

•

ISSUE 24 COMAL TODAY ISSUE 24

General

2 - Editor's Disk - Len Lindsay
58 - ViewPort - Paul Keck
76 - How To Submit Programs/Articles
76 - How To Type in a Program
77 - Order Form

Amiga COMAL Previews

cover - AmigaCOMAL verifying QUIT option
ifc - Amiga COMAL preview notes
6S - Alder COMAL edit screen/drop menus
7S AmigaCOMAL screen: CHAOS program
81 - Sample Amiga Startup-Sequence
82 AmigaCOMAL icons on WorkBench
82 - Sample WorkBench disk contents

Fun " Graphics

S9 - Mastermind - Christine & Ray Carter
62 - Power Driver Turtle Parms - R. Hughes
66 - Fractals and Recursion - Bill Inhelder
70 - Graphing a Function and its Derivative

Bill Inhelder
74 - CHAOS - Lewis' Brown
74 - Cartridge Puzzle Program - Robert Ross

2.0 Packages" Programming

60 - IBM COMAL & Printers- James Landis
61 - C64 Picture Package - Paul Keck
64 - LISTERINE - Will Bow /R. Hughes
67 - Change Drive - R. Hughes
73 - Set Printer Device - R. Hughes

Applications

63 - COMAL to Fortran Translator- Sol Katz
68 - Disk Drive Direct Access - R. Hughes
73 - File Master - Bobby Wallen

Reference

58 - Power Driver Memory Locs - R. Hughes
81 - Filename Conventions

Common COMAL

4 - Test System - Len Lindsay
S - Problem Areas - Len Lindsay
8 - String Handling Test - Len Lindsay
9 - File Access Test - Richard Bain

11 - Print Using Test - Len Lindsay
12 - Using the Test System - Len Lindsay
21 - Common COMAL Definition and Tests

Richard Bain & Len Lindsay
47 - Proposed Multilevel Standard- Joel Rea

Editor
Len Lindsay

Assistant
Maria Lindsay

Contributors
Richard Bain
Will Bow
Lewis Brown
Christine &
Ray Carter

Artwork R. Hughes
Rhianon Lindsay Bill Inhelder

Sol Katz

Contributors
Paul Keck
James Landis
Len Lindsay
Joel Rea
Robert Ross
David Stidolph
Bobby Wallen

COMAL Today is published by COMAL Users Group, U.S.A.,
Limited, 5501 Groveland Ter, Madison, WI 53716 and welcomes
contributions of articles, manuscripts and programs which would
be of interest to readers. All manuscripts and articles sent to
COMAL Today will be treated as unconditionally assigned for
publication and copyright purposes to COMAL Users Group,
U.S.A., Limited and is subject to the Editor's unrestricted right
to edit and to comment editorially. Programs developed and
submitted by authors remain their property, with the exception
that COMAL Users Group, U.S.A., Limited reserves the right to
reprint the materials, based on that published in COMAL
Today, in future pUblications. There will be no remuneration for
any contributed manuscripts, articles or programs. These terms
may be varied only upon the prior written agreement of the
Editor and COMAL Users Group, U.S.A., Limited. Interested
authors should contact the Editor for further information. All
articles and programs should be sent to COMAL Users Group,
U.S.A., Limited, 5501 Groveland Ter, Madison, WI 53716.
Authors of articles, manuscripts and programs warrant that all
materials submitted are original materials. with full ownership
rights resident in said authors. No portion of this magazine may
be reproduced in any form without written permission from. the
publisher. Local Users Groups may reprint material from this
issue if credit is given to COMAL Today and the author. Entire
contents copyright (c) 1989 COMAL Users Group, U.S.A.,
Limited. The opinions expressed in contributed articles are not
necessarily those of COMAL Users Group, U.S.A., Limited.
Although accuracy is a major objective, COMAL Users Group,
U.S.A., Limited cannot assume liability for article or program
errors.

Please note these trademarks: Commodore 64, CBM of
Commodore Electronics Ltd; PET, Easy Script, Amiga of
Commodore Business Machines, Inc; Calvin the COMAL Turtle,
Captain COMAL, Super Chip, COMAL Today, Doc Box,
Common COMAL, Power Driver of COMAL Users Group,
U.S.A., Limited; CP/M of Digital Research; Z-80 of Zilog; IBM
of International Business Machines; Apple, MacIntosh of Apple
Computer Inc; QLink, Quantum Link of Quantum Computer
Service; Compute!, Compute!'s Gazette, Speedscript of Compute!
Publications, Inc.; Word Perfect of Word Perfect Corp;
UniComal of UniComal; My tech of My tech; Atari of Atari; Sorry
if we missed any others.

Our NEW Address is:

COMAL· Users Group, U.S.A., Ltd.
5501 Groveland Terrace
Madison. WI 53716

(608) 222-4432

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 1

Editor's Disk

by Len Lindsay

COMAL Today is now produced using Word
Perfect 5.0 on our Zenith IBM PC compatible
system with our HP LaserJet printer. It has some
impressive new features. It does text inside boxes
(see page 4) as well as grey scale backgrounds (see
page 5). However, we lost easy access to special
characters that I like to use. They previously were
one key stroke (user defined). Now it takes many
keystrokes, plus memorizing a set of two numbers.
For example, _ is produced with control-Y, then
replying to the prompt with 6,94 followed by
RETURN. The « and» are also affected.

Meanwhile, the term Perfect in the name Word
Perfect seems to be misleading. We have had (and
are still having) unending problems. It caused a
delay of two months in our production schedule
due to fatal flaws.

For example, I was working on the 40 page
Common COMAL Test article, and all of a sudden
Word Perfect could only read a small part of the
article. No problem. I have a backup. Then it
wouldn't read the backup file! But it was a backup
of a file that worked fine yesterday! Now I am
worried. I then pulled out the week ago backup ...
same problem. Panic. After a month of
mysteriously "losing" files and having to start over,
in spite of keeping backups and weekly backups, I
was very frustrated.

COMAL to the rescue ... well kind of. I wrote a
quick COMAL program (COMAL is good for this
kind of thing) to read a Word Perfect file. It read
and displayed the problem files just fine. Then I
modified the COMAL program to duplicate the
file, character by character. Fine. However, Word
Perfect would not read the new file either.

I contacted Word Perfect. They had me try various
things. No luck. So I bought their interim update
(it seems they fixed lots of bugs in the 5.0 release,
but still called it 5.0). Meanwhile, I could not
progress much with my newsletter work. Finally
after over 2 weeks my update disks arrived.

I spent a day installing the new 5.0 release, re
creating my hard drive directories, copying files,
etc. Then I tried it ... same problems! Actually
worse, now I even lost two fonts on my LaserJet.
It no longer could print in lineprinter or in
courier ... and these are the only two fonts that
are not proportional on my LaserJet! I need them
for program listings and charts! (for example, see
the keyword AND on page 21).

So I went back to using the original 5.0 release. I
then split my articles into 1 or 2 page sections, so

that if the files mysteriously became unreadable, I
only had to redo a couple pages at most. I always
have kept lots of backups, and that continues, even
though many backups somehow are unreadable by
Word Perfect 5.0.

Amiga " Laser Jet

Within the past few days I finally got my LaserJet
printer hooked up to my Amiga. I have to study it
further, but did get a couple graphic screen dumps
that are fairly readable. Anyone have a way to do
better dumps on a LaserJet? Let me know.

Amiga Desktop Publishing?

Resolving problems with Word Perfect 5.0 were
placed on hold until this newsletter went to press.
Then I will also look into producing COMAL Today
on my Amiga, perhaps with PageStream or such.
Anyone with ideas on this please let me know.

Power Driver Update Postponed

David Stidolph spent a lot of time updating Power
Driver. The new release was called C64 COMAL
1.0 (or 1.11 in its final stage). We had preliminary
releases uploaded to QLink for COMALites to try.
A few bugs were reported, such as with the INPUT
statement. All were corrected and it was just about
ready for release, when the NEW command bug
was discovered.

David spent months analyzing the thousands of
lines of source code and could not find nor fix the
NEW bug. Richard Bain even made a special trip to
Madison to help David, but the bug was not found.
Therefore, the project has been postponed. David
decided it would be better to start over from
scratch (ie, the Power Driver source code).

Due to my many problems with Word Perfect, it
would take too long to re-do all the pages in this
issue that refer to C64 COMAL 1.0. Please note
that it is not available yet.

ComWare AmigaCOMAL

Correction: German Amiga COMAL now has a real
name! It is AmigaCOMAL from ComWare, a Danish
company. Its main programmer lives near
Copenhagen in Denmark. Borge Christensen, father
of COMAL, also is a Dane and assisting in the
project. The incorrect German reference came
about due to one of the people helping with the
project living in Germany (near the Denmark
border). Com Ware AmigaCOMAL is supposedly
being distributed in Scandinavia and Germany.
However, they wish to delay releasing it in the

Page 2 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

..,

f

•

Editor's Disk

USA and Canada until it has been in use a few
months in Europe. They told me "autumn 1989" as
the expected USA/Canada release. .

If you want to be informed when it becomes
possible to order AmigaCOMAL, just send me a
Self Addressed 25¢ Stamped Envelope with a note
to save it for the AmigaCOMAL announcement. I
have a special folder I am keeping these envelopes
in. Thanks to all who previously sent envelopes in:
they are in the folder patiently waiting final news.

My tech is now Alder

The USA branch of My tech has undergone changes.
Its principal owner apparently has moved to
Mexico. The others have renamed the company to·
Alder. Their original release of COMAL for the
Amiga was slow and had some problems. They said
they have a new release now that is faster and
corrects some of the problems (like initializing
arrays when they are DIMmed). They said they
would try to send a copy to us here, but as of this
date we have not received it. Note, they have a
temporary address while they are re-organizing:
Alder COMAL, c/o Mark Evans, 108 Hiram Ave,
Newbury Park, CA 91320. Phone 805-498-6533
(noon-7pm California time).

Apple

Apple COMAL 1.0 should be released by the time
you read this. This first release will run on 64K
Apples and will not have a graphics capability. A
2.0 version is being planned for 128K Apples. It
will have more features. For information about
Apple COMAL contact David Stidolph, COMA Lites
United, 1670 Simpson #102, Madison, WI 53713.

UniComal IBM PC COMAL

No recent news from UniComal. They rumored that
they are working on a COMAL 3.0 for the IBM
that will have records and pointers.

ComWare AmigaCOMAL

Speaking of records and pointers. ComWare
AmigaCOMAL has records and pointers! It looks
like they may have beat UniComal to the punch, in
Europe at least. AmigaCOMAL is looking very
professional. Being able to write packages in
COMAL is a fantastic capability. Some of the
packages included on the disk were written in
COMAL! This allowed me to see how they were
written. Then, the RUNTIME COMPILER allows
a COMAL program to be converted to a standalone
file. This COMAL seems very promising.

QLink

We continue to have two national meetings each
month on QLink at 10pm Eastern Time. They are
held every first Sunday and every second Thursday
of the month. We have our very own COMAL
section on QLink. It includes a conference room for
our meetings as well as a message base for
announcements and questions (usually answered
within a couple days). We also have two libraries
of COMAL programs you can download. Here is
how to get to our COMAL section on QLink:

CIN (COIIIIIOdore Information Network)
C~ting Support Groups

Programmers Workshop
aJoIAL

Message Board & Libraries
Q & A Message Board
CONAL 0.14 files library
COMAL 2.0 files library

Conference Room

Once you choose COMAL, you can either go to the
Message Board / Libraries or to the Conference
Room. Note that our conference room is not in the
Conference section of QLink ... but is inside our
own section, exclusively for our use!

Amiga

Warning! If you are switching to the Amiga from
another computer, be prepared. To be used
seriously, the Amiga requires 2 drives. One drive
is used for the Work Bench disk. With the C64, the
computer operating system was in ROM, and the
disk operating system was in ROM inside the disk
drive. However, the Amiga relies on a disk for
much of its operation, and that can lead to
unending frustration. It can't even display a disk
directory without accessing its WorkBench disk! So,
get the second drive right at the start and save the
aggravation. And while you are at it, make sure
you have at least 1 meg of memory. Many
programs are requiring it now ... and you will have
far fewer GURU crashes if you have more
memory. Next I think I may get FACC II to speed
up disk access. If you have suggestions to share
with others, drop me a line.

Amiga BOOT disk

Finally, make sure you have a good "boot" disk. It
took me months to get a fairly acceptable startup
sequence! Now, I'm not saying that my startup disk
is perfect by any means, but if you get a new
Amiga, change the startup-seauence file inside the
S subdirectory! I think enough of you will be using
Amiga computers to make it worth while for me to
print some info on getting it set up right. Rather
than put it here, see page 81 for more info.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 3

COMMON COMAL Test System

Article by Len Lindsay
Test procedures & functions by Richard Bain
Syntax style by Borge Christensen

One advantage of COMAL is that the many
implementations try to be compatible with each
other. This is possible due to an existing COMAL
standard, agreed on by members of the
companies producing COMAL systems. Along
this same line, we wish to refine an up to date
common ground, a COMMON COMAL.

As new COMAL systems appear, they are
extending COMAL. This good, if current
standards are not changed in the process. A
current standard COMAL program should run on
the new COMAL systems. A temptation to the
COMAL system developers is to do something
"better". If better means not according to the
standard, it is worse. If we loose compatibility
between systems, we loose the one thing that can
eventually boost COMAL into the limelight.

There are a few trouble areas in COMAL and
the various implementations. They are covered in
detail in a separate article.

Likewise, a separate article explains the
beginnings of our COMMON COMAL Test
Program, a collection of procedures and
functions to test if a COMAL implementation
meets the COMAL standard. We want to extend
this idea, so please send us your input! Send us
your routines that you think test a specific aspect
of COMAL. We also need a few more test
programs for specific areas of COMAL.

Finally, Joel Rea proposes a three level COMAL
standard. Joel has done a lot of work for
COMAL, and I hope you seriously consider his
ideas.

After going over all this, please consider how we
should keep COMAL standardized. Help us
define a COMMON COMAL and methods of
testing implementations.

NOTE: The new C64 COMAL 1.0 has been
postponed till Fall. Months of debugging could
not fix a fatal flaw in the NEW command. It
now will have to be rewritten from scratch.

NOTE: AmigaCOMAL is now being released in
Scandanavia and Germany. We previously called
it German Amiga COMAL. It really is a
ComWare product written mainly in Denmark.
It should be available in the USA by Fall.

Common COMAL is a trademark of COMAL
Users Group, U.S.A., Limited.

References for COMMON COMAL

Common COMAL Reference by Len Lindsay
This book goes over the COMMON

COMAL keywords, noting syntax with
examples, plus providing sample programs
showing the keyword in use. A brief
summary of each keyword is given along with
notes 'about various COMAL implementations.

COMAL Handbook by Len Lindsay
This is one of the main references for

COMAL. It is specifically covering both C64
COMAL systems (0.14 and 2.0). The
manuscript was used as the manual for
UniComal IBM PC COMAL. Amiga COMAL
used it as its point of reference in
maintaining a compatible COMAL. However,
it is now out of print (withdrawn from the
market by its publisher, Reston Publishing).
It is replaced by Common COMAL Reference.

COMAL From A To Z by Borge Christensen
This is a mini-reference book for the

original C64 COMAL 0.14 by the founder of
COMAL himself.

COMAL Standard - COMAL Kernal
Printed in full in COMAL Today #17, this

gives the full text of the COMAL Standard,
along with associated notes and even a special
program.

, COMAL Info Booklet
This is the 24 page booklet we send to

people who ask for information about
COMAL. It tells about COMAL and includes
a four page COMMON COMAL chart. Syntax
and example is given for each keyword. It
also has one page showing the common
structures and a one page chart showing
which COMAL implementations follow each
of the COMMON COMAL keywords.

Note: My tech COMAL for the Amiga is now
available as Alder COMAL for Amiga. They told
us that a new revision was just released that was
faster. However, we have not yet received a copy
to verify this. Their temporary address is: Alder
COMAL, c/o Mark Evans, 108 Hiram Ave,
Newbury Park, CA 91320. We also were told that
order and tech help would be available by phone
at 805-498-6533 (prefer noon-7pm California
time).

Page 4 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

COMMON COMAL - Problem Areas

by Len Lindsay

There are a few problem areas within the
COMAL Standard. I will present some of them
here. Then, in a separate article, I will define the
COMMON COMAL standard. Your comments are
welcome. If you see other areas of conflict that
need clarification by addition to the COMMON
COMAL definition, please send us your notes.

KEYS - no key pressed

KEY$ looks for the next key in the keyboard
buffer, but does not wait for a key to be pressed
(INKEY$ does that).

If there is one keystroke in the keyboard buffer,
that key is returned. If more than one key is
waiting, the first one is returned. If keys cde are
pressed, only £. would be returned by KEY$.

What should COMAL do if no key has been
pressed? KEY$ is not in the Kernal, but is part
of COMMON COMAL and is included in all
implementations (see CT#18 back cover). The
KEY$ example in our COMAL Info Booklet is:

WHILE KEY$="" DO NULL

This example waits for a key to be pressed, and
implies that if no key is pressed, a null string ""
is returned. However, the COMAL Handbook
states that C64 COMALs both return CHR$(O) if
no key has been pressed. The COMMON COMAL
Reference says this: "If no key is pressed
Commodore COMALs return a CHR$(O). The
other COMAL's return a null string."

The new Apple and Amiga COMALs return a
null string '''' if no key is pressed. The
Commodore COMALs were the only ones that
did not return the null string, but returned a
CHR$(O) instead. However, the latest disk loaded
COMAL for the C64 (COMAL 1.0) now has
KEY$ return the null string like other systems.
So only C64 Power Driver and C64 2.0 cartridge
do not follow the COMMON COMAL standard:

nn IN "abc" - null with IN

IN is a handy operator. It searches one string to
see if it contains another string. If it finds the
other string, it returns the position that it starts
at. If it is not found, it returns O. But, what does

COMAL do when the first string is the null
string? (For being a nothing, the null string sure
can cause problems).

IN is part of the COMAL Kernal, which says:
"If «stringl» is evaluated to the null string, then
the value returned is 1." By this definition,
lIn IN "abc" is 1. Alder does this.

The COMAL Handbook says: "If the length of
«string 1» is 0 (null string) then the value returned
will be the length of «string2» plus I." By this
definition "" IN "abc" is 4. CP 1M COMAL, C64
Power Driver and C64 2.0 cart do this.

The Common COMAL Reference agrees with the
COMAL Handbook. There is a note included with
the Kernal, on page 46 of CT#17 that says: "A
proposal is currently submitted that specifies that
the returned value should be false (zero) [if
«stringl» is the null string]."

So, to end the confusion, COMMON COMAL
specifies that 0 is returned if {(string I» is the
null string. IBM PC COMAL, Amiga COMAL,
Apple COMAL, CI28 COMAL cart and the new
C64 COMAL 1.0 do this.

Why? Because if the first string is nothing, it
can't be in the other! Therefor, 0 must be
returned. For example, if your program asks a
question, and then uses IN to see if the reply
was part of the valid responses, just hitting
«return» (ie, null string) should not pass the test
of a valid response, otherwise programming
problems are introduced:

PROC file'action
REPEAT

PRINT -Should we delete the file?
INPUT ·Your choice (Y or N): -: replyS

UNTIL replyS IN "YyNn"
IF replyS IN -yy- THEN

delete'file
ELSE

archive'file
ENDIF

ENDPROC file'action

This example procedure would be called after a
file was chosen. It would determine what action
to take with the file (either delete or archive).
A valid reply to the DELETE prompt is only Y,
y, N, or n. We want to keep asking until we get
a valid reply (a nice REPEAT UNTIL loop). Just
hitting «return» is not a valid choice, and should
be ignored. In our example, if COMAL returns ..
a I or 5 (length of "YyNn"+I) and then I or 3
(length of "Yy" plus 1) for a null string reply, it
is disastrous. Our file is deleted! If 0 were
returned when ~ was the null string, the

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 5

COMMON COMAL - Problem Areas

REPEA T loop would once again ask the question,
as expected.

Now, mathematicians would say that the null
stripg is part of every set. However, a reply to a
question is not a set. It is a text string.

Actually, the argument could go on for years
(actually, it already has). What we need to do is
just set a common sense standard (return 0 if
«stringl» is the null string) and ask that COMAL
systems follow it. Right now, Amiga COMAL,
Apple COMAL, C64 COMAL 1.0, CI28 COMAL
and IBM PC COMAL already meet this
COMMON COMAL standard:

DIV and negative numbers

DIY is part of the COMAL Kernal, which
defines x DIY z as INT(x/zl. The COMAL
Handbook agrees with this definition. However,
CP 1M COMAL and C64 COMAL 2.0 do not
follow this standard with negative numbers. For
example:

7 DIY (-3) should be -3
(-7) DIY 3 should be -3

But CP 1M COMAL and the C64 COMAL 2.0
cart give a result of -2. Amiga COMALs, Apple
COMAL, C64 Power Driver, IBM PC COMAL
and the new C64 COMAL 1.0 give the proper
result.

COMMON COMAL maintains the same
definition as the COMAL Kernal:

MOD and negative numbers

MOD is part of the COMAL Kernal, which
defines x MOD z as x-ex DIY z)*z. Since this
definition uses DIY, problems with negative
numbers with DIY carryover into MOD.

COMMON COMAL abides by the Kernal
definition, which can have the DIY section
expanded to yield: x-INT(x/z)*z. Note that the
Kernal states that I must be positive or the result
is undefined (may vary with implementation).
However, the definition still works and yields an

answer, in all cases, though it may be irrelevant
when z is negative.

Actually, MOD means modulo, not remainder.
UniComal apparently is considering implementing
REM as a remainder function, in addition to
MOD (which would explain why they do not
convert REM into I I for comment). To
understand modulo, and how it adheres to our
definition, we can use a clock analogy.

For example, the problem 7 MOD 3 gives the
answer I. This can be demonstrated on a clock.
MOD 3 means our clock will have only 3
numbers around it. Start with 0 as the first digit
(same as you would for decimal, 0 through 9). 0
is on top of the clock, go clockwise to add the
numbers I and 2 equally spaced around the
clock. Now to find the answer of 7 MOD 3 just
start at the 0, then count clockwise 7 digits
(positive number~ mean clockwise): I .. 2 .. 0 ..
I .. 2 .. 0 .. I. Notice that you end up on the I,
which is your answer.

The other three variations with MOD involve
making either 7 or 3 or both negative. In our
clock analogy, negative means counterclockwise.

For -7 MOD 3 use the same clock as the
previous example, but count seven times
counterclockwise, since the seven is negative.
You should end up on the 2, which is your
answer.

For 7 MOD -3 put numbers around the clock
like this: 0, at the top, then go counterclockwise
and put in the numbers -I and -2. Next, start at
the top, then count clockwise (since 7 is positive)
seven times. You should end up on the -2, which
is the answer.

For -7 MOD -3 use the same clock as the
previous example, but since the seven is negative,
count counterclockwise seven times. You should
end up on the -I, which is the answer.

PRINT separators and

Several items may be printed on one line. Print
separators are used to separate the items. The
separator tells COMAL what to do after printing
one item before going on to the next item.
COMAL allows two types of separators, a
semicolon (;) and a comma (,).

Page 6 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

COMMON COMAL - Problem Areas
)

In COMAL, a print line is divided into zones of
equal width. The start of each zone is sort of a
tab stop (as on a typewriter). The keyword
ZONE is used to set the zone width.

Originally, the default zone was 0 for no zones,
and the comma was used to mean space to the
next zone (therefor no spaces by default). The
semicolon (the other separator) was defined as
causing a one space separator. This was handy
for printing a line of numbers so that there were
spaces between numbers. This was followed by
early COMAL implementations, including C64
COMAL 2.0 cartridge, C64 Power Driver, CP 1M
COMAL, the original IBM PC COMAL and
Alder COMAL.

The problem was how to issue several characters
with no spaces between them, regardless of the
zone setting (null separator)? This is necessary to
issue commands to printers, modems, etc. With
the original definition, a program had to first
save the original zone setting, change it to 0,
print the items, then reset the zone back to its

. original setting. Examples of this coding
commotion is seen in sample procedures and
functions in COMAL Handbook, Appendix D.

Modifications to the standard were needed so
that a null separator could be guaranteed. We
proposed that the! be used as a null separator.
Granted, the PRINT line would look funny, but
it would not affect any current programs. Others
did not seem to like our proposal.

Another solution was implemented by UniComal.
It was to flip the meaning of the ; and , . The
comma was defined as a null separator,
unaffected by the zone setting. The semicolon
gave spaces to the next zone ... and the default
zone was set to I, thus by default the semicolon
gave a one space separator. So, in all programs
that did not set their own zone with the ZONE
statement, there was no change. However,
programs that had user defined zones now must
use a semicolon rather than a comma for the
separator. This was implemented in the Cl28
COMAL 2.0 cartridge and the latest UniComal
IBM PC COMAL.

Granted, the change is a major improvement ...
putting things the way they should have been at
the start. But it made some existing programs run
incorrectly. For this reason we were against it.

Now, the new Amiga COMAL is following
UniComals print separator definition. Thus, three
implementations (Amiga, IBM and CI28), now
follow the new separator definition. Meanwhile,
both Apple COMAL and C64 COMAL 1.0 were

being finalized. The developer decided to use the
new definition. Thus there now are five systems
following the new definition. And it definitely is
the better definition. Therefor, our COMMON
COMAL definition now supports the comma as
a null separator and the semicolon as the zone
separator.

Regrettably, this means some early
implementations now do not meet the COMMON
COMAL standard. However, both early C64
COMALs were produced by UniComal, who
instigated this change. And most programs do not
specify a zone, and will run unchanged under
the new definition:

Summary

Four popular implementations meet iill the above
COMMON COMAL standards! They are: Amiga
COMAL, IBM PC COMAL, C64 COMAL 1.0,
and Apple COMAL. Special thanks to Steve
Kortendick for help with the DIY and MOD
sections. COMMON COMAL is a trademark of
COMAL Users Group, U.S.A., Limited.

Change CAT / DIR Device#

This procedure allows you to change the default
device used by CAT and DIR.

II change device# used by cat/dir
PROC cat'dev(dv)

IF PEEK(27013)=101 THEN II Power Driver
POKE 28446, dv

ELSE II original comaL 0.14
POKE 27013,dv

ENDIF
ENDPROC cat'dev

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 7

COMMON COMAL - String Handling Tests

by Len Lindsay

This program tests COMAL string handling. It is
not an exhaustive test, but briefly checks various
COMAL methods. Please submit any tests you think
should be added. or a better version of these.

I'll mix my comments with the program. However,
you must type it in as one program, not as several
small programs.

First we dimension two string variables, ~ to a
maximum of 10 characters, and ii to a maximum
of 4 characters.

DIM s$ OF 10, t$ OF 4

Next we test substring assignment. Here we specify
that we wish to assign characters 1 through 7 of
the variable ~. However, we only provide 5
characters. COMAL should pad the rest with
spaces.

PRINT "=====testing substring assignment:"
s$(1:7):="abcde"
IF LEN(s$)=7 THEN

PRINT "correct Length"
IF s$(7:7)=" " THEN

PRINT "correct padding with spaces"
ELSE

PRINT "faiLed padding with spaces"
ENDIF

ELSE
PRINT "faiLed· wrong Length"

ENDIF

Now we will try to assign 5 characters to ii, which
has previously been dimensioned to hold a
maximum of 4 characters. COMAL should truncate
our assignment, accepting only the first 4
characters, since that is the maximum set for ii.

PRINT "=====testing auto truncating assignment"
t$:="abcde"
IF t$="abcd" THEN

PRINT "passed"
ELSE

PRINT "faiLed"
ENDIF

COMAL substrings are specified by stating the
character to start at and the character to end at,
separated by a colon. This specification is included
in parentheses after the string name.

IF t$(2:3)<>"bc" THEN PRINT "FaiLed"

Now we will see if the short notation for substrings
is accepted. (2:) means start at character 2 and go
through to the end of the string. The long form of
this is (2:LEN(t$» where ii is the name of the
string.

PRINT "=====testing substrings"
tS:="abcd"
sS:=tS(2:)
IF s$="bcd" THEN

PRINT "passed (2:)"
ELSE

PRINT "faiLed (2:)"
END IF

Now we will check another short notation form for
substrings. (:3) means start at the first character
and go through the third character. The long form
for this would be (1:3)

s$:=t$(:3)
IF sS="abc" THEN

PRINT "passed (:3)"
ELSE

PRINT "failed (:3)"
ENDIF

Now we will test that we can take a one character
substring. To do this we must specify the start and
end character as the same character number.

s$:=t$(2:2)
IF s$="b" THEN

PRINT "passed (2:2)"
ELSE

PRINT "faiLed (2:2)"
ENDIF

Now we test that COMAL wilt' insert a character
into a current string, without affecting the rest of
the string. This can be done with more than one
character as well. Rem.ember that ii is still equal to
"abcd" as set previously in the program. '

PRINT "=====testing substring inserting"
t$(2:2):="x"
IF t$="axcd" THEN

PRINT "passed"
ELSE

PRINT "fai Led"
ENDIF

Now we check that strings can be concatenated
(added together). We check both methods:

PRINT "=====testing string concatenating"
t$:="abcd"
s$:=t$+tS
IF s$="abcdabcd" THEN

PRINT "passed"
ELSE

PRINT "faiLed"
ENDIF
s$:="z"
s$:+t$
IF s$="zabcd" THEN

PRINT "passed"
ELSE

PRINT "faiLed"
ENDIF

Page 8 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

COMMON COMAL

Original program by Richard Bain
Modified by Len Lindsay

COMAL has a set of File I/O keywords. They
provide various capabilities to COMAL for reading
and writing sequential and random files. This
program will test some of these features. Please let
us know if you have further modifications to this
program so that it will be a better test.

I will mix my comments about the program
throughout the listing. The program is intended to
be typed in as one large program. Don't run just
one section, even though it appears to be broken
up due to my comments.

This program will use two files. Their names are
set up as variables to make it easy for you to
change if needed. I have assigned very strange
names to the two filenames, so they should not
conflict with any of your files! Another thing the
program will do is select a file as the output
location, then return the output to the screen later.
I have used a variable (screen$) to hold the id for
the screen, so it can be changed for IBM PC
COMAL. Temp$ and temp2$ are used to hold text
strings for various tests. Reply$ is used for
questions to get a one character reply, or just to
wait for the user to tell the program they are
ready. Text$ and text2$ are used later in the
program for passing large blocks of bytes from one
file to another. (C64 Power Driver and C64
COMAL 1.0 must add a drive specification to the
beginning of each file name, example:
"O:uqtestzp.dat")

DIM filenameS OF 20, filename2S OF 20, replyS OF 1
DIM tempS OF 40, temp2S OF 40, screenS OF 5
DIM textS OF 999, text2S OF 999 IIfor compare test
filenameS:="uqtestzp.dat"; filename2S:="uqtestzu.dat"
screenS="ds:" 1/<==<== all COMALs but IBM
IlscreenS:="con:" 11<==<== IBM only

Next we clear the screen and warn the user about
the filenames we will be using. The INPUT
statement will use the current row for its prompt
starting at column 1 and only allow one character
to be typed.

PAGE
PRINT "This program tests several COMAL"
PRINT "commands relating to file access."
PRINT "It uses temporary disk files"
PRINT filenameS;"and";filename2S
PRINT "Place a NON·write protected"
PRINT "disk in the current disk drive."
PRINT
INPUT "<return> to start:": replyS

Before we start, make sure the files are not on the
disk. COMAL shouldn't complain if we try to
delete a file that does not exist.

File Access Tests

PAGE
PRINT ,,==> making sure files";filenameS;
PRINT "and"ifilename2S;"are deleted .•• "i
DELETE filenameS
DELETE filename2S
PRINT "OKII

Next we create a random file with I 0 records, each
with a maximum size of 40 bytes (or characters).
With many disk operating systems, it is advisable to
create your random file first, and then fill in the
records. This also is a faster method in many
systems.

PRINT "==> creating"ifi lenameS;"as random file •.. "
CREATE filenameS,10,40

Next we open the random file' for use. The record
length (40) must be the same as the one used by
the CREATE statement. Any time the file is
accessed, the OPEN statement must specify a record
length of 40. Also note that this means 40 bytes of
data. If you write a string of 40 characters to a
record it would not fit, because with WRITE FILE
the binary representation of a string includes a
length counter byte(s) and with PRINT FILE there
are delimiters that must also be written.

