
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Dawson, Edward & Henricksen, Matthew (2006) Rekeying Issues in the
MUGI Stream Cipher. In Preneel, P & Tavares, S (Eds.) Selected Areas
in Cryptography (LNCS 3897), 11 - 12 August 2005, Canada, Ontario,
Kingston.

This file was downloaded from: http://eprints.qut.edu.au/24245/

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://eprints.qut.edu.au/view/person/Dawson,_Edward.html
http://eprints.qut.edu.au/view/person/Henricksen,_Matthew.html
http://eprints.qut.edu.au/24245/


Rekeying Issues in the MUGI Stream Cipher

Matt Henricksen and Ed Dawson

Information Security Institute,
Queensland University of Technology,

GPO Box 2434, Brisbane,
Queensland, 4001, Australia.

{m.henricksen, e.dawson}@qut.edu.au

Abstract. MUGI [15] is a word-based stream cipher designed for 64-
bit architectures. It uses a 128-bit master key and a 128-bit initialization
vector to populate a large non-linear feedback shift register (NLFSR) and
additional non-linear state (NLS). In standard benchmarks on 32-bit pro-
cessors, MUGI suffers from poor key agility because it is implemented on
an architecture for which it is not designed, and because its NLFSR is too
large relative to the size of its master key. This paper proposes a variant
of MUGI, entitled MUGI-M, to enhance key agility, and concludes with
an analysis of its security and performance characteristics.

Key words: stream cipher, MUGI, MUGI-M, key initialization, key agility

1 Introduction

MUGI [15] is a Pseudo Random Number Generator (PRNG) designed for use as
a stream cipher. It uses a 128-bit master key and a 128-bit initialization vector.
Its design strength of 128 bits is commensurate with the length of the key.

MUGI’s structure is based on the PANAMA PRNG [5], which can be used ei-
ther as a stream cipher or hash function. A schematic generalization of PANAMA
and MUGI is shown in Figure 1. The update function Υ is composed of a lin-
ear sub-function λ and a non-linear sub-function ρ. The function λ updates the
buffer, using input from both the buffer and the state. The function ρ updates
the state, using additional input from the buffer. An output filter f operating
on the state produces the keystream.

MUGI is targeted to 64-bit architectures, which means that in terms of speed,
it is currently non-competitive with many recent word-based stream ciphers. On
the Intel Pentium 4, it has a throughput of 25.2 cycles per byte, compared to 3.7,
6.7 and 9.2 cycles per byte respectively for Rabbit [3], Dragon [4], and Turing
[13]. This is a situation that will almost certainly change when 64-bit architec-
tures finally become commonplace. MUGI’s mediocre performance in software
is not due entirely to the mismatch between the algorithmic requirements and
implementation characteristics. It has a large state space, which can lead to poor
key agility, through a complex and lengthy key initialization process.



Fig. 1. Generalization of the PANAMA and MUGI Structures

In this paper, we show how to improve MUGI’s key agility for both 32- and
64-bit architectures. In Section 2, we describe the MUGI keystream generation
and key initialization algorithms. In Section 3, we review previous cryptanalysis
of MUGI, which leads to an interesting insight on the role of the buffer in the
cipher. In Section 4, we discuss a peculiarity with the key initialization algorithm.
In Section 5, we analyze further the performance of MUGI relative to other word-
based stream ciphers, and suggest strategies that could be used to improve it,
culminating in an algorithm for a “modified MUGI” in Section 6. In Section 7
we perform a security and implementation analysis for the new algorithm. In
Section 8, we summarize the contribution of paper.

2 The MUGI Algorithm

The MUGI algorithm uses 64-bit words. MUGI’s internal state contains a 3-stage
Non-linear Feedback Shift Register (NLFSR) denoted a, and a 16-stage Linear
Feedback Shift Register (LFSR), denoted b. The output filter produces 64 bits
of the output from state a at each iteration.

