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Notations

[a0; a1, . . .] continued fraction.

Aut(Ĉ) group of Möbius transformations on the Riemann sphere.

χ see (A.3).

em(z) exp(2πiz/m).

Γ the Gamma-function.

γ Euler-Mascheroni constant, γ = 0.57721 . . .

Ha,m general modular hyperbola, see (2.14).

Hm modular hyperbola, see (2.1).

Km(r, s) Kloosterman sum, see (2.3).

N(n,m) see subsection 1.3.1.

Nm(Ω) counting function for points contained in Ω and the modular hyperbola Hm,
see (2.2).

P the set of primes, P = {2, 3, 5, 7, 11, . . .}.

ϕ(m) number of n, 1 ≤ n ≤ m relatively prime to m.

Φ(n)
∑∞
m=0 N(n,m).

p• (possibly finite) sequence pk, pk+1, . . .. The initial index k depends on the
context.

Ψ(N)
∑

3≤n≤N Φ(n).

resz0 f residue of f at z0.

SL2Z group of all 2× 2-matrices with integer coefficients and determinant 1.

Vβ
α(f) total variation of the function f.

bxc largest integer ≤ x.

Xt transpose of a matrix X.

ζ the Riemann zeta-function.
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2 Notations

Usual Conventions
We use the Landau symbol O(. . .) and the Vinogradov symbol �. By writing Or(. . .) or �r we
mean to express that the implied constants are dependent on the parameter r (the range of this
parameter will be obvious from the context in which it appears).
The symbol ε has a special meaning in the following sense: when writing f(x) �ε gε(x) or

the Oε(. . .)-analogue these statements are claimed to hold for ε > 0 sufficiently small. However,
they may not necessarily be valid if ε is taken too large (this is particularly relevant for the
arguments in Section §3.2).
We briefly make use of the notation O(mo(1)) in Section §2.3 which is understood to mean

Oε(mε).



Preface

The examination regulations of Würzburg University require theses submitted in a language
other than German to contain an abstract in German. We shall fulfill this requirement here.
The reader may also find an english version below.

Zusammenfassung der Arbeit
Im Jahr 2000 führten Calkin und Wilf einen unendlichen binären Baum ein, welcher jede positive
rationale Zahl genau einmal enthält. Dieser Baum kann iterativ generiert werden, indem man
mit der Wurzel 1 beginnt und auf jeden Knoten zwei Möbiustransformationen anwendet, um
dessen Kinder zu generieren. Durch Identifikation dieser Möbiustransformationen mit Matrizen
erhält man einen unendlichen binären Matrix-wertigen Baum und eine natürliche Bijektion auf
den Calkin-Wilf Baum.
In Kapitel 1 geben wir mehr Details zu der oben skizzierten Konstruktion und untersuchen

die Verteilung von Zahlen im Calkin-Wilf Baum, welche zu Matrizen im Matrix-Baum gehören,
die eine vorgegebene Spur haben. Die Zahlen N(n,m), welche wir dabei einführen, konnten nicht
in der On-Line Encyclopedia of Integer Sequences (OEIS) gefunden werden, was als Indiz dafür
gelten kann, dass diese zuvor noch nicht untersucht wurden.
Dafür wurden jedoch die Funktionen

Φ(n) :=
∞∑
m=0

N(n,m) und Ψ(N) :=
N∑
n=3

Φ(n)

zuvor von Kleban et al. (1999) eingeführt. Von Kleban et al. stammt die Vermutung

Φ(n) ∼ c · n logn (c = 1).

Kallies et al. (2001) zeigten

Ψ(N) = 1
ζ(2)N

2 logN + O(N2 log logN).

Daraus ergibt sich, dass obige Vermutung modifiziert werden muss, um richtig zu sein. Tatsäch-
lich müsste man c = 2

ζ(2) = 1.21 . . . wählen. Peter (2001) konnte jedoch zeigen, dass auch diese
modifizierte Vermutung falsch ist. Das bisher beste bekannte Ergebnis zu Ψ(N) stammt von
Boca (2007):1

Ψ(N) = 1
ζ(2)︸ ︷︷ ︸

=0.607...

N2 logN + 1
ζ(2)

(
γ − 3

2 −
ζ ′(2)
ζ(2)

)
︸ ︷︷ ︸

=−0.214...

N2 + Oε(N
7
4 +ε). (0.1)

1Im zugehörigen Artikel wird eine falsche Konstante vor dem N2-Term angegeben.
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4 Notations

Kapitel 3 legt Bocas Resultat und dessen Beweis dar. Dabei korrigieren wir einige kleine Fehler
im Originalartikel und weichen an manchen Stellen auch etwas von der Quelle ab. Insbesondere
versuchen wir die geometrische Natur der zugrundeliegenden Ideen herauszukristallisieren und
argumentieren mithilfe von Abbildungen, soweit dies hilfreich scheint.
Der Schlüssel zu Bocas Beweis ist die Reduktion des Problems Ψ(N) zu berechnen auf ein

Problem Punkte in modularen Hyperbeln in speziellen Regionen zu zählen, d.h. man versucht
Punkte (x, y) ∈ Z2 ∩ Ω mit xy ≡ 1 mod m für feste m ∈ N und Ω ⊆ R2 zu zählen. Dieses neue
Problem lässt sich durch Anwenden bekannter Abschätzungen lösen.
In Kapitel 2 entwickeln wir diese Abschätzungen und widerlegen ein Resultat von Shparlinski

(2012).
Damit wiederum gelingt in Kapitel 3 dann der Beweis der Formel

Ψ(N) =
∑
m<N

ϕ(m)
m2 (N −m)2 + Oε(N

7
4 +ε).

Obige Summe lässt sich anschließend, unter Benutzung einiger Resultate über die Riemannsche
Zetafunktion, behandeln. Die dafür benötigten Hilfsmittel wurden im Anhang zusammengestellt.

Abstract
In 2000, Calkin and Wilf introduced an infinite binary tree which contains each positive rational
number exactly once. This tree can be generated iteratively by starting with the root 1 and
applying two Möbius transformations to each node to obtain its children. By identifying these
Möbius transformations with corresponding matrices one obtains an infinite binary matrix-
valued tree and a natural bijection onto the Calkin-Wilf tree.
In Chapter 1 we elaborate on the construction sketched above and subsequently investigate

the distribution of numbers in the Calkin-Wilf tree which correspond to matrices in the matrix
tree with fixed trace. The quantity N(n,m) introduced in the process could not be found within
The On-Line Encyclopedia of Integer Sequences (OEIS), indicating that it was not studied
previously.
However, the quantities

Φ(n) :=
∞∑
m=0

N(n,m) and Ψ(N) :=
N∑
n=3

Φ(n)

were introduced previously by Kleban and Özlük [1999] with mathematical physics in mind.
They conjectured that

Φ(n) ∼ c · n logn (c = 1).

Kallies et al. [2001] showed that

Ψ(N) = 1
ζ(2)N

2 logN + O(N2 log logN).

From this one finds that the above conjecture has to be modified, namely one has to take
c = 2

ζ(2) = 1.21 . . .; however, as shown by Peter [2001], even this modified conjecture is wrong.
The so far best result concerning Ψ(N) is due to Boca [2007],2

Ψ(N) = 1
ζ(2)︸ ︷︷ ︸

=0.607...

N2 logN + 1
ζ(2)

(
γ − 3

2 −
ζ ′(2)
ζ(2)

)
︸ ︷︷ ︸

=−0.214...

N2 + Oε(N
7
4 +ε). (0.2)

2In the paper an erroneous value for the term in front of N2 is given.
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Chapter 3 is devoted to giving an exposition of Bocas result. We correct some minor errors
in the process and deviate from the original exposition at several stages. In particular, we try
to stress the geometric nature of some of the main ideas and choose to appeal to figures where
it seems helpful.
The key ingredient to Bocas proof is reducing the problem of calculating Ψ(N) to a problem of

counting points on modular hyperbolas in certain shapes, that is counting points (x, y) ∈ Z2∩Ω
such that xy ≡ 1 mod m for given m ∈ N and Ω ⊆ R2. This new problem is subsequently solved
by applying known estimates.
In Chapter 2 we develop these estimates and disprove a result found in [Shparlinski, 2012].
Back in Chapter 3 we obtain the formula

Ψ(N) =
∑
m<N

ϕ(m)
m2 (N −m)2 + Oε(N

7
4 +ε)

from the aforementioned reduction and the estimates from Chapter 2. The above sum is dealt
with by appealing to some facts about the Riemann zeta function. The necessary tools are
presented in the appendix.

Outlook
On the Error Term in the Formula for Ψ(N)

We shall make some remarks on the 7
4 -boundary in the error term in (0.2). Reduced to its very

core Bocas argument gives a formula of the type

Ψ(N) =
∑
m<N

#hyperbola points mod min the region ΩN,m,

where ΩN,m is a region depending on N and m. The number of hyperbola points (mod m)
in a rectangular region can be controlled up to an error of Oε(m

1
2 +ε). In order to obtain an

estimate for the number of hyperbola points (mod m) in ΩN,m the region is approximated by
bN

1
4 c rectangles (the exponent 1

4 is optimal for this particular problem). Therefore, one already
has an error of Oε(N

1
4m

1
2 +ε). Summing over m < N this gives an error of

Oε(N(N
1
4N

1
2 +ε)) = Oε(N

7
4 +ε).