PRINT "==> opening";filenameSi"as random file ••• "
OPEN FILE 7,filenameS,RANDOM 40

Next we will write ten records to the random file,
but write them in reverse order. We use the WRITE
FILE statement here. Later, to check on them, we
will have to use the READ FILE statement. Each
record is a string followed by a number.

PRINT 11==> writing 10 records to";filenameS;" ••• ";
FOR x:=10 TO 1 STEP ·1 DO

PRINT Xi
WRITE FILE 7,x: "line",x

END FOR x
PRINT "OK"

Now we read back the records, in sequential order
this time, making sure they are the same as what
we wrote.

PRINT ,,==> Reading the 10 lines back ... "
FOR x:=1 TO 10 DO

READ FILE 7,x: tempS,line
PRINT temp$iline;
IF temp$<>"line" OR line<>x THEN

CLOSE
END "error in RANDOM fi le"

END IF
END FOR x
PRINT "OK"

Now we close the file. A simple CLOSE with no
file number specified should close all open files,
and not complain if there aren't any files to close.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 9
,

I

COMMON COMAL - File Access Tests

PRINT "==> closing the file ••• "
CLOSE

Now we delete the file.

PRINT "==> deleting filell;filename$
DELETE filenameS

Now we select a file as the output location.
Anything that normally would print on the screen
will now be directed to the file. (C64 Power Driver
and C64 COMAL 1.0 do not allow SELECT to a
file, so lines marked ••• must be changed, see
special listing following the one below)

PRINT "==> redirecting output to filell;filename$
SELECT OUTPUT filenameS II ***

Print a few strings; all should go to the file. Then
the PAGE command should output a CHR$(l2).

WHILE NOT EOD DO
READ tempS Ilfrom data statements
PRINT tempS II goes to the file now ***

ENDWHILE
PAGE Ilshould be chr$(12) for form feed now ***

Switch the output back to the screen.

SELECT OUTPUT screenS II ***
PRINT "==> output back to screen"

••• Special program lines for C64 Power Driver
and C64 COMAL 1.0:

PRINT "==> file redirection not possible"
OPEN FILE 7,filename$,WRITE II ***
WHILE NOT EOD DO

READ tempS
PRINT FILE 7: tempS II ***

ENDWHILE
PRINT CHR$(12) II ***
CLOSE FILE 7 II ***

Next we will open the file we just wrote from the
previous section in APPEND mode. Then we will
write a number at the end of the file.

PRINT "==> opening file";filename$;"for append ••• 11

OPEN FILE 4,filename$,APPEND
PRINT "==> writing to file ••• "
nunber#:=7
PRINT FILE 4: number#

Now we close the file, specifying its file number.

PRINT "==> closing file ••• "
CLOSE FILE 4

Next we restore the data pointer back to the
beginning, so we can read the same data that we

previously used when writing the file. Then we
open the file to read it back.

RESTORE
PRINT "==> opening file";filename$;"to read ••• "
OPEN FILE 2,filename$,READ

Now we check that the items in the file are the
same as in the data statements.

PRINT "==> reading from file ••• "
WHILE NOT EOD DO

READ tempS Ilfrom data statements
INPUT FILE 2: temp2$
PRINT temp2$;" ••• I;
IF tempS<>temp2$ THEN

CLOSE
END "PRINT to file or INPUT FILE failed"

ENDIF
ENDWHILE
PRINT Ilcr at line end

Now we check that the PAGE command put a
CHR$(12) into the file.

PRINT "==> GET$ checking Form Feed from PAGE ••• ";
IF GET$(2,1)<>CHR$(12) THEN Ilform feed

CLOSE
END "PAGE or GET$ failed."

ENDIF
PRINT "OK"

Now we make sure that the number we appended
to the file is there. Since it was output to the file
with PRINT FILE, it is in ASCII form. Therefore,
we can input the number as a text string now.

PRINT "==> reading back integer as a string ••• ";
INPUT FILE 2: temp2$
PRINT temp2$
IF temp2$<>17" THEN

CLOSE
END "PRINT number#/INPUT FILE as string FAILed"

ENDIF

Now we make sure that the EOF has been set for
our file, since we just read the last item in the file.
Then we close the file.

PRINT "==> checking for EOF flag set ••• ";
IF NOT EOF(2) THEN

CLOSE
END "End Of File not found"

END IF
PRINT "OK"
CLOSE FILE 2

Now we check that GET$ can get several
characters at once. To do this we restore the data
pointer back to the beginning, and open the file to
read again. Then we read a data item and compare
it to a GET$ from the file. Then close the file.

Page 10 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

COMMON COMAL Tests

File Access - conclusion

RESTORE
PRINT "==> checking GETS ••• ";
OPEN FILE 2,filenameS,READ
READ tempS Ilfrom data statements again
temp2S:=GETS(2,10)
CLOSE
IF temp2S<>tempS(1:10) THEN

END "GETS failed"
ENDIF
PRINT "OK"

Now we will try two files open at once by copying
one file over to another. First we open both files.

PRINT "==> Open 2 files at once:";
PRINT "One READ - One WRITE - (fi le copy)"
OPEN FILE 1,filenameS,READ'
OPEN FILE 2,filename2S,WRITE

Now, with just one statement we copy the file.
PRINT FILE must be used (not WRITE FILE), and
the statement must end with a comma (null
separator) so that an extra CHR$(l3) is not added
to the end of the file. Then we close the files.

PRINT FILE 2: GETS(1,999), Ilcopy whole file
CLOSE

To see if the copy worked, we open both files
again. This time we use GET$ to get the contents
of both files. Then we close the files.

PRINT "==> checking if file copy worked ••• ";
OPEN FILE 1,filenameS,READ
OPEN FILE 2,filename2S,READ
textS:=GETS(1,999); text2S:=GETS(2,999)
CLOSE
IF textS<>text2S THEN

END "Failed."
END IF
PRINT "OK"

Now we can delete the files off the disk.

DELETE filenameS Ildone with it
DELETE filename2S Ildone with it

Print the I/O commands we just tested. Advise that
all tests passed. If a test had failed, the program
would have ended at that part of the program.

PRINT "APPEND, READ, WRITE, RANDOM,";
PRINT "OPEN, CLOSE, SELECT, CREATE,"
PRINT "PRINT FILE, INPUT FILE, GETS,";
PRINT "WRITE FILE, READ FILE, EOF"
INPUT "==> all tests passed. press <return>:": replyS

Here are the data statements used.

DATA "Mary had a little lamb"
DATA "Jack and Jill"
DATA "Happily ever after"

PRINT USING Test

by Len Lindsay

This program tests some aspects of PRINT USING.
In order to do this automatically, I use files. In the
first file I write what the output from the USING
is supposed to be. The second file is used for the
output from the PRINT USING statement itself.
Later, I compare both files to make sure that they
are identical. Please submit any further tests you
think should be added to this test, or correct any
flaws you find in this program.

DIM filename1S OF 20, filename2S OF 20
DIM replyS OF 1
DIM text1S OF 40, text2S OF 40
filename1S:="uqtestzp.dat"; fflename2S:="uqtestzu.dat"
PRINT "PRINT USING TEST"
PRINT "This program uses two disk files"
PRINT "that it creates, uses, then deletes,"
PRINT fi lename1S;"and";fi lename2S
PRINT "place blank formatted disk into"
INPUT "current drive. Hit return when ready:": replyS
1/
DELETE filename1S
DELETE filename2S
/I
OPEN FILE 1,filename1S,WRITE II correct answer goes here
OPEN FILE 2,filename2S,WRITE II print usings go here
/I
PRINT FILE 1: "test 120.0 test"
PRINT FILE 2: USING Ntest #11#.# test": 120
/I
PRINT FILE 1: "test 5.47 test"
PRINT FILE 2: USING "test -#11#.#11# test": 5.467
/I
PRINT FILE 1: "test -5.47 test"
PRINT FILE 2: USING "test -#11#,#11# test": -5.467
/I
PRINT FILE 1: "test ******* test"
PRINT FILE 2: USING "test #11#.##111 test": 12345
/I
PRINT FILE 1: "test 3 S 55.00 test"
PRINT FILE 2: USING "test ##III $##11#,#11# test": 3,55
/I
CLOSE
/I
PRINT "c~ring the files now"
PRINT
OPEN FILE 1,filename1S,READ
OPEN FILE 2,filename2S,READ
passed:=TRUE Ilinit
WHILE NOT (EOF(1) OR EOF(2» DO

INPUT FILE 1: text1S
INPUT FILE 2: text2S
PRINT text1S
PRINT text2S
PRINT "=========="
IF text1S<>text2S THEN passed:=FALSE

ENDWHILE
CLOSE
DELETE filename1S
DELETE filename2S
I F passed THEN

PRINT "====> All passed"
ELSE

PRINT "====> Failed"
END IF

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 11

Using the COMAL Test System Functions

by Len Lindsay

The COMAL Test System is a set of functions
that test how well a COMAL implementation
meets the COMMON COMAL standards. The test
functions presented in this issue were originally
the idea and work of Richard Bain. I added to
them and enhanced them. You are welcome to
submit test functions that you devise to add to
this test system. Send them in with a short note
explaining what each one is testing. We will try
to expand the test system so that it becomes
more complete.

Another way to test COMAL is with separate
test programs. Examples are in this issue. One
program tests PRINT USING in more detail, and
another program tests the area of string handling.
A third program tests COMAL file handling. You
are invited to submit small test programs like
these to add to our set of COMAL tests (such as
parameters, recursion, local/global, assignment).

A final note: let us know if you find any flaws
in our tests, or if any of them can be improved.
Thank you.

Now, back to the topic: how to use the test
functions that are presented immediately
following this article.

Especially For Beginners

This article is directed mainly at beginning
COMAL programmers. The more advanced can
skim over most of it.

Skip a few pages ahead to find the article
COMMON COMAL - Definition and Test
Functions. That article lists each keyword in our
Common COMAL standard along with its syntax
and an example of it in use. It then briefly
describes the keyword after categorizing it
(Statement, Function, Operator, etc). Finally,
many of the keywords have a test function
presented inside a box, along with a caption that
explains some of what it is testing.

To get you started, let's go over a couple of the
test functions. You may need two book marks.
One to mark your place in this article. The other
to mark your place in the Test Functions article.

I will try to place special emphasis in this article
on the beginners point of view. I will make
mistakes in this article, so you can see how to
recover from them, or prevent them altogether.
Most articles present the correct way to
accomplish something, but do not show the many
mistaken methods tried before coming up with

the correct way. Don't feel bad if you make
mistakes. Everyone does. The perfect articles and
programs cover up all the mistakes made during
their preparation.

To start off, make sure COMAL is running in
your computer. This usually involves booting up
the COMAL system from disk. C64 and CI28
cartridge owners only need to plug in the
cartridge and turn on the computer. (In this
article I will often refer to the C64 cartridge; the
CI28 cartridge is usually identical in these tests).

Many of the COMAL boot disks also load in a
"HI" program automatically at start up.
Sometimes this will be a menu or a welcome
message. Before you start now, make sure that
any such program is erased from the
programming memory. Type this:

You can check to make sure that you have an
empty programming area. Type this:

Your cursor should return with nothing listed.
Oh, by the way, you can use UPPER or lower
case letters when typing your COMAL commands
and programs (except with C64 COMAL 0.14
and PET COMAL 0.14 which require unshifted
letters ... Power Driver removed the restriction).

Let's start with the very first test function. It is
for / / (how do you pronounce / I?). / / is used in
COMAL to signal the start of a comment. BASIC
uses REM for this purpose (REMark), and some
COMALs will convert REM into / / for you (to
help you in transition from BASIC to COMAL).
Other BASICs use ! to signify the start of a
comment, and some COMALs convert ! into / /
for you as well.

Testing / / seems quite futile. The only way to
test it is to use it. If COMAL accepts the
comments, fine. If not, an error should come up.
Use AUTO for automatic line numbers. Type:

Now, COMAL will provide line numbers for
you, beginning at 10, in increments of 10. You
just type in the program lines, hitting <return>
at the end of each line. Actually, you do not
have to be at the end of a line to hit <return>.
As long as your cursor is anywhere on a line,
hitting <return> asks COMAL to accept the line.
COMAL first checks if the line is a direct
command or part of a program. If it begins with

Page 12 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

Using the COMAL Test System Functions

a line number (1-9999), it is considered a
program line. Otherwise COMAL assumes it is a
direct command (like the AUTO command you
originally typed).

After you type AUTO, COMAL responds by
printing the first line number for you (0010),
followed by one blank space, and a blinking
cursor, waiting for you to type. You don't need
to capitalize the keywords, even though they are
capitalized in our listings. COMAL will do that
for you later.

Just for fun, let's make a few mistakes to see
how COMAL handles it. First of all, let's use the
name test rather than test'comment as the
function name. It is shorter and will make the
following exercises easier to follow. Also, try
typing fun rather than func (we will SEE what
happens when you drop the C... what fun!).
What you type is underlined:

0010 fun test closed

As soon as you hit <return>, COMAL checks the
line just entered. It sees that it begins with a line
number, so it tries to accept it as a program line.

It finds the first word, fun. This is not
recognized as a COMAL keyword, so it must be
a variable or procedure name. So far so good.

Next COMAL sees the word test. Now it has a
problem. If fun is a variable, an equal sign u=u
should come next for an assignment. If fun is a
procedure name, parameters can come next, but
must be preceded by a parentheses U(u. Or, it is
possible to have two procedure calls on one line
separated by a semicolon u;u but that is not the
case here either. fun test does not meet any of
COMALs syntax rules.

Since COMAL does not understand fun test it
cannot accept the line. Precisely what happens
now will vary from COMAL to COMAL. But all
COMAL systems should reject a faulty line! This
is one of COMALs strong points ... real time error
checking on line entry.

COMAL will provide an error message, and put
the cursor back on the line you typed at the
point where it thinks the problem starts.

Amiga COMAL will pop up an error message
window with the message. After you fix the
error, the error message window will disappear.
(Sorry, but my Amiga is in the repair shop, so I
can't provide details on the Amiga COMALs.)
Other COMAL systems will print an error
message directly below the line being questioned.

After the line is corrected they erase the error
message, and restore to the screen what was
originally there. (Now that I have experienced it,
I rather like the error window popping up and
disappearing in AmigaCOMAL.)

If you are using C64 Power Driver or C64
COMAL 1.0, your screen would look like this:

auto
0010 fun lest closed
syntax error

The cursor is blinking on the first 1 in the word
test. That is the location where the line ceased to
follow proper COMAL syntax. The message
given is syntax error. This is a pretty generic
message. Most often, this will mean that you
misspelled a word, forgot a parentheses or space,
or some other typo.

C64 cartridge users get a better set of error
messages built into the cartridge. The cursor still
blinks on top of the first 1 in the word test, but
the message under the line is:

":=U or "(" expected, not name

Of course, neither of the suggestions apply in
our case, because we merely misspelled the word
FUNC as fun.

IBM PC COMAL responds with the same
message as the C64 cartridge (not surprising,
since UniComal wrote both implementations).

CP 1M COMAL has a similar message:

Error nuJj)er 38: ":=" or -:+- or M:_M expected

Hey, that's right. COMAL allows a variable to be
incremented or decremented. eount:+1 would add
one to the variable count. So, if fun were a
variable, it could also have :+ or :- come next on
the line.

Phew! You are l~cky. You just have one COMAL
to follow. I have been running around several
rooms, each with computers running different
implementations of COMAL (my Amiga 1000 is
in the repair shop, so I only have an empty spot
on one desk where it would have been). And ill
addition to all the COMALs running, I also have
my Word Perfect up and running, allowing me to
type in this article as I actually type in the
COMAL lines on the other computers.

Now, fix the word fun so it correctly is fune and
make sure that a space comes after it before the
word test ... like this:

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 13

Using the COMAL Test System Functions

On the C64, move the cursor to the space after
the word fun and press <shift>+<inst> to insert
a space. Then type £ and the word fune is
corrected.

With CP 1M COMAL, place the cursor on the
space after fun and press <ctrl>+<inst>. This
opens up one space just like on the C64.

With IBM PC COMAL, press the <ins> key to go
into "insert mode". Then put the cursor on the
space after fun and type £. Notice the rest of the
line moved over to make room for the c, and the
word fune is correct. You remain in "insert
mode" until you hit <return> or press the <ins>
key again.

With Amiga COMAL <shift>+<cursor right> puts
you into "insert mode".

Now, don't hit <return> yet. Go to the end of
the line and erase the !t at the end of the word
~. Some COMALs have a quick way to go
to the end of a line. IBM PC COMAL... press
the <end> key. C64 cartridge ... type <ctrl>-L.
Amiga COMAL allows you to use your mouse ...
point at the !t in ~ and press the select
mouse button... your cursor is placed at the !t.

Now, after erasing the 4, hit <enter>. The line is
still incorrect, and all versions of COMAL will
detect this. Here is what the screen looks like in
Power Driver or C64 COMAL 1.0:

auto
00 I 0 func test £lose
syntax error

The cursor is blinking on the £ in ~. COMAL
did make sense out of the first two words (to
define a function named test). Now it has a
problem when it sees the keyword close, which
is used to close a disk file. It does not belong at
the end of a function definition header line!

The C64 cartridge once again is a bit more
specific (even helpful this time):

IBM PC COMAL gave a message just like the
cartridge (as we expected), but did not include
the "" marks around the keywords:

CLOSED or EXTERNAL expected. not CLOSE

Now see what happens if you type a space on
top of the £ that your cursor is blinking over and
then hit <return>. Try it (turn close into ~.

The syntax error message remains with Power
Driver and C64 COMAL 1.0. But the others
change messages to adapt to new possibililties
(before CLOSE was a keyword in the wrong
place, now lose is a name out of place).

The C64 cartridge changes its message to:

-CLOSED- or -EXTERNAL-expected, not ~

IBM PC COMAL again is the same (without the
"" marks):

CLOSED or EXTERNAL expected. not I18IIe

CP 1M COMAL gives this:

error number 13: "(" expected

In our case, the C64 cartridge and IBM PC
COMAL provided us with the best clue. They
asked us to check if we really wanted the word
CLOSED at the end of the line. And that is
indeed what we want.

Fix the word closed at the end of the line, and
hit <return>.

In the C64 your screen should now look like this:

auto
0010 func test closed
0020

The error messages are removed from the screen
and the cursor is blinking just underneath the t.

AmigaCOMAL, CP 1M COMAL and IBM PC
COMAL provide another service for you. They
"re-Iist" the line on the screen for you with
keywords capitalized, variables and procedure/
function names in lower case, and other
improvements. IBM and CP 1M versions also put
the cursor on the next line at the correct
indentation level, ie under the !l in func:

auto
0010 FUNC test CLOSED
0020

(This is for the latest IBM PC COMAL release,
the previous ones did not re-list the lines). With
Power Driver and C64 COMAL 1.0 you can type
rem or 1 (exclamation point) in place of / / for
beginning a comment. Later when you list the
line, the rem or 1 will be gone, and / / will be in
their place.

IBM PC COMAL will instantly convert 1 into / /
for you as it relists the line, but will not accept
rem. The C64 cartridge will accept 1 but not rem,

Page 14 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

Using the COMAL Test System Functions

and will convert it when you list the line later
(this makes it easy to make a current program
line a comment ... just put the cursor on teh
space immediately after the line number, and
type a !) CP 1M COMAL will not accept rem, and
allows you to type 1 but gives a "not
implemented" error when the line is executed.

Now type in the rest of this four line function ...
but take a shortcut on the final line. Just type
endfunc and h~t <return>. No need to type in the
function name, COMAL inserts it for you later!

After you finish typing in the four line function,
stop COMALs auto mode. To do this from Power
Driver or C64 COMAL 1.0, just hit <return> on
the blank line 0050 prompt. Amiga and CP 1M
COMAL hit the <esc> key. C64 cartridge hit the
<stop> key. IBM COMAL type <ctrl>+<break>.

Now list your function to make sure it is right:

list
0010 FUNC test CLOSED
0020 II this is a comment
0030 RETURN TRUE II comments allowed
0040 ENDFUNC

Notice, ENDFUNC with no name following it.
However, it will be capitalized even if you typed
it in lower case, since it is a keyword. COMAL
implementations automatically capitalize keywords
for you. COMAL also will automatically indent
the lines in any structure. Thus you see the lines
inside our function definition are indented for us
(two space indent on systems with 80 column
screens, and one space indent on 40 column
screens such as Power Driver). You do not have
to type in the leading spaces you see in our
listings. COMAL will insert them automatically
for you when listing your program lines.

Now, you can utilize another feature of COMAL.
It can scan over an entire program to make sure
that all your structures are proper. For example:
it checks that each FUNC later in the program
has a proper ENDFUNC to match it. Any
structure errors will be reported. By the time you
actually RUN a program, COMAL will have
checked it over pretty well! Try it. Type:

Km!

If you corrrectly typed everything in, all will be
fine, and the cursor returns right away. During
its scan of the program, COMAL will insert the
function names after each ENDFUNC, procedure
names after each ENDPROC, and FOR variable
names after each ENDFOR. List your program
and see:

list
0010 FUNC test CLOSED
0020 II this is a comment
0030 RETURN TRUE II comments allowed
0040 ENDFUNC test

Before going on, Quickly test the COMAL SCAN
command. Delete line 40. Then try a SCAN:

An error message appears. With Power Driver or
C64 COMAL 1.0, this is the message:

at 0030: error in structured statement

As you might expect, the C64 cartridge is a bit
more specific:

at 0030: "ENDFUNC" missing

IBM PC COMAL is similar (minus the "" marks
of course), but does not give the line number:

ENDFUNC missing

CP 1M COMAL gives this message:

Error number 55: Uncomplete structure

In any case, each COMAL informed you that
you have a problem with your program
structures. So, SCAN was useful.

In fact, all COMALs do a SCAN of every
program ~ actually beginning execution. Try
it. Type:

You got the same error as with SCAN didn't you!
COMAL will not run a program that is not
structured properly. This is another big plus in
COMAL programming!

Now, let's put back line 40 the easy way. It is
still visible on your screen. If you can see it you
can enter it (except with Alder COMAL which
is line oriented unless you are inside their
program editor ED). Just cursor up to the line 40
as listed on the screen and hit <return>. Your
cursor can be anywhere on the line! With Amiga
COMAL you also my use your mouse to point to
any point on line 40 and then press the select
mouse button. The cursor appears at the location
you pointed to. (I am getting to like this mouse!)

We finally are ready to tryout our first test
function. Move your cursor back down to where
we were. Type: list and you will see that all is

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 15

Using the COMAL Test System Functions

back to normal. Type: scan and that should be
fine now too. Ready? Type:

And there you have it. Nothing. Power Driver,
C64 COMAL 1.0 and the C64 cartridge just say:

end at 0040

IBM PC 'COMAL says:

Ready

CP 1M COMAL says:

End of program

They all tell us that the program is finished. So
how do we know if the function passed?
Shouldn't it tell is something?

Look at our program. We have defined a
function that we named test. However, we never
actually used that function in the program ... only
defined it. So, it is good that nothing happened,
since we did not ask for anything. (In BASIC, if
your subroutines were at the end of your
program, and you did not have an END
statement before them, the program would "fall
through" and execute them even if they were not
called. That was bad.)

So, what do we do to call our test function?
There are many things we can do. With COMAL,
we can call it from direct mode. Just type this:

Ooops. That must not be it. That is how you call
a procedure from direct mode. Not a function.
COMAL didn't know what to do. Maybe you
misspelled a command or procedure name? The
message you get varies between systems. Power
Driver and C64 COMAL 1.0 give this message:

command. array, substring, or procedure error

Both the C64 cartridge and IBM PC COMAL are
more specific:

test: Not a procedure

CP 1M COMAL simply says:

Error nuJber 40: Unknown proceciJre/fl.WlCtion

Actually, what we did is call a defined function
incorrectly. A function is designed to return a
value to the calling statement. The calling

statement must do something with that value. We
did not specify what to do with the value.

The easiest thing to do is to print the value.
Type this:

print test
1

All the COMALs respond identically. They each
print I as the value returned. This is correct,
since line 30 in the function says to return
TRUE, and true is equal to 1 (later on in the
COMMON COMAL definition article, TRUE is
defined).

Here is another way to test out our test function.
Type this:

if test print "true
true

COMAL is very helpful. We left off the end" on
the print statement and it took care of it for us.
We also left out the word THEN, but COMAL
took care of that for us as well. The result now
is the word l.r.'@ is printed on the screen. All
COMALs do this. The proper line would be:

IF test THEN PRINT "true"

Or, even further:

IF test=TRUE THEN PRINT "true"

Or, more precisely:

IF test<>FALSE THEN PRINT "true"

OK, / / passed the test. Now we go on to the
next keyword in our COMMON COMAL
definition article: ABS. ABS stands for Absolute
and returns the absolute value of a number.

Let's create a few more error situations now. Our
first 4 lines are still in the computer (lines 10,
20, 30 and 40). To type in the next function
using COMALs automatic numbering, type:

~

Power Driver, Apple COMAL and C64 COMAL
1.0 start by prompting with line 10 if a specific
line is not given. A t this time, this is not good,
since if we enter a line 10 it will overwrite our
existing line 10. We want to add to the other
function, not overwrite it. Fortunately, the 0010
line number is highlighted in reverse video to
draw our attention to the fact that there already
is a line 10 defined in memory. Just hit <return>

Page 16 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

Using the COMAL Test System Functions

to stop auto mode. Start it at line 50 (the next
line in our program sequence): auto 50

All the other COMALs automaticaly start the
auto line numbers just following the last number
currently in memory. Thus they would properly
start at ru!S.Q..

Now, we will provide another error situation for
COMAL to deal with. Type in the next test
function also using the name test rather than
test'abs (note: you may omit the keyword THEN
as COMAL will add it for you later):

0050 func test closed
0060 if abs(1)<> 1 return false
0070 if abs(-1)<> 1 return false .
0080 if abs(O)<>O return false
0090 if abs(-3.9)<>3.9 return false
0100 return true
0110 endfunc
0120 <stop auto mode here>

Now tryout a test on this new function. Type:

print test

C64 Power Driver and C64 COMAL 1.0 tell you:

program not prepassed

IBM PC COMAL and the C64 cartridge say:

program has been modified

CP/M COMAL says:

Error number 61: SCAN necessary

CP/M COMAL hit it on the head. We must
SCAN (or RUN) a program before we can call
any procedures or functions from direct mode.
Each time you add lines, delete lines, or change
lines in a program you must then SCAN it before
you can call procs/funcs from direct mode.

OK, so do it:

Now COMAL finds a problem with the program,
since we have defined two different functions
with the same name! C64 Power Driver and C64
COMAL 1.0 say:

at 0050: error in structured statement

IBM PC COMAL and the C64 cartridge say:

at 0050: test: name already defined

CP/M COMAL gives this message:

Error number 44: name already exists in 0050

OK, we get the picture. We can't have two
functions with the same name. Well, actually,
with EXTERNAL procedures we can. But we
will get to that later. Now, let's see what we can
do with our two functions so they work together.

First, lets store them on disk. No use retyping
them later. Find a formatted disk with some
empty space on it. Or you can format a disk
directly from COMAL (the way to do this will
vary from system to system since COMAL tries
to follow the computers operating system).

First, refresh our memory by listing the program
in the computer now:

list
0010 FUNC test CLOSED
0020 II this is a cOIlI1Ient
0030 RETURN TRUE II cOIlI1Ients allowed
0040 ENDFUNC test
0050 FUNC test CLOSED
0060 IF ABS(1)<>1 THEN RETURN FALSE
0070 IF ABS(-1)<>1 THEN RETURN FALSE
0080 IF ABS(O)<>O THEN RETURN FALSE
0090 IF ABS(-3.9)<>3.9 THEN RETURN FALSE
0100 RETURN TRUE
0110 ENDFUNC test

Now you can save the whole program if you like:

save "testprog"

Next, list each function to disk so it can be
recalled later. .. merged in with other programs:

list 10-40 "comment.lst"
list 50-11 0 "abs.Ist"

Those two functions can be recalled later via the
ENTER or MERGE commands.

Now, let's have some fun with EXTERNAL. If
your version of COMAL does not have
EXTERNAL capability, skip past this section
(C64 Power Driver, C64 COMAL 1.0 and Apple
COMAL do not have EXTERNAL).

COMAL 2.0 Only:

EXTERNAL is an interesting concept. Briefly, it
means that the whole body of a function or
procedure may be stored external to the main
program, yet the main program may execute the
external procedure or function as if it were
actually part of the main program! Phew! That
was a long winded sentence.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 17

Using the COMAL Test System Functions

All that is needed to use the external function or
procedure is the header for it, ending with the
keyword EXTERNAL followed by the file name
used to store it on disk. It is actually easier to
show you it in action than to explain it. So let's
do it!

First, procedures or functions that will be used
as EXTERNAL later must be stored on disk via
the SAVE command (not LIST). Also, to Qualify
for use as EXTERNAL, a procedure or function
must be CLOSED and may not use IMPORT
statements. Different COMAL implementations
have various "extra" things that you can do with
the procedure or function that you store
externally, such as including lines before or after
it. However, these are extensions, and we will
avoid them for now.

We already LISTed each function to disk. Now
we need to SAVE each individual function to
disk. To do this, the function has to be the only
one in memory. So, we just erase everything,
then enter in each function previously stored on
disk, save it to disk, then clear memory and do
it again for the next one:

new
enter "comment.lst"
save "comment.ext"
~
enter "abs.lst"
save "abs.ext"
new

Actually, the first two new commands are not
needed, since all COMALs that support
EXTERNAL also automatically do a NEW before
beginning an ENTER command.

Now you have two functions stored on disk in
two ways. In ASCII from the LIST to disk
command. And also in binary (tokenized) from
the SAVE command just used.

LISTed to disk, functions may be merged into
other programs later with the MERGE command
(or the ENTER command with Power Driver,
C64 COMAL 1.0 and Apple COMAL).

SA VEd to disk, the functions may be used as
EXTERNAL functions. That is why we included
the suffix of .&xi at the end of the filename.
This will remind us that the file can be used as
an EXTERNAL function!

Now for the fun. We will write a short program
that will utilize the two functions as
EXTERNAL (this can be continued for many
more). We will also show how the name of the

function in the file does not have to match the
name we give it in our new program that uses it
externally (that is why we can have two
functions named TEST both used in the same
program ... if they are external functions).

Let's write a new program. Type:

ml!!
!!Y!2
0010 print test'comment
0020 print test'abs
0030 LL
0040 tunc test'comment external "comnent.ext"
0050 func test'abs external -abs.ext-
0060 <stop auto mode here>

That was a relatively simple and short program.
We just print the value returned by the two
external functions (lines 10 and 20). Lines 40 and
50 are the full function definitions for our
program. Remember that the body of each
function is stored on disk. COMAL takes care of
how it is executed.

Now, save this program to disk before you try it.
It is always a good idea to save programs before
running them ... insurance against problems!

save "ext-test"

Ready. Try it:

run
1
1

Yay! It worked. Both functions returned a value
of TRUE. They both passed the test, and
EXTERNAL worked as well! Plus both functions
have the same name on disk, but allowed us to
call them by another name .n our test program.

Amiga " UniComal 2.0 Special:

Amiga, C64 cartridge, C 128 cartridge and IBM
PC COMAL users can utilize a special extension
of EXTERNAL. You can use a variable name as
the filename with each EXTERNAL definition.
This sounds like a minor point. No way. Try this:

ml!!
auto
0010 wIIi le not eod
0020 read keywordS
0030 print test
0040 endwhile
0050 LL
0060 func test external keywordS+-.ext-
0070 LL
0080 data -comment-,-abs-
0090 <stop auto mode here>

Page 18 - CO MAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

l

Using the COMAL Test System Functions

By using a variable name in line 60, we can
substitute various functions on disk for the one
definition! Yes, that one external function
definition will suffice to test everyone of the
test functions in the COMMON COMAL
definition and test article! Just put the keywords
as part of the data statements. COMAL will
redefine the function each time it is called using
the current value of keyword$. Try it!

Now, let's get all users back to this article.
EXTERNAL users know how to do external
functions now. You can adapt each of the
functions to be used in this manner.

Everyone Back ... All COMALs

OK, fun and games is over! Let's fix those first
two functions so they are properly named
(test'comment and test'abs). At the same time we
will illustrate one important thing that Power
Driver, C64 COMAL 1.0 and Apple COMAL
users need to remember when merging program
segments. Fix the first function.

COMAL 2.0 users can issue a CHANGE
command to save time:

new
enter"comment.lst"
change "test". "test'comment"
0010 FUNC test CLOSED
«line 10 is displayed, test is highlighted»

Hit <return> and test is changed into
test'comment. Hit <n> and it is not changed. (In
CP/M COMAL the found text is not highlighted
and you hit <space> to not change it).

