
THE SYMMETRIES OF MCCULLOUGH-MILLER SPACE

ADAM PIGGOTT

Abstract. We prove that ifW is the free product of at least four groups
of order 2, then the automorphism group of the McCullough-Miller space
corresponding to W is isomorphic to group of outer automorphisms of
W . We also prove that, for each integer n ≥ 3, the automorphism group
of the hypertree complex of rank n is isomorphic to the symmetric group
of rank n.

1. Introduction

A simplicial complex K is a geometric model for a group G if there exists
a homomorphism m : G → Aut(K), where Aut(K) denotes the group of
simplicial automorphisms of K—in other language, we would say that K is
equipped with a G-action. The smaller the kernel of m, the less the model
simplifies G; in the best case, m is injective, and the model represents G
precisely as a subgroup m(G) of Aut(K). The larger m(G) in Aut(K), the
greater the expectation that Aut(K) in its entirety, rather than the subgroup
m(G), can offer insights into G; in particular, it is natural to believe that
a model is better if m(G) is large (say, of finite index) in Aut(K), and best
if m(G) = Aut(K). Following [2], we say that K is an accurate geometric
model of G if there exists an isomorphism m :G → Aut(K).

For each positive integer n, we write Wn for the universal Coxeter group
of rank n; that is, Wn is the free product of n groups of order two, as
presented ⟨a1, . . . , an | a21, . . . , a2n⟩. We write Out(Wn) for the group of outer
automorphisms of Wn.

For each n ≥ 3, Out(Wn) is the outer automorphism group of the most
simple free product with n factors. The group Out(Wn) is related to, but
much more simple in structure than, Out(Fn−1) (see, for example, [4]), where
Fm denotes the free group of rank m. Even so, there are a number of
questions one may ask about a group which have been answered for Out(Fn),
but not for Out(Wn). In particular, one may wish to identify an accurate
geometric model for a group of interest. In [2], Bridson and Vogtmann
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showed that if n ≥ 3, then the spine of the appropriate outer space is an
accurate geometric model for Out(Fn). In the present article we prove that,
provided n ≥ 4, a well-known geometric model of Out(Wn) is in fact an
accurate geometric model.

Given a group G and a fixed free-product decomposition of G, the corre-
sponding McCullough-Miller space K(G) is a contractible simplicial complex
which is a geometric model for the group of symmetric outer automorphisms
of G [8]—those outer automorphisms of G which map each free factor in the
fixed decomposition of G to a conjugate of a free-factor. Further, it is known
that the modeling homomorphism is injective. In the present article we con-
sider the case that G = Wn, equipped with the canonical decomposition;
we write Kn for the corresponding McCullough-Miller space. In this case,
each outer automorphism automorphism of Wn is a symmetric outer au-
tomorphism, so Kn is a geometric model for Out(Wn). We show that the
modeling homomorphism is surjective, and hence prove the following.

Theorem 1.1. For each integer n ≥ 4, the McCullough-Miller space Kn is
an accurate geometric model of Out(Wn).

Remark 1.2. The hypothesis n ≥ 4 is necessary because: Out(W3) is
finitely generated, and hence it is countably infinite; K3 is the barycentric
subdivision of the regular trivalent tree, and hence Aut(K3) is uncountably
infinite.

In general, a McCullough-Miller space is constructed by gluing together
copies of a finite complex HTn, called the hypertree complex of rank n, which
is the simplicial realization of a poset (HT n,≤), called the hypertree poset of
rank n (see Remark 1.5 below). The poset (HT n,≤) is the set of hypertrees
on n labeled vertices, partially-ordered by the operation of folding. It is
well-known, and easily seen, that HTn is a geometric model for Σn, the
symmetric group of rank n. As part of our proof of Theorem 1.1, and for
its independent interest, we prove the following.

Theorem 1.3. For each integer n ≥ 3, the hypertree complex HTn is an
accurate geometric model of the symmetric group Σn.

Remark 1.4. The hypothesis n ≥ 3 is necessary because there is only one
hypertree on 2 labeled vertices, so Aut(HT2) is the trivial group, and it is
not isomorphic to Σ2.

Remark 1.5. In McCullough and Miller’s original account [8] of the con-
struction now named for them, the hypertree complex is not explicitly used.
In its place is used a complex called the Whitehead complex, which is the
simplicial realization of a poset called the Whitehead poset. As explained in
[7], the Whitehead poset is isomorphic to the hypertree poset, and thus the
corresponding simplicial realizations are interchangeable in the construction
of McCullough-Miller space.
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We now describe the structure of the paper, and proofs. In Section 2
we describe the hypertree poset, and a number of its subsets. In Section
3 we prove Theorem 1.3. Our argument proceeds by: identifying a subset
of HT n, the set of “star trees”, on which Σn acts as the full permutation
group; observing that the corresponding subset of vertices in the hypertree
complex is geometrically distinguishable, and hence must be fixed setwise by
an arbitrary simplicial automorphism; and showing that every other vertex
in the hypertree complex is uniquely identified either by its relative proxim-
ities to vertices corresponding to star trees, or to vertices which can be so
identified.

In Section 4 we describe the construction of Kn and prove Theorem 1.1. To
do so we consider an arbitrary simplicial automorphism f of Kn. We argue
that: since Out(Wn) acts transitively on the copies of HTn from which Kn

is built, and Σn is the full automorphism group of HTn, there exist elements
σ, ϕ ∈ Out(Wn) such that the actions of σϕ and f agree pointwise on one
of the copies of HTn. We then establish that overlapping copies of HTn are
sufficiently intertwined that if one copy is fixed pointwise by a simplicial
automorphism, overlapping copies are fixed pointwise too.