Since no improvement on the error Oε(m
1
2 +ε) for rectangular regions is to be expected one

might hope to obtain better results by proving estimates custom-tailored for the regions ΩN,m

(note, that these do not look all too complicated, see Chapter 3 for details). Preliminary
approaches, by trying to adapt the method used to prove the estimate for rectangular regions,
proved to be fruitless. In fact, one encounters exactly the problems that are touched upon in
Section §2.3, but the easy shape of the regions ΩN,m may still save the underlying arguments.

More on the Quantity N(n, m)

The inquiry conducted on the quantity N(n,m) in Chapter 1 still only scratches the surface of
what might be possible. From what we show in this thesis one already obtains Φ(n) = 2N(n, 0).
Since estimating Φ(n) was already of interest prior to this thesis this might motivate further
investigation on N(n,m).
In particular, we prove in Chapter 3 that N(n,m) is monotonically decreasing as m increases

(for n fixed). It would be interesting to know for which m we have a jump, namely N(n,m) >
N(n,m+ 1). Now, given a jump point (n,m), can one find non-trivial estimates for the time k
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up to the next jump,

N(n,m) > N(n,m+ 1) = . . . = N(n,m+ k) > N(n,m+ k + 1) ≥ 1 ?

Words of Appreciation
At this point some words of appreciation might be appropriate. The author would like to
thank Prof. Dr. Steuding, first and foremost, for his constant encouragement in the times when
unexpected obstacles shattered new ideas, but also for his advice, thorough reading of this thesis
and giving the author the opportunity of speaking on this subject at the AaA7-workshop.
Also, the author would like to thank his cousin Niclas with whom he had the great pleasure

of spending his first 10 years growing up together and eventually also studying mathematics
together. His support, friendship and all ensuing mathematical discussions with him have proven
to be invaluable to the author.



Chapter 1

The Calkin-Wilf Tree and a Trace Condition

1.1 The Calkin-Wilf Tree
We start this inquiry by recalling some well-known facts. Given a matrix X =

(
a b
c d

)
∈ SL2Z we

associate with it the Möbius transformation

mX : z 7−→ az + b

cz + d
.

This induces an epimorphism of groups

SL2Z −→ Γ :=
{
z 7→ az + b

cz + d

∣∣∣ a, b, c, d ∈ Z, ad− bc = 1
}
⊆ Aut(Ĉ)

with kernel {±1}, whence PSL2Z := SL2Z/{±1} ∼= Γ.
Since Γ acts naturally on Ĉ by evaluation, so does SL2Z by means of the above homomorphism.

We are particularly interested in the evaluation at 1, so it will be useful to assign a name to the
map

τ : SL2Z −→ Ĉ,
(
a b
c d

)
= X 7−→ mX(1) = a+ b

c+ d
.

More generally, by replacing the evaluation at 1 by the evaluation at some other point α ∈ R+,
we are inclined to consider the maps

τα :
(
a b
c d

)
7−→ aα+ b

cα+ d
.

We will make some remarks on their interplay in due time.
Now, consider the matrices

L :=
(

1 0
1 1

)
and R := Lt =

(
1 1
0 1

)
.

It is commonly known that the monoid

M := {A1 · · ·Ar | r ∈ N0, A1, . . . , Ar ∈ {L,R}}

generated by L and R is free over {L,R}, see e.g. Calkin and Wilf [2000] or Nathanson [2014]
for stronger results (the empty product A1 · · ·Ar for r = 0 is understood to mean 1). In the
remainder of the chapter when writing A1, A2 . . . these objects are always understood to be
either L or R. Thus, by writing X = A1 · · ·Ar we contend that the right hand side is the
(unique) expression of X as product of Ls and Rs.
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8 Chapter 1. The Calkin-Wilf Tree and a Trace Condition

The fact that M is free over {L,R} is reflected in the observation that each element A1 · · ·Ar
appears exactly once in the binary tree T with root 1 and generation rule

X

XL XR,

that is, the tree

1

L

L2

...
...

RL

...
...

R

LR

...
...

R2

...
...

Given an element X = A1 · · ·Ar ∈M we have an associated element τ(X) ∈ Ĉ. In fact, one
immediately verifies τ(X) ∈ Q+. So, by applying the map τ to each node of the above tree T
we obtain yet another binary tree T1:

1

1
2

1
3

...
...

3
2

...
...

2

2
3

...
...

mAr−2

mAr−1

3

...
...

mAr

This so called Calkin-Wilf tree was introduced by Calkin and Wilf [2000]. They showed that
each number x ∈ Q+ appears once and only once within this tree, i.e. the map

τ |M : M −→ Q+ (1.1)

is a bijection.1
Now, fix β ∈ Q+ and let B := τ−1(β). Because of

τβ(X) = mX(β) = mX(τ(B)) = mX(mB(1)) = mXB(1) = τ(XB),

we find that the tree Tβ obtained by applying τβ to the tree T is contained in T1 as a subtree,
namely the image of the subtree with node B of T under τ = τ1. This, in some sense, justifies
the special place we have attributed to the map τ1 amongst all the other maps τβ for β ∈ Q+.
Theory for understanding the case β ∈ R+ \Q are developed Sander et al. [2011].
The fact that (1.1) is a bijective map immediately gives rise to a certain field of problems: by

virtue of the association

X

LX RX

τ(X) = mX(1)

τ(LX) = mX(1
2) τ(RX) = mX(2)

1:1←−−−−→

1The resulting enumeration of Q+ when reading the tree row by row was actually investigated previously by
Stern [1858]; see also the remarks in Calkin and Wilf [2000].



1.2. Relation to Continued Fractions 9

one can assign a number x ∈ Q+ a property of the matrix τ−1(x) ∈ M . Now, given a certain
property, what are the numbers x ∈ Q+ such that τ−1(x) admits this property? Questions
concerning the distribution and statistical properties of such numbers may also be of interest.
Inquiry on questions of this type is by no means new. For instance, Alkauskas and Steuding

[2007] investigate properties of numbers τ(X), where X is chosen from one fixed row of the tree.
The corresponding matrix-property is h(X) = const, where

h : M −→ N0, A1 · · ·Ar 7−→ r (1.2)

gives the height of the element A1 · · ·Ar in the tree. In particular Alkauskas and Steuding [2007]
prove ∑

X∈h−1(r)
τ(X) = 3 · 2r−1 − 1

2 ,

which immediately yields an expression for the average value of τ on the set h−1(r), since there
are precisely 2r elements in h−1(r); a stronger result of this type is due to Reznick [2008]. See
also Sander et al. [2011, Theorem 3] for a generalization of this.
Our main focus lies on the case where the property in question boils down to some kind of

restriction on the trace of the matrix τ−1(x). Elaboration on this thought will follow shortly.

1.2 Relation to Continued Fractions
In order to further investigate the relation between M and Q+ we must first better understand
the nature of the products A1 · · ·Ar. The results presented in the present section may be found
in Kallies et al. [2001] and in Boca [2007]. We follow closely the exposition in Einsiedler and
Ward [2010, Ch. 3] and Boca [2007].

1.2.1. Some Facts about Continued Fractions
Every number x ∈ R+ has a continued fraction expansion

x = a0 +
1

a1 +
1

a2 + · · ·

=: [a0; a1, a2, . . .],

where a1, a2, . . . ∈ N and a0 = bxc is the integer part of x (this expansion can be generated by
the Gauß map, see Einsiedler and Ward [2010, Ch. 3] for details). If x is rational then a• is
finite, i.e. a• = (a1, . . . , an). Apart from the ambiguity

[a0; a1, . . . , an−1, an, 1] = [a0; a1, . . . , an−1, an + 1]

this representation is unique.
When one is given a1, . . . , an ∈ N and a0 ∈ N0 these numbers determine a rational number

[a0; a1, . . . , an] = pn
qn
,

where the fraction pn
qn

is assumed to be in lowest terms with pn ∈ N0 and qn ∈ N.
The numbers pn, qn appear as coefficients in the matrix(

pn pn−1
qn qn−1

)
= M(a0)M(a1) · · ·M(an), (1.3)
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where
M(a) :=

(
a 1
1 0

)
and p−1 := 1, q−1 := 0. Note that p0 = a0 and q0 = 1. From this we may easily deduce the
recursive formulas {

pn+1 = an+1pn + pn−1,
qn+1 = an+1qn + qn−1.

(1.4)

Applying the determinant to (1.3) we obtain

pnqn−1 − pn−1qn = (−1)n+1.

By means of (1.4) the numbers qn−1 and qn are easily seen to be coprime. For their quotient
we have the identity

qn−1
qn

= qn−1
anqn−1 + qn−2

=
1

an +
qn−2

qn−1

= . . . =
1

an +
1

an−1 +
1

· · ·+ a1

= [0; an, . . . , a1].