The non-linear function ρ is a target-heavy Feistel network structure:

a0[t + 1] = a1[t]
a1[t + 1] = a2[t]⊕ F (a1[t], b4[t])⊕ C1

a2[t + 1] = a0[t]⊕ F (a1[t], b10[t] ≪ 17)⊕ C2

where C1 and C2 are known constants, (M ≪ k) indicates leftwise k-bit rotation
of M , and F is a function that uses the components of the round function of the
Advanced Encryption Standard [6]. Note that the 192-bit state receives at most
128 bits of new material each time ρ is called. Each of the state words is used in



a different way: a0 is used to provide new material to the buffer; a1 is used for
mixing in the F function; and a2 is used for output and feedback.

Fig. 2. MUGI F Function

The details of the F function are shown in Figure 2. The function has four
layers. In the first layer, which resembles key addition in an Substitution Permu-
tation Network (SPN), eight bytes from a buffer word are added to each of eight
state bytes. In the second layer, the state is modified by eight parallel applica-
tions of the AES s-box. The third layer contains a repeated Maximum Distance
Separable (MDS) matrix. The final layer consists of a word-based permutation.
The polynomials used in the MDS are identical to those used in AES.

Denoting stage i (0 ≤ i ≤ 15) of the buffer as bi and stage j (0 ≤ j ≤ 2) of
the state as aj , the details of function λ are as follows:

bi[t + 1] = bi−1[t](i 6= 0, 4, 10)
b0[t + 1] = b15[t]⊕ a0[t]
b4[t + 1] = b3[t]⊕ b7[t]
b10[t + 1] = b9[t]⊕ (b13[t] ≪ 32)

where bi[t+1] and ai[t+1] are the content of stage i of buffer b and respectively
state a after the completion of t iterations.

Output Filter

Each application of the Υ function produces new values within the state a. The
output filter selects the 64-bit block a2 to output as the keystream.



Initialization and Rekeying

The initialization process of MUGI consists of five phases. All must be executed
in full during rekeying of a master key. Only phases three, four and five are
executed during rekeying of an initialization vector.

Phase 1: Master Key Injection The 192-bit MUGI state a is initialized using the
128-bit master key K. The key is divided into two segments K0 ‖ K1 and state
a set, using known constant C0, as follows:

a0 = K0

a1 = K1

a2 = (K0 ≪ 7)⊕ (K1 ≫ 7)⊕ C0

Phase 2: State Mixing and Buffer Initialization The non-linear state function
ρ is used to mix the state a a total of sixteen times, using a null buffer. After
each iteration, a stage in the NLFSR buffer is filled with key-dependent material
from the state word a0. The last stage in the buffer is filled first; therefore, the
first stage is filled using key material which has undergone the most mixing:

b(K)15−i = (ρi+1(a[−48], 0))0 0 ≤ i ≤ 15

Phase 3: Initialization Vector Injection The 128-bit initialization vector I =
I0 ‖ I1 is added to the mixed state a in a similar way to the key injection.

a[−32]0 = a[−33]0 ⊕ I0

a[−32]1 = a[−33]1 ⊕ I1

a[−32]2 = a[−33]2 ⊕ (I0 ≪ 7)⊕ (I1 ≫ 7)⊕ C1

Phase 4: Further State Mixing The state is again mixed, using a null buffer,
sixteen times. At the end of this phase, the state is represented by:

a[−16] = ρ16(a[−32], 0)

Phase 5: State and Buffer Mixing The rekeying procedure is finished by iterat-
ing the state and buffer sixteen times using the Υ function, and discarding the
resulting keystream.

a[0] = Υ 16(a[−16]), b(K))

3 Related Work

In [14] the designers of MUGI analyze their cipher. They claim that MUGI
is immune to linear cryptanalysis because the minimum number of active s-
boxes within an approximation is 22, and the maximum linear probability of



an s-box is 2−6. Consequently the maximum probability of an approximation
is 2−132; this is insufficient to attack the cipher given its design strength of
128 bits. They leverage the studied properties of the AES round function to
claim immunity against a resynchronization attack that uses differential, linear
or integral cryptanalysis.

In [7], it is shown that MUGI is not vulnerable to a linear masking attack
due to the difficulty in finding a biased linear combination of the inputs and
outputs of the non-linear function ρ. Also the large size of the state (1,216 bits)
precludes a time-memory-data attack. The dependence of the state and buffer
upon each other makes discovery of divide and conquer and correlation attacks
non-trivial, and to date, none have been discovered. They note that MUGI passes
all common statistical tests.