Other COMAL users, fix it like this:

!!l!!!
enter"comment.lst
list
0010 FUNC test CLOSED
0020 II this is a comment
0030 RETURN TRUE II comments allowed
0040 ENDFUNC test

Now cursor up the screen and insert 'comment in
both places test appears. Or do this just for the
first one. After the ENDFUNC just erase the
word test (type spaces over it). COMAL will
insert the correct name when you do a SCAN.

scan
list
0010 FUNC test'comment CLOSED
0020 II this is a comment
0030 RETURN TRUE II comments allowed
0040 ENDFUNC test'comment

Everyone now ... store the function to disk:

delete "0: comment .lstn
II ibm & cplm use a: or b: in place of 0:
II Amiga use DFO: or DF1: in place of 0:
list "comment.lst"

Notice that specifying a drive will vary from
computer to computer, since COMAL generally
abides by the way the computer identifies the
drives. Commodore 64 uses 0: and 1: while IBM
and CP/M use a: and b:. Amiga uses DFO: and
DFl:. Apple COMAL will have a table of drive
ids, and will be able to convert from those of
the other systems into Apple computer format.

Now do the same thing for the other function,
changing test into test'abs. Remember to LIST it
back to disk too.

OK. Now, let's merge the two functions from
disk together into one program.

With COMAL 2.0, use the MERGE
command:

new
enter "comment.lst"
lllerge "abs.lstn

COMAL automatically renumbers the ilh!Jn
function as it is entered. Thus you could have
each of the test functions on disk in LISTed
format, and they could be merged into one
program easily.

OtherCOMAL users, use the ENTER
command to merge segments. Note that COMAL
does not renumber lines as they are merged with
the current program. If lines coming in from disk
have the same line number as those already in
the computer, they will overwrite the lines in the
computer. To see this happen type a simple
program line, number it line 10. Then ENTER
the first test function you LISTed to disk. LIST
the results and notice that your line lOis gone ...
replaced by the line lOin the test function:

!!l!!!
10 print ntest linen
enter "comment.lst"
list
0010 FUNC test'comment CLOSED
0020 II this is a comment
0030 RETURN TRUE II comments allowed
0040 ENDFUNC test'comment

Notice that line 10 from disk replaced the line
10 you typed in just prior to the ENTER
command.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 19

Using the COMAL Test System Functions

To avoid this problem, C64 Power Driver, C64
COMAL 1.0 and Apple COMAL users should
make sure procedures and functions LISTed to
disk have high line numbers (line 9000 or
higher). Then. when ENTERed with another
program, the line numbers will not conflict
(unless the other program is very very big ... and
even then, if it is first renumbered by 1, there
will not be a problem).

Use the RENUM command to renumber the test
function:

RENUM 9000

Then delete the old file, and LIST it back to disk
with the high line numbers (remember to use
disk drive specifications to match your computer
system):

delete "O:comment.lst"
list "O:comment.lst"

Now, issue a new command and do the same
thing with the abs test function.

Everyone now:

Now you have seen how the 2.0 COMALs have
a few luxury features not available to C64 Power
Driver, C64 COMAL 1.0 and Apple COMAL
(MERGE, CHANGE, and EXTERNAL). All
three of these are part of the COMMON
COMAL standard, so you can see that without
them, some COMALs are only a subset of the
full COMMON COMAL. However, their
programs will be upward compatible with the 2.0
COMALs.

Now you are ready to type in each test function.
You can type them in individually and store
them on disk to merge together later. Or 2.0
users can store them as external type functions
and write a short program that calls them as
needed. Or, type them all as part of one large
program.

All the individual test functions can be put
together into one large test program in many
ways. In the next column I illustrate one way to
do it. A full program with all the test functions
accessed in this manner is on Today Disk 24, and
available by special request on Amiga or IBM PC
disks.

COMMON COMAL is a trademark of COMAL
Users Group, U.S.A., Limited.

max' tests: =255
DIM keyarray$(1:max'tests) OF 10
DIM resultarray(1:max'tests)
test'nunber:=O
1/
PROC passfail(keywo~dS,test'result)

test'nunber:+1 Ilincrement number of tests
keyarray$(test'nunber):=keywordS
resultarray(test 'nunber):=test 'result
IF test'result=FALSE THEN

PRINT II new line
PRINT keywordS;"failed"

ELSE
PRINT keywordS;
IF CURCOL>70 THEN PRINT II end of line

ENDIF
ENDPROC passfail
1/
PROC failures II print all keywords that failed

PRINT II new line
perfect:=TRUE II no failures II default start
FOR x:=1 TO test'nunber DO

IF resultarray(x)=FALSE THEN
IF perfect THEN PRINT "=========="
perfect:=FALSE
PRINT keyarray$(x);"failed"

ENOl F
END FOR x
IF perfect THEN PRINT "._- no failures ___ II

ENDPROC failures
1/
passfail("II",test'conment)
FUNC test'conment CLOSED

II this is a conment
RETURN TRUE II conments are allowed

ENDFUNC test'conment
1/
passfail("abs",test'abs)
FUNC test'abs CLOSED

IF ABS(1)<>1 THEN RETURN FALSE
IF ABS('1)<>1 THEN RETURN FALSE
IF ABS(O)<>O THEN RETURN FALSE
IF ABS(-3.9)<>3.9 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'abs
1/
passfail("and",test'and)
FUNC test'and CLOSED

IF (TRUE AND TRUE)<>TRUE THEN RETURN FALSE
IF (TRUE AND FALSE)<>FALSE THEN RETURN FALSE
IF (FALSE AND TRUE)<>FALSE THEN RETURN FALSE
IF (FALSE AND FALSE)<>FALSE THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'and
1/
passfail("at",test'at)
FUNC test'at CLOSED

row:=CURROY; col:=CURCOL
PRINT AT 10,30: "",
IF CURROY<>10 THEN RETURN FALSE
IF CURCOL<>30 THEN RETURN FALSE
PRINT AT 0,20: 1111,

IF CURROY<>10 THEN RETURN FALSE
PRINT AT 4,0: 1111,

IF CURCOL<>20 THEN RETURN FALSE
CURSOR row, col
RETURN TRUE

ENDFUNC test'at
II etc. etc.
fai lures

Page 20 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

j A

COMMON COMAL - Definition and Test Functions

II
/ / anything typed here

Statement - Anything after I I is ignored, allowing
comments in programs. In direct mode, / / allows
you to overtype on a full screen line. After your
command, just type / / and hit return; the rest of
the line is ignored, and your command executed.

FUNC test'comment CLOSED
II this is a comment
RETURN TRUE II comments allowed

ENDFUNC test'comment

1. Tests single line comment and comment at the end of a
statement.

ABS
ABS(«numeric expression»)
PRINT ABS(standard'number)

Function - Gives the absolute value of the number.
Positive numbers and zero are unaffected, while
negative numbers become positive.

FUNC test'abs CLOSED
IF ABS(1)<>1 THEN RETURN FALSE
IF ABS(·1)<>1 THEN RETURN FALSE
IF ABS(O)<>O THEN RETURN FALSE
IF ABSC·3.9)<>3.9 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'abs

2. Tests positive, negative, zero and non-integer values.

AND
«expression» AND «expression»
IF number>O AND number<IOO THEN

Operator - Gives the result of a logical AND of
two expressions, as shown by the following table:

AND II TRUE I FALSE
======1===============
TRUE II TRUE I FALSE
.. _ .. -1+.· ... ·-+
FALSE II FALSE I FALSE

This is different than most BASICs in which AND
is a bitwise operator. For bitwise AND in COMAL
see BITAND.

FUNC test'and CLOSED
IF (TRUE AND TRUE)<>TRUE THEN RETURN FALSE
IF (TRUE AND FALSE)<>FALSE THEN RETURN FALSE
IF (FALSE AND TRUE)<>FALSE THEN RETURN FALSE
IF (FALSE AND FALSE)<>FALSE THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'and

3. Tests all four AND opera.tion possibilities.

APPEND
OPEN [FILE] «file#»,«filename»,APPEND
OPEN FILE 2,"test",APPEND

File Type - Part of the OPEN statement. The
sequential file must already exist on disk, and is
opened in APPEND mode. New data is written to
the file immediately after the existing data.

AT
PRINT AT «row»,«col»: [«print list»[«mark»]]
INPUT AT «row», «col»[,«len»] : [«prClq)t»:] [(<vars»[(<mark»]]
PRINT AT 1,1: "Section number:"; num;
INPUT AT JO,1,1:"Yes or No? ":repiy$

Special - Part of INPUT or PRINT statements,
specifying a specific location to start at, similar to
having a CURSOR statement immediately before a
PRINT or INPUT statement. PRINT AT may also
be combined with a USING format. Remember, the
cursor location is specified row then column,
similar to finding your seat at a theater. Including
a comma or semicolon at the end of the statement
causes the cursor to remain on the current line, and
not go down to the next line. A comma means stay
where it is, while a semicolon means space to the
next zone then stay there (default is one space).

C64 Power Driver, C64 COMAL 1.0 and Apple
COMAL do not accept a comma at the end of an
INPUT AT statement. They do accept a semi-colon.

FUNC test'at CLOSED
row:=CURROW; col:=CURCOL
PRINT AT 10,30: "",
IF CURROW<>10 THEN RETURN FALSE
IF CURCOL<>30 THEN RETURN FALSE
PRINT AT 0,20: III',
IF CURROW<>10 THEN RETURN FALSE
PRINT AT 4,0: "",
IF CURCOL<>20 THEN RETURN FALSE
CURSOR row, col
RETURN TRUE

ENDFUNC test'at

4. Tests row and column placement, then eolumn only. then row
only.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 21

COMMON COMAL - Definition and Test Functions

ATN'
A TN(«numeric expression»)
PRINT ATN(numl+num2)

Function - Returns the arctangent in radians of the
number. CP 1M COMAL allows you to choose
degrees rather than radians, but has radians as the
default.

FUNC test'atn CLOSED
IF ATN(O)<>O THEN RETURN FALSE
IF-ABS(ATN(1)·PI/4»0.000001 THEN RETURN FALSE
IF ABS(ATN(TAN(0.5»·0.5»0.000001 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'atn

5. Teats the arctangent trig function.

AUTO
AUTO [«start line»][,«increment»]
AUTO 9000
AUTO 100,100
AUTO ,5

Command - Makes the COMAL system generate
line numbers automatically as a program is typed
in. Valid line numbers are 1 - 9999. Each line
number is always four characters. Some systems
pad with leading O's (QQ3Q), others with leading
spaces L1Q). AUTO begins with the next available
line number if you do not specify a starting line.
If you don't specify an increment, 10 is used. If
you don't specify a starting line number, 10 is
used, unless program lines already exist. Then the
line number to start at is the last line plus the
increment.

Alder COMAL will not allow you to cursor up to
correct a previous line while in AUTO mode, other
COMALs do.

Just hitting «return» after a line number inserts a
blank line in the program, except in C64 Power
Driver, C64 COMAL 1.0 and Apple COMAL, which
use a blank line to terminate AUTO mode. C64

, Power Driver and C64 COMAL 1.0 always start at
line 10 unless otherwise specified.

BASIC : exit COMAL to BASIC, see BYE

BITAND
«argument» BIT AND «argument»
show(bnum BITAND %00001000)

Operator - Returns the bitwise AND of the two
numbers, similar to most BASICs AND. Binary
constants are prefixed by a %. The following table
shows how BIT AND works:

BITAND II 00 I 01 I 10 I 11
=======1===================

001100100100100
···-1+····+····+····+···
01 1100 I 01 I 00 I 01

···-1+····+····+····+···
10 II 00 I 00 I 10 I 10

···-1+····+····+····+···
11 II 00 I 01 I 10 I 11

···-1+····+····+····+···

FUNC test'bitand CLOSED
IF (3 BITAND 3)<>3 THEN RETURN FALSE
II (X11 BITAND X11)<>X11 <==binary
IF (3 BITAND 0)<>0 THEN RETURN FALSE
II (X11 BITAND %0)<>%0 <==binary
IF (5 BITAND 6)<>4 THEN RETURN FALSE
II (X101 BITAND X110)<>X100 <==binary
RETURN TRUE

ENDFUNC test'bitand

6. Teats three types of BITAND operations: both bite on, both
bits off, and one bit on - one bit off.

BITOR
«argument» BITOR «argument»
PRINT (bnum BITOR flag)

Operator - Returns the bitwise OR of the two
, numbers, similar to most BASICs OR. Binary
constants are prefixed by a %. The following table
shows how BITOR works: .

BITORIIOO I 01110111
======1===================

00 II 00 I 01 I 10 I 11
···-1+····+····+····+···
01 1101 101 I 11 I 11

···-1+····+····+····+···
10 II 10 I 11 I 10 I 11

····1+····+····+····+···
11 II 11 I 11 I 11 I 11

···-1+····+····+····+···

FUNC test'bitor CLOSED
IF (3 BITOR 3)<>3 THEN RETURN FALSE
II (X11 BITOR X11)<>X11 <==binary
IF (3 BITOR 0)<>3 THEN RETURN FALSE
II (X11 BITOR %O)<>X11 <==binary
IF (5 BITOR 6)<>7 THEN RETURN FALSE
II X101 BITOR X110)<>X111 <==binary
IF (0 BITOR 0)<>0 THEN RETURN FALSE
II (%0 BITOR %0)<>%0 <==binary
RETURN TRUE

ENDFUNC test'bitor

7. Tests three types of BITOR operations: both bits on, both
bits off, and one bit on - one bit off.

Page 22 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

,

COMMON COMAL - Definition and Test Functions

BITXOR
«argument» BITXOR «argument»
bnum=(num1+num2) BITXOR %10000000

Operator - Returns the bitwise exclusive OR of
the two numbers. BITXOR performs the bitwise
XOR operation bit by bit on the two numbers.
Binary constants are prefixed by a %. The
following table shows how BITXOR works:

BnXOR 1100 I 01 1 10 111
=======1===================

00 II 00 I 01 I 10 I 11
----1·-·-··----·-·····--

01 II 01 I 00 I 11 I 10
·--·1·----+·····-·_-+···
10 II 10 I 11 I 00 1 01

····1········_-·········
11 II 11 1 10 1 01 1 00

····1+-·--···_··-···+_··

FUNC test'bitxor CLOSED
IF (3 BITXOR 3)<>0 THEN RETURN FALSE
II (%11 BITXOR %11)<>%0 <==binary
IF (3 BITXOR 0)<>3 THEN RETURN FALSE
II (%11 BITXOR %0)<>%11 <==binary
IF (5 BITXOR 6)<>3 THEN RETURN FALSE
II (%101 BITXOR %110)<>%11 <==binary
IF (0 BITXOR 0)<>0 THEN RETURN FALSE
II (%0 BITXOR %0)<>%0 <==binary
RETURN TRUE

ENDFUNC test'bitxor

8. Tests the three types of BITXOR operations: both bits on,
both bits off, and one bit on - one bit off.

BYE
BYE

Command - Returns you to the computer's
operatiog system.

Both Amiga COMALs ask you to confirm the exit
from COMAL as a safeguard. Amiga COMAL also
lets you click on the close window gadget in the top
left corner of the COMMAND window to exit
COMAL. C64 and Cl28 carts use the keyword
BASIC instead of BYE, since BASIC is the main
operating system.

CASE
CASE «control expression» [OF]
CASE reply$ OF
CASE choice OF

Statement - Begins a CASE structure, allowing a
multiple choice decision with as many specific
WHEN sections as needed. A default OTHER WISE
section may be included that is executed if none of
-the WHEN sections match the condition (which can

be either string or numeric). Statement blocks
following each WHEN are indented when listed,
but the CASE, WHEN and OTHER WISE statements
are not}. The system will insert the word OF for
you if you don't type it.

FUNC test'case CLOSED
DIM replyS OF 4, choiceS OF 1
replyS=labcd"
FOR x:=1 TO 4 DO

CASE x OF
WHEN 1

IF x<>1 THEN RETURN FALSE
WHEN 2

IF x<>2 THEN RETURN FALSE
OTHERWISE

IF x<3 THEN RETURN FALSE
END CASE
choiceS=reply$(x:x)
CASE choiceS OF
WHEN "a"

IF x<>1 THEN RETURN FALSE
WHEN lib"

IF x<>2 THEN RETURN FALSE
OTHERWISE

IF x<3 THEN RETURN FALSE
END CASE

END FOR x
RETURN TRUE

ENDFUNC test'case

9. Tests numeric and string CASE matching, with mUltiple
WHEN statements and an OTHERWISE.

CAT
CA T [«filename»]
CAT

Command - Gives a catalog (directory) of the files
on a disk. It uses the default drive if none is
specified. Pattern and wild card matching is
allowed and should match the way the operating
system works. For example, with Commodore and
IBM computers, the following is true:

? matches anyone character
• matches any string of characters

With the Amiga, the • means the current window,
and other characters (such as #) are used for
pattern matching. On IBM and Amiga, a period (.)
is a significant part of a filename, while on
Commodore it is just another character. These and
other differences are to be expected, since the
COMAL system must adapt to the computers
operating system methods.

Most COMALs include both CAT and DIR even
though they may be identical in purpose, to allow
users to use the one they are used to. C64 Power
Driver and C64 COMAL 1.0 allow DIR in
programs, but not CAT.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 23

CHAIN

COMMON COMAL - Definition and Test Functions

CLOSED
CHAIN «filename»
CHAIN "menu"

Command/Statement - Loads and runs a program
from a disk file. The program must have previously
been SAVEd to disk.

CHANGE
CHANGE "«old text»","«new text»"
CHANGE "zz","print'report"

Command - Changes parts of a program line into
another string of characters, just like in word
processors.

Both Amiga COMALs do not have this command,
but have their own methods of accomplishing it. C64
Power Driver and Apple COMAL do not have the
CHANGE command.

CHR$
CHR$(«numeric expression»)
PRINT CHR$(num)

Function - Returns the character with the specified
numeric (ASCII) code. ORD is the complimentary
function to CHR$.

Note that ASCII codes may vary from system to
system (Commodore in particular).

FUNC test'chr CLOSED
IF CHRS(53)<>"5" THEN RETURN FALSE
IF ORD(CHRS(65»<>65 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'chr

10. Tests for ASCII character "5" and verifies that ORD is the
-complement of CHR$.

CLOSE
CLOSE [[FILE] «filenum»]
CLOSE FILE 2

Command/Statement - Closes the file specified. If
no specific file is specified, all files are closed (but
does not affect files opened via the SELECT
OUTPUT statement). No error Should occur if you
attempt to close a file that is not open.

CP 1M COM AL gives an error if you try to close a
file that is not open.

PROC «procname»[(params» [CLOSED]
FUNC «funcname»[(params)] [CLOSED]
PROC newpage(header$) CLOSED
FUNC gcd(nl,n2) CLOSED

Procedure/Function TyPe - Declares that all
variables and arrays inside the procedure or
function are to be local - hidden from the main
program. Likewise, all variables and arrays in the
main program are not known inside a CLOSED
procedure or function. However, specific variables
and arrays may become known inside a CLOSED
procedure or function by use of parameters or the
IMPORT statement. Data statements inside a
CLOSED procedure or function are considered local
(except for C64 Power Driver, C64 COMAL 1.0 and
Apple COMAL). Many COMALs allow a CLOSED
procedure or function to be made EXTERNAL. See
EXTERNAL.

FUNC test'closed CLOSED
terl1':=TRUE
closed'proc
RETURN terl1'
/I
PROC closed'proc CLOSED

terl1':=FALSE
ENDPROC closed'proc
/I

ENDFUNC test'closed

11. Tests that a variable changed inside a closed procedure does
not affect a variable with the'lame name outside that procedure.

CON
CON

Command - Restarts a program that was previously
stopped by a STOP statement or the stop/break
key.

Due to the internal linking system used by most
COMALs, if lines are added. deleted. or modified.
or if new variables are introduced, the program may
not be able to be continued.

COS
COS(<<numeric expression»)
PRINT COS(number)

Function - Returns the cosine of the number in
radians. CP 1M COMAL allows you to choose
degrees rather than radians. but has radians as the
default.

Page 24 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

s

•

•

COMMON COMAL - Definition and Test Functions

FUNC test'eos CLOSED
IF ABS(COS(O)-l»O.OOOOOl THEN RETURN FALSE
IF ABS(COS(PI/3)-0.5»0.000001 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'eos

12. Tests the cosine trig function.

CREATE
CREA TE «filename»,«# records»,«record size»
CREATE "names",128,200

Command/Statement - Creates a random access file
of the specified size. Most COMALs count records
in a random file beginning with record number 1.
(CP 1M COMAL begins with record number 0.)

CURCOL
CUR COL
column:=CURCOL

Function - Returns the current column position of
the cursor on the text screen. Columns are counted
from left to right. The leftmost column is 1.

CURCOL is not implemented by Alder. CURCOL
is part of the SYSTEM package in C64 & CI28 2.0
cartridge implementations, and requires a USE
SYSTEM command prior to use, and is not available
within CLOSED procedures or functions without
being imported (or having a separate USE SYSTEM
within the procedure or function).

FUNC test'eureol CLOSED
eol:=CURCOL
CURSOR 0,30
IF CURCOL<>30 THEN RETURN FALSE
CURSOR O,eol
RETURN TRUE

ENDFUNC test'eurcol

13. Tests that the correct column is returned by setting only
the column position, checking and then replacing the cursor
where it originally was.

CURROW
CURROW
row:=CURROW

Function - Returns the current row of the text
screen that the cursor is on. Rows are counted top
to bottom. The top row is 1.

CURROW is not implemented by Alder. CURROW
is part of the SYSTEM package in C64 & CI28 2.0
cartridge implementations, and requires a USE
SYSTEM command prior to use, and is not available
within CLOSED procedures or functions without

being imported (or having a separate USE SYSTEM
within the procedure or function).

FUNC test'eurrow CLOSED
row:=CURROW
CURSOR 10,0
IF CURROW<>10 THEN RETURN FALSE
CURSOR row,O
RETURN TRUE

ENDFUNC test'eurrow

14. Tests that the correct value is returned by setting the
cursor location by row, checking the value, then returning the
cursor to its original row location.

CURSOR
CURSOR «line»,«position»
CURSOR 1,1

Command/Statement - Positions the cursor to the
specified row and column. Rows are counted from
top to bottom; columns from left to right. The top
row is line I. The leftmost column is column 1.
Cursor positioning is similar to finding your seat at
a theater. First find the row, then the position in
that row.

Specifying 0 as a row or column means not to
change it, thus CURSOR 0,9 would move to
position 9 on the current row.

If used as a direct command, CURSOR correctly
positions the cursor, but then moves to the first
position on the next line for the next command
(which surprises many beginners).

FUNC test'cursor CLOSED
row:=CURROWi col:=CURCOL
CURSOR 10,30
IF CURROW<>10 THEN RETURN FALSE
IF CURCOL<>30 THEN RETURN FALSE
CURSOR 0,20
IF CURROW<>10 THEN RETURN FALSE
CURSOR 15,0
IF CURCOL<>20 THEN RETURN FALSE
CURSOR row,eol
RETURN TRUE

ENDFUNC test'eursor

15. Saves the current cursor position, then moves it to a
specific location and checks the values. Next it moves just the
column and checks. Then it moves just the row and checks.
Finally the cursor is returned to its original location.

DATA
DATA «value»{,«value»}
DATA "Sam",I34,"Fred",22,"Gloria",46

Statement - Declares data constants that may be
assigned to variables via a READ statement. Data
may be text strings within Quotes, or numbers.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 25

COMMON COMAL - Definition and Test Functions

Multiple items may follow a· DATA keyword,
separated by commas. When the last DATA item is
read, EOD is set to TRUE. Data can be reused
following a RESTORE command.

. To include a quote mark as part of the string data,
use two consecutive quote marks ("abc""defg" is
read as abc"defg).

Data inside a CLOSED procedure or function is
regarded as local data. Likewise, a READ statement
inside a CLOSED procedure or function may only
read data inside that procedure or function.

In C64 Power Driver. C64 COMAL 1.0 and Apple
COMAL data is always global.

FUNC test'data CLOSED
DIM s$ OF 6
READ s$
IF S$<>"passed" THEN RETURN FALSE
READ x
IF x<>13 THEN RETURN FALSE
RETURN TRUE
DATA "passed",13

ENDFUNC test'data

16. Tests reading string and numeric data from DATA
statements.

DEL
DEL «range»
DEL 460
DEL pause

Command - Removes (deletes) lines from the
program currently in the computer's memory. Lines
may be deleted one at a time or in consecutive
blocks, all at once.

DEL 10 deletes line 10. DEL pause deletes the
procedure or function named pause. DEL 10-30
deletes all the lines in the range of 10 through 30.
DEL -90 deletes all program lines up to and
including line 90. DEL 9000- deletes all program
lines after and including line 9000.

CP 1M COMAL requires that a specified line must
exist.

DELETE
DELETE «filename»
DELETE "test5"

Command/Statement - Removes files from disk.
Several files may be deleted at once by using
pattern matching and wildcard characters. These
will match the methods used by the computers
operating system and will vary between systems.
For example, the following are used by Commodore

64 and 128:
? matches anyone character
• matches any string of characters

IBM PC COMAL can only delete one file at a time.
C64 Power Driver and C64 COMAL 1.0 require that
a drive be specified as part of the filename.

DIM
DIM «string van) OF «max char»
DIM «str array»(«index») OF «max char»
DIM «array name»(«index»)
DIM name$ of 30
DIM players$(1:4) OF 10
DIM scores(min:max)

Command/Statement - Allocates (dimensions) space
for strings and arrays. Arrays begin with element
1 unless otherwise specified. Multiple DIMs may be
in one statement, separated by commas.
~dimensioning is not allowed.

Each element of a numeric array is initially set to
o when dimensioned (except for Alder. but they may
have this corrected now). Arrays may have multiple
dimensions, with whatever top and bottom limits
you wish, within memory limitations.

FUNC test'dim CLOSED
DIM s$ OF 4, x(1), z('1:2)
S$:="passed"
IF s$<>"paSS" THEN RETURN FALSE
IF x(1)<>O THEN RETURN FALSE
x(1):=TRUE; z(-1):=5
IF x(1)<>TRUE THEN RETURN FALSE
IF z(-1)<>5 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'dim

17. Tests dimensioning string and numeric arrays, including one
with a negative element index. It also checks that strings are
truncated if they are longer than the limit and that an array is
initialized to 0 when it is dimensioned.

DIR
DIR [«filename»]
DIR

Command - Gives a directory of the files on a
disk. It uses the default drive if no other is
specified. Pattern matching and wild card
characters are allowed and should match the way
the operating system works. For example, with IBM
and Commodore 64 computers, the following is
true:

? matches anyone character
* matches any string of characters

With the Amiga, the * means the current window,
and other characters (such as #) are used for

Page 26 - COMAL Today #24, 5501 Groyeland Terrace, Madison, WI 53716

COMMON COMAL - Definition and Test Functions

pattern matching. On IBM and Amiga, a period (.)
is a significant part of a filename, while on
Commodore it is just another character. These and
other differences are to be expected, since the
COMAL system must adapt to the computers
operating system methods.

Most COMALs include both CAT and DIR even
though they may be identical in purpose. to allow
users to use the one they are used to. C64 Power
Driver and C64 COMAL 1.0 allow DIR in
programs. but not CAT.

DISCARD
DISCARD

Command - Discards all previously linked packages
and libraries.

C64 Power Driver. C64 COMAL 1.0 and Apple
COMAL do not support packages and thus do not
have a DISCARD command.

DISPLAY
DISPLAY [«range»] [TO] [«filename»]
DISPLAY "names.lst"
DISPLAY init

Command - Lists a program without line numbers.
Ranges of lines may be specified, as with LIST.
Program lines may be displayed to disk, allowing
them to be inserted into word processing documents
and such. Some systems allow program lines
displayed to disk to be re-entered with the ENTER
or MERGE commands.

In CP 1M COMAL. il there are more lines to be
displayed than lit on the screen. it automatically
pauses alter each screen/ul. Hit <space> lor the
next screen. In Alder COMAL. <CTRL>+S is used
to pause a display. Other COMALs use <space> to
pause and restart a listing.

II you cursor up a program listing on the screen.
when you hit the top line. Amiga. IBM and C1l8
COMALs will re-list the previous line. and scroll
the listing down. This allows you to backtrack up a
listing. and is very handy.

DIV
«dividend» DIY «divisor»
result=guess DIV count

Operator - Provides division with an integer
answer. It can be used in conjunction with the
MOD operator. DIY defines x DIY z as INT(x/z).

C64 cart and CP 1M COMAL do not follow the
definition when one 0/ the numbers is negative.

FUNC test'div CLOSED
IF 500 DIY 256<>1 THEN RETURN FALSE
IF 1500 DIY 5<>300 THEN RETURN FALSE
IF (·7) DIY 3<>(-3) THEN RETURN FALSE
IF 7 DIV (-3)<>(-3) THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'div

18. Tests two types of division, with and without remainder,
followed by two types of division with negative numbers.

DO : see FOR and WHILE

EDIT
EDIT [«range»]
EDIT pause
EDIT

Command - Lists program lines to the screen,
similar to LIST, but without indentations, one line
at a time, for you to edit. Line ranges may be
specified as with LIST. C64 Power Driver. C64
COMAL 1.0 and Apple COMAL list lines
continuously. not one at a time.

ELiF
ELIF «expression» [THEN]
ELIF rep/y$ IN "YyNn" THEN

Statement - Allows conditional statement execution.
ELIF is short for ELSE IF and is part of the IF
structure. The statement block following the ELIF
is executed only if the condition is TRUE,
otherwise it is skipped (the statement block is
automatically indented in listings). If you omit the
word THEN, the system will insert it for you.

FUNC test'elif CLOSED
IF FALSE THEN

RETURN FALSE
Ell F TRUE THEN

NULL
ELSE

RETURN FALSE
ENDIF
RETURN TRUE

ENDFUNC test'elif

19. Tests that a TRUE ELIF condition has its statement.
executed. and that execution then continues after the ENDIF,
skipping the ELSE section statements.

ELSE
ELSE

Statement - Provides alternative statements to
execute when all IF and ELIF conditions in the IF
structure evaluate to FALSE (the statement block
is automatically indented in listings).

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 27

COMMON COMAL - Definition and Test Functions

FUNC test'else CLOSED
IF FALSE THEN

RETURN FALSE
ELSE

RETURN TRUE
END IF

ENDFUNC test'else

20. Tests that the ELSE section is executed by default.

END
END [«message»]
END "All Done."

Statement - Terminates program execution. END
is optional. Without an END statement, a program
ends automatically after its last line is executed.
There may be more than one END statement in a
program. Programs ending at an END statement
may not be restarted via CON (use STOP for this
capability). A message may be included to replace
the system default end message (usually End At
Line 0100 or something similar).

C64 Power Driver. C64 COMAL 1.0 and Apple
COMAL do not allow the optional message after
END. CP/M COMAL seems more flexible with the
optional message, and thus ending messages can be
slightly different. Amiga COMAL's end message is
printed in the COMMAND Window.

ENDCASE
ENDCASE

Statement - Marks the end of a CASE structure.

FUNC test'endcase CLOSED
CASE 1 OF
WHEN 1

NULL
OTHERWISE

RETURN FALSE
END CASE
RETURN TRUE

ENDFUNC test'endcase

21. Tests that program execution skips to after the ENDCASE
following a successful WHEN match.

ENDFOR
ENDFOR [«control variable»]
ENDFOR sides#
ENDFOR increment

Statement - Marks the end of a FOR loop. The
system will insert the variable name after ENDFOR
for you if you omit it (after a SCAN or RUN).
Single line FOR statements do not use ENDFOR.

Some systems convert NEXT into ENDFOR for you
(making the transition from BASIC easier).

The control variable is considered local to the FOR
structure by Amiga, IBM, CP/M, Cll8 and CM
cartridge COMALs.' Thus a for loop variable will
not conflict with a variable of the same name in the
main program.

FUNC test'endfor CLOSED
FOR x#::1 TO 2 DO

y#:=x#
END FOR x#
IF Y#<>2 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'endfor

22. Tests that END FOR marks the end of a FOR loop.

ENDFUNC
ENDFUNC [«function name»]
ENDFUNC even

Statement - Marks the end of a user defined
function. The system will insert the function name
after the ENDFUNC for you if you do not type it
(after a SCAN or RUN). ENDFUNC is not used
with EXTERNAL function header lines. See
EXTERNAL for more information.