1.2.2. Relation to Products of Ls and Rs
For l, r ∈ Z one easily verifies the identities

Ll =
(

1 0
l 1

)
and Rr =

(
1 r
0 1

)
(1.5)

and we obtain
RrLl = M(r)M(l).

For numbers a1, . . . , a2m ∈ N and a0 := 0 and p•, q• defined as previously, combining this with
(1.3) and writing

J := M(0) =
(

0 1
1 0

)
, (1.6)

this yields

Ra1La2 · · ·Ra2m−1La2m = M(a1) · · ·M(a2m) = J

(
p2m p2m−1
q2m q2m−1

)
=
(
q2m q2m−1
p2m p2m−1

)
. (1.7)

Since we have the identity
Rr = JLrJ = J−1LrJ.

equation (1.7) transforms into

La1Ra2 · · ·La2m−1Ra2m = J

(
q2m q2m−1
p2m p2m−1

)
J =

(
p2m−1 p2m
q2m−1 q2m

)
.

Again, using (1.5), equation (1.7) gives more identities, namely

Ra1La2 · · ·Ra2m−1La2mRa2m+1 =
(
q2m q2m−1
p2m p2m−1

)(
1 a2m+1
0 1

)
=
(
q2m q2m+1
p2m p2m+1

)
,

La1Ra2 · · ·La2m−1Ra2mLa2m+1 = J

(
q2m q2m+1
p2m p2m+1

)
J =

(
p2m+1 p2m
q2m+1 q2m

)
.
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The above identities are of little interest to us for the remainder of the inquiry in this chapter,
as we now shift our focus back onto trace conditions. However, these identities will be of great
interest when we take a more in depth look into the paper [Boca, 2007] in Chapter 3. We merely
chose to develop this machinery at the present point, because it seemed to fit the flair of the
current investigation.

1.3 Locating Elements with fixed associated Trace
In this section we will study the frequency of integer parts of τ(X) for X ∈ M subject to the
restriction trX = n, where n ∈ N is fixed.2 As a motivation we plot the points {τ(X) | X ∈
M , trX = n} for n = 3, . . . , 8 and arrive at the following figure:

n = 3
n = 4
n = 5
n = 6
n = 7
n = 8

0 1 2 3 4 5 6 7

Obviously, for m ∈ N0 the numbers τ(X) seem to cluster within the intervals [m,m + 1) with
their total amount decreasing as m increases. We will give a proof of this fact shortly amongst
other properties which one may conjecture when looking at the above figure.

1.3.1. First Observations
We shall denote the numbers of our interest by

N(n, 0), N(n, 1), N(n, 2), . . . ,

where N(n,m) is defined as

N(n,m) := #{X ∈M | trX = n, τ(X) ∈ [m,m+ 1)}.

We first look into the case n = 2. Observe that each of the matrices Lk and Rk for k ∈ N0
has trace 2; one easily verifies the identities τ(Lk) = 1

k+1 and τ(Rk) = k + 1. We contend that
the aforementioned matrices are the only matrices in M with trace 2. To verify this, consider
the identities

tr
[(
a b
c d

)
L

]
= tr

(
a b
c d

)
+ b and tr

[(
a b
c d

)
R

]
= tr

(
a b
c d

)
+ c. (1.8)

Combining these with tr (LR) = 3 we conclude that X ∈M has trace ≥ 3 whenever X is of the
form

X = Y1LRY2 or X = Y1RLY2 (1.9)

for some Y1, Y2 ∈M .
Indeed, we can easily conclude more: say (1.9) holds. We will only deal with the case X =

Y1LRY2 for simplicity’s sake; the other case can be treated in the same fashion. Since the trace

2One may also ask what happens when requiring X to have prescribed eigenvalues. Since X has the characteristic
polynomial Y 2 − (tr X)Y + 1 ∈ R[Y ] prescribing tr X = n amounts to prescribing the eigenvalues to be
n
2 ±

1
2

√
n2 − 4 and vice versa.
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is invariant under cyclic permutations we get

trX = tr (LRY2Y1).

Decomposing Y2Y1 = A1 · · ·Ar−2 and invoking (1.8) we infer

trX ≥ r + 1, (1.10)

where obviously the quantity r is the length of the decomposition of X into a product of Ls
and Rs. In particular, for fixed n ≥ 3 there can only exist finitely many X ∈ M such that
trX = n, since from a certain height upward in the tree there are only matrices having trace
> n or matrices of the form Lk, Rk, whose trace clearly is 2 6= n, as observed previously.
Gathering what we have proved so far, we may state

Theorem 1.1. Let n ∈ N and m ∈ N0. Then the following statements hold:

(a) N(2, 0) =∞,

(b) N(2, 1 +m) = 1,

(c) N(2 + n,m) <∞.

1.3.2. The Case m ≥ 3

In view of Theorem 1.1 we direct our attention to the only remaining interesting case, i.e.
N(n,m) where n ≥ 3. At the beginning of the chapter we have mentioned that the map

SL2Z −→ Γ, X 7−→ mX

is a homomorphism. We use this property to obtain

τ(A1 · · ·Ar) = mA1···Ar(1) = (mA1 ◦ · · · ◦mAr)(1),

whence understanding what τ does to X ∈M reduces to understanding the mapping properties
of mL and mR. To this end turning to continued fractions seems expedient; indeed, as used by
Sander et al. [2011] and mentioned by Alkauskas [2008], the maps mL and mR adhere to the
following property:

Lemma 1.2. Let x ∈ R+ be given by its continued fraction expansion x = [a0; a1, . . .]. Then
one has

mR(x) = [a0 + 1; a1, . . . , ] and mL(x) =
{

[0; a1 + 1, a2, . . .], x ≤ 1,
[0; 1, a0, a1, . . .], x > 1.

Proof: The statement for mR is evident. Now suppose x < 1 and let y = [a2; a3, . . .]. Then we
have x = [0; a1, y] and a direct calculation yields

mL(x) = x

x+ 1 =
1

a1 + 1 +
1
y

= [0; a1 + 1, a2, . . .].

The case x > 1 is proved in the same way and the case x = 1 is easily verified. �

In the case (r, a1) 6= (1, 1) one has

b[a0; a1, . . . , ar]c = a0.
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We proceed by putting Lemma 1.2 to good use in proving the following

Theorem 1.3. Let n ≥ 3. Then the following statements hold:

(a) N(n, n− 1) = N(n, n) = . . . = 0,

(b) N(n, n− 2) = 1,

(c) N(n, 0) =
∑n−2
m=1 N(n,m),

(d) N(n, 0) ≥ N(n, 1) ≥ . . . ≥ N(n, n− 1).

Proof: It will be convenient to write

Mn := {X ∈M | trX = n}.

(a) Let X ∈M . By means of the decomposition X = A1 · · ·Ar, the identity

τ(X) = mA1 ◦ · · · ◦mAr(1)

and by appealing to Lemma 1.2 we conclude that τ(X) is maximal amongst all τ(h−1(r)) ⊆ Q+
if and only if A1 = . . . = Ar = R, i.e. X = Rr, h being the function from (1.2).
If we additionally require trX 6= 2 and thus seek the maximal value Mr of τ(h−1(r) \M2)

then we arrive, again by Lemma 1.2, at the conclusion that this maximum is only attained for

X = Rr−1L =
(
r r − 1
1 1

)
. (1.11)

This in turn yields Mr = r − 1
2 . Note that trX = r + 1.

If we now seek to maximize τ(X) for X ∈ Mn we need only observe that by (1.10) one has
h(X) ≤ n− 1 and hence

Mn ⊆
n−1⋃
r=0

h−1(r) \M2.

The maximal value of τ(X) for X chosen from the set on the right hand side was previously
seen to be n− 3

2 ∈ [n− 2, n− 1), being attained by X as in (1.11) for r = n− 1. In particular
this X has trace n and we conclude N(n,m) = 0 for every m ≥ n− 1, as desired.
(b) We have just seen that the matrix Rn−2L contributes to N(n, n− 2), so evidently we have

N(n, n− 2) ≥ 1. Now, we need only verify that no other matrix from M makes a contribution
to N(n, n− 2). Equivalently, we mean to show

M ′n := max τ(Mn \ {Rn−2L}) < n− 2. (1.12)

Using similar arguments to those from the proof of (a), we conclude that the matrices Rn−3LR
and Rn−3LL satisfy

M ′n ≤ min{τ(Rn−3LR), τ(Rn−3LL)}. (1.13)

By appealing to the identities

Rn−3LR =
(
n− 2 2n− 5

1 2

)
and Rn−3LL =

(
2n− 5 n− 3

2 1

)

we see that Rn−3LL fails to meet the trace condition for n 6= 4. In any case we have

τ(Rn−3LL) = n− 8
3 < τ(Rn−3LR) = n− 7

3 < n− 2,
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which combined with (1.13) yields (1.12), proving N(n, n− 2) = 1.
(c) For X = A1 · · ·Ar we define X ′ := At

1 · · ·At
r. Observe that τ(X) = p

q implies τ(X ′) = q
p .