In [12], Mihaeljevic studies a variant of MUGI in which MDS matrices are
excluded from the F component of the ρ update function. Because MUGI uses
the AES s-box, which is well known to produce over-defined and sparse equations,
the simplified MUGI can be subjected to an XL attack. However, the report [12]
does not produce any definite conclusions about the complexity of the attack,
except that increasing the length of the key could increase the design strength
above the attack complexity (which would make the attack successful). Also
Mihaeljevic [12] need not exclude linear operations like the MDS from the attack;
these enable the production of additional equations which should reduce the
complexity of the attack, although increase the difficulty in rendering the over-
defined equations.

In [10], Golic analyses the linear function λ using a system of recurrences in
b4 and b10 , and solved using generating functions. From this, he discovers the
period of the subsequences related to the recurrences is equal to or less than 48,
and the linear complexity is 32. These properties are considered too small for use
in a cryptographic application, although no attack has been forthcoming on this
basis. Golic studies a simplified MUGI in which the buffer is made autonomous
by decoupling the feedback from the state. Linear cryptanalysis is applied to both
the simplified and full versions of MUGI — in both cases, the attack succeeds
when compared to the large state size, but requires greater complexity than brute
forcing the key. The attack is much easier on the simplified version, proving the
success of the non-linear feedback between the buffer and the state. Golic finds
that the algorithm is immune to the XL attack due to the large state and complex
rekeying algorithm.

In [2], Biryukov and Shamir analyze the non-linear state (NLS) of MUGI.
They find that the security of MUGI is very sensitive to small changes in the
design of the ρ function, and the output filter, both of which operate on the
NLS. For example, they describe practical attacks in which the output filter
selects from state words a0 or a1, or when a2 is chosen by the filter after the
evaluation of ρ. The work of [10] in determining buffer recurrences in b4 and
b10 greatly simplifies the complexity of this last attack. The main part of the
paper concerns an attack that allows the contents of the non-linear state to be
recovered knowing only words b4 and b10 of the buffer, given only three output



words and a time complexity of 232. However, guessing these buffer words is
equivalent in effort to guessing the secret key. Also, knowledge of the state at
any point in time does not automatically allow determination of the state at a
future point, since it is quickly mixed with unknown buffer words.

4 An Observation on Key Initialization

As seen in Section 2, MUGI rekeying involves five phases. In phase two, the
fifteenth word of the buffer (b15) is assigned the output (ρ1(a, 0))0, which is the
value of the state variable a0 after a single invocation of the ρ function. In the
ρ function, the a0 word is modified simply by replacing its value with that of
a1 (that is, one third of the state is not changed by the ρ function). Since each
buffer word is only updated once in the second phase, at the end of phase two,
b15 contains the unmodified key word K1, which entered the state as a1.

Stages three and four of the initialization do not touch the buffer at all,
meaning that at the start of the final stage, after thirty-two rounds of the ρ
function, half of the key material is present in the buffer in its unmixed state.
An attacker has to work backwards through only sixteen rounds of ρ to obtain
K1. While there is no known way of doing this faster than brute force, this
is still significantly less effort than is suggested by the lengthy and complex
initialization process.

5 Improving Key Agility of MUGI

Compared to many other contemporary ciphers, MUGI has a large ratio of key
size to state size. This can be seen in Table 1, which is ordered by increasing
ratio of key to state size.

Table 1. Key to State Size of Modern Word Based Stream Ciphers

Cipher Key Size State Size Ratio
(bits) (bits)

Helix [9] 256 160 1:0.6

Turing [13] 256 544 1:2.1

SNOW [8] 256 576 1:2.2

Rabbit [3] 128 513 1:4.0

Dragon [4] 256 1,088 1:4.2

MUGI [15] 128 1,216 1:9.5

RC4 [1] 128 2,048 1:16.0

Scream [11] 128 2,432 1:19.0

HC-256 [16] 256 65,536 1:256.0

One implication of a large state size is reduced key agility, since the key
initialization algorithm needs to touch each element of the state. A rule of thumb



observed in SNOW, Dragon, HC-256 and MUGI, all of which mix the internal
state using the update function, is that the function should be called twice for
each element in the state. Scream chains each element in its masking table by
iterating the update function four times on the previous element. Consequently,
MUGI, Scream and HC-256, all of which have large states, also have lengthy key
initialization functions and are poor performers in terms of key agility. While
Dragon and MUGI have comparable state sizes, Dragon’s key is twice the length,
providing better security per byte of state. Its update function is much faster, so
the key initialization algorithm, at a throughput of 11 cycles/byte, is completed
in approximately twenty percent of the time required by MUGI.