2. The hypertree complex

In this section we introduce the hypertree complex. The interested reader
may find an alternative account of the hypertree complex in [7].

2.1. Hypertrees. A hypergraph Γ is an ordered pair (VΓ, EΓ) consisting of
a set of vertices VΓ, and a collection (often a set) EΓ of hyperedges, each of
which is a subset of VΓ containing at least two elements. When we want
to emphasize the vertex set of Γ, we say Γ is a hypergraph on VΓ. A graph
(without loops) is a hypergraph in which each hyperedge contains exactly
two vertices.

Hypergraphs Γ = (VΓ, EΓ) and Γ′ = (V ′
Γ, E

′
Γ) are isomorphic as unlabeled

hypergraphs if there exists a bijection f :VΓ → V ′
Γ such that for each subset

S ⊂ VΓ, f(S) ∈ E′
Γ if and only if S ∈ EΓ; in this case f is called a hypergraph

isomorphism. Hypergraphs Γ = (VΓ, EΓ) and Γ′ = (VΓ′ , EΓ′) are isomorphic
as labeled hypergraphs if VΓ = VΓ′ , and the identity map VΓ → VΓ is a
hypergraph isomorphism Γ → Γ′. We shall usually consider hypergraphs up
to labeled-hypergraph isomorphism.

Let Γ be a hypergraph. Distinct vertices v, v′ ∈ VΓ are said to be adjacent
in Γ if {v, v′} ⊂ e for some hyperedge e ∈ EΓ. The valence in Γ of a vertex
v ∈ VΓ is the number of hyperedges containing v. A vertex with valence one
is called a leaf. The degree in Γ of a hyperedge e ∈ EΓ is #e, the number
of vertices it contains. In general, we shall write #S for the cardinality of a
set S.

Given a hypergraph Γ, and vertices v, v′ ∈ VΓ, a walk in Γ from v to v′ is
a diagram

v = v0
e1−→ v1

e2−→ . . .
ep−→ vp = v′
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Figure 1. Γ is a hypergraph but not a hypertree, Θ is a hypertree.

with: p ≥ 0; each vk a vertex; each ek an edge; and vi−1 ̸= vi and {vi−1, vi} ⊂
ei for each i = 1, . . . , p. Such a walk is said: to visit the vertices v0, . . . , vp;
to join the vertices v and v′; and to cross the hyperegdes e1, . . . , ep. Such a
walk is simple if the vertices v0, . . . , vp−1 are distinct, and the edges e1, . . . , ep
are distinct.

We say a hypergraph Θ is: connected if for each pair of vertices v, v′ ∈ VΘ,
there is at least one simple walk from v to v′; and a hypertree if for each
pair of vertices v, v′ ∈ VΘ, there is exactly one simple walk from v to v′.
It follows immediately that if Θ is a hypertree, then: Θ is connected; the
intersection of two or more distinct hyperedges contains at most one vertex;
and the collection EΘ of edges is a set. A hypertree Θ is a tree if it is a
graph.

Remark 2.1. A hypergraph Γ may be represented as a labeled bipartite
graph B(Γ) as follows: each vertex in VΓ is a labeled vertex of B(Γ); each
hyperedge in EΓ is an unlabeled vertex of B(Γ); an unlabeled vertex u is
adjacent to a labeled vertex ℓ if ℓ ∈ u. Then Γ is a hypertree if and only
if B(Γ) is a tree. Thus there is a bijective correpondence between the set
of hypertrees on a set S, and the set of labeled bipartite trees with labeled
vertices in bijective correspondence with S. Two hypergraphs, one of which
is a hypertree, and the corresponding labeled bipartite graphs are shown in
Figure 1

2.2. The Hypertree Complex. For each positive integer n we write: [n]
for the set {1, . . . , n}; and HT n for the set of hypertrees on [n], considered
up to labeled-hypergraph isomorphism.

Remark 2.2. A general formula for #HT n, the number of hypertrees on
[n], was calculated in [6] and [10]. The sequence (#HT n) begins:

1, 1, 4, 29, 311, 4447, 79745, . . .

More terms of the sequence, and the general formula for #HT n, can be found
in the On-Line Encyclopedia of Integer Sequences [1, Sequence A030019].

Example 2.3. The four hypertrees of HT 3 are depicted in Figure 2. The
29 hypertrees of HT 4 are depicted in Figure 4.
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Figure 3. HT3.

For the remainder of this section we fix an integer n ≥ 3.
There is a partial order ≤ on HT n, determined by an operation called

folding. Given hypertrees Θ,Θ′ ∈ HT n, we say Θ′ is obtained from Θ by a
single fold if there exist distinct hyperedges e, e′ ∈ EΘ such that e ∩ e′ ̸= ∅
and

EΘ′ = (EΘ \ {e, e′}) ∪ {e ∪ e′};

that is, EΘ′ is the result of replacing e and e′ by their union. The requirement
that e ∩ e′ ̸= ∅ ensures that, in such a case, Θ′ is also a hypertree on [n].
For each pair Θ,Λ ∈ HT n, we write Θ ≤ Λ, and we say that Θ is a result
of folding Λ, if Θ may be obtained from Λ by a (possibly empty) sequence
of folds. Then (HT n,≤) is a partially ordered set called the hypertree poset
of rank n.