C64 Power Driver, C64 COMAL 1.0 and Apple
COMAL do not support nested functions or
EXTERNAL functions.

FUNC test'endfunc CLOSED
IF int'func#<>5 THEN RETURN FALSE
RETURN TRUE
/I
FUNC int'func# CLOSED

RETURN 5
ENDFUNC int'func#
II

ENDFUNC test'endfunc

23. Telts that ENDFUNC marks the end of a function.

ENDIF
ENDIF

Statement - Marks the end of a multi-line IF
structure. One line IF statements do not· use an
ENDIF.

Page 28 - COMAL Today #24, 5501 Gro-veland Terrace, Madison, WI 53716

COMMON COMAL - Definition and Test Functions

FUNC test'endif CLOSED
IF FALSE THEN

RETURN FALSE
ENDIF
RETURN TRUE

ENDFUNC test'endif

24. Tests that program execution skips to after the ENDIF for
a failed IF structure.

ENDLOOP
END LOOP

Statement - Marks the end of a multi-line LOOP
structure.

FUNC test'endloop CLOSED
LOOP

EXIT
RETURN FALSE

ENDLooP
RETURN TRUE

ENDFUNC test'endloop

25. Tests that program execution continues after the
END LOOP after an EXIT statement is executed.

ENDPROC
ENDPROC [«procedure name»]
ENDPROC show'item

Statement - Marks the end of a procedure. The
system will insert the procedure name after the
ENDPROC for you if you do not type it (after a
SCAN or RUN). ENDPROC is not used for
EXTERNAL procedure header statements. See
EXTERNAL for more information.

C64 Power Driver, C64 COMAL 1.0 and Apple
COMAL do not support nested procedures or
EXTERNAL procedures.

FUNC test'endproc CLOSED
setvar(x)
RETURN x
1/
PROC setvar(REF var) CLOSED

var:=TRUE
ENDPROC setvar
1/

ENDFUNC test'endproc

26. Tests that ENDPROC marks the end of a procedure
definition.

ENDTRAP
ENDTRAP

Statement - Marks the end of the error handler
TRAP structure.

C64 Power Driver, C64 COMAL 1.0 and Apple
COMAL do not support the error handler structure
and thus do not have ENDTRAP.

FUNC test'endtrap CLOSED
TRAP

divO=5/0
RETURN FALSE

HANDLER
NULL

END TRAP
RETURN TRUE

ENDFUNC test'endtrap

27. Tests that execution of the error handler continues after the
ENDTRAP following completion of the handler section.

ENDWHILE
ENDWHILE

Statement - Marks the end of a multi-line WHILE
structure. ENDWHILE is not used with single line
WHILE statements.

FUNC test'endwhile CLOSED
WHILE FALSE DO

RETURN FALSE
ENDWHILE
RETURN TRUE

ENDFUNC test'endwhile

28. Teats that statements are not executed if the WHILE
condition fails, and that program execution skips to immediately
after the END WHILE statement.

ENTER
ENTER «filename»
ENTER "testing.lst"

Command - Enters program lines from an ASCII
format file (such as a file of a program previously
LISTed to disk). Any current program is cleared
from memory prior to entering the new lines (use
MERGE to preserve the current program).

C64 Power Driver, C64 COMAL 1.0 and Apple
COMAL do not clear a program first, allowing
ENTER to also merge program segments into the
current program. CP 1M and IBM PC COMALs do
not require line numbers in the file being entered.

When transferring a COMAL program from one
system to another. LIST the program to disk, then

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 29

COMMON COMAL - Definition and Test Functions

ENTER or MERGE it into the other system. This
may also be done via modem or networks.

EOD
EOD
WHILE NOT EOD DO

Function - Boolean function that returns TRUE if
End Qf Data has been reached. If there are no
DA T A statements in the program, EOD is always
TRUE.

FUNC test'eod CLOSED
IF EOO THEN RETURN FALSE
WH I LE NOT EOD DO READ x
IF NOT EOO THEN RETURN FALSE
RETURN TRUE
DATA 13,14

ENDFUNC test'eod

29. Teats that EOD returns FALSE if there is data to be read,
that EOD can be used to read all data, and that after all the
data is read, EOD is TRUE.

EOF
EOF(«filenum»)
WHILE NOT EOF(in/ile) DO

Function - Boolean function that returns TRUE
when End Qf file has been reached. Since several
files may be open at one time, you must specify
the file number.

ERR
ERR
CASE err OF

Function - Returns 'the error number when an error
occurs within an error handler structure. Error
numbers are implementation specific.

C64 Power Driver. C64 COMAL 1.0 and Apple
COMAL do not support an error handler and thus
do not have ERR.

FUNC test'err CLOSED
TRAP

REPORT 13
HANDLER

IF ERR<>13 THEN RETURN FALSE
END TRAP
RETURN TRUE

ENDFUNC test'err

30. Tests that the error number reported by ERR is the same
one that has been trapped.

ERRTEXT$
ERRTEXT$
PRINT ERRTEXT$

Function - Returns the error message for the
current error inside an error handler. Error
messages are implementation specific, and methods
of dealing with them varies between COMALs.

C64 Power Driver. C64 COMAL 1.0 and Apple
COMAL do not support an error handler and thus
do not have ERRTEXT$.

FUNC test'errtext CLOSED
TRAP

IF LEN(ERRTEXTS)<>O THEN RETURN FALSE
divO:=5/0 Ildivision by 0 error

HANDLER
IF LEN(ERRTEXTS»O THEN RETURN TRUE

ENDTRAP
RETURN FALSE

ENDFUNC test'errtext

31. Tests that there is no text in ERRTEXT$ prior to an error,
and that after an error occurs, ERRTEXT$ contains the
message.

ESC
ESC
EXIT WHEN ESC

Function - Returns TRUE if the stop/break key
has been pressed. This is only useful if the
stop/break key is disabled (see TRAP).

ESC seems unreliable in Alder COMAL.

FUNC test'esc CLOSED
TRAP ESC·
TRAP ESC+
IF ESC THEN NULL
IF ESC THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'esc

32. Tests that the stop/break key can be disabled and enabled.
It then tests thai once Bei, ihe ESC flag can be cleared back to
its FALSE setting. .'

EXEC
[EXEC] «procname»[(«parameter list»)]
show'item(number)

Command/statement - Executes a procedure. May
be used from direct mode. The word EXEC is
optional and rarely typed. Multiple EXEC
statements may be on one line, separated by
semicolons. Only the procedure name needs to be
typed to execute a procedure.

Page 30 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

COMMON COMAL - Definition and Test Functions

FUNC test'exec CLOSED
X:=FALSE
setx(x)
RETURN x
/I
PROC setx(REF y)

y:=TRUE
ENDPROC setx
/I

ENDFUNC test'exec

33. Tests that the original variable passed as a REF parameter
is properly updated after the procedure call.

EXIT
EXIT [WHEN «condition»]
EXIT WHEN errors>3

Statement - Provides the method for leaving a
LOOP structure. It can be conditional with the
optional WHEN extension.

CP 1M COMAL and Amiga COMAL use EXIT to
exit from FOR, REPEAT and WHILE structures as
well as LOOP. This can cause potential problems
and is viewed as a flaw rather than an enhancement.

FUNC test'exit CLOSED
LOOP

EXIT
RETURN FALSE

ENDLooP
RETURN TRUE

ENDFUNC test'exit

34. Tests that EXIT leaves the loop structure and begins
execution following the ENDLOOP statement.

EXP
EXP(«numeric expression»)
PRINT EXP(llumber)

Function - Returns the natural logarithm's base
value e raised to the power specified. A good
representation of e is 2.718281828.

FUNC test'exp CLOSED
IF EXP(O)<>1 THEN RETURN FALSE
IF ABS(EXP(1)-2.71828»O.00001 THEN RETURN FALSE
IF ABS(EXP(LOG(10»-10»O.000001 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'exp

35. Teats a few conditions of the natural logarithms base value
e raised to the specified power.

EXTERNAL
PROC «name»[(«parms»)][EXTERNAL «file»]
FUNC <<name»[(<<parms»)][EXTERNAL «file»]
FUNC rec'size(name$) EXTERNAL "rec.ext"
PROC set'up EXTERNAL "setup.ext"

Special - Identifies a procedure or function as an
external one. This means that the body of the
procedure or function is stored on disk, and is not
part of the program itself. Thus ENDFUNC or
ENDPROC are not used. An external procedure or
function is considered CLOSED. To be used as
external, a procedure or function must be CLOSED
and previously SAVEd to disk.

C64 Power Driver, C64 COMAL 1.0 and Apple
COMAL do not support EXTERNAL procedure or
functions. Amiga, IBM, C64 and C12S cartridge
COMALs allow the filename to be a variable.

FUNC test'external CLOSED
II this test'external is only valid if
II called as an external func
RETURN TRUE

ENDFUNC test'external

36. Test that a function can be external. Note that this test is.
only valid if the function is saved to be an external function.

FALSE
FALSE
ok:=FALSE

System Constant - Always equals O. It can be used
in comparisons or as a numeric expression.
Example, test:=FALSE is the same as test:=O.

FUNC test'false CLOSED
IF FALSE<>O THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'false

37. Tests that FALSE is equal to O.

FILE : see CLOSE, INPUT, OPEN, PRINT,
READ, WRITE

FIND
FIND "«text string»"
FIND" PROC"

Command - Searches the program for specified
text. It is case sensitive in most COMALs, so that
reoeat would not match REPEAT.

C64 Power Driver, C64 COM AL 1.0 and Apple
COMAL do not have the FIND command.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 31

COMMON COMAL - Definition and Test Functions

FOR
FOR «var»:=«#» TO «#» [STEP «#»] DO [«statement»]
FOR x:=l0 TO 1 STEP -1 DO PRINT X

FOR delay:=l TO amount DO NULL
FOR. num:=l TO total DO

Statement - Marks the start of a FOR structure or
one line FOR statement. The variable is initialized
to the start value before loop execution begins. A
check is made that the variable value does not
exceed the end value before executing the loop
statements (it is possible for the loop to be skipped
entirely if the start value exceeds the end value to
begin with). If the step value is negative, the
variable is decremented with each loop, rather than
incremented. The variable may be an integer
variable which yields faster execution in many
systems. The statement block within a multi-line
FOR structure is automatically indented when
listed. The system will insert the word DO for you
if you omit it.

The FOR loop variable is considered LOCAL to the
FOR structure in Amiga. IBM. CP 1M. C64 and
C128 cartridge COMALs. Thus a for loop variable
will not conflict with a variable of the same name
in the main program.

FUNC test'for CLOSED
FOR w:=5 TO 5 DO

IF w<>5 THEN RETURN FALSE
END FOR w
FOR z:=1 TO 0 DO

RETURN FALSE
END FOR z
FOR x:=10 TO 7 STEP -2 DO

t:=x
END FOR x
IF t<>8 THEN RETURN FALSE
FOR Y#:=1 TO 1 DO

RETURN TRUE
END FOR Y#
RETURN FALSE

ENDFUNC test'for

38. Tests a FOR loop that is executed only once. then one that
-is not executed at all. Next it test a loop that is decremented,
and finally an integer loop.

FUNC
FUNC <mame»[(«parm»)] [CLOSED]
FUNC «name»[(<<parm»)] EXTERNAL «fi Lename»

FUNC call'answered EXTERNAL "call"
FUNC but'first$(text$) CLOSED
FUNC occurances#(text$.c$)

Statement - Marks the start of a user defined
function. Parameter passing is allowed; parameters
used are considered local to the function unless
preceded by the REF keyword. If the statement
ends with CLOSED, the function is considered a

closed function, and all variables and arrays in it
are unknown to the main program. Likewise, all
variables and arrays in the main program are then
unknown to the closed function. Use IMPORT or
parameters to bring, main program variables or
arrays into a closed function. The block of
statements inside the function definition are
automatically indented when listed. Functions may
be recursive.

String. external and nested functions are not
supported by Apple COMAL. C64 COMAL 1.0 or
C64 Power Driver. A closed function is more tightly
closed in CP 1M COMAL than other COMALs.

FUNC test'func CLOSED
IF hopeS<>"hope" THEN RETURN FALSE
RETURN TRUE
/I
FUNC hopeS CLOSED

RETURN "hope"
ENDFUNC hopeS
/I

ENDFUNC test'func

39. Tests that ENDFUNC ends the fundion definition.

GET$
GET$(«filenum»,<<# of characters»)
text$=GET$(2.16)

Function - Returns the specified number of
characters from the specified file. The file must
previously have been opened as a read type file. If
the end of file is reached before the specified
number of characters are retrieved, only those
retrieved prior to EOF will be returned (there is no
padding of spaces and no error occurs unless you
attempt to read from the file again).

CP 1M COMAL has difficulties with EOF while
executing GET$ due to the manner that CP I M is
structured.

GOTO
GOTO «label name»
GOTO jail

Statement - Transfers program execution to the
line with the specified label name. Since COMAL
has many structures and loop methods, GOTO is
not required to be used other than in advanced
programs. It is being considered to remove GOTO
from the COMAL standard.

Page 32 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

COMMON COMAL - Definition and Test Functions

FUNC test'goto CLOSED
GOTO this'line'ts'making'me'ill
RETURN FALSE

this'line'is'making'me'ill:
RETURN TRUE

ENDFUNC test'goto

40. Teats that GOTO can jump over linea.

HANDLER
HANDLER

Statement - Marks the beginning of the error
handling section of the TRAP HANDLER
structure. The block of statements in the trapped
section and the error handling section are
automatically indented when listed.

C64 Power Driver. C64 COMAL 1.0 and Apple
COMAL do not support an error handler and thus
do not have HANDLER.

FUNC test'handler CLOSED
TRAP

divO=5/0
RETURN FALSE

HANDLER
RETURN TRUE

END TRAP
RETURN FALSE

ENDFUNC test'handler

41. Teats that the handler section is executed after an error.

IF
IF «condition» THEN [«statement»]
IF reply$ IN "yYnN" THEN

Statement - The start of a multi-line IF structure.
May also be a one line IF statement (no ENDIF is
used). IF allows conditional statement execution.
The block of statements following the IF are only
executed if the condition is TRUE. The block of
statements are automatically indented when listed.
The system will insert the word THEN for you if
it is omitted.

FUNC test'if CLOSED
t:=FALSE
IF TRUE THEN

t:=TRUE
ENDIF
IF t THEN RETURN TRUE
RETURN FALSE

ENDFUNC test'if

42. Testa that statements are executed following a TRUE
condition with a single line IF or multi-line IF structure.

IMPORT
IMPORT «identifier» {,«identifier»)
IMPORT running'total

Statement - Allows a closed procedure or function
to use variables, arrays, procedures and functions
from the main program. There may be more than
one IMPORT statement in a procedure or function,
and all IMPORT statements should come prior to
any executable statement in that procedure or
function.

IMPORT is not supported by C64 Power Driver. C64
COMAL 1.0 or Apple COMAL. In those systems all
procedures and functions in the main program are
automatically available inside closed procedures and
functions: variables and arrays can be shared via
parameter passing.

FUNC test'import CLOSED
t:=FALSE
p
RETURN t
1/
PROC P CLOSED

IMPORT t
t:=TRUE

ENDPROC p
1/

ENDFUNC test'import

43. Tests that a variable outside a CLOSED procedure is
accessible after an IMPORT statement.

IN
«string!» IN «string2»
IF guess$ IN word$ THEN winner

Operator - Returns the position of «string!» within
«string2» (or 0 if not found). If «string!» is the
null string ("") 0 is returned.

If «string 1» is the null string. Alder returns 1; C64
cart. CP/M COMAL and C64 Power Driver return
the length of the string plus 1.

FUNC test'in CLOSED
DIM sS OF 3
sS:=labc"
IF ("b" IN sS)<>2 THEN RETURN FALSE
IF ("d" IN sS) THEN RETURN FALSE
IF ("11 IN sS) THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'in

44. Tests that substrings are found when possible; are not found
when not possiblej and that the null string is not found in any
string.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 33

COMMON COMAL - Definition and Test Functions

INPUT
INPUT FILE «file#»[,«rec#»]: «var list»
INPUT [AT «row»,«col» [,«lell»] :] [«prompt»:] «vars»[<<IlI8rk»]
INPUT FILE 2: textS
INPUT AT 5,2,JO:"ZIP CODE: ": zip'code,
INPUT "Age? ":age
INPUT reply$

Statement - INPUT allows the user to enter data
into a running program from the keyboard (the AT
section is optional). INPUT FILE gets the data
from the file specified, which must have been
previously opened for reading. INPUT FILE reads
ASCII files, such as those created by PRINT FILE
or a Word Processor with ASCII file output (does
not read files created by WRITE FILE statements).
The prompt is optional and may be a variable.

During the INPUT from keyboard request, the
input area is a protected field extending to the end
of the line (unless the length part of the AT section
is specified). A 0 length means only a carriage
return will be accepted (except in CP/M COMAL).
A 0 for the row or column means not to change it
(stay in the same row or column). If the «mark» is
a comma, the cursor remains where it is after the
reply. If it is a semicolon, spaces are printed to the
next zone (one space by default if ZONE is not
specified), then the cursor remains at that position.

CP/M COMAL requires that the prompt be a
constant if used. Alder, C64 Power Driver, C64
COMAL 1.0 and Apple COMAL do not allow a
comma to be used as the mark at the end of the
statement (only allow a semicolon).

INT
INT(«numeric expression»)
tally:+INT(number}

Function - Returns the nearest integer less than or
equal to the specified number. Both positive and
negative numbers are rounded down (-8.3 becomes
integer .=.V.

FUNC test'int CLOSED
IF INT(3)<>3 THEN RETURN FALSE
IF INT(3.8)<>3 THEN RETURN FALSE
IF INT(-3)<>-3 THEN RETURN FALSE
IF INT(-3.3)<>-4 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'int

45. Tests that the value returned is the same for integers; and
that the value returned is the nearest integer that is lesB than
a non-integer.

KEYS
KEYS
WHILE KEY$="" DO NULL

Function - Returns the first character in· the
keyboard buffer. If no key has been pressed, the
null string ('III) is returned.

C64 cart and C64 Power Driver return CHR$(O) if
no key has been pressed.

FUNC test'key CLOSED
WHILE KEY$>CHR$(O) DO NULL
IF KEY$>'III THEN RETURN FALSE
IF LEN(KEY$»O THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'key

46. Tests clearing the keyboard buffer, then checks that no key
is left in the buffer. Finally it checks that the null string (length
0) is returned when there is no key pressed.

LABEL
[LABEL] «label name»:
months:

Identifier - Assigns a label name to the line. This
label is only referenced by RESTORE or GOTO.
It is non-executable and may be placed anywhere
within a program as a one line statement. The line
is not indented (except in Amiga and CP/M
COMAL). You do not have to type the word label,
and most systems do not list it either (similar to
how EXEC is treated).

FUNC test'label CLOSED
RESTORE right'here
READ x
IF x<> 5 THEN RETURN FALSE
RETURN TRUE
DATA 4

right'here:
DATA 5

ENDFUNC test'label

47. Testa that a label can be used with RESTORE to reset the
next data item pointer.

LEN
LEN(«string expression»)
length=LEN(text$)

Function - Returns the length of the specified
string. All characters, even non-printing characters,
are counted. The length of the null string "" is O.

Page 34 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

" ,
!,

COMMON COMAL - Definition and Test Functions

FUNC test'len CLOSED
DIM as OF 5
as: ='111
IF LEN(s$)<>O THEN RETURN FALSE
s$:=112345"
IF LEN(s$)<>5 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'len

48. Teats that the length of the null string is 0 and that the
length of a string is equal to the number of characters .. signed
to it.

LINK
LINK «filename»
LINK "mouse"

Command - Loads a disk based package and links
it to the program. A USE command is required in
the program before the package commands are
available to the program.

Amiga COMAL links a package into the system with
the USE command.

LIST
LIST [«range»] [TO] [«filename»]
LIST header
LIST "myprog.lst"
LIST pause "pause. 1st"

Command - Lists the specified program lines. If no
lines are specified, all lines are listed. If a filename
is specified, the lines are listed to that file (in
ASCII form), otherwise they are listed to the
current output location (screen by default). A
procedure or function name can be used to specify
a line range.

LIST 30 lists only line 30
LIST ·30 lists all lines up to and including line 30
LIST 9000· lists all lines after and including line 9000
LIST 100·200 lists lines 100 through 200 inclusive
LIST pause lists all lines in procedure name pause

Lines LISTed to disk may be merged into the
programs with the MERGE command (C64 Power
Driver, C64 COMAL 1.0 and Apple COMAL use the
ENTER command lor merges). Statement blocks
within structures are automatically indented when
listed.

LIST and ENTER commands are useful when
transferring programs from one system to another.
LIST the program to disk. Then ENTER it into the
other system. Modems and networks may also be
used to aid the transfer.

II more lines than lit on one screen are to be listed,
CP 1M COMAL pauses alter each screen ... press

space lor the next screen. With Alder COMAL,
<CTRL>+S is used to pause a listing. The other
COMALs have <space> pause and restart a listing.

CP 1M COMAL requires the lilename to come belore
the line range (reverse 01 the other COMALs).
CP 1M COMAL requires that a line number used to
specily a range must exist. Alder requires the
keyword TO belore a lilename; without the word
TO, the LIST becomes a global search lor the text
in quotes.

Amiga, IBM and C128 COMALs will re-list
preceding lines il you cursor up on the top line 01
the screen. This is handy to see lines that have just
scrolled 01/ the top.

LOAD
LOAD «filename»
LOAD "menu"

Command - Loads a program from disk into the
computers memory. Program memory is cleared
before loading the program. The program being
loaded must have previously been SAVEd to disk.
You cannot LOAD a program SA VEd by a
different COMAL implementation. To transfer
programs between implementations, use LIST to
disk, and ENTER to retrieve them.

LOG
LOG(«numeric expression»)
PRINT LOG(number);

Function - Returns the natural logarithm of the
number specified. This is log to the base e. A good
representation of e is 2.718281828.

FUNC test'log CLOSED
IF LOG(1)<>0 THEN RETURN FALSE
IF ABS(LOG(2.71828)·1»0.OO001 THEN RETURN FALSE
IF ABS(EXP(LOG(10»·10»0.000001 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'log

49. Tests the natural logarithm function.

LOOP
LOOP

Statement - Starts a multi-line loop structure that
uses the EXIT statement as the exit method. The
statement block within a LOOP structure are
automatically indented when listed.

C64 Power Driver, C64 COMAL 1.0 and Apple
COMAL do not have the LOOP structure.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 35

COMMON COMAL - Definition and Test Functions

FUNC test1loop CLOSED
count:=O
LOOP

EXIT WHEN count=2
count:+1

ENDLOOP
IF count<>2 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test1loop

50. Tests exiting a loop after a certain number of passes.

MAIN
MAIN

Command - Returns to the main program section
when a program is stopped while an external
procedure or function is being executed.
Alder, C64 Power Driver, C64 COMAL 1.0 and
Apple COMAL do not have a MAIN command.

MERGE
MERGE [«line#»[,«increment»]] «filename»
MERGE "readrec.lst"

Command - Merges program lines from a disk file
(ASCII format). The lines are renumbered as they
are merged into the current program.

C64 Power Driver, C64 COMAL 1.0 and Apple
COMAL use the ENTER command to merge
program segments. Alder, Amiga COMAL, and
C641C128 2.0 cartridge COMALs require line
numbers in the file being merged, even though those
line numbers are ignored.

MOD
«dividend» MOD «divisof»
color=number mod 16

Operator - Returns the modulo of the numbers. It
can be used in conjunction with DIY. It defines
x MOD z as x-ex DIY z)*z which expands into
x-INTlx/z)*z. If z is negative, the result may be
irrelevant, but should follow the definition.

When one of the numbers is negative, CP 1M
COMAL and C64 cartridge COMAL do not follow
the definition.

FUNC test'mod CLOSED
IF 500 MOD 256<>244 THEN RETURN FALSE
IF 1500 MOD 5<>0 THEN RETURN FALSE
IF (·7) MOD 3<>2 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'mod

51. Tests that MOD in cases where the result should be 0 as
well as when the result should be a positive value. Then it tests
MOD with a negative number.

NEW
NEW

Command - Erases the program currently in
memory and clears all variables. Linked packages
are also cleared.

Amiga COMALs request confirmation if a NEW
command is issued and the program in memory has
been modified and not saved.

NEXT : converted to ENDFOR, see ENDFOR

NOT
NOT «condition»
IF NOT ok THEN

Operator - Returns to reverse of the TRUE /
FALSE evaluation:

NOT TRUE = FALSE
NOT FALSE = TRUE

FUNC test1not CLOSED
IF (NOT TRUE)=TRUE THEN RETURN FALSE
IF (NOT FALSE)<>TRUE THEN RETURN FALSE
RETURN TRUE

ENDFUNC test1not

52. Tests the two possibilities of NOT: NOT TRUE and NOT
FALSE.

NULL
NULL
WHILE KEY$="" DO NULL

Statement - Does nothing. It can be used as an
empty statement, such as in a pause loop.

FUNC test1null CLOSED
NULL
RETURN TRUE

ENDFUNC test1null

53. Tests that a NULL statement is accepted.

OF : see DIM and CASE

OPEN
OPEN [FILE] «file#»,«filename»,«type»
OPEN FILE 2,"scores",READ

Command/Statement. - Opens a file and assigns it
a file number (that is used later with file operation
statements). A file may be opened to the screen,
printer and serial port as well as disk.

Page 36 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

COMMON COMAL - Oefinitionand Test Functions

OR
«condition» OR «condition»
IF reply$<"a" OR reply$>"z" THEN

Operator - Returns the result of the logical OR of
the two expressions. This is different than most
BASICs in which OR is a bitwise operator. For
bitwise OR in COMAL see BITOR.

OR II TRUE I FALSE
======1===============
TRUE II TRUE I TRUE
------1+-------+------
FALSE II TRUE I FALSE

FUNC test'or CLOSED
IF (TRUE OR TRUE)<>TRUE THEN RETURN FALSE
IF (TRUE OR FALSE)<>TRUE THEN RETURN FALSE
IF (FALSE OR TRUE)<>TRUE THEN RETURN FALSE
IF (FALSE OR FALSE)<>FALSE THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'or

54. Tests the rour possibilities or OR: both TRUE, both
FALSE, and one TRUE - one FALSE.

ORO
ORO(«string expression»)
a=ORD("a")

Function - Returns an integer representing the
ASCII code (ordinal number) of the specified
string. If the string is longer than one character,
ORO only looks at the first character. An error
results if the null string is used. ORO is system
dependent and may vary between systems
(especially Commodore).

FUNC test'ord CLOSED
IF ORD(IS")<>S3 THEN RETURN FALSE
IF ORD(CHR$(6S»<>6S-THEN RETURN FALSE
IF ORD(lIcll)-ORD(lIall)<>2 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'ord

55. Tests that the ASCII value ror "6" is correct, then that
CHR. is a correct complement to ORD, and that the leUer £ is
2 more than the letter .! in ORD values.

OTHERWISE
OTHERWISE

Statement - Marks the start of the default case in
the CASE structure. The block of statements after
the OTHER WISE are executed if no WHEN case
condition is met. The block of statements are
indented automatically when listed.

FUNC test'otherwise CLOSED
x:=3
CASE x OF
WHEN 1,2,4

RETURN FALSE
OTHERWISE

RETURN TRUE
ENDCASE
RETURN FALSE

ENDFUNC test'otherwise

56. Tests that ir no WHEN cue is matched, the OTHERWISE
section is executed.

PAGE
PAGE

Statement/Command - Clears the screen and puts
the cursor at the top left corner (1,1). If output is
to another device, a CHR$(12) is sent (form feed).

FUNC test'page CLOSED
PAGE
IF CURCOL<>1 THEN RETURN FALSE
IF CURROW<>1 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'page

57. Tests that PAGE clean the screen and leavel the cursor in
polition 1,1 (top left comer).

PEEK
PEEK(«memory address»)
device=PEEK(4839)

Function - Returns the decimal value of the
contents in the specified memory location. PEEK
is very machine dependent.

PEEK is a package command in Amiga. Alder and
IBM PC COMAL and requires a USE command
prior to using it.

PI
PI
PRINT "Value 0/ PI is":PI

Function - Returns the value of pi. The number of
digits varies between systems. Generally, pi is equal
to 3.14159266.

COMAL Today #24, 5501 Groyeland Terrace, Madison, WI 53716 - Pale 37

j j

COMMON COMAL - Definition and Test Functions

FUNC test'pi CLOSED
IF PI<3.141592 THEN RETURN FALSE
IF PI>3.141593 THEN RETURN FALSE
RETURN ABS(PI-4*ATN(1»<1e-06

ENDFUNC test'pi

58. Tests that PI returns a close representation of the value of
PI.

POKE
POKE «memory address»,«contents»
POKE 4839.13

Function - Places the specified decimal value into
the memory indicated memory location. POKEing
the wrong value into some memory locations may
"lock out" your machine.

POKE is a package command in Alder. Amiga and
IBM PC COMAL. and requires a USE statement
prior to using it.

PRINT
PRINT [AT «row»,«col»:) [USING «forRl»:] «l ist»[«III8rk»)
PRINT [FILE «#»[,«rec»):] [USING «form»:]«list»[«III8rk»]
PRINT FILE 2: text$
PRINT AT 9.1: USING "$###.##": amount

Statement/Command - Prints items as specified.
More than one item may be specified in one
PRINT statement, separated by a , or ;. A comma
is a null separator (no spaces between items). A
semicolon ; prints spaces to the next zone (one
space by default if ZONE has not been specified).

PRINT FILE statements write items in ASCII to
the file (it may be preferable to use WRITE FILE
instead for data files). The AT and USING sections
are optional parts of a PRINT statement, and are
part of COMMON COMAL. They provide added
flexibility.

CP/M COMAL issues a CHR$(9} for each comma
(as a tab mark). C64 Power Driver and C64
cartridge COMAL use the original meanings of the
comma and semicolon separators. Unless you use a
ZONE statement. the results are the same. See
ZONE.

FUNC test'print CLOSED
cc=CURCOL
PRINT "",
IF CURCOL<>cc THEN RETURN FALSE
zz=ZONE
ZONE 5
PRINT ""i
cc=CURCOL
PRINT ""i
IF cc+5<>CURCOL THEN RETURN FALSE
ZONE zz //reset zone
RETURN TRUE

ENDFUNC test'print'print

59. Tests that printing a null string with a comma endmark
does not move the cursor. Then it checks that Ilone works with
the semicolon separator. The Ilone is reset after the tests.

PROC
PROC <<name»[(«parm»)] [CLOSED]
PROC <<name»[(<<parm»)] [EXTERNAL «file»]
P ROC readrec(number}
PROC compare(t1$.t2$} EXTERNAL "comp.ext"

Statement - Marks the start of a multi-line
procedure definition, including parameter passing
(parameters are considered local unless preceded by
the REF keyword). A procedure may recursive.
The CLOSED keyword is included at the end of
the statement to make a procedure closed. A closed
procedure does not know about variables or arrays
in the main program (unless they are IMPORTed).
Likewise, variables and arrays inside a closed
procedure are local, and remain unknown to the
main program.

A closed procedure can be used as an EXTERNAL
procedure by SAVEing it to disk. You can define
a procedure within another procedure (nested).

C64 Power Driver. C64 COMAL 1.0 and Apple
COMAL do not allow nested procedures or
EXTERNAL procedures.

FUNC test'proc CLOSED
x:=FALSE
set x
RETURN x
/I
PROC setx

x:=TRUE
ENDPROC set x
/I

ENDFUNC test'proc

60. Tests that variables changed in an open procedure are also
changed in the main program.

Page 38 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

\

COMMON COMAL - Definition and Test Functions

RANDOM
OPEN FILE «file#»,«filename»,RANDOM «len»
OPEN FILE 2,"subs",RANDOM 88

File Type - Identifies a file as random access, for
both reading and writing,

Commodore COMALs have a 254 byte limit on
record length. Alder COMAL also allows
READONLY to be specified after the record length,
in which case the file may only be read and not
written to.

RANDOMIZE
RANDO MIZE [«seed»]
RANDOMIZE
RANDOMIZE num

Statement/Command - Randomizes the random
number generator. This generates a series of pseudo
random numbers. You only need to use the
RANDOMIZE command once in your program
(such as right the the very beginning).

Specify a "seed" number after RANDOMIZE and
you cause a specific series of random numbers to
be generated, The series of numbers will be the
same each time that specific seed is used. This is
helpful while testing a program that uses random
numbers.