There are two obvious strategies that can be considered to improve the per-
formance of MUGI. The first is to migrate the cipher from a 64- to 32-bit design,
by halving the size of each of the components, including the stages in the NLFSR
and the words within the non-linear state. This has the added advantage that
the design of MUGI now matches the architecture on which it is most likely to
be implemented. It has the fatal weakness that the non-linear state naturally
houses a 96-bit rather than 128-bit key. This key size is too small. Also the
reduction in size of components necessitates rethinking the design of the core
function F , which contains eight 8× 8 s-boxes and two 32× 32-bit MDS matri-
ces. Using eight 4× 4 s-boxes increases the maximum characteristic probability
across four rounds from 2−132 to 2−50, and using four 8×8 s-boxes increases the
maximum probability across four rounds to 2−100. In both cases, this is a signif-
icant loss of security. In this case the trade-off of security to benefit efficiency is
inappropriate.

An alternative strategy is to leave the non-linear state and its ρ update
function as they are, and act upon the deficiencies of the buffer. By reducing
the buffer to 8 × 64-bit stages, for a total state size of 512 + 192 = 704 bits,
the speed of the rekeying strategy is increased significantly, the speed of the
update function is slightly increased, and the security is marginally decreased.
The state size is still more than five times the size of a 128-bit master key. This
is the strategy that will be adopted in the modification of MUGI.

Shrinking the buffer involves altering the taps used for feedback, and also
the indices to stages used by the non-linear filter function. As the size of the
buffer is halved, it is a natural progression to also halve the indices of the taps
and stages, leaving their order unaltered. One effect of this strategy is that some
stages receive feedback from adjacent stages.

Another improvement is to remove phase four of the keying scheme. This
mixes the non-linear state sixteen times. Consequently, by the end of the initial-
ization, each element of the non-linear state and the buffer has been modified
forty-eight and thirty-two times respectively. By removing this stage, each el-
ement of the non-linear state and buffer has been altered sixteen times. This
brings the cipher into line with the design principles of other ciphers, and the
rule of thumb that each element of the state should be touched by a non-linear
function (at least) twice.



To remove the property discussed in Section 4, we change the state word that
is fed into the buffer in phase two. If a1 is used as feedback to the buffer, then
the state word a0 reflects the contents of the buffer word last modified. This is a
benign property, since it is destroyed immediately upon commencement of phase
three. But using a2 as feedback in phase two avoids this relationship, with the
obvious proviso that as it is used post-initialization to generate output, its role in
providing feedback to the buffer is localized to the key initialization algorithm.

6 An Improvement: the MUGI-M algorithm

In the modified algorithm, denoted MUGI-M, the only changes that effect the
update sub-function ρ are the changes in the buffer words used as inputs:

a0[t + 1] = a1[t]
a1[t + 1] = a2[t]⊕ F (a1[t], b2[t])⊕ C1

a2[t + 1] = a0[t]⊕ F (a1[t], b5[t] ≪ 17)⊕ C2

The update sub-function λ operates on the buffer as follows:

bi[t + 1] = bi−1[t](i 6= 0, 2, 5)
b0[t + 1] = b7[t]⊕ a0[t]
b2[t + 1] = b1[t]⊕ b3[t]
b5[t + 1] = b4[t]⊕ (b6[t] ≪ 32)

The initialization process of MUGI-M consists of four phases. All must be
executed in full during rekeying of a master key. Only phases three and four are
executed during rekeying of an initialization vector.

Phase 1: Master Key Injection The 128-bit MUGI-M state a is initialized as per
Phase 1 of the MUGI algorithm.