Because of Lt = R we have X ′ ∈M and furthermore

X ′ = J−1XJ,

(J being defined as in (1.6))whence trX = trX ′. In gathering these facts, we find that

Mn −→Mn, X 7−→ X ′

induces a bijection between the two sets

{Y ∈Mn | τ(Y ) ∈ [0, 1)} and {Y ∈Mn | τ(Y ) ∈ [1,∞)}.

The first set has exactly N(n, 0) elements and the other set exactly
∑∞
m=1 N(n,m). In combina-

tion with (a) the assertion follows.
(d) The inequality N(n, 0) ≥ N(n, 1) is evident from (c). Hence it only remains to be shown

that N(n,m) ≥ N(n,m+ 1) holds for m ∈ N. To this end let X ∈M be such that trX = n and
bτ(X)c = m+ 1 ≥ 2. From Lemma 1.2 we see that X must be of the form

X = Rm+1LY,

for some Y ∈M . Since the trace of a product of matrices is invariant under cyclic permutations
of the factors we have

n = tr (RmLY R),

and
bτ(RmLY R)c = m

by Lemma 1.2. Whence there are at least N(n,m + 1) matrices X ′ ∈ M such that trX ′ = n
and bτ(X ′)c = m, i.e. N(n,m) ≥ N(n,m+ 1). �

We close this chapter by giving a table of the values of N(n,m) for 3 ≤ n ≤ 20; empty cells are
meant to contain a zero. For m > 18 and n as above all the numbers N(n,m) vanish.

n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
3 1 1
4 3 2 1
5 4 2 1 1
6 7 3 2 1 1
7 7 3 1 1 1 1
8 12 4 3 2 1 1 1
9 8 2 1 1 1 1 1 1
10 20 8 4 2 2 1 1 1 1
11 13 3 2 2 1 1 1 1 1 1
12 18 4 3 2 2 2 1 1 1 1 1
13 18 6 2 2 1 1 1 1 1 1 1 1
14 31 8 6 4 3 2 2 1 1 1 1 1 1
15 20 6 3 1 1 1 1 1 1 1 1 1 1 1
16 31 8 4 3 3 2 2 2 1 1 1 1 1 1 1
17 24 4 3 3 2 2 1 1 1 1 1 1 1 1 1 1
18 39 10 6 4 3 2 2 2 2 1 1 1 1 1 1 1 1
19 26 6 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
20 53 14 9 6 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1



Chapter 2

Modular Hyperbolas

2.1 Preparatory Facts
The present chapter has the main purpose of providing necessary machinery for the discussion
in Chapter 3. We start by collecting several facts from Shparlinski [2012].
Given m ∈ N we are interested in the location of points on the modular hyperbola

Hm := {(x, y) ∈ Z2 | xy ≡ 1 mod m}. (2.1)

In particular, we seek to find good estimates for the number of such points lying in a given
region Ω ⊆ R2, that is,

Nm(Ω) := #{(x, y) ∈ Hm ∩ Ω}. (2.2)

As it turns out, Kloosterman sums are the canonical tool for studying such a problem. Ab-
breviating

em(z) := exp(2πiz/m),

the (complete) Kloosterman sum Km(r, s) is given by

Km(r, s) :=
∑

(x,y)∈Hm
1≤x,y≤m

em(rx+ sy). (2.3)

When requiring m = p to be prime one has the bound

|Kp(r, s)| ≤ 2√p

due to Weil [1948]. For not necessarily prime m one has the bound

|Km(r, s)| ≤ τ(m)(m gcd(r, s,m))
1
2 ,

(see Iwaniec and Kowalski [2004, Corollary 11.12]), where τ(m) denotes the number of (positive)
divisors of m. Using standard estimates on τ(m) one obtains

|Km(r, s)| �ε (m gcd(r, s,m))
1
2 +ε. (2.4)

As a consequence of the formula for sums over geometric progressions we obtain

Z∑
r=W+1

em(rx) = em(x(W + 1)) · 1− em(xZ)
1− em(x) (2.5)

for any W,Z, x ∈ Z such that em(x) 6= 1 (i.e. m - x). In the case (W,Z) = (0,m) this reduces

15



16 Chapter 2. Modular Hyperbolas

to a well-known orthogonality property of characters, namely

1
m

m∑
r=1

em(rx) =
{

1, if x ≡ 0 mod m,
0, if x 6≡ 0 mod m.

(2.6)

For the modulus of (2.5) we find that∣∣∣∣∣∣
W+Z∑
r=W+1

em(rx)

∣∣∣∣∣∣ ≤ 1
|1− em(x)| = 1

| exp(πix/m)− exp(−πix/m)| = 1
2| sin(πx/m)| .

Assuming |x| ≤ m
2 , we arrive at the estimate∣∣∣∣∣∣

W+Z∑
r=W+1

em(rx)

∣∣∣∣∣∣ ≤ min
{
Z,

m

4|x|

}
≤ min

{
Z,

m

2(|x|+ 1)

}
. (2.7)

2.2 Distribution of Hyperbola Points
2.2.1. Distribution in Rectangles
We shift our attention back to estimating Nm(Ω). In particular, we consider the case were Ω is
a rectangle. The following theorem and its proof are taken from Shparlinski [2012].

Theorem 2.1. Let X = {U + 1, . . . , U +X} and Y = {V + 1, . . . , V + Y }, where m > X,Y ≥ 1
and U ≥ 0 are arbitrary integers. Then we have

Nm(X × Y) = ϕ(m)
m2 XY + Oε(m

1
2 +ε). (2.8)

Note, that XY is the area of the rectangle (U,U +X]× (V, V + Y ].

1

m

Proof: Using (2.6) twice, rearranging terms and using the definition (2.3) of Kloosterman sums
we find that

Nm(X × Y) =
∑

(x,y)∈Hm
x∈X , y∈Y

1 = 1
m2

∑
(x,y)∈Hm
1≤x,y≤m

∑
w∈X

∑
z∈Y

m∑
r,s=1

em(r(x− w) + s(y − z))

= 1
m2

m∑
r,s=1

Km(r, s)
∑
w∈X

em(−rw)
∑
z∈Y

em(−sz).
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The terms corresponding to r = s = m add up to

1
m2Km(m,m)

∑
w∈X

∑
z∈Y

1 = 1
m2XY

∑
(x,y)∈Hm
1≤x,y≤m

1 = ϕ(m)
m2 XY,

which is precisely the main term in (2.8).
The sum over the remaining terms, denoted by Em, can be treated using (2.4):

|Em| �ε m
− 3

2 +ε
m−1∑
r,s=1

gcd(r, s,m)
1
2 +ε

∣∣∣∣∣∣
U+X∑
w=U+1

em(−rw)
V+Y∑
z=V+1

em(−sz)

∣∣∣∣∣∣. (2.9)

Since all terms in r and s yield the same value if r and s are replaced by any other representative
from the residue classes r+mZ and s+mZ respectively, we might as well just replace the sum

m−1∑
r,s=1

with the sum
∑

−m2 <r,s≤
m
2

,

which in turn makes (2.7) applicable. Applying (2.7) and grouping the summands with the same
value gcd(r, s,m) = d together yields1

|Em| �ε m
1
2 +ε ∑

d|m
d6=m

d
1
2 +ε ∑

−m2 <r,s≤
m
2

gcd(r,s,m)=d

1
4(|r|+ 1)(|s|+ 1) (2.10)

�ε m
1
2 +2ε ∑

d|m
d6=m

d
1
2


 ∑
−m

2d<t≤
m
2d

1
d|t|+ 1

2

− 1


The innermost sum is easily estimated using Riemann sums:

∑
−m

2d<t≤
m
2d

1
d|t|+ 1 < 1 +

∑
1≤t≤m

2d

2
dt+ 1 ≤ 1 +

ˆ m
2d

0

2
dt+ 1 dt = 1 +

2 log(m2 + 1)
d

,

whence showing
|Em| �ε m

1
2 +2ε ∑

d|m
d 6=m

d−
1
2 �ε m

1
2 +3ε.

Since ε > 0 can be chosen arbitrarily we can also write

|Em| �ε m
1
2 +ε. �

Theorem 2.1 extends readily to rectangular regions whose side’s lengths exceed m. Indeed, if
given X = {U+1, . . . , U+X} and Y = {V +1, . . . , V +Y } where X,Y need only obey X,Y ≥ 1
we can partition X into 1 + bXmc groups

U + 1, . . . , U +m− 1︸ ︷︷ ︸, U +m, . . . , U + 2m− 1︸ ︷︷ ︸, . . .
By doing the same with Y we obtain a decomposition of the rectangle (U,U +X]× (V, V + Y ]
into (1+ bXmc)(1+ b Ymc) rectangles of a suitable size for Theorem 2.1 to be applicable. The main

1Notice, that Shparlinski [2012] is missing the −1 term after squaring the sum; this term has to be added to
account for the fact that the term r = s = 0 doesn’t appear in the sum, because of gcd(0, 0, m) = m.
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terms add up to ϕ(m)
m2 times the sum over the areas of the smaller rectangles, which is the area

of the big rectangle. Hence,

Nm(X × Y) = ϕ(m)
m2 XY + Oε

(
m

1
2 +ε

(
1 + X

m

)(
1 + Y

m

))
. (2.11)

2.2.2. Distribution in Regions bounded by a smooth Function
Since we now have sufficient control over the quantity Nm(Ω) for rectangular regions Ω it is a
standard idea from calculus to use Riemann sums to better understand Nm(Ω) for a region Ω
bounded from above and below by two sufficiently smooth functions. The following lemma due
to Boca [2007] provides the details on this idea.