FUNC test'randomize CLOSED
RANDOMIZE
FOR x:=1 TO 50 DO

r:=RND(1,20)
IF (r<1) OR (r>20) THEN RETURN FALSE

END FOR x
DIM rarray(1:9)
RANDOMIZE 9 Ilspecific set of numbers
FOR x=1 TO 9 DO rarray(x)=RND(1,99)
RANDOMIZE 9 I/reset to specific set
FOR x=1 TO 9 DO

IF RND(1,99)<>rarray(x) THEN RETURN FALSE
ENDFOR x
RETURN TRUE

ENDFUNC test'randomize

61. Tests that no seed is needed with RANDOMIZE. Then
checks that a random number is in its correct range. Next it
checks that a specified seed gives the same set of random
numbers each time.

READ
READ [FILE «file#»[,«rec#»]:] «var list»
OPEN [FILE] «filenum»,«filename»,READ
READ name$,age
READ FILE 2,record: name$,adr$,city$,st$
OPEN FILE 3,filename$,READ

File TYDe or Statement - In an OPEN statement,
specifies a sequential file to be read. READ also
can be used as a statement to read data from
DA T A statements. Finally, READ FILE statements
read data from sequential or random files that were
created with WRITE FILE statements (these are
binary files, not ASCII).

FUNC test'read CLOSED
DIM s$ OF 6
READ s$
IF s$<>"passed" THEN RETURN FALSE
READ x
IF x<>13 THEN RETURN FALSE
RETURN TRUE
DATA "passed",13

ENDFUNC test'read

62. Tests that string and numeric data are properly read.

REF
REF «van>
P ROC alter(REF text$) CLOSED
FUNC slider REF text$)

Parameter Type - Specifies that the parameter will
be an alias for the matching variable or array in
the calling statement (passed by reference rather
than by value). The value of the calling statement
changes as its REF parameter is changed.

FUNC test'ref CLOSED
setvar(x)
RETURN x
/I
PROC setvar(REF var) CLOSED

var:=TRUE
ENDPROC setvar
/I

ENDFUNC test'ref

63. Tests that variables used as REF parameters have their
value updated as the parameter is changed within the procedure.

RENAME
RENAME «old filename»,«new filename»
RENAME "temp","final"

Statement/Command - Renames a disk file. Takes
an existing file and gives it a new name.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 39

,

COMMON COMAl - Definition and Test Functions

RENUM
RENUM [«target start»][,«increment»]
RENUM 100
RENUM ,5
RENUM 9000,1

Command - Renumbers the program in memory.
Valid line numbers are 1-9999. By default, it
renumbers a program to start at line 10 and
increment by 10, unless you specify otherwise.

REPEAT
REPEAT

Statement - Marks the start of a multi-line
REPEA T structure. The block of statements after
the REPEA T are automatically indented when
listed. They are continually executed until the
condition after the UNTIL evaluates to FALSE.
The statements will always be executed at least
once.

FUNC test'repeat CLOSED
REPEAT

READ x
IF x=4 THEN RETURN FALSE

UNTIL x=5
IF x=5 THEN RETURN TRUE
RETURN FALSE
DATA 10,3,5,4

ENDFUNC test'repeat

64. Tests that a REPEAT loop ia repeated and exited properly.

REPORT
REPORT [«error code»]
REPORT
REPORT 256

Statement - Part of the error handler structure.
REPORT causes an error (optionally you can
specify what error number to generate). This is
useful when using multiple nested handlers.
REPORT puts you into the next outer handler. If
REPORT is issued while not in a handler section,
the error is reported to the system. REPORT is
very system dependent. All COMALs (except
CP 1M COMAL and Alder COMAL) allow you to
include an error message along with the error
number.

C64 Power Driver, C64 COMAL 1.0 and Apple
COMAL do not support the error handler structure,
thus do not have the REPORT statement.

FUNC test'report CLOSED
TRAP

REPORT 13
RETURN FALSE

HANDLER
IF ERR=13 THEN RETURN TRUE

ENDTRAP
RETURN FALSE

ENDFUNC test'report

65. Tests that REPORT can issue a specific error number.

RESTORE
RESTORE [«label»]
RESTORE month'names
RESTORE

Statement/Command - Allows data in DA T A
statements to be re-used. The pointer to the next
data item is reset back to the first data item, unless
a label is specified. Then the next data item pointer
points at the first data item following the label.

C64 Power Driver, CM COMAL 1.0 and Apple
COMAL do not allow labels to be used with
RESTORE, but always restore to the first data item.

FUNC test'restore CLOSED
DIM l$ OF 5
RESTORE good'language
READ l$
IF l$<>"COMAL" THEN RETURN FALSE
RETURN TRUE

good'language:
DATA "COMAL"

another' language:
DATA "BASIC"

ENDFUNC test'restore

66. Tests that RESTORE wi1l restore the pointer to the next
data item following the specified label.

RETURN
RETURN [«value»]
RETURN TRUE
RETURN text$

Statement - Assigns the value specified after the
RETURN to the function and returns control to
the calling statement. RETURN may also be used
to terminate a procedure early.

Page 40 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

1 A •

,

COMMON COMAL - Definition and Test Functions

FUNC test'return CLOSED
x=O
rtest'return
IF x=O THEN RETURN TRUE
RETURN FALSE
/I
PROC rtest'return CLOSED

RETURN
x=5

ENDPROC rtest' re,turn
/I

ENDFUNC test'return

67. Tests that RETURN will cause an early exit to a procedure
and that RETURN will return values from a function.

RND
RND [(<<start num»,«end num»)]
dice=RND(l,6)+RND(1,6)

Function - Returns a random number greater than
or equal to zero, and less than I. If start and end
limits are specified, RND returns an integer within
the specified limits, inclusive.

Alder COMAL uses RND# when specifying a
random integer in a range. C64 Power Driver uses
RND(O) rather than RND.

FUNC test'rnd CLOSED
RANDOMIZE
FOR x:=1 TO 50 DO

r:=RND(1,20)
IF (r<1) OR (r>20) THEN RETURN FALSE
r:=RND
IF (r<O) OR (r>1) THEN RETURN FALSE

END FOR x
RETURN TRUE

ENDFUNC test'rnd

68. Tests that RND can return integers within a specified range
and that RND can return a random number between 0 and 1.

RUN
RUN [«filename»]
RUN
RUN "menu"

Command - Begins execution of the program
currently in memory. If a file is specified, the
memory is cleared and the file is loaded and run.

C64 Power Driver, C64 COMAL 1.0 and Apple
COMAL do not allow a filename to be specified.

SAVE
SA VE «filename»
SAVE "zombies"

Command - Stores the program in memory to the
specified file in compressed form. Comments are
not removed. Later the program can be retrieved
with the LOAD, RUN, or CHAIN command.
Procedures or functions stored with the SAVE
command can be used as EXTERNAL procedures
and functions.

A SAVEd program may not be transferred to
another COMAL system. To transfer a program it
must be in ASCII form as with the LIST to disk
command. Use the ENTER command to retrieve it
to the other system. Modems or networks may also
be used to transfer the file.

Some COMALs save linked packages with the
program. Commodore COMALs will not save a
program if one with the same name already exists.
IBM COMAL overwrites any file with the same
name (without warning or notification). Amiga
COMAL will rename a file found with the same
name (adding the .BKUP extension) and then save
the program (along with an ICON image for it).

SCAN
SCAN

Command - Scans the program in memory for
structure errors. Once a program has been
SCANned or RUN procedures and functions may
be called from direct mode.

SELECT
SELECT [OUTPUT] «type»
SELECT loc$

Statement/Command - Selects the output location.
You do not have to type the keyword OUTPUT. If
it is omitted, COMAL will insert it for you.
Default location is the screen. Possible locations are
system dependent, but most COMALs include a
standard set of destinations among their choices.
Amiga COMAL, CP 1M COMAL, Apple COMAL,
C64 Power Driver, C64 COMAL 1.0, C64 2.0
cartridge, Cl28 2.0 cartridge, PET COMAL 0.14,
PET COMAL 1.02, and PET COMAL 2.0 include:

SELECT lids:"
SELECT "lp:"

Most also include:

Data Screen
Line Printer

SELECT "sp:" Serial Port
SELECT "filename"

IBM PC COMAL does not recognize the standard
destinations in addition to its own. It only uses the
identifications set up by MS-DOS:

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 41

i I

COMMON COMAL - Definition and Test Functions

SELECT "con:"
SELECT "prn:"
SELECT "lptl:"
SELECT "coml:"

Console
Printer
Printer (also Ipt2: and Ipt3:)

Serial Port (also com2:)

FUNC test'select CLOSED
TRAP

SELECT OUTPUT "lp:" IIprinter
SELECT OUTPUT lids:" //screen

HANDLER
RETURN FALSE

ENDTRAP
RETURN TRUE

ENDFUNC test'select'select

69. Teats that SELECT will accept the two values common
between COMALa: "da:" and "Ip:".

SGN
SGN(«numeric expression»)
flag=SGN(number)

Function - Returns -1 if the number is negative.
Returns 1 if the number is positive. Returns 0 if
the number is O.

FUNC test'sgn CLOSED
IF SGN(1)<>1 THEN RETURN FALSE
IF SGN(-1)<>-1 THEN RETURN FALSE
IF SGN(O)<>O THEN RETURN FALSE
IF SGN(1000)<>1 THEN RETURN FALSE
IF SGN(-O.01)<>-1 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'sgn

70. Teata that SGN retUrnB -I, 1 or 0 as appropriate.

SIN
SIN(«numeric expression»)
plot(SIN(num),y)

Function - Returns the sine of the number in
radians. CP 1M COMAL allows you to choose
radians or degrees, but has radians as the default.

FUNC test'sin CLOSED
IF SIN(O)<>O THEN RETURN FALSE
IF ABS(SIN(PI/3)-SQR(3)/2»O.000001 THEN RETURN
FALSE //wrap line
RETURN TRUE

ENDFUNC test'sin

71. Tests the line trig function.

SIZE
SIZE

Command - Displays the amount of available free
memory. Some COMALs display more information,
such as program size and data area size. This is an
informational display only. See FREE for a
function that may be used in a program.

SPCs
SPC$(«number of spaces»)
PRINT SPC$(39)

Function - Returns the number of spaces specified.

FUNC test'spc CLOSED
IF SPC$(S)<>" " THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'spc

72. Tests that SPCS returns the number of spaces specified.

SQR
SQR(«numeric expression»)
root=SQR(number)

Function - Returns the square root of the number.

FUNC test'sqr CLOSED
IF ABS(SQR(1000)-31.62277»O.00001 THEN RETURN FALSE
IF ABS(SQR(S)*SQR(S)-S»O.00001 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'sqr

73. Tests the square roots returned in two ways: subtracting
the correct value from the SQR call, and multiplying the SQR
with itself and then subtracting the original number. Both
should have 0 for an answer.

STEP
STEP «numeric expression»
FOR x=l TO max STEP 2DO

Part of FOR statement - Sets the amount the FOR .
variable is incremented after each loop. If it is
negative, the loop variable is decremented rather
than incremented, and terminates when the variable
value is less than the end amount. The step amount
can be an integer or real numeric expression.

Note: a non-integer step size can lead to some
"round off" problems due to the way addition is
performed on the numbers.

Page 42 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

COMMON COMAL - Definition and Test Functions

FUNC test'step CLOSED
count:=O
FOR x:=1 TO 11 STEP 2 DO

IF x MOD 2<>1 THEN RETURN FALSE
count:+1

END FOR x
IF count<>6 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'step

74. Testa that a step of 2, starting with an odd number, will
only result in odd numbers, and that the correct number of
loops are made.

STOP
STOP [«message»]
STOP "now inside PROC remove'blank"

Statement terminates program execution.
Execution may be continued with the CON
command. Variables may be displayed or changed
before continuing. Lines may also be listed.
However, if any lines are added, deleted, or
modified the program may not be able to be
restarted (due to internal tables).

C64 Power Driver, C64 COMAL 1.0 and Apple
COMAL do not allow a message as part of a STOP
statement.

STR$
STR$(«number»)
zip$=STR$(number)

Function - Returns a string that is the equivalent
of the number. The number 567 becomes "567".
The VAL function does the reverse, converting a
string into a number.

FUNC test'str CLOSED
IF STR$(56)<>"56" THEN RETURN FALSE
IF STR$(1.61803)<>"1.61803" THEN RETURN FALSE
IF STR$(-13)<>"·13" THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'str

75. Tests the STR$ function with an integer, real number, and
negative number.

TAB
TAB(«column number»)
PRINT T AB(col), nameS

Function Prints spaces up to the column
specified. If that position is already exceeded, it
goes to the specified position on the next line. TAB
is always part of a PRINT statement.

CP/M COMAL converts the TAB function into:
TAB «column number»

r

FUNC test'tab CLOSED
PRINT TAB(25),"",
IF CURCOL<>25 THEN RETURN FALSE
CURSOR 0,1
RETURN TRUE

ENDFUNC test'tab

76. Teets that TAB locates the cursor properly.

TAN
T AN(«numeric expression»)
PRINT TAN(number)

Function - Returns the tangent of the number in
radians. CP/M COMAL allows you to choose
radians or degrees, but radians is the default.

FUNC test'tan CLOSED
IF TAN(O)<>O THEN RETURN FALSE
IF ABS(TAN(PI/4)-1»0.000001 THEN RETURN FALSE
IF ABS(TAN(2*PI/3)+SQR(3»>0.000001 THEN RETURN

FALSE
RETURN TRUE

ENDFUNC test'tan

77. Tests the tangent trig function.

THEN
THEN
IF NOT ok THEN RETURN FALSE
ELIF errors>3 THEN

Part of IF - Part of the IF and ELIF statements.
The system will insert the word THEN for you if
you omit it.

FUNC test'then CLOSED
IF FALSE THEN RETURN FALSE
IF TRUE THEN

RETURN TRUE
ENDIF
RETURN FALSE

ENDFUNC test'then

78. Tests that THEN is accepted in a single line and multi-line
IF statement.

TO
«start num» TO «end num»
FOR x:=1 TO 4 DO

Part of FOR - Part of the FOR statement,
separating the start and end numbers.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 43

COMMON COMAL - Definition and Test Functions

FUNC test'to CLOSED
FOR x:=1 TO 0 00

RETURN FALSE
END FOR x
RETURN TRUE

ENDFUNC test'to

79. Teltl that TO il accepted in a FOR Itatement, and that if
the It an value excedea the end value the loop ia akipped.

TRAP
TRAP / / start of error handler
TRAP ESC- / / disable stop/break key
TRAP ESC+ / / enable stop/break key

Statement - Marks the start of the error trap
structure. Also is used to disable/enable the
stop/break key.

C64 Power Driver. C64 COMAL 1.0 and Apple
COMAL do not have the error handler structure.
Alder uses TRAPESC (one word) to set the stop/
break key disable. and 0 or 1 instead 0/ + or -.

FUNC test'trap CLOSED
t:=FALSE
TRAP

PRINT 2/0 II division by 0
t:-FALSE

HANDLER
TRAP

TRAP ESC- Iidisabled
TRAP ESC+ Ilenabled
t:=TRUE

HANDLER
NULL

END TRAP
ENDTRAP
RETURN t

ENDFUNC test'trap

80. Teatl the error trap atructure. Then teata that the
Itop/break key can be dilabled and enabled.

TRUE
TRUE
RETURN TRUE

System constant - Always equal to 1 when used as
assignment. Other times it means not FALSE (a
value that is not equal to 0).

FUNC test'true CLOSED
IF TRUE<>1 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'true

81. Tests that TRUE equals 1 when used as an aaaignment.

UNIT
UNIT [«string expression»]
UNIT data'drive$
drive$:=UNIT$

Statement/Function - Sets the default unit when
used as a statement. As a function, it returns the
current unit name.

FUNC test'unit CLOSED
RETURN ":" IN UNITS

ENDFUNC test'unit

82. Teata that a proper unit is returned: it must contain a
colon (:).

UNTIL
UNTIL «condition»
UNTIL reply$="q"

Statement - Marks the end of the REPEAT
structure. Statements inside the structure are
executed until the condition is TRUE.

FUNC test'until CLOSED
x:=2S6
REPEAT

x:"x/2
UNTIL x<1
RETURN x<1

ENDFUNC test'until

83. Teat that UNTIL exits a REPEAT loop correctly.

USE
USE «package name»
USE system

Statement - Activates a package that is linked to
the program, making all its procedures and function
accessible. Package "commands" are not available to
CLOSED procedures and functions unless they are
imported or another USE command is included in
the CLOSED procedure or function.

Amiga COMAL also automatically does a LINK i/
needed. CP/M COMAL requires quotes around the
package name: USE "mouse"

USING
PRINT USING «format»: «var list»
PRINT USING "##> $###.##": x, cash(x)
PRINT AT 8.5: USING "##": item

Special - Part of a PRINT statement allowing
formatted output. Within the format string a #
reserves a position for each possible digit of the

Paae 44 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

COMMON COMAL - Definition and Test Functions

number; a period "." marks the decimal point
location; . a minus sign "-" is optional reserving a
position for the negative sign. On the right of the
decimal point, zeroes are padded where necessary.
On the left of the decimal point, spaces are padded.
All other characters (other than # . -) are printed
as supplied. If the number has more digits than
reserved, a • is printed in each reserved position.

FUNC test'using CLOSED
PRINT II move to next lfne
x=42.8923
PRINT USING "Test'using -•• ''': x,
IF CURCOl<>11 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'using'using

84. Tats that the cursor ia at the correct location after a
PRINT USING statement ia executed.

VAL
V AL(«numeric string»)
age-V AL(reply$)

Function - Returns the numeric value of a numeric
string. This allows you to input data as strings,
check them for errors, then convert them into
numbers. V AL accepts the digits, + and - signs,
decimal point, and exponential notation. Leading
spaces are ignored by VAL.

Requesting a V AL of a non-numeric string results in
an error in most systems. UniComal ignores the rest
of the string beginning at the first non-numeric
character (but gives an error if it's the first
character). C64 Power Driver, C64 COMAL 1.0 and
Apple COMAL return 0 as the VAL of non-numeric
strings (because they have no error handling system
to trap a failed VAL).

FUNC test'val CLOSED
IF VAL(156")<>56 THEN RETURN FALSE
IF VAL(1I1.125")<>1.125 THEN RETURN FALSE
IF VAL("'13")<>-13 THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'val

85. Te.t. that the proper value i. returned for an inte,er, real
number and ne,ative number.

WHEN
WHEN «list of values»
WHEN" Jan"."jan"
WHEN 1.2

Statement - Provides a specific case within a CASE
structure. One or more values are listed after the
WHEN. If any match the current case value, its
following statements are executed. Statement blocks
are indented automatically when listed.

Some COMALs also allow WHEN to be used as a
conditional EXIT from the LOOP structure:

EXIT WHEN «condition,.

In CP 1M COMAL and Amiga COMAL. EXIT and
EXIT WHEN statements will exit all loops. not just
the LOOP structure. Since this may cause COMMON
programs to run incorrectly. we consider it a flaw.

FUNC test'when CLOSED
x:=5
CASE x OF
WHEN 5

x:=6
WHEN 6

RETURN FALSE
OTHERWISE

RETURN FALSE
ENDCASE
RETURN TRUE

ENDFUNC test'when

86. Tatl that only one WHEN c_ .tatementl are executed by
chanlin, the c_ variable in one MCtion to a valid value OR a
followin, WHEN condition. Only the first WHEN section .hould
be executed.

WHILE
WHILE «expression» [00] [«statement»]
WHILE NOT EOF(infile) DO process
WHILE errors<3 DO

Statement - Marks the start of a multi-line WHILE
structure. As long as its condition is true the
statements are executed. If the condition is FALSE
right at the start, the statements are skipped over.
Some COMALs also allow a one line WHILE
statement that does not need an ENDWHILE. The
system will insert the word DO if you omit it.

FUNC test'while CLOSED
DIM as OF 20
as:="never stop"
WHILE a$<>"stop" DO

a$:"a$(2:)
ENDWHILE
IF a$<>"stop" THEN RETURN FALSE
RETURN TRUE

ENDFUNC test'while

87. Ta.tl that a WHILE loop continues executin, until itl
condition i. met.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 4S

,

WRITE

COMMON COMAL - Definition and Test Functions

Special Notes
WRITE FILE «file#»[,«rec#»]:«var»
OPEN [FILE] «filenum»,«filename», WRITE
WRITE FILE 2: name$
OPEN FILE 3,"scores",WRlTE

Statement/Command/File Type - Writes data to a
file in binary form (not ASCII). As a file type, it
specifies that the file is to be written to. Data
written by a WRITE FILE statement may be read
with a READ FILE statement, and is not
compatible between implementations.

ZONE
ZONE [«tab interval»]
ZONE 5
z:=ZONE

Statement/Function - Returns the current zone
setting as a function. As a statement it sets the zone
to the number specified. The zone determines the
interval in tab positions on an output line. The
default zone is I (a zone at each column). The
semicolon is the zone separator (for PRINT
statements and at the end of INPUT statements).
By default, a semicolon outputs one space (if a
ZONE statement is previously used, it outputs
spaces to the next zone). When -a comma is used as
a separator in a PRINT statement (or at the end of
an INPUT statement) no spaces are printed, and the
cursor remains where it is (null separator).

C64 Power Driver, C64 2.0 cartridge, Alder and
CP 1M COMAL follow the original standard: the
comma as the zone separator (with default zone 0)
and the semicolon always outputing one space. If no
ZONE statement is used in a program, it will work
with the either standard. Alder uses GETZONE as
the function that returns the current zone.

FUNC test'zone CLOSED
PRINT II force new line
z:=ZONE
ZONE 10
PRINT 1111;'111;
IF CURCOL<>21 THEN RETURN FALSE
PRINT '111,
IF CURCOL<>21 THEN RETURN FALSE
CURSOR 0,1
ZONE z
RETURN TRUE

ENDFUNC test'zone

88. Tests that the zone Bettings work with the semicolon zone
separator.

Common COMAL is a trademark of COMAL Users
Group, U.S.A., Limited.

C64
Power Driver is the current disk loaded COMAL
for the C64 or C128. It has more commands, more
user memory, and more capabilities than COMAL
0.14. It has been upgraded to C64 COMAL 1.0, but
that upgrade has a fatal flaw with the NEW
command. After months of efforts to find and fix
this bug, the project was postponed and it will be
rewritten from scratch.

The COMAL 2.0 cartridge is more powerful, faster,
and easier to use, but its programs require the
cartridge to be run, while Power Driver programs
can be compiled with the compiler in Power Box.

IBM PC. compatibles. and PS/2
UniComal IBM PC COMAL 2.2 is the current
version of COMAL for the IBM. The My tech
COMAL project was cancelled.

CP/M
CP/M COMAL 2.10 is the original and current
release of COMAL for CP/M. It will run on the
Cl28 in CP/M mode. A demo disk is available if
you wish to test it (and its installation).

Amiga
AmigaCOMAL from ComWare is being distributed
in Scandanavia and Germany. It will not be
released in the USA / Canada until fall according
to ComWare. We previously incorrectly referred to
it as German Amiga COMAL. Borge Christensen,
founder of COMAL. is involved in this project.
The system is written in machine code for speed.

Another company, Alder (formerly My tech). has a
COMAL for the Amiga and said that it is shipping
now, however, we have not yet seen it ourselves.
Alder COMAL is written in C.

When we refer to Amiga COMAL in our articles,
we are usually referring to ComWare
AmigaCOMAL (Germany/Denmark). The other
implementation from Alder is referred to as Alder
COMAL (formerly My tech COMAL).

Auk
Apple COMAL 1.0 should be released by the time
you read this. There is no graphics in this first
release. A future release of version 2.0 is being
planned now, and will include more features.

PET
One of the original implementations of COMAL
was on the Commodore PET computer. It is still
available and being used. Disk loaded PET COMAL
0.14 is current. A plug in board for version 2.0 was
also available.

Page 46 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

Proposed COMAL Multilevel Standard
by Joel Ellis Rea ("COMALite J" on QuantumLlNK)

First there was the COMAL Kernal. Now there is the Common COMAL proposed standard.
COMAL Kernal was considered "too small" -most versions of COMAL went far beyond the Kernal
specifications, while generally remaining upwardly compatible with it. For example, even C-64
COMAL 0.14 went beyond it by adding the KEY$ function and the USING clause to the PRINT
statement, not to mention all of those graphics extensions. Common COMAL started out as a proposed
"high-level" pseudo-standard to include such implementations as the COMAL 2.0 cartridge for the
C-64, and UniCOMAL® IBM PC COMAL 2.0. But now, new implementations are coming out, many of
which change old established aspects of the language such as what the, and; separators mean in the
PRINT statement, etc. Thus, C-64 COMAL 2.0 is no longer Common COMAL-compatible in this and
several other important respects. Also, many new keywords are added that are common enough words
that some older programs may have used these words as variable, label, PRocedure, FUNction, or
package names. For example, adding a new keyword called RECORD would make it hard to convert
older programs which used the word record as a name. The good thing about standards is that they
are, in a word, "standard." That means that theoretically* a program written to the standard would
run as-is on any implementation which was compatible with the standard. The bad thing is that they
often inhibit progress, because additions to the language would either be non-standard, or would
require changing the language standard and thus making all previously standard programs and
language implementations non-standard themselves!

My suggested solution to this dilemma is a multi-level standard! Currently, I have defined three
levels. These would be called Level I COMAL, Level II COMAL, and Level III COMAL. As additions
come out, they can be implemented as higher level standards! Basically, Level I COMAL is the same
as the COMAL Kernal. Thus, COMAL 0.14 would be 95% compatible with the Level I standard (it'lacks
the IMPORT statement which is in the Kernal!), with extensions. Level II COMAL is the Common
COMAL standard, perhaps with some minor changes to make it more compatible with previous
"2.0"-level COMALs. Level III COMAL contains some favorite "blue-sky" enhancements I have long
wanted, and is described more fully in this document. It would be nice if the new Amiga COMAL from
Europe would be adapted to fit this standard.

Ideally, any program written to a lower level standard would run on that standard, and on any
higher-level standard, without modifications. In practice, some names would may to be changed in
order to protect the innocent new keywords. To implement this, I have established some ground rules
that new implementations and proposed new levels should follow:

• No higher level standard should contradict a lower level standard without good reason!

• If a new feature can be implemented with reasonable semantics by extending or re-using an
existing keyword rather than creating a new one, this should be done. For example, my entire
Level III standard adds only three new keywords: ENDDIM, ENDWITH, and WITH, only one
of which is at all likely to have been previously used much as names in existing programs!

To aid in using a higher-level implementation to develop programs which follow a lower-level
standard, I propose that all new implementations which have any enhancements above Level I should
add the SETLEVEL editor command. Like all commands (as opposed to statements, functions,
clauses, structures, etc.) this is not a part of the language itself. Rather, it is a means of warning
and/or forbidding features not implemented in a given lower level. Thus, a person with Level III
would not need a spec sheet on Level I in order to write a program which is guaranteed to be compatible
with the KernaVLevel 1.

My suggested improvements for Level III are mainly concerned with greatly increasing what can
be done with data. I implement structured variables and arrays (like the records in Pascal, the structs
in C, the structured data divisions in COBOL, etc.), plus a nifty feature called "virtual arrays," which
can be used in combination with the structured data. I also obviate much of the need for pointers by
allowing variables, arrays, and structured variables and arrays to be dimensioned to a specific
location in memory. And now, the Level III enhancements:

Non-Keyword Enhancements-These enhancements do not have keywords of their own,
and thus are placed here. These include variable type identifier characters, and one new operand.
They are as follows:

Variable Type Identifiers (all levels as well as extensions):
«name» Real (or non-variable <<name») ..fAll levels
(<name»$ String
«name»# Two-byte signed Integer (-32,767:32,767)

«name»! Single byte (0:255) JLevel III only
<<name»% Two-byte Word (unsigned integer-0:65,535)
«name»' Four-byte signed Long Integer (-2,147,438,648:2,147,438,647)
«name»@ Four-byte Longword (O:4,294,967,296-useful as pointers on 32-bit CPUs.)
«name». Structured variable or array (see DIM and ENDDIM)

New Operator:
@«var» Returns the address of the memory location containing the first byte of the specified

variable's value. Generates Illegal Operation if the variable is "virtual."
Mainly used with DIM AT, but could be handy with PEEK, POKE, and/or SYS.

AT -Clause: For all Levels, is used with a PRINT statement directed to the screen (or to a window) to
position the cursor to a specific location before the start of the output. For Levels II and III, is used
with an INPUT statement directed to the keyboard (or to a window) to position the cursor to a
specific location before the start of the input, and to optionally limit the width of the input field. For
Level III only, is used with a DIM or ENDDIM to specify that a non-"virtual" variable, array,
structured variable, or structured array is to reside at a specific location in memory, usually at an
absolute location or as an alias to another name.

Syntax-Clause (for more details, see individual statement listings):
PRINT [FILE «filenum»[, «recnum»[, «bytenum»]]:][AT «row»[, «cob>]:]

[«print list»] ..fAll levels
INPUT [FILE «filenum»[, «recnum»[, «bytenum»]]:][AT «row»[, «col»[, «width»]]:]

[«promptstring»:]«variable»{[, «variable»] ... } #Levels II and III
D 1M {«name»[[«<intexp>>[:«intexp>>][(, «intexp»[:«intexp»]}])]

I ! [«<intexp»[:«intexp»J[(, «intexp»[:<dntexp»]}])]
I # [(«intexp»[:«intexp»][{, «intexp»[:<cintexp»])])]
I % [(«intexp»[:«intexp»][(, «intexp»[:«intexp»])])]
I ,[«<intexp»[:«intexp»][(, «intexp»[:«intexp»]}])]
I @[«(intexp»[:«intexp»][(, «intexp»[:«intexp»]}])]
I $[(«intexp»[:«intexp»][(,«intexp»[:«intexp»]}])] OF «intexp»]
I [(<<intexp»[:«intexp»][{, «intexp»[:«intexp»]}])] . OF «name».
[AT «longwordexp»][, .•.]}

ENDDIM [«name>>[.][AT «longwordexp»]]

Examples-See individual statement listings.

#Level III only
#Level III only

CLOSE-Statement: Closes a specified open file, all open files, or multiple specified open files
(Level III only). If no «file numbers» are specified, all open files are closed. If one or more«file
numbers» are specified and the FILE clause keyword is omitted, it will be supplied automatically.

Syntax-Statement:
CLOSE [[FILE] «file number»]
CLOSE [[FILE] «file number»[, «file number»] .. .]

Examples-Statement:
CLOSE
CLOSE FILE 8
CLOSE FILE output'file#
CLOSE FILE 10, 20
CLOSE FILE infile#, outfile#

#Levels I and II
#Level III

#Close all open files
#Close file 8 only
#Close file output 'file
#Level III only
JLevel III only

,

DIM-statement: Creates numeric arrays, string variables, and/or arrays of strings, and allocates
space for them. It can also allocate simple numeric variables (though this is unnecessary due to
COMAL's implicit allocation of simple numeric variables upon first assignment, except· as a field
of a structured variable). In Level III only, it can define structured variables and/or arrays by
declaring them to have an equivalent structure to that of a structured variable or array previously
defined in a DIM structure, and allocate space for them. The space may be allocated in RAM
(default), in a special DIM-type "virtual memory" block-storage file (Level III only), or at a
particular memory location (Level III onlYHither absolute or relative to a previously defined
name of any type. By using the AT clause, Level III can also allocate a variable, array, structured
variable, or structured array to reside at some specific location in memory.
Structure (Level III): Defines a structured variable and/or array, and allocates space for it.The
space may be allocated in memory (default), at some specific locationin memory, or in a special
DIM-type "virtual memory" block file.
Clause (Level III): As a parameter to the OPEN statement, specifies that the opened file (must be
on a block storage device) is a special "virtual memory" file.