Phase 2: State Mixing and Buffer Initialization The non-linear state function ρ
is used to mix the state a a total of eight times, using a null buffer. After each
iteration, a stage in the buffer is filled with key-dependent material from the
state word a2. The last stage in the buffer is filled first; therefore, the first stage
is filled using key material which has undergone the most mixing:

b(K)7−i = (ρi+1(a[−16], 0))2 0 ≤ i ≤ 7

Phase 3: Initialization Vector Injection The 128-bit initialization is added to the
mixed state a as per Phase 3 of the MUGI algorithm.

Phase 4: State and Buffer Mixing The rekeying procedure finishes by iterating
the state and buffer eight times using the combined Υ function, and discarding



the resulting keystream.

a[0] = Υ 8(a[−8]), b(K))

Test vectors for this algorithm are presented in Appendix A. Code is available
from the authors upon request.

7 Analysis of MUGI-M

Table 2 shows the contrast in efficiency between MUGI and MUGI-M on the
Intel Pentium 4 (Northwood) processor. In particular, there is an improvement
in MUGI-M of 200% in the speed of rekeying an initialization vector, and 170%
in full rekeying. There is a modest 30% increase in the speed of the keystream
generation, due likely due to reduced register pressure and smaller buffer loops.

Table 2. Efficiency of MUGI and MUGI-M on the Intel Pentium 4

Cipher Keystream Key Initialization Key Initialization
Generation (IV) (Full)

Ratio

Cycles per iteration

MUGI 181 4987 7540 1:27.6:41.7

MUGI-M 140 1652 2784 1:11.8:20.0

Cycles per byte

MUGI 25.2 36.8 55.7 1:1.5:2.2

MUGI-M 19.4 12.2 20.6 1:0.6:1.1

Ratio 1.3:1 3.0:1 2.7:1

The attacks discussed in Section 3 are ineffective against MUGI for the fol-
lowing reasons: the effectiveness of the highly non-linear state function ρ, which
leverages the properties of the AES block cipher; the large size of the buffer;
the feedback between the internal state and the buffer; and the complex rekey-
ing strategy. None of the attacks rely on properties of the buffer other than its
size. Golic [10] argues that the properties of the buffer, when considered au-
tonomously, are cryptographically poor. This argument is deflected by the fact
that the buffer is coupled to the non-linear state, and that it is unrealistic to
map the buffer properties directly to those of the whole cipher. However, from
this it can be claimed that by changing the location of the taps in the buffer, we
are not altering any special properties of the buffer, which was constructed in an
ad-hoc manner. We are aiming to repair the performance of MUGI rather than
engender it with additional security properties. In the remainder of this section,
the resistance of MUGI-M against classes of individual attacks is considered.



Block-cipher style attacks rely on the properties of the non-linear function:
for example, the maximum differential and linear probabilities across the func-
tion. Given that only the size of the buffer, and the location of its taps have been
changed, the analysis of MUGI in [7] remains unchanged. The analysis relies ex-
tensively on the properties of the 64-bit F function, which is a modified AES
round function. It is well-known that this function is resistant against differential
and linear attacks. This is because the s-boxes in the F function have a maxi-
mum probability of 2−6, although almost half of the s-box characteristics have a
probability of 2−7. To launch a successful attack against the F function requires
a differential that incorporates fewer than ten active s-boxes, as 2−7×10 < 2−64.
The analysis in [7] of the intertwined MDS matrices indicates that they guaran-
tee at least eight active s-boxes over four rounds. If a differential style attack can
be launched against MUGI, it will need to use fewer than six words of keystream.
The F function exhibits a vulnerability to integral cryptanalysis across no fewer
than four, and no more than nine rounds. The synchronous nature of the cipher
means that the attacker does not have sufficient control over the inputs to launch
it on either MUGI or MUGI-M. The resilience of MUGI-M against block-cipher
style attacks appears to be the same as that of MUGI. If an attack of this style
affects one, it will presumably affect the other.