Example 2.4. The Hasse diagram of (HT 3,≤) is shown in Figure 2. The
simplicial complex HT3 is shown in Figure 3.
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Figure 4. The 29 hypertrees in HT 4.
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A hypertree Θ ∈ HT n must have at least one hyperedge, and may have
as many as n−1 hyperedges. For each h ∈ {0, . . . , n− 2}, we write HT h

n for
the set of hypertrees on [n] with h + 1 hyperedges; a hypertree in HT h

n is
said to have height h. The unique hypertree of height 0 is denoted Θ0

n. The
hypertrees in HT n−2

n are precisely the trees on [n]; it follows that there are
nn−2 hypertrees in HT n−2

n .

Remark 2.5 (An alternative, but equivalent, definition of a hypertree).
Since the maximal elements in (HT n,≤) are exactly the trees on [n], and
HT n is closed under folding, HT n is exactly the set of hypergraphs obtained
by folding trees on [n]. More generally, the set of hypertrees on a vertex set
V is the set of hypergraphs obtained by folding trees on V .

The hypertree complex of rank n, denoted HTn, is the simplicial realization
of (HT n,≤). Recall that this means: there exists a bijection Vn from HT n

to the vertex set of HTn; for distinct hypertrees Θ1, . . . ,Θk ∈ HT n, the
vertices Vn(Θ1), . . . ,Vn(Θk) span a (k−1)-simplex if and only if there exists
a maximal chain in (HT n,≤) which contains Θ1, . . . ,Θk.

It is immediate that each single fold reduces the number of hyperedges
by one, and a hypertree can be folded provided it has more than one hyper-
edge. It follows that each maximal chain in (HT n,≤) contains exactly n−1
hypertrees, the minimal element of which is Θ0

n, and the maximal element
of which is a tree. Thus the simplicial complex HTn has dimension n−2.

We shall often consider the hypertree poset without its minimal element.
We write HT +

n := HT n \ {Θ0
n}, and we write HT+n for simplicial realization

of (HT +
n ,≤). Equivalently, we may consider HT+n to be the subcomplex of

HTn spanned by Vn(HT +
n ), or the link in HTn of Vn(Θ

0
n). We write V+

n (Θ)
for the vertex in HT+n corresponding to Θ.

Example 2.6. The complex HT+
4 is shown in Figure 5; this figure is an

adaptation of [8, Figure 8]. Some vertices are represented as stars, some as
filled circles and some as unfilled circles, for reasons described in Section 3.

We shall make use of a metric on HT+n which reflects the geometry of the
1-skeleton of HT+n .

Definition 2.7 (d+n (·, ·)). For hypertrees Θ,Λ ∈ HT +
n , we write d+n (Θ,Λ)

for the combinatorial length of the minimal length paths in the 1-skeleton
of HT+n between the vertices V+

n (Θ) and V+
n (Λ).

2.3. Some subsets of HT n. In the arguments which follow, a number of
subsets of HT n prove important. We gather the definitions here for the
convenience of the reader. We have also included a table of notation at the
end of the paper.

Definition 2.8 (Star trees). For each j ∈ [n], we write Ξj
n for the hypertree

on [n] with (n−1) hyperedges, each of which contains j; we say that Ξj
n is

the star tree of rank n and common vertex j. We write Sn for the set of star
trees of rank n.
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Figure 5. The endpoints of antipodal dashed edges should
be identified to create HT+

4 , the link in HT4 of Θ0
4.

It is immediate that the elements of Sn are isomorphic as unlabeled hy-
pergraphs; that is, any two elements of Sn differ by a permutation of the
vertices. It is also immediate that each star tree is a tree. The hypothesis
that n ≥ 3 ensures that there are n star trees in HT n.

Definition 2.9 (Line trees). A hypertree in which exactly two vertices are
leaves is called a line tree; we write Ln for the set of line trees.

It is immediate that the elements of Ln are isomorphic as unlabeled hy-
pergraphs. It is also immediate that each line tree is a tree, and that each
vertex in a line tree has valence one or valence two. There are n!/2 line trees
in HT n.

Definition 2.10. For each h ∈ {1, . . . , n − 2}, we write Mh
n for those hy-

pertrees in HT h
n that contain a vertex of valence h+1, and a hyperedge of

degree n−h.

It is immediate that Mn−2
n = Sn, and, for each h, the elements of Mh

n

are isomorphic as unlabeled hypergraphs. Examples are shown in Figure
6. The notation, a script M , was chosen because, amongst the vertices in
V+
n (HT h

n), the vertices in V+
n (Mh

n) prove to have maximal valence in HT +
n ,

provided n ≥ 5 (Lemma 3.12 below).
The set M1

n is particularly important as, provided n ≥ 5, the vertices in
V+
n (M1

n) prove to be the vertices in HT+
n of maximal valence. It is convenient
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Figure 6. From left to right, a hypertree in M1
n, M2

n, M3
n,

and Mn−2
n , with n > 4.

to define notation for the elements ofM1
n. For each pair j, k ∈ [n] with j ̸= k,

we write Ωj,k
n for the hypertree on [n] with hyperedges {j, k} and [n] \ {k}.

It follows that M1
n = {Ωj,k

n | j, k ∈ [n], j ̸= k}.

3. Automorphisms of HTn

In this section we prove Theorem 1.3.
Fix an integer n ≥ 3. Recall that we write Σn for the symmetric group

of rank n, which we identify with the group of bijections [n] → [n]. For a
bijection σ ∈ Σn, and a subset S ⊂ [n], we write σ(S) for the set {σ(s) |
s ∈ S}. For a bijection σ ∈ Σn, and a hypertree Θ ∈ HT n, we write σ(Θ)
for the hypertree on [n] such that Eσ(Θ) = {σ(e) | e ∈ EΘ}; that is, Eσ(Θ) is
obtained by replacing each hyperedge e ∈ EΘ with σ(e).