Lemma 2.2. Let f ∈ C1[α, β] be a positive function. For

Ω = {(x, y) ∈ R2 | α ≤ x ≤ β, 0 ≤ y ≤ f2(x)}

it holds that
Nm(Ω) = ϕ(m)

m2 area(Ω) + Em

for every T ∈ N, where Em obeys

Em �ε
β − α
Tm

Vβ
α(f) + Tm

1
2 +ε

(
1 + β − α

Tm

)(
1 + ‖f‖∞

m

)
.

Proof: We partition [α, β] into T intervals Ii = [αi, βi] of equal size. Let

mi := min
x∈Ii

f(x) and Mi := max
x∈Ii

f(x).

The inclusions
T⋃
i=1

(Ii × [0,mi]) ⊆ Ω ⊆
T⋃
i=1

(Ii × [0,Mi])

imply
T∑
i=1

Nm(Ii × [0,mi]) ≤ Nm(Ω) ≤
T∑
i=1

Nm(Ii × [0,Mi]).

Using mi ≤ ‖f‖∞ and applying (2.11) to the summands yields

Nm(Ii × [0,mi]) = ϕ(m)
m2

β − α
T

mi + Oε(ET (m)),

with error term
ET (m) := m

1
2 +ε

(
1 + β − α

Tm

)(
1 + ‖f‖∞

m

)
.

Hence,

ϕ(m)
m2

T∑
i=1

β − α
T

mi + Oε(TET (m)) ≤ Nm(Ω) ≤ ϕ(m)
m2

T∑
i=1

β − α
T

Mi + Oε(TET (m))

and by

T∑
i=1

β − α
T

mi + O
(
β − α
T

Vβ
α(f)

)
=
ˆ β

α
f(x) dx =

T∑
i=1

β − α
T

Mi + O
(
β − α
T

Vβ
α(f)

)
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and estimating ϕ(m)
m2 ≤ 1

m we find that

Nm(Ω)− ϕ(m)
m2

ˆ β

α
f(x) dx = O

(
β − α
Tm

Vβ
α(f) + TET (m)

)
. �

Notice, the larger one takes T the better the integral will be approximated by the corresponding
Riemann sums, thereby reducing the approximation error

β

Tm
Vβ
α(f). (2.12)

However, this refinement comes at the cost of having to apply (2.11) more often, thereby wors-
ening the accumulative error term

Tm
1
2 +ε

(
1 + β − α

Tm

)(
1 + ‖f‖∞

m

)
. (2.13)

Conversely, by taking T to be small one may hope to improve (2.13).
Hence, in practice one has to choose T appropriately in order to balance out the contribution

from the terms (2.12), (2.13).

2.3 Disproving an alleged Generalization
In his paper Shparlinski [2012] states Theorem 2.1 in a greater generality. Apart from the fact
that he considers more general modular hyperbolas, i.e.

Ha,m := {(x, y) ∈ Z2 | xy ≡ a mod m} (2.14)

for a ∈ Z coprime to m he also allows the set Y (see Theorem 2.1) to depend on x ∈ X . The
precise statement reads as follows [Shparlinski, 2012, Theorem 13]:

Let X = {U + 1, . . . , U + X}, where m > X ≥ 1 and U ≥ 0 are arbitrary integers.
Suppose that for every x ∈ X we are given a set Yx = {Vx + 1, . . . , Vx + Y } where
m > Y ≥ 1 and Vx ≥ 0 are arbitrary integers. Then for any integer m ≥ 1 and a
with gcd(a,m) = 1, we have

∑
(x,y)∈Ha,m
x∈X , y∈Yx

1 = ϕ(m)
m2 XY + O(m

1
2 +o(1)). (2.15)

A minimal order of the function ϕ is given by

e−γ
n

log logn,

that is,2

lim inf
n→∞

ϕ(n) log logn
n

= e−γ .

In particular one expects the main term (2.15) to be bigger than the error term whenever
|XY | ≥ m

3
2 .

2see, for instance, Tenenbaum [1995].
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For a = 1 the left hand side in (2.15) is precisely Nm(Ω) for

Ω =
X⋃
x=1

[U + x)× [Vx + 1, Vx + Y ],

where Ω may be thought of as a “disarranged rectangle”.

1

m

For a not necessarily equal to 1 one has an analogous interpretation after making the obvious
adjustment to the definition of Nm, i.e. replacing (2.1) in (2.2) with (2.14).
We would like to note, that the proof given for this statement (which we have reproduced as

proof of Theorem 2.1) fails unless Vx is assumed to be independent of x. Indeed, going from
(2.9) to (2.10) becomes impossible since the second sum in

U+X∑
w=U+1

em(−rw)
Vw+Y∑
z=Vw+1

em(−sz)

depends on w.
In fact, not only the proof fails when working in this generality; we assume m = p to be prime

and let X = {1, . . . , p − 1}. Furthermore, we let Y = 1 and choose Vx appropriately in order
to “catch” all hyperbola points, i.e. Yx = {x}, where x ∈ [1, p) is the unique integer such that
(x, x) ∈ Hp. We obtain ∑

(x,y)∈Ha,p
x∈X , y∈Yx

1 = ϕ(p) = p− 1,

which according to the above statement is supposed to be equal to

(p− 1)2

p2 + O(p
1
2 +o(1)) = O(p

1
2 +o(1)),

an obvious contradiction.



Chapter 3

On the Quantity Ψ(N), Boca’s Paper

In Section §1.3 we have studied the distribution of numbers in the Calkin-Wilf tree associated
with matrices of fixed trace n. The number N(n,m) of such numbers having integer part m was
of particular interest to us. This chapter deals with the overall number Ψ(N) of numbers in
the Calkin-Wilf tree with associated trace at most N (but not equal to 2 since their number is
infinite). That is,

Ψ(N) :=
∑

3≤n≤N
Φ(n),

where
Φ(n) :=

∞∑
m=0

N(n,m).

By Theorem 1.3, we may also write

Φ(n) =
n−2∑
m=0

N(n,m) = 2N(n, 0)

This quantity was studied previously with theoretical physics in mind, see Boca [2007] and
references therein. We do not pursue this aspect any further and look at the quantity Ψ(N)
entirely with its connection to the Calkin-Wilf tree in mind.
In this chapter we give an exposition of the paper [Boca, 2007] and correct some minor errors.

The overall goal is to establish the asymptotic formula

Ψ(N) = c1N
2 logN + c2N

2 + Oε(N
7
4 +ε) (3.1)

with constants1

c1 = 1
ζ(2) , c2 = 1

ζ(2)

(
γ − 3

2 −
ζ ′(2)
ζ(2)

)
.

We try to give more details than Boca [2007] where we deem it necessary. Some arguments
were changed slightly and expanded upon. On the other hand, we appeal to figures rather
than formulas to illustrate some main ideas in the proofs. A reader who would rather see more
formulas is warmly referred to the original paper by Boca, although, the formulas should be
easily obtained from what can be found in this thesis.

1Note, that Boca [2007, Theorem 1.1] gives an incorrect value for c2.
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3.1 Reduction to Estimating a Number of Hyperbola Points
Using the notation from Section 1.2.2, we recall the formulas

Ra1La2 · · ·Ra2m−1La2m =
(
q2m q2m−1
p2m p2m−1

)
, (3.2)

La1Ra2 · · ·La2m−1Ra2m =
(
p2m−1 p2m
q2m−1 q2m

)
, (3.3)

Ra1La2 · · ·Ra2m−1La2mRa2m+1 =
(
q2m q2m+1
p2m p2m+1

)
, (3.4)

La1Ra2 · · ·La2m−1Ra2mLa2m+1 =
(
p2m+1 p2m
q2m+1 q2m

)
. (3.5)

Note, that the matrices in (3.2) and (3.3) as well as (3.4) and (3.5) have equal trace. Therefore,
it suffices to consider products of Ls and Rs starting with R.
We let

Wev(N) := {(a1, . . . , a2m) ∈ N2m | m ≥ 1, trRa1La2 · · ·Ra2m−1La2m ≤ N},
Wodd(N) := {(a1, . . . , a2m+1) ∈ N2m+1 | m ≥ 1, trRa1La2 · · ·Ra2m−1La2mRa2m+1 ≤ N}

and denote by Ψev(N) and Ψodd(N) their respective cardinalities. By the previous remark we
find

Ψ(N) = 2Ψev(N) + 2Ψodd(N) (3.6)

and we face the problem of estimating Ψev(N) and Ψodd(N). We do this by looking at the
possible values of (3.2) and (3.4). Let

Sev(N) :=
{(

q′ q
p′ p

) ∣∣∣∣∣ 0 ≤ p ≤ q, 0 ≤ p′ ≤ q′, q′ > q,
p+ q′ ≤ N, pq′ − p′q = 1

}
,

Sodd(N) :=
{(

q q′

p p′

) ∣∣∣∣∣ 0 ≤ p ≤ q, 0 ≤ p′ ≤ q′, q′ ≥ q,
p′ + q ≤ N, p′q − pq′ = 1

}
.

