , . . . are considered fresh.
– At the conclusion of the game simulation if X1 has not terminated,
X1 randomly chooses a tuple, (Ua, Ub, Uab), from its list of DH-tuples,
finds a and b such that Ua = U1g

a and Ub = U2g
b, and outputs

Uab

Ua
2 Ub

1gab .

We let

– event1 be the event that, for some i, j ∈ [qp], A at some point queries
the random oracle at a point i||j||SIDk

i ||gw, whereby both Pi and Pj

are fresh (i.e., not corrupted) in the entire course of G, and W = gNiNj .

19

– event2 be the event that, for some i, j ∈ [qp], A at some point queries
the random oracle at a point i||j||SIDk

i ||gx for some k, SIDk
i =

U ||V = gNigNj and X = gNiNj .

The probability that X1 returns the correct answer is at least PrA[event1∧corrupted]
QH ·N2·ε ,

since the simulation of GX1 is perfect until the point, if any, that event1
or event2 occurs. In the event that event2 occurs, with probability 1

QH
,

X1 selects a tuple, (Ua, Ub, Uab), from its list of DH-tuples, for which
Uab = gα1α2 where α1 := loggUa and α2 := loggUb. In other words, this
tuple, (Ua, Ub, Uab), selected by X1 is a DH-tuple. Then X1 has outputed
a correct solution to the CDH instance. Thus, PrA(event2) ≤ QH · ε.

Since we have shown that both PrA[event1 ∧ corrupted] ≤ QH ·N2 · ε
and PrA[event2] ≤ QH · ε, we have

Pr(successA|Forge) ≤ (QH ·N2 · ε + QH · ε) · Pr(successX1). (4)

5.2.3 Conclusion of Security Proof We know that N , QS , and
QH are polynomial in the security parameter k and ε is negligible by
definition. Therefore, by combining equations 3 and 4 we conclude the
proof of Theorem 2.

6 Comparitive Security and Efficiency

Similar to the work of Gong [14] and Boyd [8], our motivation is to design
protocols efficient in both messages and rounds. Therefore, we present a
comparative summary of Protocols 1 and 2 with other similar server-based
key establishment protocols of Gong [13, 14] as described in Table 1. In
particular, we compare Protocols 1 and 2 with the protocol classes defined
by Gong where both users contribute to the session key.
In terms of both messages and rounds, we observe that

– Protocol 1 is as efficient as that obtained by Gong [14] for server-based
protocols with similar goals using timestamps.

– Protocol 2, which provides key confirmation, breaks Gong’s lower
bound since an extra round is required for providing key confirma-
tion in the first three protocols described in described in Table 1.

Moreover, Protocol 2 removes the known weakness of Protocol 1 under the
effect of a compromise of a long-term key as described in Section 5.1 at the
expense of computational overhead (i.e., Protocol 2 is more computational
expensive due to the use of Diffie–Hellman exponentation).

20

Protocols Messages Security proof?

The following three protocols do not provide key confirmation (KC). However, key
confirmation can be provided at the cost of an extra message.

1. Protocol 1 3 (+1 for KC) Proven secure in the BR93
model.

2. Timestamp-
based proto-
col [14]

4 (+1 for KC) No.

3. Nonce-based
protocol [14]

5 (+1 for KC) No.

The following three protocols provide key confirmation.

4. Alternative
protocol using
uncertified
keys [14]

5 No.

5. Hybrid proto-
col [13]

5 No.

6. Protocol 2 4
Proven secure in the extended BR93 model. Protocols proven secure in the extended
BR93 model will also be secure in the BR93 model. Moreover, Protocol 2 provides
both key confirmation and forward secrecy.

Table 1. A comparative summary

We also remark that another attractive feature of Protocol 2 is the
extension which allows session keys to be renewed in subsequent sessions
without the server’s further involvement. The extension to Protocol 2
that allows the session key to be renewed is described in Protocol 3. This
entails A and B exchanging new nonces N ′

A and N ′
B and computing the

new session key as K ′
AB = H1(A||B||S||N ′

A||N ′
B||gNANB) = K ′

BA.