Evidently, the map Θ 7→ σ(Θ) preserves the partial order ≤, and hence
determines an automorphism of (HT n,≤); thus we have a homomorphism
Σn → Aut(HT n,≤). Since Aut(HT n,≤) embeds in Aut(HTn), we also have
a homomorphism ιn : Σn → Aut(HTn). Theorem 1.3 is proved if we show
that ιn is bijective. We can simplify this task a little using the following
lemma. The lemma follows immediately from the observation that for each
hypertree except Θ0

n, there is another hypertree with the same number of
hyperedges.

Lemma 3.1. For each integer n ≥ 3, Vn(Θ
0
n) is the unique vertex in HTn

of maximal valence.

It follows from the lemma that for each simplicial automorphism f ∈
Aut(HTn), f fixes Vn(Θ

0
n), and restricts to a simplicial automorphism f+ ∈

Aut(HT+n ). The restriction f 7→ f+ is an isomorphism Aut(HTn) → Aut(HT+n ).
Pre-composing this isomorphism with ιn gives a homomorphism ι+n : Σn →
Aut(HT+n ). To prove Theorem 1.3 it suffices to show that ι+n is bijective.

That ι+n is injective follows immediately from an analysis of how Σn acts
on Sn = {Ξ1

n, . . . ,Ξ
n
n}, the set of star trees.

Lemma 3.2. For each integer n ≥ 3, the homomorphism ι+n :Σn → Aut(HT+n )
is injective.

Proof. Since n ≥ 3, there are n distinct star trees, and Σn acts on Sn by
permuting superscripts. It follows that Σn acts as the full permutation
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group on V+
n (Sn), and distinct elements of Σn act distinctly on V+

n (Sn).
Thus distinct elements of Σn act distinctly on HT+n . �

Notation 3.3. Empowered by the lemma, we shall not distinguish between
an element of Σn and the corresponding automorphisms of HTn, HT+n and
(HT n,≤).

It remains to show that ι+n is surjective. The cases n = 3 and n = 4 are
easily dispatched by inspection of HT+

3 and HT+
4 respectively.

Lemma 3.4. The homomorphism ι+3 is surjective.

Proof. The complex HT+
3 consists of three disjoint vertices. The vertices are

the elements of V+
3 (S3). Evidently, each automorphism of HT+

3 permutes
these vertices. The result follows. �

Lemma 3.5. The homomorphism ι+4 is surjective.

Proof. Let f+ ∈ Aut(HT+
4 ). It suffices to show that there exists σ ∈ Σ4 such

that σ−1f+ fixes pointwise V+
4 (HT +

4 ), because then σ−1f+ is the identity
automorphism of HT+

4 , and f+ = σ ∈ Σ4.
Consider the complex HT+

4 , as shown in Figure 5. The vertices in V+
4 (S4)

are shown as stars, the vertices in V+
4 (L4) are shown as filled circles, and

the vertices in V+
4 (HT 1

4) are shown as unfilled circles. Note that HT +
4 =

S4∪L4∪HT 1
4. Inspection of Figure 5 shows that, for each Θ ∈ HT +

4 , Θ ∈ S4

if and only V+
4 (Θ) has valence three, and V+

4 (Θ) is not adjacent to a vertex of
valence two. Since the elements of V+

4 (S4) can be identified geometrically,
f+ fixes setwise V+

4 (S4). Since Σ4 acts as the full permutation group on
V+
4 (S4), there exists σ ∈ Σ4 such that σ−1f+ fixes pointwise V+

4 (S4).
Inspection also shows that, for each Θ ∈ HT +

4 , Θ ∈ HT 1
4 if and only if

V+
4 (Θ) has valence three, and V+

4 (Θ) is adjacent to a vertex of valence two.
Since the elements of V+

4 (HT 1
4) can be identified geometrically, σ−1f+ fixes

setwise V+
4 (HT 1

4), and hence also fixes setwise V+
4 (L4).

Further inspection shows that distinct elements of V+
4 (HT 1

4) (that is,
distinct unfilled circles) can be distinguished by their relative proximities in
HT+

4 to the elements of V+
4 (S4); that is, if Θ and Λ are distinct elements of

HT 1
4, then there exists Υ ∈ S4 such that d+4 (Θ,Υ) ̸= d+4 (Λ,Υ). It follows

that σ−1f+ fixes pointwise V+
4 (HT 1

4).
Finally, further inspection shows that distinct elements in V+

4 (L4) can
be distinguished by their relative proximities in HT+

4 to the elements of
V+
4 (HT 1

4). It follows that σ
−1f+ fixes pointwise V+

4 (L4).
We have that σ−1f+ fixes pointwise V+

4 (HT +
4 ), as required. �

To prove that ι+n is surjective for n ≥ 5, we adapt the argument for n = 4,
replacing each use of inspection by a general argument. Although our general
argument still works with the subsets Ln, Sn and HT 1

n, it must recognize
that these sets no longer combine to give the entirety of HT+n . In particular,
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it takes more effort to show that an arbitrary simplicial automorphism of
HT+n fixes setwise V+

n (HT 1
n).

To ensure the structure of our general argument is easily visible, we de-
scribe it assuming a series of technical claims, to be proved immediately
after. For each n ≥ 5, we claim the following:

(A) The vertices in V+
n (M1

n) are exactly the vertices in HT+n of maximal
valence.