We have the obvious maps

βN,ev : Wev(N) −→ Sev(N) and βN,odd : Wodd(N) −→ Sodd(N),

both given by
(a1, . . . , ak) 7−→M(a1) · · ·M(ak)

(see (1.7)). As exploited many times in Chapter 1, the monoid M generated by L and R is free
over {L,R}, whence the maps βN,ev and βN,odd are injective.
In fact, they are also surjective: if given q• we can easily recover a•. Indeed, by (1.4),⌊

qn+1
qn

⌋
= an+1 (n ≥ 1).

So, given

X =
(
q′ q
p′ p

)
∈ Sev(N) (3.7)

and wishing to write X = βN,ev((a2m, . . . , a1)) for some (a2m, . . . , a1) ∈ Wev(N), it seems natural
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to let a1 := b q
′

q c and consider

X ·M(a1)−1 =
(
q′ q
p′ p

)(
0 1
1 −a1

)
=
(
q q′ − a1q
p p′ − a1p

)
.

Repeating this procedure with (q, q′−a1q) replacing the part of (q′, q) one is essentially mimicking
Euclid’s algorithm for determining the greatest common divisor of q′ and q in the first row of
the resulting matrices

X ·M(a1)−1 · · ·M(ak)−1.

Because of pq′ − p′q = 1 we have gcd(q, q′) = 1 and it follows that

X ·M(a1)−1 · · ·M(ak)−1 =
(

1 0
b c

)
, (3.8)

for some k ∈ N and suitable b, c ∈ Z.
Furthermore, for q > 1 we have

a1 =
⌊
q′

q

⌋
≤ q′

q
− 1
q
≤ q′ − p′

q − p

and since
q′ − p′

q − p
− q′ − 1

q
= 1 + q − p

q − p
> 0

we conclude that
p′ − a1p ≤ q′ − a1q

(note that this formula also holds in the case q = 1 since we have p′− a1p = p′q− q′p = −1; the
case q = 0 does not occur). Applying this reasoning to a2, a3, . . . and looking at

X ·M(a1)−1 · · ·M(ak−1)−1 =
(

1 0
b c

)(
0 1
1 ak

)
=
(

0 1
c b+ akc

)

we find b + akc ≤ 1 and hence {b, c} = {0, 1}. Using that (3.8) must have determinant ±1 we
find (b, c) = (0, 1) and thus

X = M(a1) · · ·M(ak);

in particular, k = 2m must be even, as seen by taking determinants in the above equation. This
proves that βN,ev is surjective. One argues similarly for βN,odd.

3.1.1. Words of Even Length
Next, we parametrize the set Sev(N). Consider X as in (3.7). Previously, we have seen that q
and q′ are coprime and

pq′ − p′q = 1 (3.9)

implies pq′ ≡ 1 mod q, which by p ≤ q gives p = q′, where q′ ∈ {1, . . . , q} is the inverse of q′
modulo q. Furthermore, (3.9) yields

p′ = pq′ − 1
q

≤ qq′ − 1
q

< q′.

Consequently, the map

{(q, q′) | q < q′ ≤ N, gcd(q, q′) = 1, q′ + q′ ≤ N} −→ Sev(N)



24 Chapter 3. On the Quantity Ψ(N), Boca’s Paper

given by

(q, q′) 7−→
(

q′ q
q′q′−1
q q′

)
is bijective. From this we infer

Ψev(N) = |Sev(N)| =
∑

q<q′≤N
gcd(q,q′)=1
q′+q′≤N

1 =
∑
m<N

∑
m<y≤N

0<x≤min{m,N−y}
xy≡1 mod m

1. (3.10)

3.1.2. Words of Odd Length
As done previously to Sev(N) we now seek to estimate Sodd(N). To this end, for x coprime to
p we redefine x to mean the integer in {1, . . . , p} inverse to x modulo p (note, that in comparison
to the definition of x from section 3.1.1 only q was changed to p).
We start by looking at the equation

p′q − pq′ = 1. (3.11)

By solving for p′ and multiplying by q we find

qp′ = pq′ + 1 and qp′ ≡ 1 mod p.

Therefore, p′ ≡ q mod p and hence
p′ = q + pt (3.12)

for some t ∈ Z. The inequality p′ + q ≤ N imposes the restriction

t ≤
⌊
N − q − q

p

⌋
on t. Since p ≥ p′ would imply

0 ≥ p(q − q′) = pq − pq′ ≥ p′q − pq′ = 1,

a contradiction, we must have p < p′ and in combination with (3.12) we deduce the additional
restriction t ≥ 1.
Solving (3.11) for q′ yields

q′ = p′q − 1
p

= qq − 1
p

+ qt.

We conclude that Sodd(N) may be parametrized by (q, p, t) subject to the above conditions
(obviously each choice for t within the afore obtained bounds is admissible), i.e. the map{

(q, p, t)
∣∣∣ 0 ≤ p < q, gcd(p, q) = 1, 1 ≤ t ≤

⌊
N − q − q

p

⌋}
−→ Sodd(N)

given by

(q, p, t) 7−→
(
q qq−1

p + qt

p q + pt

)
is bijective.
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As a consequence we have

Ψodd(N) =
∑
q<N

∑
p<q

gcd(p,q)=1
q+q≤N

⌊
N − q − q

p

⌋
=
∑
m<N

∑
m<y<N

0<x≤min{m,N−y}
xy≡1 mod m

⌊
N − x− y

m

⌋
.

The formula amounts to counting points (x, y) ∈ Hm within the region

ΩN,m := {(x, y) ∈ R2 | m < y < N, 0 < x ≤ min{m,N − y}}

with respect to the weight function

wN,m : (x, y) 7−→
⌊
N − x− y

m

⌋
. (3.13)

For m < N
2 this region takes the form of a trapezoid and for m ≥ N

2 it degenerates into a
triangle, as vizualized by the following figure:

m

N

m

N

We continue by decomposing Ω into sets on which the weight wN,m = i is constant (i = 0, 1, . . .).
The sets ΩN,m,i := w−1

N,m(i) ∩ ΩN,m are given by

ΩN,m,i = {(x, y) ∈ (0,m]× (m,N −m) | N − (i+ 1)m < x+ y ≤ N − im}; (3.14)

these are drawn as regions bounded by blue lines in the above figure. Since for m ≥ N
2 the

region ΩN,m,0 of weight 0 coincides with Ω,

Ψodd(N) =
∑
m<N

2

bN
m
c−1∑

i=1
iNm(ΩN,m,i).

Now, we intend to write
Ψodd(N) =

∑
m<N

2

Nm(TN,m) (3.15)

for suitable regions TN,m ⊆ R2, thereby encoding the weighting process into the region. To
achieve this, note that

Nm(Ω′) = Nm(v + Ω′) (3.16)
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holds for any region Ω′ ⊆ R2 and any vector v ∈ mZ2. Therefore, for each summand iNm(ΩN,m,i)
we have

iNm(ΩN,m,i) = Nm(Ω′N,m,i),

where

Ω′N,m,i :=
i−1⋃
j=0

((jm, 0) + ΩN,m,i).

Consequently, (3.15) holds if we let

TN,m := (0,−m)+
bN
m
c−1⋃

i=1
Ω′N,m,i = {(x, y) ∈ R2 | 0 < x ≤ N−2m, 0 < y ≤ N−2m−x}. (3.17)

The procedure of going from ΩN,m,i to Ω′N,m,i may be visualized as putting i pieces in the shape
of ΩN,m,i next to each other (see the figure below). Fitting the resulting shapes together one
obtains (0,m) + TN,m, a triangle.

ΩN,m,1

ΩN,m,2

ΩN,m,bN
m
c−3

ΩN,m,bN
m
c−2

m

N −m

...
...

· · ·

. . .

3.2 Estimating Ψev(N) and Ψodd(N)
3.2.1. Words of Even Length
We shall now return to considering Ψev(N). Let

Ωev,m := {(x, y) ∈ R2 | 0 < x ≤ m < y ≤ N},
Ω′ev,m := {(x, y) ∈ R2 | m < y ≤ N, 0 < x ≤ N − y}.