Syntax-Statement:
DIM {«name»[[(<<intexp»[: «intexp»][(, «intexp»[: «intexp»]}])]

1#[(<<intexp»[: «intexp ••][{, «intexp"[: «intexp»]}])]
1$[(<<intexp»[: «intexp»][{, «intexp»[: «intexp»J}])] OF «intexp»] [, ... J} #'Level I & II

DIM [FILE «/ilenum»:]{<<name»[[«<intexp»[:«intexp»][(, «intexp»[:«intexp»]m]
I ! [(«intexp»[:<<intexp»][{, «intexp»[:«intexp»))])]
I #[(«intexp»[:<<intexp»] [(, «intexp»[:«intexp»]}])]
I %[(«intexp»[:<<intexp»] [(, «intexp»[:«intexp»]}])]
I & [(«intexp»[:«intexp»][[, «intexp»[:«intexp»]}])]
I @[(«intexp»[:<<intexp"][(, «intexp»[:«intexp»]}])]
I $[(«intexp»[:<<intexp»][{ , «intexp»[:«intexp»]}])] OF «intexp»]
I [(«intexp»[:<<intexp»][{, <dntexp»[:«intexp»]}])]. OF <<name».
[AT «longwordexp»][, ...]} #Level III only

Syntax-Structure (Level III only):
DIM [FILE «/iienum»:}<name»[[(<<intexp"[: «intexp»][{ , «intexp»[: «intexp»]}])]. OF

[«simple, non-file DIM statements and lor DIM structures» ... }
ENDDIM [<mame».][AT «longwordexp»]

Syntax-Clause of OPEN statement (Level III only):
DIM [READONLYIWRITEONLY]

Examples (all levels):
DIM m.ystring$ OF 100 #Simple string allocation, 100 characters
DIM myarray# (100) #Simple integer array, 101 elements (0 .. 100)
DIM year' sales (1980: 1999) #Double-bounded real array, 1 dimension, 20 elements
DIM my' string'array$ (10) OF 32 #String array
DIM mymatrix(10, 10) l2-dimensional real array, 121 total elements (llxll)
DIM mymatrix# (1: 10,1: 20) l2-dimensional integer array, 200 total elements
DIM screen'line$ OF screen' width# RExpression instead of constant length
DIM scores (1 : class' size#) RExpression instead of constant upper bound
DIM strng$ OF 64, aryl (3, 2,150), stry$ (100, 5) OF 8 Multiple items

Examples (Level III only):
DIM myinteger# AT $OOOlFEOO
DIM strng$ OF 128 AT keyboard'buffer@
DIM strng$ OF 4096, 1ength% AT @strng$
DIM longint&, hiword% AT @longint&, loword%

#,Absolute location
#'Absolute location
#,Alias location

AT @longint&+2

The last two examples above demonstrate the AT clause in conjunction with the @ operator which
returns the address of any following name. This is handy for creating aliases. The last example
showed how arithmetic could be used to alias a part of a variable, etc., other than from the start of it.

The following short program demonstrates simple "virtual memory" arrays. The virtual string
array "state$" has 1,000-elements of 2 bytes each, for a total of 2,000 bytes in the "virtual memory"
file named "zip. codes". The file itself is assumed to have been previously created, and already
containing the 2-letter state abbreviation for each 3-digit ZIP code prefix.

OPEN FILE 10, "zip.codes", DIM READONLY
DIM FILE 10: state$(0:999) OF 2
LOOP

INPUT "ZIP code (.... -1 to exit)? ... zip'code
EXIT WHEN zip'code<O
zip# := zip'code/100
flhe following statement performs the actual file reads automagically!
PRINT zip'code;"is in the state of";state$(zip#)

END LOOP
CLOSE FILE 10

The following program segment defines a structured variable consisting of an integer, a real, an
integer, 2 8-byte strings, and a 1-dimensional integer array of3 elements, in that order:

DIM vital'stat. OF
DIM height'ft#, height'in
DIM weight#
DIM hair'color$ OF 8, eye'color$ OF 8
DIM measurements#(1:3)

ENDDIM vital'stat

The following line defines a one-dimensional structured array where each element is structured
identically to the structured variable "vital.stat" above. This is great for sorting, since the single
variable "vital. stat" can be used as a temporary for exchanges between array elements.

DIM class'stats(l:class'size#). OF vital'stat.

If such a temporary variable is not needed, and the array is the only one of its structure, the array
can be allocated and its structure defined in a single DIM structure, as follows:

DIM class'stats(l:class'size#). OF
DIM height'ft#, height'in
DIM weight#
DIM hair'color$ OF 8, eye'color$ OF 8
DIM measurements#(1:3)

ENDDIM class'stats.

Structured arrays can also be dimensioned to reside in a "virtual memory" file:
OPEN FILE 20, "class.dat .. , DIM
DIM FILE 20: class'stats(l:class'size#). OF

DIM height'ft#, height'in
DIM weight#
DIM hair'color$ OF 8, eye'color$ OF 8
DIM measurements#(1:3)

ENDDIM class'stats.

Page 50 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

The following program demonstrates using a virtual memory file with the above structure, with
COMAL automagically doing both the reading and writing of the data in the file as necessary:

OPEN FILE 20, "class.dat", DIM
DIM FILE 20: class' size# Hirst item in file is single int var holding array length

DIM FILE 20: class' stats (1: class' size#). OF #Next is the array itself
DIM height'ft#, height'in
DIM weight'
DIM hair'color$ OF 8, eye'eolor$ OF 8
DIM measurements # (1:3)

ENDDIM elass'stats.

DIM r$ OF 1

REPEAT
INPUT AT 0,0,1: "view, Change, or Quit? fl. r$
CASE r$
WHEN "V", "v"

view'stats
WHEN "C", "e"

change ' stats
OTHERWISE
ENOCASE

UNTIL r$ IN "Qq"

CLOSE FILE 20

PROC view'stats

REPEAT

INPUT "Which student # (""0'''' to exit)? ";s#

IF s#>elass'size# THEN
PRINT "Sorry, only"; class'size#; "students!"

ELIF s#>O THEN

WITH class' stats (s#). DO ,.fActual file reads performed here automagically!
PRINT height'ft#, "'''; height 'in, tall."
PRINT "Weighs"; weight#; "pounds."
PRINT "Has";hair'color$;"hair and";eye'color$;"eyes."
PRINT "Measurements: ";
FOR i# :=1 TO 3 DO PRINT measurements#, ;

ENDWITH elass'8tats(s#).

PRINT

END IF

UNTIL 8#=0

ENDPROC view'stats

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 51

PROC change'stats

REPEAT

:INPUT "Which student I (""0"" to exit)? ";sl

:IF sl>class'sizel THEN
PR:INT "Sorry, only"; class'sizel; "students!"

ELU' sl>O THEN

:INPUT "Height (in total inches): ": inches

W:ITH class' stats (sl). DO .l'Actual file writes performed here!
height'ftl := inches D:IV 12
height'in := inches MOD 12
:INPUT "Weight (in pounds): ": weightl
:INPUT AT 0,0,8: "Hair color: ": hair'color$
:INPUT AT 0,0,8: "Eye color: ": eye'color$
:INPUT "Chest (in inches): ". measurementsl(l)
:INPUT "Waist (in inches): ft. measurementsl(2)
:INPUT "Hips (in inches): ft. measurements#(3)

ENDWITH class'stats(s#) .

PRINT

END IF

UNT:IL s'=O

ENDPROC change'stats

The AT clause can be used with structures as well, either to use a structure as an alias to something·
else, or to use something else as an alias to a structure, or to define a structure as residing at an
absolute location in memory, etc. Ifthe structure is defined in a DIM structure and allocated to a set
or alias location using AT, the AT clause is placed on the end of the corresponding ENDDIM
statement, rather than on the DIM statement itself. Of course, AT cannot be used with FILE, nor
may AT be specified inside a structure. Some examples:

DIM alias'record. OF my'record. AT @my'record.
DIM absolute'record. OF my'record AT $OOC08000
DIM sixteenth'byte$ OF 1 AT @my'record.+$OF

DIM new'structure. OF
DIM byte'part!
DIM integer'part#
DIM word'part'
DIM real'part
DIM longword'part@
D:IM longint'part&
DIM string'part$ OF 32

ENDDIM new'structure. AT buffer'address@

Page 52 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

ENDDIM-statement (Level III Only): This statement has only one purpose: to mark the end of a
DIM structure which defines a structured variable or array. The <<name» after the ENDDIM
keyword is optional, but if specified it must match the name of the structured variable or array
defined by the DIM structure. The dimensions of the array are not duplicated here. If either the
<<name», the terminating period, or both are omitted, the COMAL SCAN compiler pass will add the
omitted syntax item(s) automatically the first time the program is RUN or SCANned. An AT clause
may also be used to denote that the non-virtual structured variable or array resides at some specific
location in memory.

Syntax-Statement:
ENDDIM [<<name»[.][AT «longwordexp»]]

Examples:-See DIM structure.

EN DWITH-Statement (Level III Only): This statement ha~ only one purpose: to mark the end of a
WITH structure which simplifies references to a structured variable or array. The «structure
reference» after the ENDWITH keyword is optional, but if specified it must match the one specified
by the.wITH structure. If either the «structure reference», the terminating period, or both are
omitted, the COMAL SCAN compiler pass will add the omitted syntax item(s) automatically the
first time the program is RUN or SCANned.

Syntax-Statement:
ENDWITH [«structure reference»[.]]

Examples:-See WITH structure.

FILE-Clause: A required element in CLOSE and OPEN statements (the FILE keyword will be
automatically supplied by the COMAL compiler if omitted), and an optional element in DIM
(Level III only), INPUT, PRINT, READ, and WRITE statements. For the CLOSE, DIM, and OPEN
statements, this clause specifies the file number (or «filenum») ofthe file being closed, dimen
sioned to, or opened. For the INPUT, PRINT, READ, and WRITE statements, this clause not only
specifies the «filenum» itself, but also optionally specifies a record number «<recnum») and an
optional starting byte number (<<bytenum») for the 110 operation to begin at. See the individual
statement listings for more details on usage and syntax, plus examples.

Syntax-Clause (for more details, see individual statement listings):
CLOSE [[FILE] «filenum»[{, «filenum» ... }]]
DIM [FILE «filenum»:] ...
INPUT [FILE «filenum»[, [«recnum»][, «bytenum»]]:] ...
OPEN [FILE] «filenum», «filename»[, «mode»]
PRINT [FILE «filenum»[, [«recnum»][, «bytenum»]]:] ...
READ [FILE «filenum»[, [«recnum»][, «bytenum»]]: l...
WRITE [FILE «filenum»[, [«recnum»][,«bytenum»]]:] ...

Examples:-See individual statement listings.

Multi files, level III.
JLevel III only.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 53

OPEN-Statement: This statement establishes a connection between a file (a collection of data
located externally to the program itself, to be either input into the program, or output from it, or
some combination of the two) and the program itself by allowing all further references to the file to
be via a simple integer value called a file number. Files are of two main types: sequential and
random access. Sequential files may be located on any type of device, while random access files
may only be located on block-type J.~vices such as disk drives and RAM disks. Level III COMAL
implements a third type offile, called virtual-memory files, which is actually a simplified form of
random access, and thus must reside on a block-type device. The syntactic elements of the OPEN
statement include the «filenum», or the file number itself, which can be any integer in the range
0:255. Some implementations reserve the numbers 0, 1,2, and/or 255 for special system files. To
maintain compatibility, programs which are intended to be portable should only use file numbers
in the range 5:250. The «filename» is a system-dependent file specification which specifies where
the file is located. Sequential files may refer to devices such as the keyboard, screen, printer, serial
ports, parallel ports, MIDI ports, AID ports, etc., depending on the system hardware available.
References to block devices must include a file name, possibly with a path on systems with
hierarchical directories.

The «mode» tells whether the file is to be accessed as sequential or random access, and what
operations are allowed. Valid modes for Level I include none, APPEND, RANDOM «reclen»,
RANDOM «recZen>' READONLY, READ, and WRITE. Valid modes for Level II include all of those
and RANDOM «recZen» WRITEONLY. Valid modes for Level III include all of the above plus DIM,
DIM READONLY, and DIM WRITEONLY. The none, APPEND, READ, and WRITE modes specify
sequential access, meaning that the file is read from the beginning on. If no mode is specified, the
file is opened as sequential access, permitting both read and write operations: if the file does not
exist, an empty one of that name is created, while if a file of that name already exists, it is opened
and the file pointer set to point to the first byte of the file. If the APPEND mode is specified, the file is
opened as sequential access, and only write operations (PRINT FILE and WRITE FILE) are
allowed: if the file does not exist, an empty one of that name is created, while if a file of that name
already exists, it is opened and the file pointer set to point to the first position after the current end of
the file, so that any new data written to the file will be added ("appended") to the end of the file. lethe
READ mode is set, the file is opened as sequential access, and only read operations (INPUT FILE
and READ FILE) are allowed: if no file ofthat name exists, a "File Not Found" error is
returned (which may be trapped in Level II and III by use of the TRAP/HANDLERIENDTRAP
structure), while if a file of that name already exists, it is opened and the file pointer set to point to
the first character. Ifthe WRITE mode is specified, the file is opened as sequential access, and only
write operations are allowed: if the file does not exist, an empty one of that name is created, while if
a file of that name already exists, it is deleted and a new empty file of the same name is created.

The RANDOM «reclew) and DIM modes, with or without either READONLY or WRITEONLY, specify
random access. RANDOM «recZen» specifies "standard" random access, which permits the FILE
clause of the I/O statements INPUT FILE, READ FILE, PRINT FILE, and WRITE FILE to
specify the «recnum» parameter, to allow the operation to occ~r at a particular record in the
file-each such record contains precisely «reclew> bytes. DIM specifies a new "virtual memory"
random access mode, which inhibits explicit I/O operations on the file entirely- instead, the DIM
FILE statement or structure allocates one or more variables (simple, array, structured, and/or
structured array) to blocks and bytes in the file such that merely referencing such a variable
automagically reads from the correct portion of the file, while merely assigning a value to such a
variable automagically writes to the correct portion of the file. For either, omitting READONLY and
WRITEONLY specifies that both reading from and writing to the file are permitted, and that if no
file of the specified name exists, one of the proper name and format is created, while if one does
exist, it is opened and its data made available to the program. If READ ONLY is specified, only read
operations from the file are permitted, and the OPEN succeeds only if the file already exists, while
if no such file exists, a "File Not Found" error is returned. If WRITEONLY is specified, only
write operations to the file are permitted, and any existing file ofthat name is deleted, and a new
one of the specified name and type is created.

Some implementations add further clauses to the OPEN statement, but these are system- dependent
and are not part of the COMAL standards. For instance, Commodore 8-bit COMAL 0.12,0.14, and
Power Driver add a UNIT clause for specifying devices.

•

Syntax~tatement:
OPEN [FILE] «filenum», «filename»[, {RANDOM «reclen» I READ I WRITE}] #Level I

OPEN [FILE] «/ilenum», «filename»[, {RANDOM «recle~> [READONLY] I READ
I WRITE}] #Level II

OPEN [FILE] «filenum», «filename»[, {DIM [{READONLYIWRITEONLY}]
I RANDOM «reclen» [(READONLY I WRITEONLy}]IREAD I WRITE)] #'Level III

Examples-Allievels:
OPEN FILE 10, "lp:", WRITE .I'Opens line printer for output on some systems.
OPEN FILE 7, "error . log" , APPEND .I'Opens file "ERROR.LOG" on the current

block device, as a sequential output file. Ifit already exists, new data will be added to the end.
OPEN FILE 20, "a: cledger . dat", RANDOM 120 /Opens a file from block

device "A:" named "CLEDGER.DAT" as a random access file with 120-byte records.
OPEN FILE 8, filename$, READ .I'Opens a file specified by the string variable

"filenameS" (possibly input from the user) as sequential read only, returning a TRAPpable
(if Level II or III) error if the file does not already exist.

OPEN FILE 12, "aux:" .I'Open device ~AUX:" (possibly a communications port or device
driver) for sequential bi-directional access.

Examples-Level II & III only:
OPEN FILE 5, "c:\system\users.dat", RANDOM 32 READONLY .I'Opensan

existing file "USERS.DAT" in subdirectory "SYSTEM" on block device "C:" as read-only
random access with 32-byte records, returning a TRAPpable error if the file does not exist.

Examples-Level III only:
OPEN FILE 50, "df1:/mystuff/datafile", RANDOM 64 WRITEONLY

#Creates a new random-access file with 64-byte records (by erasing any existing file of the
same name) and opens it in a mode permitting only write accesses.

OPEN FILE 25, "dhO: customers", DIM .K>pens a file (or creates a new one if it does
not already exist) on a block device as a "virtual memory" random access file.

OPEN FILE 8, "login: user list", DIM READONLY .I'Opens an existing "virtual
memory" file (returning an error if not found), and permitting only references to the
variables residing in the file.

OPEN FILE 12, " / gl/ chart of accounts data", DIM WRITEONLY #Creates
a new "virtual memory" file-(byerasing anyexisting file of the same name) and opens it in
a mode permitting only assignments to the variables residing in the file.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 55

SETLEVEL-Command (Required on Level III and up, may be implemented on any level): This
command helps overcome the fact that adding features to a language like COMAL either makes
incompatibilities possible (by introducing new keywords which previous programs may have used
as names), or weakens the effectiveness ofthe dynamic syntax error checking (by using old
keyword in new ways, ways which would have been erroneous in a previous version). Also, of
course, a person may wish to use a higher-level system to write programs, but may wish to be sure
that they will be compatible with lower-level implementations.

S.ETLEVEL is an editor command, like LIST or LOAD or SETEXEC. It is not technically part of
the COMAL language itself; rather, it is a part of the environment in which one writes COMAL
programs. It takes only one parameter, which is optional. This parameter, «level», is an integer
which determines which level you want the system to emulate, and whether violations of that level
are to be forbidden entirely «<level» is negative) or simply warned against («leveI-> is positive).
Setting «level»to zero disables level checking entirely, and allows the full features of the given
implementation to be used without warning, including extensions to any and all standards. If
«level» is omitted, the value last used is displayed. Ifnone was given previously, a default set by a
configuration or installation program is used, or "0" if none has been used. SETLEVEL only flags
or restricts the COMALlanguage itself and its elements, such as statements, structures, functions,
clauses,operators, etc. It does not flag nor restrict other editor commands, or other features of the
COMAL environment.

Syntax-Command:
SETLEVEL [«level»]

Examples:
The following can be considered as a session in COMAL Level III with a standard line
oriented editor. Characters typed in by the user are underscored.

setlevel -1 #Restricts to COMAL Kernal (Level I standard).
500 loop
"LOOP" not allowed in Level 1 #Cursor returns to line 500, user cursors down.
set level 1 /!Warns of incompatibilities with COMAL Kernal.
500 1oQ,p
"LOOP" incompatible with Level 1 #Line 500 is accepted and compiled.
setleyel 2 /!Warns of incompatibilities with Common COMAL (Level II)
500 loop
510 exit when key>· .. •
520 endloQP
5.J..Q
540 open 12,filename$,dim
"DIM" clause to "OPEN" incompatible with Level 2
540 open 12,filename$.randgm 32
display

LOOP
EXIT WHEN KEY$>

END LOOP

OPEN FILE 12, filenameS, RANDOM 32

set1eyel
2

setleyel -3
550 dim button'" to myrecord #Possible pointer-type extension
"TO" clause to "DIM" not allowed in Level 3
setleyel 0
550 dim button'" to myrecord.
560 button~-neKPointer(myrecord(4)

WITH-Structure(Level III Only): This is a unique structure whose purpose is different from other
structures. Other structures include branching structures such as IF/THEN/ELIF/ELSE/ENDIF
and CASElWHEN/OTHERWISElENDCASE; looping structures such as FORIENDFOR, LOOP/EXIT
/EXIT WHEN/ENDLOOP, REPEAT/UNTIL, and WHILElENDWHILE; and subprogram structures
such as FUNciRETURN/ENDFUNC and PRociRETURNIENDPROC. Other unique structures
include the DIMIENDDIM and the TRAP/HANDLERiREPORT/ENDTRAP structures, which, like
WITHIENDWITH, are alone in their types. But even so, TRAP joins the branching, looping, and
subprogram structures in being able to change the flow of the program, while DIMjoins the subpro
gram structures in defining a section of code into a named unit of some sort. WITH does none of
these things. Instead, it provides a shorthand means of referring to long, complex structured
variables or arrays. If a section of code is going to be using a given structure often, encloo'ng it in
a WITHIENDWITH structure makes the code much easier to type in and to read, at the expense of
slowing down the SCAN compiler prepassstage somewhat.

The «structure reference» is the name of any DIMensioned structured variable or array. If the
structured data is nested as part of another structured variable or array, the WITH structure must
either be enclosed in another WITH structure specifying the "parent" structure, or the complete
structure reference must be given.

Syntax:-Structure:
WITH «structure reference». [DO]

«COMAL statements»
ENDWITH [«structure reference»[.]]

Examples:
DIM english'height. OF

DIM feet!
DIM inches

ENDDIM english'height.

DIM physical'stats. OF
DIM height. OF english'height.
DIM weight%, hair'color$ OF 8,

ENDDIM physical'stats.

inches:=5
PRINT inches

WITH physical'stats. DO

eye'color$ OF 8

#Structure reference

#Simple variable
J1'rints "5"

weight%:=185i hair'co1or:="Wm Black"; eye'color:="Dk Brown"
PRINT inches J1'rints "5"

WITH height. DO
feet!:=6i inches:=1.5
PRINT inches

ENDWITH height.

PRINT inchesiheight.inches

ENDWITH physical'stats.

PRINT inchesiphysica1'stats.height.inches

WITH physical'stats.height. DO
PRINT inches

ENDWITH physica1'stats. 'height

J1'rints "1.5"

fPrints "5 1.5"

J1'rints "5 1.5"

J1'rints "1 . 5"

ViewPort

by Paul Keck

How many times have you seen it? That blank
stare, then the spark of (false) recognition in their
faces. "COBOL? Isn't that the language for business
programmers?" No, you explain. Co-MAL. It's 'got
the structure of Pascal and... there they go. Not
listening again.

How can we COMA Lites tell others about our
wonderful language? My experience has been that
whenever you start to define COMAL in terms of
other languages, people tend to remember the worst
possible aspects of those other languages and throw
them back at you.

"Pascal? I hate all those semicolons. And the TYPE
statements, and you know, no variable is REALLY
local."

"Whaddya mean, 'Familiarity of BASIC'? I started
out on C. Now THERE's a language."

"Logo? That's for kids."

"Well, maybe it's easy to learn, but what can you do
with it besides write games?"

The only way I can ever get my message across is
to say something cryptic like "It's a really great
language." Then: "Here, look at this program." Once
I get a person to look at a well written COMAL
program, they get curious. "Easy curves", the one
that first got me interested in COMAL, is great for
this. You'll start hearing remarks like:

"You mean that's the WHOLE program?"

"Where are the POKEs?"

"That's for kids."

Well, everybody isn't easily pleased. For the tougher
cases, or for people you can't sit down in front of
your computer, try a different strategy. Include a
COMAL system on the back of a disk you are
giving them for some other reason. My favorite for
this is a. VT100 emulating Kermit terminal
program. Many students around my university own
Commodore 64s (though they are bullied into
denying it), and so are happy to have an alternative
to buying an expensive VT100 or Zenith terminal.
And, of course, on the flip side is COMAL. Write
something like "type LOAD"FASTBOOT".8 and
RUN" on the label. This will arouse every computer
user's natural curiosity. Sooner or later, they will
try it out. If you know the person's interests, put
some progr~ms on the disk that you know they
would appreciate. If it's a teacher, include
educational programs; if it's a workaholic, some

database or graphing programs; if it's a teenager,
put in a few bitmaps of scantily clad women. If
you don't know anything about them, try the Auto
Run Demo Disk, or The Best of COMAL. I have
used this tactic to distribute twenty or so COMAL
disks to unsuspecting users, and I've gotten back
positive feedback from over half.

One of the best ways to track down "victims" is
through bulletin boards. Whenever someone
expresses dissatisfaction with whatever language
they are working with, jump right in and offer
them a great COMAL program that does just what
they want. For people who accidentally scratched
an important file, give them "dir manipulator" or
"disk'editor". Tell them how easy it is to draw great
graphics in COMAL. Or how the "IN" operator and
substring capabilities will allow them to solve their
problem with text handling. If they still seem
reluctant, remind them that they have absolutely
nothing to lose by trying what you offer. Mention
the word FREE a lot when talking about COMAL
programs. It may seem a little bit tacky, but
helping somebody out of a tight spot can really
make them take a good look at a new thing. Since
we all believe that COMAL is the best computer
language on the block, why be shy about telling
people?

Finally, if you have power, use it. Teachers- have
your students write their programs in COMAL. BBS
operators- write a great utility in COMAL and
make life hard to live without it. User group
leaders (or members)- always be on the lookout for
possible converts. Many novice users show up at
user group meetings begging for someone to show
them how to exploit their new computer to its
fullest. Be the person to show them the way. As
the old saying goes, don't hide the light of COMAL
under a bushel! Let it shine!

Power Driver Memory Locations

by R. Hughes
0.14 PO

======= =======
Printer dev 26129 27507
Printer 2nd addr 26131 27509

Disk deV# for CAT 27013 28446

Turtle x'pos(hi) 27255 28742
Turtle x'pos(lo) 27256 28743
Turtle y'pos 27260 28747
Turtle heading(hi) 27277 28764
Turtle heading(lo) 27278 28765
Turtle visible 27295 28782
Pen' state (Up/Own) 27333 28820

Graphic Set 0/1 27261 28748
Sprite on/off bits 27276 28763

Page 58 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

•

•

Student Mastermind

by Christine and Ray Carter

I. Starting Date -
January I, 1989

II. Problem -
Construct a computer program to carry out the

functions of the game "Mastermind".
III. Procedure -

A. First, my father and I analyzed the steps
taken in a game of Mastermind.
1. To start the game, have the computer

select a combination of four colors from
the six available colors: red, green, blue,
yellow, white or black.

2. The player then selects four of the
available six colors in any combination.

3. The computer then analyzes the players
choice, and puts a black dot for each
correct color in the correct place, and a
white dot for each correct color in the
wrong place.

4. The computer and player then repeat
steps 2 and 3 until the player has run
out of turns (ten chances), or correctly
guessed the code.

B. We then developed a flowchart to show the
major steps in the program.

C. My father and I then proceeded to write a
computer program to implement the
flowchart.

IV. Observation -
When working on a computer program, I

observed that there are several stages to
completing a correct program. You must
first analyze and describe the problem.
Next, a flowchart is helpful to visualize the
major steps. Then, the program is written
and entered into the computer. Finally you
must make additions, changes and other
sorts of corrections until the program works
properly.

Ilsubmitted by christine carter
II and ray carter' sub(1014)
II
dim mindS of 4. guess$ of 4
dim colors$ of 6
dim abS of 3. yn$ of 1
colors$:="rgbywk"
initl Ilinitialization routine
repeat

page
nguess:=O
slct(mindS) Ilroutine to choose random set of colors
correct:=false
repeat

getguess(guess$) Ilget players guess
nguess:+1
report Ilgrade players guess

until (nguess=10 or correct)
goagain(ynS) Ilfind out if she wants to play again

until yn$="n"
stop

proc initl
print chr$(142) Ilselect upper/graphics
border 0
background 12 .
pencolor 1 Ilset text color to white
randomize Ilset random number generator
page IIprint out instructions
print "welcome to the conmodore 64 version of"
print "m a s t e r min d"
print
input "press return to see instructions: ": yn$
print "the coqxJter will select a four color"
print "sequence of. different colors"
print "chosen from red. green. blue. yellow."
print "black. and white."
print
print "you then have ten chances to guess the"
print "correct colors and sequence."
print
print "enter your guesses as four letters"
print "using r for red. g for green. y for"
print "yellow. w for white. or k for black."
print "the coqxJter will then grade your guess"
print "by showing a * for each"
print "correct color which is not in the right"
print "place . and a # for each"
print "color which is in the right place"
print
print "for example you might enter 'rgbk' for"
print "red. green. blue. black"
print "and the coqxJter might show your grade"
print "by #** which would mean that you have"
print "guessed three correct colors. of which"
print "only one is in the correct poSition"
input "press return to start the game: ": yn$

endproc ini tl
proc slct(ref m$) closed

dim colors$ of 6. a$ of 1
colors$:="rgbywk"
m$:=""
for i:=1 to 4 do Ilget four colors

repeat
n:=rnd(1.6) Ilget next color
a$:=colors$(n:n)
tf:=a$ in m$

until (tf=false) llmake sure color is not already used
m$:=m$+a$

endfor i
endproc slct
proc getguess(ref g$) closed

dim colors$ of 6
colors$:="rgbywk"
g$:=""
repeat Ilget players guess

val id:=true
input "enter next guess: ": g$
for i :=1 to 4 do

valid:=(g$(i:i) in colorsS) and valid
endfor i
if (len(g$)<>4) then va,lid:=false

U1til val id llmake sure 'j t is valid
endproc get guess
procreport

if (guess$=mindS) ·then correct:=true
for i:=1 to 4 do Ildisrllay players guess in picture form

case guess$(i:i) of II check each char. show right colr
when "r"

red
when "g"

green

COMAL Today #24, 5501 Gronland Terraef:, Madison, WI 53716 - Page 59

-

Student Mastermind

when "b"
blue

when "y"
yellow

when "w"
white

when "k"
black

endcase
endfor i
print "iii";
for i:=1 to 4 do

Ilcheck how many colors are in right place
if guess$(i:i)=mind$(i:i) then

blackdot
end if

endfor i
for i:=1 to 4 do

Ilcheck how many right colors not in right place
abS:='1I1
for j:=1 to 4 do

if (i<>j) then abS:=abS+mind$(j:j)
endfor j
if guess$(i:i) in abS then

whitedot
end if

endfor i
print

endproc report
proc red

pencolor 2
endproc red
proc green

pencolor 5
endproc green
proc blue

pencolor 6
endproc blue
proc yellow

pencolor 7
endproc yellow
proc white

pencolor 1
endproc white
proc black

pencolor 0
endproc black
proc blackdot

pencolor 0
print "#",

endproc blackdot
proc whitedot

pencolor 1
print "*",

endproc whitedot
proc goagain(ref ynS)

if (correct) then lIif play,er is right, congratulate her
for i:=O to 15 do

border i
for j:=1 to 100 do null

endfor i
border 0
print
print "you got it in "ingues.si" tries."

else Illet her know if she didn't get it
print "you blew it!! the ans:l~er is "imindS

endif
input "would you like another g<1me? [yIn] ": ynS

endproc goaga i n

IBM PC COMAL and Printers

by James Landis

Here are some addresses that may help with
UniComal IBM PC COMAL and printers.

In the System Package 2 instructions INP and QllI
go to hardware addresses and they could damage
your computer.

The addresses below should not hurt your computer
(but use at your own risk).

To check printer status use:

INP#($379) for LPTI
INP#($279) for LPT2

The values have to be tested for each printer
before use.

On an Epson FXIOO+ the values returned:

233Printer Ready
87 Printer Not Ready

119Printer Out Of Paper
147 Printer Turned Off

Don't forget to test your printer before using it in
a program.

If you would like to reset any printer using an
OUT instruction:

control register for LPTI is $37a
control register for LPT2 is $27a

To use type:

OUT($37a,%llOOO) / / initializes LPTI
OUT($37a,%1lIOO) / / printer ready

Control register bits:

bit# settings/meanings
o O=normal, 1 =causes output of byte of data
1 O=normal, l=automatic line after CR
2 O=initialize printer, l=normal
3 O=deselect printer, l=normal
4 O=interrupt disabled, l=interrupts enabled

PROC reset'printer
USE system
OUT(S37a,%11000)
OUT($37a,%11100)

ENDPROC reset'printer

With the INP instructions you can check your
printer before you send any data to see if power is
off or out of paper. If it is not ready you can send
the OUT instructions to try to initialize the printer.
I hope this information is of use to someone.

Page 60 - COMAL Today #24, $501 Groveland Terrace, Madison, WI 53716

•

•

•

•

by Paul Keck

Picture Package for C64 Cart

load'koala«filenameS>)
I've been working on a graphics save/load package
for C64 COMAL 2.0 I call pies.

As COMALites, we all have the capability to draw
hi-res or lo-res color graphics pictures, and save
them to disk for later use. Unfortunately, those
without a COMAL cartridge can not see them. This
prompted me to write the pies package. With it,
you can save and load not only COMAL graphics
pictures, but also BASIC bitmaps and Koala format
color pictures! The pics package makes use of the
free package memory area from $8009 to $bfff,
setting up a memory 'cache' that is used as a
storage area for pictures. You may also set aside a
10003 byte string as a second storage area.

Saving and loading of pictures is done through the
cache. This leaves the graphics screen undisrupted
until you decide to show the picture. It also means
that you may display a message on the text screen
such as "Loading picture .. please wait." I think
people will come up with some good applications of
this type of thing before long.

One surprise I got with the preliminary versions of
the package was GIANT economy sized disk files
when I saved programs with the package linked.
Why did the program file get so big? This caused
a brief but intense session of head-scratching until
I realized that the package thought the memory
cache was part of itself (yes, and it saved the whole
picture in memory along with the program).