Linear cryptanalysis The self-evaluation report of MUGI [14] includes an
analysis of linear cryptanalysis incorporating both the non-linear state and the
buffer. This form of linear cryptanalysis consists of two phases: the first deter-
mines a linear approximation of ρ. In the second, a path is searched to acquire an
approximation that consists only of output bits (as the internal state is not avail-
able to the attacker). For MUGI-M, the first phase remains unaltered from that
of MUGI: if an approximation can be found that includes fewer than twenty-two
active s-boxes, linear cryptanalysis may be possible. The second phase does not
depend upon the length of the buffer; since the nature of the buffer has not been
fundamentally altered, the analysis of MUGI applies equally to MUGI-M.

Time-Memory-Data trade-off attacks MUGI-M is immune to time-memory-
data trade-off attacks because it has a small key size relative to the size of the
buffer. For a brute-force equivalent attack with T = 2128, M2 × D2 = 2896.
Assuming that a limit is placed on generating 2128 bits of keystream under one
key, then to launch an attack requires 2287 gigabytes of memory. This is clearly
infeasible.

Divide and conquer attacks A successful divide and conquer attack on MUGI
in which the components are autonomous, and that determines the contents of
the components sequentially, has a complexity of 2192 + 21024 (rather than the
brute-force complexity of 2192 × 21024). The shorter buffer length of MUGI-
M reduces this complexity to 2192 + 2512. This analysis ignores the fact that
the components are not autonomous, and that the complexity may be much



higher. The complexity of the attack needs to be less than 2127 to be considered
successful, given the 128-bit design strength of MUGI. Therefore, divide and
conquer attacks are very unlikely to succeed against MUGI-M.

Correlation attacks A correlation attack on MUGI or MUGI-M requires a
measure of correlation between the NLS and the NLFSR. No measure has been
found in either cipher, due to the absence of a perceivable bias in the non-linear
filter, and to the feedback between the NLS and the NLFSR. A correlation attack
against MUGI-M seems unlikely.

Guess and determine attacks have been successful against a number of
word-based ciphers. In a guess and determine attack against a PANAMA-style
cipher, a cryptanalyst can adopt one of three approaches: fix elements within
the non-linear state and use them guess the contents of the NLFSR; fix elements
within the NLFSR and use them to guess the contents of the NLS; or a hybrid
approach in which elements from both components are guessed.

MUGI has shown resistance to guess and determine attacks because of the
high non-linearity in the ρ function, and the large sizes of both the state and
the buffer. Adopting either of the first two approaches outlined is fruitless, be-
cause the material guessed exceeds the number of bits in the master key, so a
hybrid approach needs to be adopted. While this may be possible, no guess and
determine attack has been possible, because no simple relationship between the
non-linear state and the buffer has been discovered. As the buffers in MUGI and
MUGI-M are similar in structure and size (relative to the master key size), and
the ρ function is essentially unchanged, a guess and determine attack on one of
the ciphers is likely to apply (with modifications) to the other.

Linear masking attacks depend on two factors: finding a linear approximation
to the non-linear filter, and finding a linear combination of the buffer that causes
the bias in the non-linear filter to vanish. To date, no effective bias has been
discovered in the non-linear filter ρ of MUGI, which is unaltered in MUGI-M.
We do not expect that MUGI-M is vulnerable to linear masking attacks.

Algebraic attacks depend upon developing systems of equations on the non-
linear components of ciphers. In MUGI-M, the sole non-linear component is the
AES s-box, which is well-known to be over-defined. The linear components of the
non-linear filter and buffer allow extra equations to be added to the system. In
principle, MUGI-M is vulnerable to an XL attack, with a complexity similar to
that on MUGI, which shares the same non-linear filter. However, in both cases,
the complexity of the XL attack exceeds the design strength of the 128-bit master
key [12], and is therefore not practical.

Rekeying Attacks MUGI-M appears to be secure from rekeying attacks, de-
spite the fact that the key initialization algorithm mixes the non-linear state



sixteen instead of forty-eight times, and the buffer sixteen instead of thirty-two
times. The level of mixing per buffer stage remains the same.

Also the attacker has no control over any stage in the buffer, except indirectly
through the non-linear state. No raw key material enters the buffer at any time.