Using the regions Ωev,m and Ω′ev,m we recover Nm(Ωev,m) and Nm(Ω′ev,m) in (3.10). More
precisely,

Ψev(N) =
∑
m<N

2

Nm(Ωev,m) +
∑

N
2 ≤m≤N

Nm(Ω′ev,m),

By appealing to (3.16) and applying Lemma 2.2 to the translated regions (0,−m) + Ωev,m,
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(0,−m) + Ω′ev,m we arrive at

Nm(Ωev,m) = ϕ(m)
m2

m(2N − 3m)
2 + Em(N),

Nm(Ω′ev,m) = ϕ(m)
m2

(N −m)2

2 + E ′m(N)

with error terms

Em(N)�ε
m

T
+m−

1
2 +εN(T + 1)�ε

m

T
+m−

1
2 +εNT, (3.18)

E ′m(N)�ε
(N −m)2

Tm
+m

1
2 +ε

(
T − 1 + N

m

)
N

m
�ε

(N −m)2

Tm
+m

1
2 +ε

(
T + N

m

)
N

m
, (3.19)

where T ∈ N can be chosen arbitrarily.
By expanding the expressions in (2.12) and (2.13) and appealing to monotonicity of the

resulting summands we can bound the resulting sums by corresponding integrals and find that∑
m<N

2

Em(N) +
∑

N
2 ≤m≤N

E ′m(N)�ε N
7
4 +ε,

when choosing T to be bN
1
4 c. This implies

Ψev(N) =
∑
m<N

2

ϕ(m)
m2

m(2N − 3m)
2 +

∑
N
2 ≤m≤N

ϕ(m)
m2

(N −m)2

2 + Oε(N
7
4 +ε).

3.2.2. Words of Odd Length,
√

N < m

Our next objective is to apply similar reasoning to Ψodd(N). Since the (first) projection

pr1TN,m := {x ∈ R | ∃y : (x, y) ∈ TN,m} = (0, N − 2m]

of TN,m from (3.17) is much bigger (length-wise) than pr1Ωev,m the size of the quantity β − α
from Lemma 2.2 becomes problematic. Indeed, if applying Lemma 2.2 naively to (3.15) we
obtain

Ψodd(N) =
∑
m<N

2

(
ϕ(m)
m2

(N − 2m)2

2 + E ′′m

)

with error term

E ′′m �ε
N − 2m
Tm

(N − 2m) + Tm
1
2 +ε

(
1 + N − 2m

Tm

)
N −m
m

. (3.20)

Even just summing over the last term yields

∑
m<N

2

Tm
1
2 +εN − 2m

Tm

N −m
m

≥
∑
m<N

2

m−
1
2 +ε(N − 2m)2

≥
ˆ N

2

1
x−

1
2 +ε(N − 2x)2 dx ≥ N

5
2 +ε, (3.21)

which is still bigger than the expected main term (see (3.1)).
We will circumvent this problem by further decomposing TN,m for small m. Note, that the

biggest contribution to the integral in (3.21) comes from values attained by the integral kernel
at small arguments. For big m, that is

√
N < m < N

2 , we still use the crude estimate (3.20) to
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obtain
E ′′m �ε

N2

Tm
+ TNm−

1
2 +ε +N2m−

3
2 +ε.

The sum over this expression is again easily estimated by comparison with the corresponding
integrals,

∑
Nc<m<N

2

E ′′m �ε

∑
√
N<m<N

2

(
N2

Tm
+ TNm−

1
2 +ε +N2m−

3
2 +ε

)

�ε
N2

T

∑
√
N<m<N

2

1
m

+ TN
∑

√
N<m<N

2

m−
1
2 +ε +N2 ∑

√
N<m<N

2

m−
3
2 +ε

�ε
N2

T
logN + TN1+ 1

2 +N2− 1
4 + 1

2 ε.

The usual choice T = bN
1
4 c yields

∑
√
N<m<N

2

Nm(TN,m) =
∑

√
N<m<N

2

ϕ(m)
m2

(N − 2m)2

2 + Oε(N
7
4 +ε). (3.22)

3.2.3. Words of Odd Length, m ≤
√

N

Now, we deal with small m, i.e. m ≤
√
N . Let K := bNmc − 3.2 For N sufficiently large we have√

N < N
3 and K will be non-negative. The triangle TN,m contains the union

DN,m :=
K⋃
i=1

K−i+1⋃
j=1

((i− 1)m, im]× ((j − 1)m, jm]

of K + (K − 1) + . . .+ 1 = K(K+1)
2 squares of side length m. The remaining part TN,m \DN,m

of TN,m will be called RN,m.

N − 2m

0

m

Km

DN,m

RN,m

Since there are precisely ϕ(m) points from Hm in the squares we have

Nm(DN,m) = K(K + 1)
2 ϕ(m) = ϕ(m)

m2 area(DN,m). (3.23)

2Note, that in [Boca, 2007, proof of Lemma 4.1] there is a typo. Therein it reads K = bN
m
c − 2, but this is too

big.
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The residual region RN,m consits ofK trapezoids and/or triangles each contained in a translation
of the rectangle

(0,m]× (0, 2m]

and one trapezoid/triangle contained in a translation of the rectangle

(0, 2m]× (0,m].

Therefore,3

Nm(RN,m) ≤ 2(K + 1)ϕ(m) < 2
⌊
N

m

⌋
ϕ(m) ≤ 2N

and consequently, ∑
m≤
√
N

Nm(RN,m) < 2N1+ 1
2 . (3.24)

Furthermore,

∑
m≤
√
N

ϕ(m)
m2 area(RN,m) ≤

∑
m≤
√
N

1
m

area(RN,m) ≤
∑

m≤
√
N

2m2(K + 1)
m

≤
∑

m≤
√
N

2m2

m

N

m
≤ 2N1+ 1

2 . (3.25)

By virtue of (3.23), (3.24) and (3.25),∑
m≤
√
N

Nm(TN,m) =
∑

m≤
√
N

Nm(DN,m) + O(N1+ 1
2 )

=
∑

m≤
√
N

ϕ(m)
m2 area(DN,m) + O(N1+ 1

2 )

=
∑

m≤
√
N

ϕ(m)
m2 (area(TN,m)− area(RN,m)) + O(N1+ 1

2 )

=
∑

m≤
√
N

ϕ(m)
m2 area(TN,m) + O(N1+ 1

2 )

=
∑

m≤
√
N

ϕ(m)
m2

(N − 2m)2

2 + O(N
3
2 ). (3.26)

Now, looking at (3.15), (3.26) and (3.22) we conclude that

Ψodd(N) =
∑
m<N

2

ϕ(m)
m2

(N − 2m)2

2 + Oε(N
7
4 +ε). (3.27)

3.3 Finding an Analytic Expression for the Main Terms
After proving (3.27) Boca [2007] gives a detailed proof of the formula

∑
m<N

2

ϕ(m)
m2

(N − 2m)2

2 = N2

2ζ(2)

(
logN + γ − log 2− 3

2 −
ζ ′(2)
ζ(2)

)
+ O(N), (3.28)

3In [Boca, 2007, proof of Lemma 4.1] the factor 2 seems to be missing. However, examples like (N, m) = (11, 4)
show that the factor 2 cannot be replaced by 1.
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thereby obtaining

Ψodd(N) = N2

2ζ(2)

(
logN + γ − log 2− 3

2 −
ζ ′(2)
ζ(2)

)
+ Oε(N

7
4 +ε) (3.29)

from (3.27). Using this and known formulas for

∑
m<N

ϕ(m) and
∑
m<N

ϕ(m)
m

he finds that ∑
m<N

ϕ(m)
m2 = 1

ζ(2)

(
logN + γ − ζ ′(2)

ζ(2)

)
+ O

( logN
N

)
.

By combining these formulas a straightforward calculation in (3.10) gives a formula for Ψev(N)
similar to (3.29),

Ψev(N) = N2

2ζ(2) log 2 + Oε(N
7
4 +ε).

Together with (3.6) this proves (3.1).
We choose to deviate slightly from this path. Instead of dealing with the rather odd sum

(3.28) we combine (3.6) with (3.27) and (3.10) and obtain the beautiful formula

Ψ(N) =
∑
m<N

ϕ(m)
m2 (N −m)2 + Oε(N

7
4 +ε). (3.30)

Treating Ψ(N) instead of treating Ψev(N) and Ψodd(N) separately seems more natural since it
is Ψ(N) that we are interested in. Admittedly, apart from this there seem to be no other merits
from the one approach over the other. The arguments that follow are still largely those found
in [Boca, 2007].
We now seek to estimate ∑

m<N

ϕ(m)
m2 (N −m)2.

Key ingredients for this task are Perron’s formula and properties of the Riemann zeta-function.
The reader unfamiliar with these concepts may find the most import cornerstones collected in
appendix A.
We start by observing that by means of partial fraction decomposition one has

1
s(s+ 1)(s+ 2) = 1

2s −
1

s+ 1 + 1
2(s+ 2) . (3.31)

Furthermore, let

f(s, y) := ys

s(s+ 1)(s+ 2) and g(s) := 2N2 ζ(s+ 1)
ζ(s+ 2)f(s,N).

Applying (A.1) to (3.31) gives

1
2πi

ˆ σ0+i∞

σ0−i∞
f(s, y) ds =

0, 0 < s ≤ 1,
1
2

(
1− 1

y

)2
, s > 1.