(B) The vertices in V+
n (Sn) are exactly the vertices in HT+n which are

adjacent to n−1 vertices in V+
n (M1

n).
(C) The vertices in V+

n (Ln) are exactly the vertices in HT+n which, al-
though not adjacent to any vertex in V+

n (Sn), are distance exactly
two from n−2 vertices in V+

n (Sn).
(D) The vertices in V+

n (HT 1
n) are exactly the vertices in HT+n which are

adjacent to some vertex in V+
n (Sn), and adjacent to some vertex in

V+
n (Ln).

(E) For all Θ,∆ ∈ M1
n, Θ = ∆ if and only if d+n (Θ,Υ) = d+n (∆,Υ) for

all Υ ∈ Sn.
(F) For all Θ,∆ ∈ HT 1

n, Θ = ∆ if and only if d+n (Θ,Υ) = d+n (∆,Υ) for
all Υ ∈ M1

n.
(G) For all Θ,∆ ∈ HT +

n , Θ = ∆ if and only if d+n (Θ,Υ) = d+n (∆,Υ) for
all Υ ∈ HT 1

n.

Proposition 3.6. For each integer n ≥ 5, ι+n is surjective.

Proof, assuming claims (A) through (G). Considered in order, Claims (A)
through (D) combine to give that an arbitrary automorphism of HT+n fixes
setwise V+

n (M1
n), V+

n (Sn), V+
n (Ln) and V+

n (HT 1
n).

Let f+ ∈ Aut(HT+n ). As in the case that n = 4, it suffices to show that
there exists σ ∈ Σn such that σ−1f+ fixes pointwise V+

n (HT +
n ).

Since f+ fixes setwise V+
n (Sn), and Σn acts as the full permutation group

of V+
n (Sn), there exists σ ∈ Σn such that σ−1f+ fixes pointwise V+

n (Sn).
Since σ−1f+ fixes pointwise V+

n (Sn), and fixes setwise V+
n (M1

n), (E) im-
plies that σ−1f+ fixes pointwise V+

n (M1
n). Since σ−1f+ fixes pointwise

V+
n (M1

n), and fixes setwise V+
n (HT 1

n), (F) implies that σ−1f+ fixes point-
wise V+

n (HT 1
n). Finally, since σ−1f+ fixes pointwise V+

n (HT 1
n) and fixes

setwise V+
n (HT +

n ), (G) implies that σ−1f+ fixes pointwise V+
n (HT +

n ), as
required. �
Remark 3.7. Claim (A) fails in the case n = 4 because, as is evident in
Figure 5, the vertices in V+

4 (HT 1
4) (shown as unfilled circles) are not the

only vertices of maximal valence.

3.1. Proving Claims (A) through (G). Throughout this subsection we
assume n ≥ 5.

Claim (A) requires that we understand the valences of vertices in HT+n .
For each Θ ∈ HT +

n : we write A+
n (Θ) for the set of hypertrees in HT +

n , dis-
tinct from Θ, which fold to Θ; and we write B+

n (Θ) for the set of hypertrees
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in HT +
n , distinct from Θ, which can be obtained from Θ by folding. Thus

the valence in HT+n of V+
n (Θ) is #A+

n (Θ) + #B+
n (Θ).

A convenient formula for #A+
n (Θ) follows from the observation that the

operation of folding has a natural inverse. Let Θ,Λ ∈ HT+n , let e ∈ EΘ,
and let ∆ be a hypertree on e (that is, ∆ is a hypertree with vertex set e).
We say Λ is obtained from Θ by unfolding e to ∆, or just unfolding e, if
EΛ = (EΘ \ {e})∪E∆; that is, if EΛ is the result of replacing e ∈ EΘ by the
elements of E∆. If, in the above, ∆ has only one hyperedge, then Θ = Λ and
we say the unfolding is trivial ; otherwise the unfolding is nontrivial, and Λ
has more hyperedges than Θ. Evidently, Λ is obtained from Θ by unfolding
if and only if Θ is obtained from Λ by folding.

Lemma 3.8 (c.f Lemma 2.5(1) [7]). For each Θ ∈ HT+n ,

#A+
n (Θ) = −1 +

∏
e∈EΘ

#(HT #e).

Proof. Let Θ ∈ HT+n . For each hyperedge e ∈ EΘ, there are #(HT #e)
distinct hypertrees on e, and hence #(HT #e) distinct hypertrees, including
Θ itself, which may be obtained from Θ by unfolding e. The result follows.

�
Let h ∈ {1, . . . , n−2}. If Θ ∈ HT h

n, then a hyperedge in Θ has degree
at most n−h. Our next result records that those hypertrees in HT h

n that
contain a hyperedge of degree n−h are precisely the hypertrees in HT h

n for
which #A+

n (Θ) is maximal. We note that if Θ ∈ HT h
n has a hyperedge of

degree n−h, then the other hyperedges in Θ have degree exactly two.

Lemma 3.9. Let h ∈ {1, . . . , n−2}, let Θ ∈ HT h
n, and let Λ ∈ HT h

n be such
that Λ has a hyperedge of degree n−h. If Θ also has a hyperedge of degree
n−h, then #A+

n (Θ) = #A+
n (Λ); otherwise #A+

n (Θ) < #A+
n (Λ).

The lemma follows inductively from Lemma 3.8, and the following result.

Lemma 3.10. For all integers p, q ≥ 3, #HT p .#HT q < #HT p+q−2.