Consider a resynchronization attack using multiple master keys, in which
there are differences between the keys. For extra freedom, the attacker is allowed
to control the difference in the initial a2 state word. Because the F function is
optimized against differential cryptanalysis, and because each of the stages in the
buffer is chained to previous stages, the attacker very quickly loses the ability to
track differences within the keystream. No differentials through the F function
are possible after it has been iterated four times. After the population of b6

and b7 in phase two of the rekeying, subsequent words are affected by at least
four iterations of the F function and therefore activate too many s-boxes for an
effective related-key attack to be launched. In phase four, b6 and b7 are filled
with material dependent upon all buffer words, so the low non-linearity present
in these words in phase two is not a weakness.

8 Summary

In this paper we have reviewed past cryptanalysis of the MUGI stream cipher,
and pointed out a peculiarity in the key initialization algorithm, whereby one key
word was visible in the buffer after thirty-two out of forty-eight iterations of the
update function. We determined that MUGI had poor key agility, compared to
other word-based stream ciphers because its design targets 64-bit architectures,
which are not yet commonly available, and because its large state size requires a
lengthy key initialization process. The state size is large relative to the key size,
so does not serve well the security-efficiency trade-offs in MUGI’s design.

We suggested a variant of the MUGI algorithm, MUGI-M, in which the
size of the buffer was halved, and the key initialization algorithm reduced from
forty-eight to sixteen steps. This resulted in an improvement of 200% in the
speed of rekeying an initialization vector, and 170% in full rekeying. We analysed
the new variant with respect to security and determined that it remains secure
against attacks, principally because we made no significant alterations to the
non-linear filter, because each stage in the buffer is sufficiently modified by the
key initialization algorithm, and because the buffer is still large relative to the
key size. This alteration will serve the security-performance trade-off of MUGI
well, both now and in the future, when 64-bit architectures, for which MUGI
was designed, become commonplace.

Acknowledgements

Many thanks to Minna Yao and the anonymous referees for their feedback on
this paper.



References

1. Anonymous. RC4 algorithm revealed. Posting to sci.crypt
usenet group on 14 September, 1994. Available at
ftp://idea.sec.dsi.unimi.it/pub/security/crypt/code/rc4.revealed.gz.

2. Alex Biryukov and Adi Shamir. Analysis of the non-linear part of MUGI. In Serge
Vaudenay, editor, Proceedings of the 12th International Workshop on Fast Software
Encryption, Lecture Notes in Computer Science. Springer-Verlag, 2005. To appear.

3. Martin Boesgaard, Mette Vesterager, Thomas Pedersen, Jesper Christiansen, and
Ove Scavenius. Rabbit: a new high-performance stream cipher. In Joan Daemen
and Vincent Rijmen, editors, Proceedings of the 9th International Workshop on
Fast Software Encryption, volume 2365 of Lecture Notes in Computer Science,
pages 325–344. Springer-Verlag, 2003.

4. Kevin Chen, Matt Henricksen, Leonie Simpson, William Millian, and Ed Daw-
son. Dragon: A fast word based cipher. In Information Security and Cryptology -
ICISC ’04 - Seventh International Conference, 2004. To appear in Lecture Notes
in Computer Science.

5. Joan Daemen and Craig Clapp. Fast hashing and stream encryption with
PANAMA. In Serge Vaudenay, editor, Proceedings of the 5th International Work-
shop on Fast Software Encryption, volume 1372 of Lecture Notes in Computer
Science, pages 60–74. Springer-Verlag, 1998.

6. Joan Daemen and Vincent Rijmen. Rijndael. In Proceedings from the
First Advanced Encryption Standard Candidate Conference, National Insti-
tute of Standards and Technology (NIST), August 1998. Available at
http://csrc.nist.gov/encryption/aes/.

7. Ed Dawson, Gary Carter, Helen Gustafson, Matt Henricksen, William
Millan, and Leonie Simpson. Evaluation of the MUGI psuedo-
random number generator. Technical report, CRYPTREC, Informa-
tion Technology Promotion Agency (IPA), Tokyo, Japan, 2002. Avail-
able at www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1035 IPA-
MUGI report final.pdf.

8. Patrik Ekdahl and Thomas Johansson. Snow - a new stream cipher, 2000. Available
at http://www.it.lth.se/cryptology/snow/.