A B

N ′
A ∈R {0, 1}k

A, N ′
A−−−−−−−→

B, N ′
B←−−−−−−− N ′

B ∈R {0, 1}k

SIDA′ = (N ′
A||N ′

B) = SIDB′

K′
AB = H1(A||B||S||SIDA′ ||gNANB) = H1(A||B||S||SIDB′ ||gNANB) = K′

BA

Protocol 3: An extension to Protocol 2

Recall from our earlier discussion in Section 5.1 that exposing the long-
term key will not enable the adversary to learn the CDH key, gNANB .
Neither will the adversary be able to learn the CDH key, gNANB , by ex-

21

posing an earlier agreed session key, KAB. If the adversary is able to learn
gNANB by exposing KAB, then we will be able to make use of such an
adversary to break the underlying CDH problem. Therefore, the exten-
sion presented in Protocol 3 is still possible even if the long-term key or
the earlier session key have been compromised. However, this is not the
case for the other server-based three-party key establishment protocols
described in Table 1.

7 Conclusions

We proved the security of another protocol example, revised protocol of
Boyd [8] – Protocol 1, in the BR93 model. Although Protocol 1 is known
to be insecure under reasonable assumptions, this does not show up in
the original BR93 model because there is no capability for the adversary
to reset corrupted principals. We then extended the BR93 model so that
it allows more realistic adversary capabilities, which allows us to detect
a known weakness of Protocol 1 that cannot be captured in the original
(BR93) model. We then presented another protocol (i.e., Protocol 2) that
is efficient in both messages and rounds, and then proved Protocol 2
secure in the extended BR93 model and the random oracle model.

Future Work. This work allows us to detect a known weakness of the
Boyd key agreement protocol [8] that cannot be captured in the original
BR93 model. It would be interesting to know what other (symmetric-key)
protocols may also have this property. Another possible extension is to in-
vestigate and propose a modular proof approach with a formal statement
of security that allows server-based three-party key establishment proto-
cols like those introduced in Table 1 to renew session key(s) in subsequent
sessions without the server’s further involvement, even in the event that
the long-term key or the earlier session key are compromised.

References

1. M. Bellare, A. Boldyreva, and S. Micali. Public-key Encryption in a Multi-
User Setting: Security Proofs and Improvements. In EUROCRYPT 2000, volume
1807/2000 of LNCS, pages 259 – 274. Springer-Verlag, 2000.

2. M. Bellare and C. Namprempre. Authenticated Encryption: Relations Among
Notions and Analysis of the Generic Composition Paradigm. In ASIACRYPT
2000, volume 1976/2000 of LNCS, pages 531–545. Springer-Verlag, 2000.

3. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure
Against Dictionary Attacks. In EUROCRYPT 2000, volume 1807/2000 of LNCS,
pages 139 – 155. Springer-Verlag, 2000.

22

4. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In
CRYPTO 1993, volume 773/1993 of LNCS, pages 110–125. Springer-Verlag, 1993.

5. M. Bellare and P. Rogaway. Random Oracles Are Practical: A Paradigm For
Designing Efficient Protocols. In ACM CCS 1993, pages 62–73. ACM Press, 1993.

6. M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: The Three
Party Case. In ACM STOC 1995, pages 57–66. ACM Press, 1995.

7. J. Black. The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-Based
Hash Function (Extended version available from http://eprint.iacr.org/2005/

210). In EUROCRYPT 2006, LNCS. Springer-Verlag, 2006. To Appear.
8. C. Boyd. A Class of Flexible and Efficient Key Management Protocols. In CSFW

1996, pages 2–8. IEEE Computer Society Press, 1996.
9. D. Catalano, D. Pointcheval, and T. Pornin. Trapdoor Hard-to-Invert Group Iso-

morphisms and Their Application to Password-based Authentication. Journal of
Cryptology, 2006. To Appear.

10. B. Crispo, B. C. Popescu, and A. S. Tanenbaum. Symmetric Key Authentication
Services Revisited. In ACISP 2004, volume 3108/2004 of LNCS, pages 248–261.
Springer-Verlag, 2004.

11. C. Gentry, P. MacKenzie, and Z. Ramzan. Password Authenticated Key Exchange
Using Hidden Smooth Subgroups. In ACM CCS 2005, pages 299–309. ACM Press,
2005.

12. O. Goldreich and Y. Lindell. Session-Key Generation using Human Passwords
Only (Updated Version available from http://eprint.iacr.org/2000/057/). In
CRYPTO 2001, volume 2139/2001 of LNCS, pages 408–432. Springer-Verlag, 2001.

13. L. Gong. Using One-Way Functions for Authentication. ACM SIGCOMM Com-
puter Communications Review, 8(11):8–11, 1989.

14. L. Gong. Lower Bounds on Messages and Rounds for Network Authentication
Protocols. In ACM CCS 1993, pages 26–37. ACM Press, 1993.