Proof. Let Λ be the hypertree on [p+q−1] with hyperedges {1, . . . , p−1}∪
{p+ q− 1} and {p, p+1, . . . , p+ q− 1}. By Lemma 3.8 we have #A+

n (Λ) =
−1+#HT p .#HT q; recall that #A+

n (Θ
0
p+q−2) = −1+#HT p+q−2. Thus to

prove the lemma it suffices to exhibit an injective, but not surjective, map
A+

n (Λ) → A+
n (Θ

0
p+q−2).

Let Υ be an arbitrary hypertree in A+
n (Λ). Note that if e ∈ EΥ, and

p+ q− 1 ∈ e, then either e \ {p+ q− 1} ⊂ {1, . . . , p− 1} or e \ {p+ q− 1} ⊂
{p, . . . , p+q−2}. Let a ∈ {1, . . . , p−1} be maximal such that a is adjacent in
Υ to p+q−1, and let ea ∈ EΥ be the hyperedge such that {a, p+q−1} ∈ ea;
let b ∈ {p, . . . , p+q−2} be minimal such that b is adjacent in Υ to p+q−1,
and let eb ∈ EΥ be the hyperedge such that {b, p+q−1} ∈ eb. We construct a
hypertree Υ′ ∈ HT p+q−2 as follows: (ea∪eb)\{p+q−1} is a hyperedge in Υ′;
for each hyperedge e ∈ EΥ with p+q−1 ∈ e and e\{p+q−1} ⊂ {1, . . . , p−1}
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and e ̸= ea, we replace e by {b} ∪ e \ {p+ q− 1}; for each hyperedge e ∈ EΥ

with p + q − 1 ∈ e and e \ {p + q − 1} ⊂ {p, . . . , p + q − 2} and e ̸= eb, we
replace e by {a} ∪ e \ {p+ q − 1}.

To show that the map Υ 7→ Υ′ is injective, we now explain how, given Υ′,
we can reconstruct Υ. Suppose Υ′ is as described above. We can identify
a because it is maximal amongst the elements of {1, . . . , p − 1} which are
adjacent in Υ′ to at least one element of {p, . . . , p+ q− 2}; similarly, we can
identify b. Hence we can identify the hyperedge (ea ∪ eb) \ {p+ q − 1}, and
we can recover ea and eb. Having done this, it is now evident that we can
recover the other hyperedges of Υ.

In this paragraph we show that the map Υ 7→ Υ′ is not surjective. It
follows from the construction that any Υ′ must have the property that,
amongst the elements of {1, . . . , p− 1} which are adjacent to an element of
{p, . . . , p+ q− 2}, only the maximal element may be adjacent to more than
one element of {p, . . . , p+ q − 2}. Hence the hypertree with hyperedges

{1, p+ q − 2}, {1} ∪ {p, . . . , p+ q − 3}, {2, p+ q − 2}, {2, 3, . . . , p− 1}
is contained in A+

n (Θ
0
p+q−2), but it is not the image of any hypertree Υ ∈

A+
n (Λ) (it is here we use the hypothesis that p, q ≥ 3). �
Next we look to understand #B+

n (Θ) for an arbitrary hypertree Θ ∈
HT +

n . We begin by observing that each hypertree Λ ∈ B+
n (Θ) corresponds

to an equivalence relation on EΘ, but, in general, only certain equivalence
relations on EΘ correspond to hypertrees in B+

n (Θ). Given Θ ∈ HT n and
Λ ∈ B+

n (Θ), we define a relation ∼Λ on EΘ as follows: if e, e′ ∈ EΘ, then
e ∼Λ e′ if there exists u ∈ EΛ such that e ∪ e′ ⊂ u; that is, hyperedges in
Θ are related if and only if they are eventually folded in Λ. We leave the
reader to verify that ∼Λ is an equivalence relation. The restriction, that two
hyperedges must intersect nontrivially if they are to be merged in a single
fold, implies that each equivalence class must satisfy the following condition:

(∗) if e ∈ EΘ and i, j ∈ ∪e∼e′e
′, then the unique simple walk in Λ from

i to j visits only vertices in ∪e∼e′e
′.

It is easily verified that an equivalence relation ∼ on EΘ corresponds to a
hypertree Θ∼ if and only if the equivalence relation satisfies (∗); in which
case, the hypertree Θ∼ is in B+

n (Θ) unless there is only one equivalence
class of hyperedeges (because then Θ∼ = Θ0

n), or all equivalence classes are
singletons (because then Θ∼ = Θ).

If Θ ∈ HT h
n has a vertex j of valence h+1, then j is contained in every

hyperedge of Θ, and every vertex but j is a leaf (otherwise Θ would fail to
be a hypertree). We now show that the hypertrees in HT h

n that contain a
vertex of valence h+1 are precisely the hypertrees in HT h

n for which #B+
n (Θ)

is maximal.

Lemma 3.11. Let h ∈ {1, . . . , n−2}, let Θ ∈ HT h
n, and let Λ ∈ HT h

n be
such that Λ has a vertex of valence h+1. If Θ also has a vertex of valence
h+1, then #B+

n (Λ) = #B+
n (Θ); otherwise, #B+

n (Θ) < #B+
n (Λ).
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Proof. Let Υ ∈ HT h
n. If some vertex j has valence h+1, then j is contained

in every hyperedge of Υ, and every partition of EΥ satisfies (∗); otherwise,
there exist partitions of EΥ which do not satisfy (∗). The result follows. �

Lemmas 3.9 and 3.11 combine with the definition of Mh
n (Definition 2.10)

to give the following.

Lemma 3.12. Let h ∈ {1, . . . , n−2}. If Θ ∈ HT h
n \Mh

n, and Λ ∈ Mh
n, then

the valence in HT+n of V+
n (Λ) strictly exceeds that of V+

n (Θ).