I thought, "Easy enough to fix," but then I thought,
"Wait a minute!" I NEWed the program in memory,
and loaded the giant file. Sure enough, after USE
pics and cache'into'screen(TRUE), the picture that
had been in the cache when I saved the program
popped up on the screen. Oho! I added a procedure
so that YOU, yes you, can tell the package whether
to save the picture along with the program. Some
people may decide to use the package just to take
advantage of this feature.

The program "pics-demo" gives a tiny taste of what
you might use this package for. Run it, and also
read through the package keywords, so you'll know
what it can do for you. I plan to expand the range
of picture files that can be loaded and saved; I
hope to include compact COMAL bitmaps, Doodle
pies, and the "gg" and "jj" type compressed pictures
that are often seen on QLink. Further suggestions
will be amiably considered. I will also make the
caching and uncaching routines faster- right now,
I just wanted to make sure they would work. Any
updates I make will be compatible with the existing
package, so go ahead and get started using it!
[hopefully the package & demo will be on TD#24]

Loads a Koala-format picture file into the memory
cache. Does not affect the screen.

save'koala(<filenameS»
Saves the memory cache to disk as a Koala-format
picture file. Will save it as a Koala pic regardless
of whether the cache has a hi-res or lo-res screen
in it, so make sure you only save lo-res screens this
way.

load'screen(<filenameS»
Loads a COMAL picture file into the memory
cache. This procedure loads both 36 block (hi-res)
and 40 block (lo-res) COMAL pictures. It can be
used as a direct replacement for the "loadscreen"
procedure in the graphics package, but remember
that it loads into the memory cache, NOT the
graphics screen.

save'screen(<filenameS»
Saves the cache contents as a COMAL picture file.
Saves either the 36 block type or 40 block type
correctly. Can be used as a replacement for the
"savescreen" procedure in the graphics package.

load'bitmap(<filenameS»
Loads a 32 block bitmap file into the cache. The
procedure automatically clears out the color area of
the cache before loading a bitmap (or a COMAL
screen) so that any colors from a previously cached
picture are removed. It replaces them with the
current graphics pencolor (the pixel colors will
show up as the pencolor). So, before loading in the
bitmap, issue a pencolor(<color».

save'bitmap(<filenameS»
Saves the cache's bitmap as a 32 block bitmap file.
You can do this with any type of screen that is in
the cache, enabling you to extract bitmaps from
other sources.

cache' into' screen (int)
Places the contents of the cache into the graphics
screen. The parameter refers to whether you want
an automatic "fullscreen" command issued. The
"fullscreen" is necessary to let COMAL know that
the background and border colors have been
changed. This means that if you are viewing the
graphics screen and issue a
"cache'into'screen(FALSE)", the old background will
stay up until a "fullscreen" is given (looks awful).
However, this also means that if you are viewing
the text screen you may put up a hi-res/bitmap
picture while the user is reading the text screen,
and pop over to graphics when ready. Since
switching over to the graphics screen requires a
"fullscreen", everything'S hunky dory.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 61

,

Picture Package for C64 Cart

screen'into'cache(int)
Puts the picture currently showing on the graphics
screen into the cache. The parameter refers to
whether an automatic "clearscreen" should be given
after the screen is cached.

string'into' screen (int, <screenS>)
As "cache'into'screen", but places the contents of
the string onto the graphics screen. The string
must have a current length of 10003. This is taken
care of by the <something>'into'string" procedures;
the requirement is just to keep you from trying to
put up a filename or some other string.

screen'into' string (int, < screenS>)
As "screen'into'cache", but puts the picture into a
string instead. The string must be dimensioned to
10003 before attempting to place a picture in it.

string'into'cache(<screenS»
Swaps the string contents into the cache.

cache'into'string(<screenS»
Swaps the cache contents into the string. Can be
used right after loading in a picture so that another
may be loaded into the cache.

set'file'num(<file number»
Sets the file number used for saving and loading
pictures to and from the disk. Default is 254; I
don't know of any reason you'd need to change it,
but hey, why not. Maybe you have a lucky
number.

decolor' cache
This is the routine called by the "load' bitmap" and
"load'screen" procedures prior to loading in a
picture. You could use it to strip the colors from
a colored picture in the cache, leaving a bitmap.

decolor'text
Sets the entire text screen's color memory to the
current text color. This can be used to "clean up"
the text screen after viewing a lo-res color picture
whose colors "bleed over" onto the text screen.
This will not preserve the colors which may have
been on the text screen before the picture messed
them up; if you need several colors, I suggest using
the "getscreen" and "setscreen" procedures in the
system package.

link'pic(int)
The parameter tells whether to include the current
cached picture when saving the program the
package is linked to. Using this, it is now possible
to save a picture along with a COMAL program!
Just load the picture into the cache, issue a
"link'pic(TRUE)", and save. This will add about 50

blocks to the program length (the package plus the
cache). TRUE is the default condition when
"pkg.pics" is linked, so if you don't want to save
the picture in the cache, type "link'pic(F ALSE),'
before saving your program the first time. It
should stay unlinked until you tell it otherwise. A
note for interested package programmers: the
procedure just resets the pointer in the library
module signifying the end of the package to before
or after the cache area.

vers ion t pics $
Returns the version string, so you can see what
version you have. This is the only one so far.

Reference
Graphics Editor System, Colin Thompson, COMAL

Today #11, page 57
Pic Finder, Colin Thompson, COMAL Today #12,

page 32

Power Driver Turtle Parameters

by R. Hughes

These functions give you some of the capabilities
that the C64 cartridge users enjoy.

FUNC x'pos II 0-320
RETURN 256*PEEK(28742)+PEEK(28743)

ENDFUNC x'pos
/I
FUNC y'pos II 0-199

RETURN 199-PEEK(28747)
ENDFUNC y'pos
/I
FUNC heading CLOSED II 0-360

a:=PEEK(28764); b:=PEEK(28765)
CASE a OF
WHEN 0

RETURN 90
WHEN 129

RETURN 89
when130
RETURN SS·(b DIV 64)

WHEN 131
RETURN 82-(b DIV 32)

WHEN 132
RETURN 82-(b DIV 16)

WHEN 133
RETURN 74-(b DIV 8)

WHEN 134
RETURN 58-(b DIV 4)

WHEN 135
IF b<53 THEN

RETURN 26-(b DIV 2)
ELSE

RETURN 386-(b DIV 2)
ENOl F

WHEN 136
RETURN 322-b

WHEN 137
RETURN (194-Cb*2»-(PEEK(28766) DIV 128)

END CASE
ENDFUNC heading

Page 62 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

COMAL into FORTRAN Translator

by Solomon Katz

[Sol is sharing a program with us that will translate
a COMAL program into Fortran source code. The
program is not complete, but worth looking at by
any Fortran programmers out there. Next we need a
COMAL to C translator ... especially with Amiga
COMAL right around the corner. I know several
people who were working on such a translator;
maybe one is completed by now.]

The COMAL to Fortran 77 translator started its life
as a quick and dirty automatic text editor to do
some minimal level of substitution of specific
words. Over the last two years I kept adding '~bells
and whistles" as I found time. I tried to produce
"plain vanilla" F77 code. COMAL2F77 was written
to work on LISTed COMAL files. It was written
using COMAL 2.0 on the C64. The only package I
used was strings, for the quicksort procedure.
Therefore, the program should port easily to other
versions of COMAL. The program is not finished,
but I decided to share it before it becomes obsolete.
User discretion is advised.

Some of the features of the program are:

*
*
*
*
*

. *

*
*
*

*
*
*
*
*
*
*
*
*

replaces COMAL keywords and operators with
Fortran equivalents.
adds parenthesis in IF expressions.
splits one line WHILEs and FORs to multiple
lines.
splits multiple assignments on a line into
separate lines.
converts WHILE, LOOP and REPEA T
structures to IF ... GOTO structures .
converts COMAL line labels to F77 numeric
labels.
inserts INTEGER declares at the beginning of
each subroutine / function.
converts FOR structures to DO structures.
converts a:+l into a=a+l, and the same for ~
1.
converts (6:) into (6:LENGTHO) for character
data [substring specification].
converts (:6) into (1:6) for character data
[substring specification].
removes $ from character variables and # from
integer variables.
changes IMPORT into COMMON/block/.
removes PROC and FUNC names from
COMMONs.
splits off in-line comments and writes them to
the next line.
converts CASE structure to IF ... ELSE IF
structure.
inserts CALL before subroutine calls.
... and other similar functions.

In order to minimize hand editing of the F77 file.
you should follow these guidelines when you
program in COMAL. Most of these reflect
significant differences between the languages.

• All PROCs and FUNCs should be CLOSED.
* If a variable is used as an integer (ie, counter).

mark them with #.
* In substrings, don't use ~ or ~.
* Wherever possible, variables should be passed by

reference, using REF.
* Wherever possible, pass variables instead of using

IMPORT.
* The TRAP structure doesn't translate well.
• All statements not in PROC / FUNCs should be

at the top of the file.
• Don't use PEEKs and POKEs.
• Don't use KEY$.
• Put all DATA statements near the top of each

PROC / FUNC.
* Don't use RESTORE.
* Don't mix TRUE / FALSE with 0 / 1.
* Lines should be numbered in steps of 2 or

greater.
* When using IMPORT, keep PROCs and variables

separate.
• Don't use AND THEN.
• DIM all strings.
* Don't use the British pound sign in your code. It

is used as a place holder by COMAL2F77.
* All keywords should be UPPER case and all

variables lower case.
• Be sure the program works in COMAL before

translating it.

Even if you follow each of these guidelines, there
are still some fixes you will have to do by hand.

* The F77 LEN function returns the length the
string was dimensioned to. COMAL's LEN is
converted to LENGTH. You will need to write a
F77 LENGTH function.

• If you used abc$(6:) you will have to insert il2£
in abc(6:LENGTH(».

* If you pass an array, you will have to dimension
it in the subroutine or function. You will also
need to remove the Os and (..)s from the
argument list. I intentionally left them there as a
reminder. The same goes for COMMON.

* If you use the V AL function, you will need to
write a F77 function to do the same thing,
probably by writing to and reading from a
buffer.

* If you use COMAL packages, you will need to
write your won F77 equivalents for those PROCs
and FUNCs.

• If you used SPC$, you will have to declare a
variable CHARACTER SPC • 100 .

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 63

COMAL into FORTRAN Translator

•

•
•
•
•

•

•
•
•

Sometimes the logic will be odd: .NOT.(.NOT.
. These will work but can be rewritten if you
wish.
EOF(3) wjll have to be changed to EOF3 or
something of your own choosing.
Some I/O commands will need to be fixed to
match your version of F77.
FORMA T statements will have to be inserted,
especially in PRINT USING.
COMMON blocks will have to be reconciled
between subroutines / functions. This is the
most difficult and time consuming part of the
translator.
DATA statements will have to be changed to
F77 format and COMAL READs will have to
be removed.
Find and insert LOGICAL declares.
Change ~ into a$(6:6l.
Add or delete occasional parentheses.

I originally wrote the program using global
variables, open PROCs and FUNCs and all real
variables, and tested most of the features to prove
they worked. Since then I concluded an example
was needed. I rewrote the program following most
of the guidelines. I did not re-test all the features!
There is a good chance that some closed
PROC/FUNCs will need to have former global
variables, and/or PROCs or FUNCs imported,
especially if it is a COMAL command that isn't in
this program. I suggest that you try COMAL2F77
on a listed version of COMAL2F77 and see if the
resulting F77 is good enough for your needs.
LISTed COMAL2F77 is about 98 blocks. The
resultant Fortran program is even larger. Make sure
you have enough space available on your·disk. It
will take at least 15 minutes to process the 98
blocks, with processing time dependent on the
destination of the output, ie, screen, disk, printer.

LISTERINE for Power Driver

Original by Will Bow - Modified by R. Hughes

COMAL allows you to store your procedures and
functions on disk by LISTing them disk. Later they
can be merged into any future program. However,
it is time consuming to find and individually list
each routine to disk. LISTERINE to the rescue.

LISTERINE splits up a program into its individual
procedures and functions, storing each to disk with
a filename ending in 1. for functions or J2. for
procedures. First you must LIST the program you
wish to be broken up to disk (LIST "name"). Then
run LISTERINE and give it the filename of your
target program. This version renumbers each
routine to start at line 9001 as well as allow you to
test it by having it print to screen rather than to
disk. (See also COMAL Today 14 page 22)

LIS T E R I N E for Power Driver

PAGE
PRINT AT 3,9:"L 1ST E R I N E"
set 'up
read'listed'file
/I
PROC set'up

DIM txtS OF 160, endIngS OF 2, tpS(S) OF 6
DIM infileS OF 18, outfileS OF 18
DIM e1S OF 40, eZS OF 40, nameS OF 80
tpS(1):="proc"; tpS(2):="func"
tpS(3):="PROC"; tpS(4):="FUNC"
indev:=PEEK(28446) /I cat deV#
INPUT AT 9,1:"out'drive (8/9) or screen (3): ": outdev
INPUT AT 13,1 :"fi lename : ": infi leS

ENDPROC set'up
/I
PROC read'listed'file

OPEN FILE 10,infileS,UNIT indev,READ
WHILE NOT EOF(10) DO

INPUT FILE 10: txtS
IF "/I" IN txtS THEN /lno rems in header

txtS:=txtS(1:("/I" IN txtS)-1)
ENDIF
type: =0
FOR n:=1 TO 4 DO

IF tp$(n)+" " IN txtS THEN type:=n
ENDFOR n
IF type THEN

IF NOT """" IN txtS THEN
make'name
list'to'disk

ENDIF
ENDIF

ENDWHILE
CLOSE FILE 10

ENDPROC read'listed'file
/I
PROC make'name

tp$(S):=tp$(type); endingS:=".f"
IF (type MOD 2) THEN endingS:=".p"
p:=(". "+tp$(S)+" " IN txtS)+6
nameS:=txtS(p:LEN(txtS»
par:="C" IN nameS; sp:=" " IN nameS
IF par>O AND par<sp THEN

nameS:=nameSC1:("(" IN nameS)-1)
ELSE

nameS:=nameS(1:(" " IN nameS)-1)
END IF
x:=2-Ctype MOD 2) II lower-case
e1$:="end"+tp$(X)+1I "+nameS; e2$:="END"+tpS(x+2)+,
" "+name$ Ilwrap line
outfileS:="O:"+nameS+endingS
IF LEN(nameS»14 THEN outfi leS:="0:"+name$(1: 14)+ending$
PRINT "»»»>>>";outfileS

ENDPROC make'name
II
PROC list'to'disk

OPEN FILE 20,outfileS,UNIT outdev,WRITE
num:=9001; txtS(1:4):=STRS(num)
PRINT FILE 20: txtS
REPEAT

num:+1
INPUT FILE 10: txtS
txtS(1:4):=STRS(num)
PRINT FILE 20: txtS
txtS:=txtS+II II

UNTIL e1S IN txtS OR e2S IN txtS
PRINT FILE 20: STR$(num+1)+" /I"
CLOSE FILE 20

ENDPROC list'to'disk

Page 64 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

"

Fractals and Recursion

by Bill Inhelder

Fractal drawings which involve the repetition of a
basic pattern are particulary appropriate for
recursive computer programming techniques. In
addition, the set of graphic instructions for each
basic pattern provides an excellent opportunity to
apply geometric and trigonometric principles. This
is especially true when dealling with patterns
containing triangular and trapezoidal designs. As an
applied high school mathematics project, it
combines mathematics concepts, computer graphics
and recursive principles producing a final product
which is artistically pleasing to the eye.

We start with a line segment of fixed length.
Divide the segment in thirds and remove the
middle segment. Construct a specific shape made up
of connected straight line segments bridging the
interval; for example, a triangular or rectangular
shape. Next repeat the above procedure for each
segment in the preceding pattern. Repeat this
procedure once again. Finally repeat the entire set
of procedures for each side of a large square. The
resulting fractal pattern can be quite complex and
eye appealing.

Once the initial pattern is established. it is repeated
in ever diminishing size by repeated calls to an
identical procedure with decreased parameters.
Three calls of the basic pattern is usually the
greatest definition the pixel density of the screen
will allow.

If a simple triangular shape is selected. the first
call of PROC pattern produces the following simple
shape inscribed in a square.

'I .' \ ,..

\ I' " .
""'" ,//

\ " I, ...

't " ' .. ,'

---' . . /".
I ~,

,,/ \"
l' " .' . , "

l :..
.t "

" " .? \,

"', .. '
•.•. • l

.j

--... -.--___ ."oJ'

----1 '.'

I

) <-----, .-.-:;..
I." ,l

'. l '

.. -.-.. ~ ... ~ 1~~~'>
.. - -'-... .,

" I, .' ,
l I"

~t '--;

'\ ./
.. ~ -(
,,- '.

i" \"
/\.

..... ""1

.,. -
.. := ..

-"-..

The third level (call PROC pattern2) produces the
final fractal picture.

······1 ~······l
~....... r~:.:·l

(.. ...[.~

J---.... , :::''' k·~J

... -.
r······· .:::

t. t········
"\'" 17 ':.
l " /.

More involved basic patterns produce more complex
fractal pictures. If the middle section of the basic
pattern is lengthened so that several basic
geopmetric types are included, the resulting fractal
picture can be especially interesting. A basic
pattern which includes a trapezoid, a triangle and
another trapezoid (shown belOW) results in this
intricate fractal picture (" !racpattern7").

At the second level (call PROC patternl). the initial
shape is repeated at every segment resulting in a (this is the pattern used ••• see resul ting fractal below)
more involved fractal picture.

Page 66 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

•

Fractals and Recursion

Fracpatternl begins with a basic rectangular
pattern. In the listing below, notice that PROC
pattern2(d) is activated which then activates PROC
patternl(d) which in turn activates PROC pattern(d)
which executes the basic graphic pattern. By
changing the procedure call to either pattern(dist)
or pattern 1 (dist), the simpler fractal patterns are
produced.

II fracpattern1 by bill inhelder july, 1988
USE graphics .
PAGE
PRINT "Enter a size between 120 and 199. 199 "
PRINT "covers the entire screen."
INPUT dist
window(0,230,0,199)
graphicscreen(O)
background(1)
pencolor(O)
penup
setxy(O,O)
pendown
FOR i:=1 TO 4 DO

forward(dist); right(90)
END FOR i
fOR i:=1 TO 4 DO

pattern2(dist); right(90)
END FOR i
pencolor(8)
fill(115,100)
WHILE KEYS="" DO NULL
/I
PROC patterned)

forward(d/3); right(90)
forward(d/6); left(90)
forward(d/3); left(90)
forward(d/6); right(90)
forward(d/3)

ENDPROC pattern
/I
PROC pattern1(d)

pattern(d/3); right(90)
pattern(d/6); left(90)
pattern(d/3); left(90)
pattern(d/6); right(90)
pattern(d/3)

ENDPROC pattern1
/I
PROC pattern2(d)

pattern1(d/3); right(90)
pattern1(d/6); left(90)
pattern1(d/3); left(90)
pattern1(d/6); right(90)
pattern1(d/3)

ENDPROC pattern2

While the single recursive procedure shortens the
program, I feel that it results in a program that is
more difficult to follow and understand.

Six other programs are provided on disk:
/racpattern2 through /racpaltern7. Several use a
single recursive procedure rather than three
procedures. Some basic patterns are drawn on only
one side of the original line while others are drawn
on both sides. In the latter case the beginning point
of the drawing must be located in the interior of
the large square (see /racpattern3, 5, 6) rather than
on the lower left hand corner. By studying some of
the different procedures and using the forward,
right and left graphic functions, you can design
your own fractal pictures.

Reference

3D Fractals, Kevin Quiggle, COMAL Today #12,
page 26. (sample on the cover)

Diffusion Limited Aggregation, Jim Frogge,
COMAL Today #23, page 46.

Fractal Geometry, Ted Groszkiewicz, COMAL
Today #18, page 53. (sample on the cover)

Mandelbrot Etc, Robert Ross, COMAL Today
#20, page 36.

Mandelbrot Revisited, Ray Carter, COMAL
Today #19, page 11.

Recursive Designs, D. Bruce Powell, COMAL
Today #15, page 35.

Turtle Graphics and Mathematical Induction,
Frederick Klotz, Mathematics Teacher 8 (1987):
636-39.

Change Drive - Power Driver

This procedure allows you to change a device
number via software control.

II change diskdrive device#
II from old' to new' ie: drive(8,9)
PROC drive(old',new') CLOSED

OPEN FILE 15,"",UNIT old', 15,READ
DIM sS OF 10
s$="m·w"+chr$(119)+chr$(0)+chr$(2)+chr$(new'+32)+
chr$(new'+64) Ilwrap line
PRINT FILE 15: sS,
CLOSE FILE 15

ENDPROC drive

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 67

Disk Drive Direct Access

by R. Hughes

This Power Driver program reads and writes data
to disk blocks by direct access to tracks and sectors.

The program reads disk data by opening the disk
command channel (IS) and a data channel (5) to a
diskdrive buffer. Data is read from the specified

. disk track/sector to the 256 byte drive buffer using
.the DOS 'UI:' command then transferred from the
buffer to the computer through the data channel.
The start byte in the buffer is specified by the
DOS 'B-P:' (block pointer) command.

The program writes disk data by opening the disk
command channel (15) and a data channel (5) to a
diskdrive buffer. Data is written from the computer
to the drive buffer through the data channel. The
start byte in the buffer is specified by the DOS
'B-P:' (block pointer) command. The complete
buffer is then written to a specific disk
track/sector using the DOS 'U2:' command.

The program provides the following procedures:-

1) READ'DIR
This is automatically called when the program is
run and provides a directory listing showing the
start track & sector of each program in the
directory and in the case of REL files, the record
length is also given. The procedure shows each
directory block used and uses another procedure
called READ'ENTR Yen) to read the data of each
of the 8 programs listed in each directory block.
The listing is paused while <SHIFT> is pressed.

2) READ'(trk,sct)
This procedure reads the specified track & sector
block into a 256 byte variable called TEXT$. The
first 2 bytes give the next track and sector linkages.

3) WRITE'(trk,sct)
This procedure is the reverse of READ' and writes
the variable TEXT$ to the specified track/sector ..

4) READ'ALL(FLAG)
. This procedure prompts for a start track/sector of
a file then traces the linkages through to the end.
The procedure has 2 modes of output depending on
the value of FLAG.

*

*

If FLAG=O the procedure lists a buffer count
and the current and next track & sector values.
If FLAG= I the procedure prints the contents of
TEXT$(3:256) of each block (the first 2 bytes
are the next-track and next-sector).

5) ASC(n)
This procedure lists the ascii values of the first 'n'
bytes of TEXT$.

The adventurous can now proceed with reading and
modifying block data using the READ' and
WRITE' procedures and modifying the original data
by manipulating the contents of TEXT$.

The disk directory can also be modified (and very
easily too) by the following procedure:-

a) use READ'DIR to start a directory listing then
pausing the list using <SHIFT> at the end of the
appropriate block.

b) use RUN/STOP to stop the procedure then use
READ'ENTRY(n) to read the directory parameters
of the nth program in the block.

c) The variable 'x' gives the byte in TEXT$ where
the directory entry starts. The ASCII values of the
bytes are as follows:-

x gives the program type 128 + I(SEQ), 2(PRG),
3(USR), 4(REL). Use 0 to DEL a file or add 64 to
protect a file.

x+l, x+2 gives the start track and sector of the
program.

x+3 to x+18 this is the filename padded with
shifted spaces chr$(I60).

x+21 gives the record size (for REL files only)

x+27, x+28 give the file size in hi-lo format (ie the
file size is given by 256*ascii value of
TEXT$(x+27) + ascii value of TEXT$(X+28).

Writing this program taught me a lot about disk
program and directory structures and the program
itself is so easy to understand and modify that I am
sure you will be able to modify it to any special
purpose of your own.

Footnote: Did you know that the last block of a file
has a next-track of zero and a next-sector value
between 1 and 253 representing the number of
valid bytes in the last block. This is because
fractional blocks cannot be saved to disk and
something has to indicate the border between the
true data and the garbage.

DIM textS OF 256, askS OF 1, temps OF 1, f'type$ OF 15
f'typeS:="***SEQPRGUSRREL"
read'dir
/I
PROC read'all(flag)

INPUT "track,sector : ": nt,ns
count:=O
WHILE nt>O AND nt<36 DO

read'(nt,ns); count:+1
I F flag THEN

IF nt THEN
PRINT text$(3:256),

Page 68 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

Dis k Drive Direct Access

ELSE
PRINT text$(3:ns)

ENDIF
ELSE

PRINT USING" ###": count,trk,sct,nt,ns
ENDIF

ENDWHILE
ENDPROC read'all
II
PROC read'(track,sector)

trk:=track; sct:=sector
open'drive
PRINT FILE 15:"u1: 5 0 "+STR$(track)+" "+
STR$(sector)+" ", I/wrap line
PRINT FILE 15: "b-p: 5 0 ",
text$:=GET$(5,256)
nt:=ORD(text$(1»; ns:=ORD(text$(2»
CLOSE
PRINT CHR$(O),

ENDPROC read'
/I
PROC write'(track,sector)

open'drive
PRINT FILE 15: "b-p 5 0 ",
PRINT FILE 5: textS,
PRINT FILE 15: "u2: 5 0 "+STR$(track)+" "+
STR$(sector)+" ", I/wrap line
CLOSE

ENDPROC write'
/I
PROC open'drive

OPEN FILE 15,"iO",UNIT 8,15,READ
OPEN FILE 5, "#" , UN IT 8,5, READ

ENDPROC open'drive
/I
PROC read'dir

b'free:=664; read'(18,O)
PRINT "",text$(145:165>," size trk sct rec"
WHILE nt>O AND nt<36 DO

read'(nt,ns)
PRINT IIII;trk;sct
FOR n:=1 TO 8 DO read'entry(n)
WHILE PEEK(653) DO NULL Ilshift

ENDWHILE
PRINT USING "### blocks free

ENDPROC read'dir
": b'free

/I
PROC read'entry(n)

IF n<1 OR n>8 THEN RETURN
x:=(n-1)*32+3; y:=ORD(text$(x»
type:=y BITAND 7; prot:=y BITAND 64
size':=ORD(text$(x+28»+256*ORD(text$(x+27»
IF size'>O OR type>O THEN

trk':=ORD(text$(x+1»; sct':=ORD(text$(x+2»
IF type>O THEN b'free:-size'
PRINT" "+text$(x+3:x+18),TAB(19),f'type$(3*
type+1:3*type+3), Ilwrap line
IF prot THEN PRINT "<",
PRINT TAB(23),
PRINT USING II ###": size',trk',sct';
IF type=4 THEN PRINT USING "###": ORD(text$(x+21»,
PRINT II AAA ree size AAA

ENDIF
ENDPROC read'entry
/I
PROC ase(n)

FOR i:=1 TO n DO PRINT USING "### ": ORD(text$(i»;
PRINT

ENDPROC asc

Graphing a Function " Derivative

-2

_.~:: 1 1.x+31

"-

1

~
r

t-.51

4

.........

-4

t5

f'

.. ' 2

,-,.'

.-'

- ... -~---+/ t-
........

.,."

t I

.. -...-....

J(<; \.&'
x >I.~

1

.. "heN -<= 1.5'
-2

--- ':>.,-----------
'-'-.. ___ I _-- _.J.~J

...... -------~:: :...----

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 69

Graphing a Function and its Derivative

by Bill Inhelder

[See sample output screen dumps on previous page]
In an introductory calculus class, the derivative of
a function at a point is usually presented in terms
of the slope of the chord joining the given point of
the function with another point of the function
which is arbitrarily close. Thus we speak of the
slope of the graph of a function at a specific point.
The collection of all such slope values over the
entire function constitutes the slope function which
is, by definition, the derivative of the function. In
this way the student proceeds from the familiar
concept of slope in algebra to an understanding of
limits, the slope function and eventually the rules
for determining the derivative of functions.

A computer program which produces graphs of
both the function and the slope function serves to
reinforce an understanding of the basic definition
of the derivative before learning the rules of
differentiation. An example from economics
illustrates this last point. The graph below shows
the profits of a company over a period of years.
Clearly the company is profitable as shown by
curve A; however, notice that while the company's
profits continue to increase, the rate of increase
(the slope function - curve B) is decreasing. Do
you invest money in such a company?

IQ90

The program fandsgrapher produces a table of 40
sets of values for the function and the slope
fuction. For each function a total of 320 points are
calculated; however, only every eighth point is
displayed in the table. Both graphs are displayed
on the same set of axes with automatic scaling
which is determined by the min & max values. of
the 640 points calculated over the interval specified.
The function is graphed first, followed by the slope
function. Tic marks are automatically set at
intervals of 50, 5, .5, .05 and .005 as appropriate.

The min / max y values are represented by the
extreme tic marks on the y-axis even though the
numerical values for these points are not directly
opposite those tic marks. Since the screen is used to
its maximum size, there is no additional room
above and below the y-axis for the maximum and
minimum values. The same condition holds for the
min / max on the x-axis.

.............

'"-

.......
'~---4-

~-166
Program requirements and options:
a. enter equation of 67 characters or less
b. type lower/upper bounds separated by a comma
c. after table/graphs are displayed press c to

continue
d. press p for printer output of screen;

otherwise press RETURN
e. press b for new bounds of original function' or

n for a new function or
q to quit the program.

Be sure to enter the equation correct syntactically.
Because of the method used to evaluate the
equation in a running program, should a syntactic
error occur, the program will halt and the program
MUST be reloaded (the last 6 lines will have been
deleted). See Notes to Programmers for the reasons
pkg.meta was not used to evaluate the equation.

116.95

1

-7.81

\.
~"';.~==-

/~ 3

For graphic purposes, whenever a calculation for a
function results in values greater than 100 or less
than -100 those values are set to 100 and -100
respectively. The graphic maximum and minimum
for the slope function are 75 and -75. Such
limitations are especially necessary in cases of
functions with essential discontinuities since the
interesting portions of the graph tend to lose all
significance. When the limits are exceeded, the
condition will be apparent in the table of values
and the graph will display horizontal line segments.

Page 70 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

Graphing a Function and its Derivative

For functions whose values exceed the maximum
because of the selection of inappropriate bounds,
select the option to enter different bounds.

Iloe

i

1-1

/ .• -----------

+

~
1-75

Error trapping has been provided for cases
involving division by zero and invalid function
arguments. Thus for a function defined by
y=I/«x-I)*{x-3» when x=1 or 3, the calculation is
skipped in the table and the point is not plotted.
For a function defined by y=sqr(x*x-x-2), which is
not defined over the open interval -I to 2, such
values are omitted from the table and graph.

With error trapping capability and the ability to
change minimum and maximum values in lines
2520 to 2550, the program should be able to handle
all types of functions.

The algorithm for determining the values of the
slope function is the definition of the derivative
with delta x=.OOOI. t n------_' _______________ _

'1':---- --------

12-;
---------~

Lines 40 and 2210 contain printer specific graphic
screen dumps. If you have a Commodore MPS-801
printer, delete line 40 and substitute
PRINTSCREEN("lp:",80) for line 2210. If you own
a Gemini-lOx, Okidata 93A or Epson RX-80 you
may link "pkg.finchutilit" and substitute USE
finchutilities for line 40 and one of the following
for line 2210:

a. gIOxdump(l) for Gemini
b. okidump(l) for Okidata
c. rx80dump(l) for Epson.

This package has the added advantage of being
saved with the program. You can select your
favorite graphic screen dump package or procedure.

Special problems arise with certain functions
because of the way BASIC handles the
exponentiation operation (the up arrow). In
programming mode this operation requires that the
base be greater than O. This arises because the
solution to y=x"b uses the log function which
requires positive values of x. As a result, functions
like y=50*x"(l/3) over -3 to 3 must be rewritten
y=sgn(x)*50*abs(x)A(l/3). while y=20*x"{2/3) is
rewritten as y=20*(x*x)A(l/3). To add to the
confusion, the statement PRINT (-3.27)"(1/3) when
executed in immediate mode produces the correct
answer without running an invalid argument error!
So much for the idiosyncrasies of BASIC.

T 75 J,. _-------J ~_~-~9-~-3------
...j. .' +. .----------

i IT ~'l .• ,/
~ - S~ x "3 -------

-=3-=-:r~-------- 1 ---------~-----;-3-

J $
._."" ·-t"i

T

.•.•..

-----~----.-..... -.

_--------- i -72 . 11

Because of the nature of the procedures used to
evaluate the equations in a running program. no
statement may be placed before the first statement
in the program. These procedures are described in
COMAL Today #7, pg. 32 by Jesse Knight.