This identity can now be used to select the terms m < N from (A.2) and add the weight (N−m)
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to each such term. Indeed, using (A.2) we obtain

1
2πi

ˆ σ0+i∞

σ0−i∞
g(s) ds = N2

πi

ˆ σ0+i∞

σ0−i∞

∞∑
m=1

ϕ(m)
ms+2 f(s,N) ds

=
∞∑
m=1

N2ϕ(m)
m2

1
πi

ˆ σ0+i∞

σ0−i∞
f(s,N/m) ds

=
∑
m<N

ϕ(m)
m2 (N −m)2. (3.32)

The Laurent expansion (A.4) of ζ at 1 shows

g(s) =
( 1
s2 + γ

s
+ O(1)

) 1
(s+ 2)ζ(s+ 2)

2N s+2

s+ 1 (s→ 0). (3.33)

Furthermore, since the (simple) zero of s 7→ 1
ζ(s+2) at −1 cancels with the simple pole of s 7→ 1

s+1 ,
we find that g admits a holomorphic extension to the region {s ∈ C | Re s > −2} with the
exception of the point s = 0, where g has a pole.
The function hiding behind the O(1)-term in (3.33) is holomorphic. Therefore, the residue

res0 g of g at 0 is equal to the residue of

h : s 7−→ 1 + sγ

s2(s+ 2)ζ(s+ 2)
2N s+2

s+ 1

at 0,

res0 g = lim
s→0

s2h(s) = N2

ζ(2)

(
logN + γ − 3

2 −
ζ ′(2)
ζ(2)

)
.

Now, for T > 0 we change the path of integration in (3.32) from σ0 + iR to the contour Γ
indicated in the following figure:

Γ

0−1

σ0 + iT

σ0 − iT

The residue theorem gives

1
2πi

ˆ σ0+i∞

σ0−i∞
g(s) ds = res0 g + 1

2πi

ˆ
Γ
g(s) ds. (3.34)

In what follows we intend to show that the integral on the right hand side is small, provided T
being sufficiently large. Indeed, by |g(σ + it)| = |g(σ − it)| we have∣∣∣∣ˆ

Γ
g(s) ds

∣∣∣∣ ≤ 2
ˆ T

0
|g(−1 + it)| dt+ 2

ˆ σ0

−1
|g(σ + iT )|dσ + 2

ˆ ∞
T
|g(σ0 + it)|dt. (3.35)

By virtue of (A.2), ∣∣∣∣ζ(σ0 + 1 + it)
ζ(σ0 + 2 + it)

∣∣∣∣ ≤ ∞∑
m=1

ϕ(m)
mσ0+2 ≤

∞∑
m=1

1
mσ0+1 = ζ(σ0 + 1).
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This enables us to estimate the last integral in (3.35),
ˆ ∞
T
|g(σ0 + it)| dt�σ0

ˆ ∞
T

∣∣∣∣ζ(σ0 + 1 + it)
ζ(σ0 + 2 + it)

∣∣∣∣Nσ0+2

t3
dt

�σ0 N
σ0+2ζ(σ0 + 1)

ˆ ∞
T

1
t3

dt�σ0
Nσ0+2

T 2 . (3.36)

We now use the estimates (A.8), (A.9). These imply
ˆ σ0

−1
|g(σ + iT )|dσ � Nσ0+2

T 3

ˆ σ0

−1

∣∣∣∣ζ(σ + 1 + iT )
ζ(σ + 2 + iT )

∣∣∣∣ dσ �σ0,ε
Nσ0+2

T 3 T 1+ε (3.37)

To estimate ˆ T

0
|g(−1 + it)|dt

we use the functional equation (A.3) along with (A.7),

ζ(it)
ζ(1 + it) = χ(it)ζ(1− it)

ζ(1 + it) , χ(s) = (2π)s

2Γ(s) cos(πs2 ) ,

and
|Γ(it)|2 = π

t sinh(πt) .

Because of ζ(s) = ζ(s) and (A.10) we have

∣∣∣∣ ζ(it)
ζ(1 + it)

∣∣∣∣ = |χ(it)| = 1
2
√

π
t sinh(πt) cos(πt2 i)

=
√
t sinh(πt)

2
√
π cosh(πt2 )

=

√
t tanh(πt2 )

2π .

Using4 (A.11) we obtain
ˆ T

0
|g(−1 + it)| dt� N

{ˆ 2
π

0
+
ˆ T

2
π

}∣∣∣∣ ζ(it)
ζ(1 + it)

∣∣∣∣ 1
t(t2 + 1) dt

� N

ˆ ∞
0

1
t2 + 1 dt� N. (3.38)

Now let T = N2 and σ0 = 1. Combining (3.36), (3.37) and (3.38) in (3.35) yields

1
2πi

ˆ
Γ
g(s) ds� N.

By (3.34), ∑
m<N

ϕ(m)
m2 (N −m)2 = N2

ζ(2)

(
logN + γ − 3

2 −
ζ ′(2)
ζ(2)

)
+ O(N)

and consequently it follows that

Ψ(N) = N2

ζ(2)

(
logN + γ − 3

2 −
ζ ′(2)
ζ(2)

)
+ Oε(N

7
4 +ε),

thereby proving (3.1).

4Boca [2007] writes tanh t ≤ max{t, 1} which obviously is correct as well. However, if using this estimate instead
of (A.11) the integral

´ 2
π

0 . . . fails to converge, because the pole at 0 of the integrand is not canceled.



Appendix A

Tools from Analysis

The present chapter arose from the discussion in section §3.3. The author of the thesis felt a
particular discomfort in just using the needed tools ad hoc, so these tools have found their own
place within this chapter. Although this doesn’t change the fact that these are presented herein
only with section §3.3 in mind and (mostly) without proof, putting them here, hopefully, makes
the exposition clearer.

A.1 The Riemann Zeta-function
A.1.1. Some Identities and the Functional Equation
We start by giving a special case of Perron’s formula (see e.g. Brüdern [1995, Lemma 1.4.1]).
For σ0, y > 0 one has

1
2πi

ˆ σ0+i∞

σ0−i∞

ys

s
ds =


0, 0 < y < 1,
1
2 , y = 1,
1, y > 1,

(A.1)

where the integral is understood in the Cauchy principal value sense. This formula is connected
through the Mellin transform with the theory of Dirichlet series.
Next, we consider the Riemann zeta-function ζ given by

ζ(s) :=
∞∑
n=1

1
ns

for Re s > 1.

From the Euler product
ζ(s) =

∏
p∈P

(1− p−s)−1

one may deduce interesting formulas, among these,
∞∑
m=1

ϕ(m)
ms

= ζ(s− 1)
ζ(s) (Re s > 2); (A.2)

see Iwaniec and Kowalski [2004] or Brüdern [1995] for details.
By means of the functional equation [Titchmarsh, 2007, p.16]

ζ(s) = χ(s)ζ(1− s),

where
χ(s) = πs−

1
2

Γ(1
2 −

1
2s)

Γ(1
2s)

, (A.3)
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one may define ζ(s) for Re s ≤ 1, s 6= 1, thereby obtaining a function holomorphic in C \ {1}.
At 1 the function ζ admits a pole of order 1 with residue 1. Moreover, we have the Laurent
expansion [Titchmarsh, 2007, p.16]

ζ(s) = 1
s− 1 + γ + O(|s− 1|). (A.4)

We also need a different expression for χ(s). Recall Legendres duplication formula

Γ(s)Γ
(
s+ 1

2

)
= 21−2sπ

1
2 Γ(2s). (A.5)

for the Gamma function and the reflection formula

Γ(s)Γ(1− s) = π

sin(πs) . (A.6)

By (A.5),
Γ
(1

2s
)

Γ
(1

2s+ 1
2

)
= 21−sπ

1
2 Γ(s).

Putting 1
2s+ 1

2 into (A.6) instead of s yields

Γ(1
2 −

1
2s)

Γ(1
2s)

= 2sπ
1
2

2Γ(s) cos(π2 s)

and in combination with the previous formula we have

χ(s) = (2π)s

2Γ(s) cos(π2 s)
. (A.7)

A.1.2. Growth Estimates
In what follows, we use the standard notation σ = Re s and t = Im s. For σ > 1 we have
[Titchmarsh, 2007, p.51]

1
ζ(s) = O((log T )7). (A.8)

Furthermore, for σ ≥ 0, [Titchmarsh, 2007, p.69]

ζ(s)� T log T �ε T
1+ε, (A.9)

where T = |t| + 2. Better estimates than (A.9) are known. However, these do not immediate
improve upon the overall error term in Section §3.3 and are consequently omitted in favor of
estimates whose proofs require less effort.

A.2 Hyperbolic Functions
We recall the standard definitions

sinh s := es − e−s

2 and cosh s := es + e−s

2 ,

as well as
tanh s := sinh s

cosh s = 1− e−2s

1 + e−2s .

A simple computation shows that
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sinh(2s) = 2 sinh(s) cosh(s) (A.10)

and one easily checks that
0 ≤ tanh t ≤ min{t, 1}. (A.11)

holds for t ≥ 0.
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