We now compare the valences of vertices in Mh
n for different values of h,

and so establish Claim (A). Recall that for distinct integers j, k ∈ [n], we

write Ωj,k
n for the hypertree with hyperedges {j, k} and [n] \ {k}; and we

write M1
n := {Ωj,k

n | j, k ∈ [n], j ̸= k}. We begin by observing that there is
a simple way to characterize those vertices in V+

n (HT n) which are adjacent

to V+
n (Ωj,k

n ).

Definition 3.13 ((j, k)-tag). Given Θ ∈ HT +
n , and distinct integers j, k ∈

[n] with j ̸= k, we say Θ has a (j, k)-tag if {j, k} is a hyperedge in Θ, and
no other hyperedge in Θ contains k.

Lemma 3.14. For each pair j, k ∈ [n] with j ̸= k, and for each hypertree

Λ ∈ HT +
n , V+

n (Λ) and V+
n (Ωj,k

n ) are adjacent in HT+n if and only if Λ has at
least three hyperedges, and Λ has a (j, k)-tag.

Proof. Since Ωj,k
n is minimal in (HT +

n ,≤), V+
n (Λ) and V+

n (Ωj,k
n ) are adjacent

in HT+n if and only if Ωj,k
n ∈ B+

n (Λ).
If Λ has only two hyperedges, then B+

n (Λ) = ∅.
If Λ has at least three hyperedges and Λ has a (j, k)-tag, then we obtain

Ωj,k
n by folding, in some allowable order, all of the hyperedges in Λ except

{j, k}; hence Ωj,k
n ∈ B+

n (Λ).
Suppose that Λ does not have a (j, k)-tag. Then there exists some vertex

ℓ ̸= j such that k and ℓ are adjacent in Λ. It follows from the definition

of folding that k and ℓ are adjacent in each element of B+
n (Λ); thus Ω

j,k
n ̸∈

B+
n (Λ). �

Proposition 3.15. [Claim (A)] The vertices in V+
n (M1

n) are exactly the
vertices in HT+n of maximal valence.

Proof. Let Ω ∈ M1
n, and let Θ be a hypertree inMh

n for some h ∈ {2, . . . , n}.
In light of Lemma 3.12, it suffices to show that the valence in HT+n of V+

n (Ω)
exceeds that of V+

n (Θ). To do so we will exhibit an injective, but not sur-
jective, map p :A+

n (Θ) ∪B+
n (Θ) → A+

n (Ω).
Since the hypertrees in M1

n are isomorphic as unlabeled hypertrees, the
corresponding vertices have the same valences in HT+n , and we may assume

Ω = Ω1,2
n . Similarly, we may assume

EΘ = {{1, 2}, {1, 3}, . . . , {1, h+1}, {1, h+2, h+3, . . . , n}},
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h+2

2
n

1

Θ

3
h+1

3

2

n

1

Ω

Figure 7. Θ and Ω as in the proof of Proposition 3.15.

as shown in Figure 7.
We define p(Ω) = Θ, and p(Υ) = Υ for each Υ ∈

(
A+

n (Θ) ∪ B+
n (Θ)

)
∩

A+
n (Ω). Since Θ has a (1, 2)-tag, Θ ∈ A+

n (Ω); it follows that A+
n (Θ) is

a subset of
(
A+

n (Θ) ∪ B+
n (Θ)

)
∩ A+

n (Ω). Thus it remains only to define
p(Υ) for Υ ∈ B+

n (Θ) \ (A+
n (Ω) ∪ {Ω}). Consider a hypertree Υ ∈ B+

n (Θ) \
(A+

n (Ω) ∪ {Ω}). Since Υ ∈ B+
n (Θ), 1 is the only non-leaf vertex; since

Υ ̸∈ A+
n (Ω) ∪ {Ω}, the unique hyperedge e ∈ EΥ such that e contains 2 is

such that e ̸= {1, 2}. Let j be minimal such that j ≥ 3 and j ∈ e. We
let EΥ′ be the set of hyperedges obtained from EΥ by removing 2 from e;
swapping each occurrence of 1 with j, and vice-versa; and then adding the
hyperedge {1, 2}. An example of this process is shown in Figure 8. Since Υ′

has at least three hyperedges, and it has a (1, 2)-tag, Υ′ ∈ A+
n (Ω). Since j is

a non-leaf in Υ′, Υ′ ̸∈ B+
n (Θ). We define p(Υ) = Υ′. Since j and 1 are the

only non-leaves in Υ′, we can recognize j in Υ′, and hence we can recover Υ
from Υ′. It follows that p is injective.

1 2 4

5 ...n

3

1

2

4

3

14

3

41

3

We remove 2

from e

Then we swap 1 and 

the next least element 

left in e

Finally, we restore 2 to 

the picture, this time in 

a (1,2)-tag

Υ is in B(Θ), but 

not A(Ω)U{Ω}

The hyperedge e

Υ Υ'5 ...n 5 ...n 5 ...n

Figure 8. An example computing Υ′ for Υ ∈ B+
n (Θ) \

(A+
n (Ω) ∪ {Ω,Θ0

n}), as in the proof of Proposition 3.15.