To acquaint the reader with the intricasies of the
program, it is recommended that the following
examples be tried:

1. y=x*x-2 from -2 to 2
2. y=x/(9+x*x) from -12 to 12
3. y=abs(2*x+3) from -3 to 1. Note that the

derivative of a continuous function need not
be continuous. .

4. y=sgn(x)*50*abs(x)"(l/3) from -3 to 3,then
from -I to .25. Same condition as #3.

5. y=5*x/{x-I)A2 from -1 to 3. Note
discontinuties and maxima indicated by
horizontal line segments.

6. y=exp(-.25*x)*sin(x) from 0 to 12
7. y=sqr(x*x-x-2) from -3 to 3. Note functions

are not defined over open interval -I to 2.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 71

Graphing a Function and its Derivative

8. y=10/(x*x-4*x+3) from 0 to 4. Note
discontinuities at 1 and 3. The slope function
has a larger number of points whose slopes
exceed 75. Note also that the linear segments
have points missing at 1 and 3 since the slope
function is also undefined there.

There are times when it may be difficult to decide
on the input bounds for a particular function. the
table of values can be very helpful in deciding
what part of the domain of the function produces
interesting results. Consider the function defined
by y=2*x*x-I13*x+1541. Inputted bounds of -5 to
5 result in function values which exceed the
maximum 100. In addition, since the slope is -75
over the domain -5 to 5, this implies that the
function is decreasing and the interesting portion of
the graph lies to the right of 5. Using values from
10 to 50, confirms this fact and identifies the roots
of the quadratic equation (23 and 33.5).

While this program produces graphs of the function
and its derivative and illustrates the relationship in
terms of slope, it does not provide the user with
the equation of the derivative. For that purpose
consult the article and program Symbolic
Differentiation in COMAL Today #9 by Tom
Kuiper or apply the rules of differentiation.

Notes To Programmers

Generally I prefer to use pkg.meta over the method
used in the program. However, two serious
shortcomings developed when meta was used. If
the program was run with successive options of
change of bounds and/or change of equations, it
was not possible to exit the program without
locking up the computer. Either the run/stop key
or the regular exit would lock up the computer.
Normal exit did however occur when the program
was run only the first time through. By chance I
discovered that I could exit without lock-up if the
last statement caused an error, such as, PRINT I/O.

The second problem was more perplexing even
when I was able to pinpoint the specific problem.
In order to trap function errors when the user
specifies a domain for which the function is wholly
or partially not defined, strange things happen. The
eval procedure is trapped with appropriate
handling. The program executes properly for the
first 12 consecutive values which trap and handle
the invalid function arguments; however, on the
13th the run time error occurs: statement too long
or complicated. Furthermore the error is very
difficult to break out of.

I was able to use pkg.meta successfully in the
program param'graph without the first problem
occurring. Even after deleting the printer options

and structuring fandsgrapher similar to
param'graph, the problem persisted. The reference
material for pkg.meta states that adding variable
names to the name table or increasing program size
will cause lock-up. This was not done in the
program. Similar techniques were used in
param'graph without ill effect. Any suggestions?

Further Reference

1525 ML Screen Dump from COMAL, Mike
Lawrence, COMAL Today #9, page 78.

Batch Files From Memory, Jesse Knight, COMAL
Today #7, page 32.

Code Doctor, Richard Bain, COMAL Today #13,
page 56.

Differential Equations, Lowel Zabel, COMAL
Today #7, page 73.

Differentiation, Tom Kuiper, COMAL Today
#11, page 66.

Epson Package, Green, Rose, Wright, Grainger,
COMAL Today #14, page 51.

Epson Screendump Package, Dennis Kurnot,
COMAL Today #10, page 66.

EXEQ - A New Package, Ian MacPhedran,
COMAL Today #10, page 62.

Expression Evaluator 0.14, Lewis Brown, COMAL
Today #23, page 28.

Gemini lOX Graphics Dumo, COMAL Today #7,
page 66.

Graphing Parametric Equations, Bill Inhelder,
COMAL Today #23, page 32.

How To Dump A Graphics Screen To Your
Commodore Printer, David Stidolph, COMAL
Today #4, page 30.

How To Use The META Package, Glen Colbert,
COMAL Today #10, page 65.

HP LaserJet Screen Dump, David Stidolph,
COMAL Today #10, page 15.

Multi-function Graphics, Lowell Toms, COMAL
Today #14, page 24.

Okidata Graphics Dump, Terry Ricketts, COMAL
Today #11, page 56. Okidata Package, Terry
Ricketts, COMAL Today #12, page 20.

Packages Library Vall, Finchutilities, pg.14.
Packages Library Vol 2, Meta, pg.30.
Perform the Impossible, COMAL Today #10,
pg.31.
Professional Graphs, Tom Kuiper, COMAL Today

#5, page 40.
Programming Batch Files, Ian MacPhedran,

COMAL Today #8, page 50.
Screendump for Oki, Epson, Star, Randy Finch,

COMAL Today #10, page 72.
Stats For Teachers, Gerard Frey, COMAL Today

#22, page 66
Symbolic Differentiation, Tom Kuiper, COMAL

Today #9, pg.53.
Trig Art, Gerald Hobart, COMAL Today 14, pg

63

Page 72 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

File Master

by Bobby Wallen (BobbyW6 on QLink)

This is a short program that provides the basis of
a file maintenance system. It can display a
directory, rename or scratch files, or read a file to
the screen or printer.

DIM replyS OF 1, nameS OF 16, textS OF 255
DIM charS OF 1, nnameS OF 16, cmndS OF 30
PAGE
PENCOLOR 3
BORDER 0 llborder black
BACKGROUND 0 llbackground black
PRINT AT 10,15:"FILE"
PRINT AT 12,14:"MASTER"
PRINT AT 18, 16:"by"
PRINT AT 20,11: "Bobby Wallen"
REPEAT

wait
choice

UNTIL replyS="Q" OR replyS="q"
1/
PROC choice

PAGE
PRINT AT 10,5:"[R]ead Directory"
PRINT AT 11,5:"[V]iew File"
PRINT AT 12,5:" [P] rint file"
PRINT AT 13,5:"[Q]uit"
PRINT AT 14,5:"[S]cratch File"
PRINT AT 15,5:"Re[N]ame file"
PRINT AT 20,5:"Enter your choice [R,V,P,S,N,Q]"
REPEAT

replyS:=KEYS
UNTIL replyS IN "rvpqsn"
CASE replyS OF
WHEN "r"

direc
WHEN "v"

view
WHEN "p"

prnout
WHEN "q"

PAGE
PRINT "Goodbye."

WHEN "s"
scratch

WHEN "n"
rename

OTHERWISE
NULL Ilnot valid

ENDCASE
ENDPROC choice
1/
PROC wait

PRINT
PRINT "press c to continue"
REPEAT
UNTIL KEYS="c"

ENDPROC wait
1/
PROC direc

PAGE
DIR

ENDPROC direc
1/
PROC view

PAGE
INPUT "filename: ": nameS
OPEN FILE 2, nameS, READ

WHILE NOT EOF(2) DO
textS:=""
FOR i:=O TO 254 DO

charS:=GETS(2,1)
textS:=textS+charS

END FOR i
PRINT textS,

ENDWHILE
CLOSE FILE 2

ENDPROC view
1/
PROC prnout

PAGE
INPUT "filename: ": nameS
OPEN FILE 2,nameS,READ
OPEN FILE 3,"",UNIT 4,7,WRITE
WHILE NOT EOF(2) DO

textS:=""
FOR i:=O TO 254 DO

charS:=GETS(2,1)
textS:=textS+charS

END FOR i
PRINT FILE 3: textS

ENDWHILE
CLOSE FILE 2
CLOSE FILE 3

ENDPROC prnout
1/
PROC scratch

PAGE
INPUT "Enter name of file:": nameS
cmncl$:="sO: "+nameS
PRINT "",nameS
INPUT "ARE YOU SURE (YIN):": replyS
IF replyS="y" THEN

PASS cmndS
ELSE

choice
ENDIF
PRINT STATUSS

ENDPROC scratch
1/
PROC rename

PAGE
INPUT "Enter present name of file:": nameS
INPUT AT 4,0:"Enter new name of file:": mameS
cmncl$: ="rO: "+nnameS+"="+nameS
INPUT AT 20,0:"ARE YOU SURE (YIN):": replyS
IF replyS="yl THEN

PASS cmncl$
ELSE

choice
ENDIF
PRINT STATUSS

ENDPROC rename

Set Printer Device - Power Driver

This procedure allows you to change the default
printer device and secondary address.

II change printer deV# & 2nd addr
PROC set'printer(dev,sa)

POKE 27507,dev
POKE 27509,sa

ENDPROC set'printer

CO MAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 73

CHAOS
by Lewis Brown

This CHAOS program was written after watching
the PBS NOV A TV show "The Strange New Science
01 Chaos". The screen dump on the next page
shows it running under AmigaCOMAL with the
windows adjusted so you can see the listing and
results at the same time. It demonstrates that
seemingly random points can create a pattern
(triangles). If you missed the TV show, here is how
it works: Pick 3 points on a plane (PI,P2,P3). Then,
pick a 4th point (P4) anywhere on the plane. To
determine the next point (Pm), pick a number from
1 to 6 at random. You do this by throwing a die
(on the computer you get a random number). If the
value is 1-2, draw a line to PI, and locate the
midpoint, Pm. If the value is 3-4, draw a line to
P2, and locate the midpoint, Pm. If the' value is
5-6, draw a line to P3, and locate the midpoint,
Pm. Now, repeat the process to locate a new
random point, Pm. That is: (I) Get a random
number from 1-6, (2) draw a new line to (PI,P2,or
P3), and, (3) Determine a new midpoint Pm, then
do it again. [Curious? Try adapting the program lor
a rectangle instead 01 triangle base ... I tried it and
got christmas trees in the pattern]

dim'var
pick'point
x'y'axis
fnit'points
plot'point
WHILE KEYS=CHRS(O) DO

random'point
plot'random(m)

ENDWHILE
/I
PROC x'y'axis

SETGRAPHIC (0) Ilclear hi res screen
HIDETURTLE
FULLSCREEN
PLOTT EXT 0,0,"0,0"
PLOTT EXT 275,O,"x-axis"
PLOTTEXT O,195,"y-axis"
MOVETO 0,0
DRAWTO 319,0 Ilx-axis
MOVETO 0,0
DRAWTO 0,199 Ily-axis

ENDPROC x'y'axis
/I
PROC dim'var

x1:=10i y1:=10i n:=2
x2:=100i y2:-190
x3:=310i y3:=100

ENDPROC dim'var
/I
PROC init'points

PLOTT EXT x1,y1,"+"
PLOTTEXT x2,y2,"+"
PLOTTEXT x3,y3,"+"

ENDPROC init'points
/I
PROC pick'point

PAGE
PRINT "Pick the coordinates of the first point, Pm: "
PRINT "0<x<319 and 0<y<199"

INPUT "X= ": x
INPUT "Y= ": y
IF (x<O OR x>319 OR y<O OR y>199) THEN pick'point

ENDPROC pick'point
/I
PROC plot'point

PLOTTEXT x,y,"*"
ENDPROC plot'point
/I
PROC random'point

m:=RND(1,6)
ENDPROC random'point
/I
PROC plot'random(m)

CASE m OF
WHEN 1,2

PLOT (x1+x)/n,(y1+y)/n
x:=(x1+x)/ni y:=(y1+y)/n

WHEN 3,4
PLOT (x2+x)/n,(y2+y)/n
x:=(x2+x)/ni y:=(y2+y)/n

WHEN 5,6
PLOT (x3+x)/n,(y3+y)/n
x:=(x3+x)/ni y:=(y3+y)/n

END CASE
ENDPROC plot'random

C64 Cartridge Puzzle Program

by Robert Ross

This puzzle program is a small version derived
from a concept with a design maximum of 23 x 23
x 23. This version doesn't have any linked packages
and has room to store everything in dimensioned
string variables but it still isn't directly portable to
other COMALs because of POKEs used to control
the cursor blink and because of other machine
specific techniques used to control the screen
image. I probably can't claim this program is "user
friendly" by today's standards but it may qualify
for "user sociable".

The program ends if there is an error while trying
to read the puzzle file. I put more effort into
trying to trap errors that might happen after the
puzzle has been read. Among other things, an
options menu allows toggling the autoclue mode,
checking the answers, erasing wrong answer letters,
getting some hints, showing the answers and saving
a partially completed puzzle. Function keys Fl to
F6 provide different views of the puzzle. The
cursor keys move the point of typing horizontally
and vertically within the visible layer and the
up-arrow and shift/up-error keys move through the
layers of the puzzle.

The puzzle file itself is my first real attempt at
writing a crossword puzzle and my sister the
crossword fan thought some of the clues misleading
and perhaps unfair. Nevertheless, some people
might enjoy it and I hope you do. [The program is
"source protected" on our disk, only can be RUN.]

Page 74 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

..........
~ ..
'-y 0 r;;:

-+~.....,.::.t ,:.:~)

V'l r..t') iLL;;

How To Submit Material

More and more computer systems now support
COMAL. This makes it harder to do this
newsletter. Articles and programs are needed,
especially relating to the newest COMAL
implementations. If you send in a program, put it
on your disk twice:

SAVE "name"
LIST "name.lst"

Also, if possible, include a short (or long if you
wish) article about the program. Put the article on
the same disk. Store it as a SE~ text file (most
word processors allow this as an option, such as
Control-Z in PaperClip). Also include a printout of
the article if you can (no need to send a printout
of the program listing though).

Include your name and subscriber number on the
disk label as well as in the first line of the
program and article. Also put the computer type on
the disk label so 1 know where to start with it.
Eventually. all text and listings end up on my IBM
PC hard disk. I use Big Blue Reader to transfer
disks from C64 to IBM. I have a MatchPoint card
in my IBM computer that can read Apple disks,
allowing me to transfer Apple SEQ files to IBM. I
have Access64 for my Amiga, which allows me to
read C64 disks on my Amiga. I also should be able
to get the Amiga drive to read the 3.5 IBM format
disks. Finally I have a program that transfers IBM
files between 5 1/4 and 3 1/2 disks.

Send your submissions to our new address:

CO MAL Users Group, U.S.A., Limited
5501 Groveland Terrace
Madison, WI 53716

Material submitted is not returned.

How To Type In COMAL Programs

Line numbers are required for your benefit in
editing a program (but are irrelevant to a running
program). Thus line numbers usually are omitted
when listing a COMAL program. It is up to YOU
to provide the line numbers. Of course, COMAL
can do it for you. Follow these steps to enter a
COMAL program:

I) Enter command: NEW

2) Enter command: AUTO

3) Type in the program. When done:

Power Driver: Hit «return» key twice
PET COMAL 0.14: Hit «return» key twice
C64 2.0 Cart: Hit «stop» key
C128 2.0 Cart: Hit «stop» key
CP/M COMAL 2.10: Hit «esc» key
AmigaCOMAL: Hit «esc» key
IBM PC COMAL: «control» + «break»
Alder COMAL: «contro/» + C

You may use both UPPER and lower case letters
while entering a program (except PET COMAL
0.14; C64 COMAL 0.14 users should upgrade to
Power Driver). COMAL automatically makes
keywords UPPER case and variable names lower
case (except PET COMAL 0.14). Also, you don't
have to type leading spaces in a line. They are
listed only to emphasize structures, and COMAL
will insert them for you. You DO have to type a
space between keywords in the program.

Long program lines: If a complete program line will
not fit on one line, we will continue it onto the
next line and add IIwrapline at the end (and
possibly print it in italic type). You must type it as
one continuous line.

Variable names, procedure names, and function
names can be a combination of:

abcdef ghijklmnopqrstuvwxyzO 123456789' _][\

The «left arrow» key in the upper left corner of
the C64 and C 128 keyboard is valid. COMAL 2.0
converts it into an underline. The C64 and C128
computers use a «British pound» £ symbol in place
of the \ backslash.

Page 76 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

ORDER FORM Subscriber #=====
Name:, ________________________________ ___

Street ___________________ _

City/St/Zip:, ____________ _

Visa/MC#:, ___________________ _

Exp Date: Signature:,_-:-:-~-:_:__----
May '89-Prices subject to change without notice

TO ORDER:
• Fill in subscriber# / address (above)

(new subscribers write ~ for subscriber #)
• Check [x] each item you want to order
• Add up items/shipping/handling (fill in below)

(shipping fee is often less than the max listed)
• Send check/money order or charge it (above)
• Charge orders may call 608-222-4432
• or Mail to: COMAL Users Group, U.S.A., Ltd.

5501 Groveland Terrace, Madison, WI 53716

SUBSCRIPTIONS:
Expired subscribers must renew before they may
order at subscriber prices (renewal starts with the
issue where you left off). New subscribers can
order at the same time as subscribing.

[~ <=How many issues? $4 per issue
(Canada/APO add $I per issue, 1st Class)

[~ <=How many disks? $9 per disk

[] $4.95 each for backissues; circle ones wanted:
- 1 2 4 5 6 7 8 9 10 II 12 13

14 15 16 17 18 19 20/21 22 23 24
[~ $9.95 each, C64 COMAL Today Disks; circle to order:

1/2 3/4 5 6 7 8 9 10 II 12 13
14 15 16 17 18 19 20/21 22 23 24

NOTICE: All orders must be prepaid - in US
dollars. Minimum order $10. Shipping is extra: $3
minimum shipping (does not apply to subscription
only orders); Canada, APO & 1st Class add $1
more per book and newsletter issue. Newsletter is
published as time permits (no set schedule); size
and format varies. Cancelled subscriptions receive
no money back. Orders accepted from Canada and
USA only. Prices shown are subscriber prices and
reflect a $2 discount. Allow 2 weeks for checks to
clear. $15 charge for checks not honored.
Wisconsin residents add 5% sales tax and if your
county charges a county tax, you must include it
as well.

ENTER TOTALS HERE:
Item Total ($10 minimum):$ ____________ _
Ship Total ($3 minimum):$,==========
Grand Total enclosed:$, _________ _

BACKISSUES - COMAl Today

Price per issue: $4.95 (no extra shipping other than min)
(circle numbers on the left; matching disks are also available)
1 - Original first issues still available (not
reprints). Only a few copies left.
2 - PRINT FILE versus WRITE FILE;
Recursion; Stack overflow; Functions/Parameters
3 - sold out
4 - Graphics screen dump in COMAL;
spirolateral; Dodge 'em; Music; arrays /parameters
Issues 1-4 Spiral bound: (see COMAL Yesterday/book)
5 - How COMAL statements are stored; strings;
Target; Inventory; Pitfall Harry
6 - Memory maps; 2.0 & 0.14 compared; Shadow
letters; Draw molecule; Function keys
7 - COMAL Standards meeting; Book reviews;
Function keys; External procs
8 - Sprites; Soundex; Forest; Sound; Fun print;
Recursion; Font sprites; Depreciation
9 - Modems; Ascii codes; TRAP; Function keys;
Metamorphose sprite; Bitmaps; Sizzle; C64 cart
internal structure & token table; Rod the
Roadman; Strings; Icon Editor
10 - Sorts; Font Editor; Draw; Walker; Phone
Database; Missing Letters; Designer; Compressed
bitmaps; Meta; Compare disk files; Easy Curves
11 - 2.0 keywords chart; Disk directories; Pop
Over; Graphics Editor System; Ram disk
12 - Cart package keywords chart; Rabbit; 3D
Fractals; Cart schematics; 2 column printing; Pic
Finder; Benchmarks; Free form database; Transfer
programs from 0.14 to 2.0; Kelly's Beach
Index to issues 1-12, 4,848 entries, 56 pgs; (see books)
13 - Superchip keywords chart; Sprites; Wheel of
Fortune; Sets; Benchmarks; BASIC into COMAL;
Encryption; C 128 package; Kastle
14 - Outliner; Listerine; Scope; Stacks; CASE
statement; Calendar; Multi-directory; Modems
15 - Over 60 0.14 Proc/Func listed!; Dr Who
database; Program construction; Wheel of Fortune
16 - Smart file reader; Text, input window;
Magic squares; Easy instructions; Read & Run;
Learn subtraction; NIM; Tiny directory; Sorts
17 - COMAL Kernal in full; Ram expander;
Sprites; Calculate PI; 0.14 graphic/sprite chart
18 - Reversi; Poetry; Hammurabi; Puzzle; Zip
Zone; Fractal geometry / Mandelbrot; stacks
19 - Power Driver keywords chart; Sample book
pages; Coloring book; Rotating 3D
20/21 - Files; Black box; Best of 1-19
22 - Walking sprites; Animals; Maze; Music
23 - Message board; Programming; Graphing

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 77

SYSTEMS: ORDER FORM SYSTEMS:

C64 - Disk Loaded

LJ Power Driver Completedb - all of the
items below, Power Box, Starter Kit, and
keyboard overlay. $49.95 + $6 shipping

[.-1 Add $5 for Doc BoxD binder/slipcase

[~ Power Driver interpreter and 20 lesson
tutorial (with turtle tutor) on disk. $9.95

[_] Power Boxclb - includes Power Driver
interpreter and compiler, 3 utility disks, a
toolbox of about 250 procedures and functions
and Power Driver note pages. $29.95 + •• ship

[.-1 Starter Kit - 12 issues of COMAL Today,
56 page index, 2 books and 5 disks! Over 1,000
pages! $29.95 + $. ship

[.-1 C64 Keyboard Overlay: excellent condensed
command reference. $3.95 + $1 shipping

[.-1 Doc BoxD binder/slipcase option ... $7.95

C64 - Cartridge

[.-1 COMAL 2.0 Cart Complete*
The C64 cartridge plus all the options below
(except Superchip) ... Tutorials, references,
packages, applications ... $179.95 + $7 ship

[~ COMAL 2.0 Cart Deluxe*
64K cartridge; 3 reference books: 2.0 Keywords,
Cart Graphics & Sound, Common COMAL
Reference plus 4 demo disks. $124.95 + $3 ship

[_] COMAL 2.0 Cartridge*
64K cartridge with empty socket for up to 32K
EPROM. Plain, no documentation. $99.95

[_] Deluxe Optiondb: three books: 2.0 Keywords,
Carl Graphics & Sound, Common COMAL
Reference; 4 cart demo disks. $29.95+h ship

[.-1 Packages Optiondb: three books: COMAL 2.0
Packages, Packages Library 1 (17 packages),
Packages Library 2 (24 packages); Superchip on
Disk (9 packages). $36.95 + .. ship

[] Applications/Tutorial Optiondb: three books:
COMAL Col/age, 3 Programs In Detail, Graph

Paper. $36.95 + $4 ship

[~ Super Chip: plug in chip for C64 cart; adds
about 100 commands to the cartridge. $24.95

[_] Doc BoxD Binder/Slipcase Option ... $7.95

CP 1M Systems (includes C128 CP/M mode)

[_] CP 1M COMAL 2.10
Full COMAL system disk plus the DEMO disk,
packed in a Doc BoxD with manual.
Works in C128 CP/M mode. $39.95 + h ship

[.-1 Compiler Option (CP/M COMAL RUNTIME
system). $5.95

[.-1 Cll8 Graphics Option: Package disk $9.95

[.-1 CP/M Package Guide Option: Reference on
how to write packages $14.95 + $1 ship

[.-1 Common Comal Reference option: $16.95 +3 ship

IBM PC." compatibles

[.-1 UniComal IBM PC COMAL 2.2*
Full fast system, with extensive reference &
tutorial packed in a Doc Box. $495 +$5 ship
$50 discount if prepaid by check, M.O., Visa, MC

[.-1 Compiler (PLUS) Option: adds runtime
compiler and Communication Package, with
manuals packed in a Doc Box. $295 +h ship
'60 discount if prepaid by check, M.O., Visa, MC

[.-1 Common Comal Reference option: $16.96 +3 ship

[.-1 Option: UniDump $45 (for laser printers)
[_] Option: UniMatrix $165 (matrix package)
[_] Option: Hercules Support $85
[_] Option: Btrieve interface $25 /$110 multi
[~ Option: XQL interface $110
[.-1 Option: Update 2.1 to 2.2 - $45

Amiga (500, 1000 " 2000 models)

Now in final testing, should be available soon.
Estimated price is $99.95 + $4 shipping. Send us
a Self Addressed 25¢ Stamped Envelope and we
will send you info on ordering as soon as it is
available in the USA.

A compiler option will probably also be available.

Previously referred to as German Amiga
COMAL, it correctly is AmigaCOMAL from
ComWare. .

We also are awaiting new info on the My tech
(now called Alder) COMAL for the Amiga.

db = Doc Box pages
* = subject to customs/ship variations/availability
D = while supplies last (out of print)

Page 78 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

SYSTEMS: ORDER FORM SYSTEMS:

Disks are $9.95 each. Unless the label on the disk
you receive specifically states that you may give
out copies. our disks may not be copied or placed
into club disk libraries. Choose from the disks
below:

] IBM Special Series Disk # I
] IBM Special Series Disk #2 (Test System)

[] CP 1M COMAL Demo Disk ($5)

[] Beginning COMAL disk §

[] Foundations with COMAL disk §

[] COMAL Handbook disk §

[] New: Introduction to COMAL 2.0 disk §

[] Today INDEX disk § (2 disks count as 1)
[] Games Disk #1 (0.14 & 2.0)
[] Modem Disk (0.14 & 2.0)
[] Article text files disk

Today Disks:
] Today Disk (one disk type--circle choices):
1 2 3 4 5 20~21
] Today Disk (double sided -- circle choices):
6789 10 11 12 13 14 15 16 17 18 19 22 23
] Today Disk 24

0.14 Disks:
[] Data Base Disk 0.14
[] New: Power Driver Tutorial Disk
[]Auto Run Demo Disk
[] Paradise Disk
[] Best of COMAL
[] Bricks Tutorial (2 disks count as 1)
[] Utility Disk I
[] Slide Show disk (circle which): 1 2
[] Spanish COMAL
[] User Group 0.14 disks (circle numbers):

1 2 3 4 5 6 7 8 9 10 12

2.0 Disks:
[] Data Base Disk 2.0
[] Superchip Programs disk
[] Read ~ Run
[] Math ~ Science
[] Typing disk (2 disks count as 1)
[] Cart Demo (circle which): 1 2 3 4
[] 2.0 user disks (circle choices): 11 13 14 15
§ = these disks assume you have the book

Note: Some disks may be supplied on the back
side of another disk. Disk format is Commodore
1541 unless specified otherwise. We replace any
defective disk at no charge if you return the disk
with a note explaining what is wrong with it.
Some disks are being reduplicated and
appropriately relabeled.

[~ $10.95 Sprite Pak
Two disk set. Huge collection of sprite images.
sprite editors. viewers. and other sprite
programs. For 0.14 and 2.0.

[~ $12.95 Font Pak
Three disk set. Collection of many different
character sets (fonts) for use with 0.14 and 2.0
including special font editors!

[_] $14.95 Graphics Pak
Five disk set. Picture heaven. Includes Slide
Show. Picture Compactor. Graphics Editor and
lots of pictures (normal and compacted)

[~ $29.95 Sprite, Font " Graphics Pak
All ten disks mentioned above!

[_] $9.95 C12S CP 1M Graphics
Graphics package on disk for use with CP/M
COMAL on the C128. Includes turtle graphics
and preliminary Font package.

[_] $10.95 Guitar Disks
Three 0.14 disk set. Teaches guitar by playing
songs while displaying the chords and words.

[~ $14.95 Cart Demo Disks
Four disks full of programs demonstrating the
many features of the C64 2.0 cartridge.

[_] $10.95 Shareware Disks
Three disk set. Includes a full HazMat system
(Hazardous Materials). an Expert System. Finger
Print system. Traffic Calc. and a BBS program.

[_] $14.95 Superchip On Disk
All the commands of Super Chip (but not the
Auto Start feature) disk loaded.

[~ $24.95 Super Chip Source Code
Full source code with minimal comments.
Customize your own Super Chip. Add
commands. Remove the ones you don't need.

[~ $14.95 2.0 User Group Disks
Four disks set for the C64 COMAL cart.

[_] $29.95 0.14 User Group Disks
Twelve disks (User Group disk 9 is a newsletter
on disk system. double disk).

[_] $29.95 European Disk Set
Twelve 2.0 disk set. Find out what COMA Lites
in Europe are doing.

COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716 - Page 79

BOOKS ORDER FORM BOOKS

[_] $2.95 C64 COMAL 2:0 Keywordsdb

#4 best seller for Feb 88 lists all the keywords
built into the cartridge (including all 11 built-in
packages) in alphabetic order complete with
syntax and example. +$1 ship

[1 $16.95 Beginning COMALo
#8 best seller by Borge Christensen
333 pages - General Textbook
Beginners text book, elementary school level,
written by the founder of COMAL. This book
is an easy reading text. You should find Borge
has a good writing style, wit\! a definite
European flair. +$3 ship

[_1 Optional Matching Disk of programs. $9.95

[_1 $3.95 COMAL From A to ZO
#1 all time best seller by Borge Christensen
64 pages - Mini 0.14 Reference book
Written by the founder of COMAL. +$1 ship

[] $3.95 COMAL Workbooko
-#1 best seller for Feb 88 by Gordon Shigley

69 pages - 0.14 Tutorial Workbook; Companion
to the Tutorial Disk, great for beginners, full
sized fill in the blank style. +$1 ship

[_] Tutorial Disk Option: $9.95

[_] $3.95 Index - COMAL Today 1-12°
#9 best seller by Kevin Quiggle
52 page, 4,848 entry index to COMAL Today.
The back issues of COMAL Today are a
treasure trove of COMAL information and
programs! This index is your key. +$1 ship

[_] Index Disk Option: $9.95

[] $16.95 Common COMAL Referencedb

-#3 best seller for Feb 88 by Len Lindsay
238 page detailed cross reference to the
COMAL implementations in the USA (formerly
COMAL Cross Reference) Covers: C64 COMAL
2.0, C128 COMAL 2.0, CP/M COMAL 2.10,
and UniComal IBM PC COMAL. +$3 ship

[] $19.95 COMAL Yesterday Issues 1-4 of
COMAL Today - Spiral bound +$3 ship

[_] $12.95 Library of Funcs/Procsdb

#1 best seller Dec 87 by Kevin Quiggle, 80 pgs,
over 100 0.14 procs/funcs, with disk. +$1 ship

[] $4.95 Cart Graphics &. Soundadb

-#6 best seller by Captain COMAL
64 pages - 2.0 packages reference guide to all
the commands in the II built in cartridge
packages. +$1 ship

[] $14.95 COMAL 2.0 Packagesdb

#7 all time best seller by Jesse Knight
108 pgs with disk - package reference. How to
write a package in Machine Code; includes C64
comsymb & supermon. For advanced users. +$2 ship

[_] $14.95 Package Library Vol 1 db

compiled by David Stidolph
76 pages with disk - package collection
17 packages ready to use, many with source
code, plus the Smooth Scroll Editor! +$1 ship

[] $14.95 Package Library Vol 2db

67 pages with disk - package collection
24 example packages ready to use, most with
source code, plus Disassembler, Re-Linker, De
Linker, Package Maker, Package Lister, and
more. (includes windows). +$1 ship

[_1 $14.95 COMAL Collagedb

by Frank and Melody Tymon
168 pages with disk, 2.0 programming guide,
including graphics and sprites tutorial with
many full sized example programs. +$2 ship

[] $12.95 3 Programs in Detaildb

82 pages wifh disk by Doug Bittinger
Three 2.0 application programs explained:
Blackbook (name/address system), Home
Accountant, and BBS. +$1 ship

[] $12.95 Graph Paperdb

52 pages with disk by Garrett Hughes
Function graphing system for COMAL 2.0. The·
program can't be LISTed. Includes a version for
the Commodore Mouse. +$1 ship

[] $12.95 COMAL Quick /Utility 2 & 3db

#2 best seller Dec 87 by Jesse Knight
20 pgs with 2 disks, fast loading COMAL 0.14,
printer programs, utility programs. +$1 ship

[_] $14.95 CP/M COMAL Package Guidedb

The guide to making your own packages for
CP/M COMAL by Richard Bain - 76 pages -
advanced package reference. +$1 ship

[=] $16.95 Foundations with COMALo Bold out
[=] $17.95 Introduction to COMAL 2.0tJ. sold out

db = Doc Box pages
.. = subject to customs/ship variations/availability
lJ = while supplies last (out of print)

Page 80 - COMAL Today #24, 5501 Groveland Terrace, Madison, WI 53716

,