9. Niels Ferguson, Doug Whiting, Bruce Schneier, John Kelsey, Stefan Lucks, and Ta-
dayoshi Kohno. Helix: fast encryption and authentication in a single cryptographic
primitive. In Joan Daemen and Vincent Rijmen, editors, Proceedings of the 9th In-
ternational Workshop on Fast Software Encryption, volume 2365 of Lecture Notes
in Computer Science, pages 345–361. Springer-Verlag, 2003.

10. Jovan Golic. Security evaluation of MUGI. Technical report, CRYPTREC, Infor-
mation Technology Promotion Agency (IPA), Japan, Tokyo, 2002.

11. Shai Halevi, Don Coppersmith, and Charanjit Jutla. Scream: a software-efficient
stream cipher. In Joan Daemen and Vincent Rijmen, editors, Proceedings of the
9th International Workshop on Fast Software Encryption, volume 2365 of Lecture
Notes in Computer Science, pages 195–209. Springer-Verlag, 2003.

12. Mihodrag Mihaeljevic. Report on security evaluation of MUGI stream cipher.
Technical report, CRYPTREC, Information Technology Promotion Agency (IPA),
Tokyo, Japan, 2002.

13. Gregory Rose and Philip Hawkes. Turing: a fast stream cipher. In Joan Daemen
and Vincent Rijmen, editors, Proceedings of the 9th International Workshop on
Fast Software Encryption, volume 2365 of Lecture Notes in Computer Science,
pages 307–324. Springer-Verlag, 2003.



14. Dai Watanabe, Soichi Furuya, Hirotaka Yoshida, and Kazuo Takaragi.
MUGI psuedorandom number generator, self evaluation, 2001. Available at
http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html.

15. Dai Watanabe, Soichi Furuya, Hirotaka Yoshida, and Kazuo Takaragi. A new
keystream generator MUGI. In Joan Daemen and Vincent Rijmen, editors, Pro-
ceedings of the 9th International Workshop on Fast Software Encryption, volume
2365 of Lecture Notes in Computer Science, pages 179–194. Springer-Verlag, 2003.

16. Hongjun Wu. A New Stream Cipher HC-256, 2004. Available at
http://eprint.iacr.org/2004/092.pdf.

A Test vectors for MUGI-M

The following little-endian test vectors for MUGI-M are presented:

Key = 00000000000000000000000000000000
IV = 00000000000000000000000000000000

Keystream =
0E850A7AD4E94A1C 5C97E7FBA492CC60 34738F8D04904D47
79CE86DC89D2E684 34050A91BC2555D0 8C8310A3E543DE40
F2B6B9F612381372 11036D8E55485B69 5323E5B6F05CBF32
389675E756BF490E D61618C9FAAFE00F 51BC3DA8A4C70E50
44147EFBDA308F4A D0AD8E5C38E85FD5 8F397AEA286A7761
C64694622A3599E5

Key = 0E850A7AD4E94A1C5C97E7FBA492CC60
IV = 34738F8D04904D4779CE86DC89D2E684

Keystream =
8BB9E439BD1B632F C614E04066FAEA66 1820B17F2D7216B6
8986D48391441B8F E1B8A6D4C6A81815 B91207DC6138669A
2428795E4B67258A 7D6E0786559E0F32 E0B9DC8B34C5A6D8
C59E1BB3FD1ACA53 4395FF4AF7C9A1AC DFFDE7F86661D94D
7A37A985291598A1 AB554E72C2C7EAD2 C9125F4ACAEBE3B4
66DB2836BF75CC34

Key = 8BB9E439BD1B632FC614E04066FAEA66
IV = 1820B17F2D7216B68986D48391441B8F

Keystream =
F4EB67A12774D27D 6FE1F36A696E8D20 0017C6166A273176
A06F58F0FAEE1B5E C1A8F9081E85FE55 A2FC5569966650F8
C44F926DFEDD99D0 5B6ECCE80E4C2057 67A9F58EED1CABF5
0500EF8D4429B3F4 90F58F5C42F74028 8C4B9D15AA7DFCE1
668491546DC4D799 4D040BCFEB46706E 365E136FC31B8204
BF9CE27566C138B1