It remains only to show that p is not surjective. To do so, consider
∆ ∈ HT n such that

E∆ = {{1, 2}, {1, 3}, {3, 4}, {4, 5, . . . , n}}

(recall that, by hypothesis, n ≥ 5). Since ∆ has a (1, 2)-tag, ∆ ∈ A+
n (Ω);

since 1 is not the only non-leaf in ∆, ∆ ̸∈ B+
n (Θ); evidently, ∆ ̸= Θ; since

∆ has 3 non-leaves, and any Υ′ constructed as above has only two non-
leaves, ∆ ̸= Υ′. Since ∆ ∈ A+

n (Ω), and ∆ is not in the image of p, p is not
surjective. �
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We now turn our attention to claims (B) through (G).

Lemma 3.16 (Claim (B)). The vertices in V+
n (Sn) are exactly the vertices

in HT+n which are adjacent to n−1 vertices in V+
n (M1

n).

Proof. The lemma follows immediately from Lemma 3.14, and the observa-
tion that the star trees are exactly the hypertrees with n−1 distinct tags. �
Lemma 3.17. Let j ∈ [n] and let Θ ∈ HT +

n . Then

(1) d+n (Θ,Ξj
n) ≤ 1 if and only if j is the only vertex in Θ that is not a

leaf;

(2) d+n (Θ,Ξj
n) = 2 if and only if j is not a leaf in Θ, and there is at least

one other vertex in Θ which is not a leaf.

Proof. Since Ξj
n is maximal in (HT +

n ,≤), d+n (Θ,Ξj
n) = 1 if and only if Θ ∈

B+
n (Ξ

j
n). Evidently, j is the only non-leaf vertex in Ξj

n, folding cannot make
a leaf into a non-leaf, and no element of HT +

n has n-leaves. Thus each

element of B+
n (Ξ

j
n) has exactly n−1 leaves. Property (1) follows.

Property (2) follows immediately from the observations that: d+n (Θ,Ξj
n) =

2 if and only if Θ ̸∈ B+
n (Ξ

j
n) ∪ {Ξj

n}, but B+
n (Θ) ∩ B+

n (Ξ
j
n) ̸= ∅; if j is a

non-leaf in a hypertree Λ, then we can arrange that j is the only non-leaf by
repeatedly folding two hyperedges which both contain some i ∈ [n]\{j}. �
Corollary 3.18 (Claim (C)). The vertices in V+

n (Ln) are exactly the ver-
tices in HT+n which, although not adjacent to any vertex in V+

n (Sn), are
distance exactly two from n−2 of the n vertices in V+

n (Sn).

Proof. Line trees and star trees have the same height, and so cannot be ad-
jacent in HT +

n . By definition, the lines trees are exactly the hypertrees with
exactly two leaves. Equivalently, the line trees are exactly the hypertrees in
which there are n−2 vertices which are not leaves. The result now follows
from Lemma 3.17. �
Lemma 3.19 (Claim (D)). The vertices in V+

n (HT 1
n) are exactly the vertices

in HT+n which are adjacent to some vertex in V+
n (Sn), and adjacent to some

vertex in V+
n (Ln).

Proof. Suppose V+
n (Θ) is adjacent to both V+

n (Ξ) and V+
n (Λ) for some star-

tree Ξ, and some line-tree Λ. Then, since Ξ and Λ are maximal in (HT +
n ,≤),

Θ ≤ Ξ and Θ ≤ Λ. Since Θ ≤ Ξ, Θ has only one non-leaf vertex. Since
distinct hyperedges in a hypertree can contain at most one common vertex,
a single fold can turn at most one non-leaf into a leaf. Since Λ has n−2
non-leaves, it will take at least n−3 single folds to obtain from Λ a hypertree
that has only one non-leaf. Since Λ ∈ HT n−2

n , and Θ is obtained by at least
n−3 single folds, Θ ∈ HT 1

n.
Conversely, suppose that Θ ∈ HT 1

n. Then EΘ = {A ∪ {j}, B ∪ {j}} for
some j ∈ [n] and some non-trivial partition {A,B} of [n]\{j}. Since j is the
only non-leaf of Θ, Θ ∈ B+

n (Ξ
j
n). Let a ∈ A and let ΛA be a line tree on A in
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j [n]\{i,j}i

k-1

k+1 k

Ξ n

k
Ωn

1, 2

1

n

j [n]\{i,j, k}i k j [n]\{i,j, k}i k

unfolds to unfolds tofolds to

Figure 9. A 3-step unfolding and folding sequence.

which a is a leaf; let b ∈ B and let ΛB be a line tree on B in which b is a leaf.
Let Λ be the hypertree on [n] such that EΛ = EΛA

∪EΛB
∪ {{a, j}, {b, j})}.

Then Λ is a line tree on [n] and Θ ∈ B+
n (Λ). �

The author thanks Andy Eisenberg for observing an error in an earlier
proof of the following lemma, and suggesting the proof which appears below.

Lemma 3.20 (Claim (E)). For all Ω,Ω′ ∈ M1
n, Ω = Ω′ if and only if

d+n (Ω,Ξ) = d+n (Ω
′,Ξ) for all Ξ ∈ Sn.

Proof. Let i, j, k be distinct elements of [n]. It is clear that d+n (Ω
i,j
n ,Ξi

n) = 1.

We claim that d+n (Ω
i,j
n ,Ξk

n) = 3. The unfolding and folding sequence in

Figure 9 shows that d+n (Ω
i,j
n ,Ξk

n) ≤ 3. Since k is a leaf in Ωi,j
n , Lemma 3.17

implies that d+n (Ω
i,j
n ,Ξk

n) > 3.

Finally, we claim that d+n (Ω
i,j
n ,Ξj

n) > 3. Because it is minimal in (HT +
n ,≤

), we cannot fold Ωi,j
n and stay in HT +

n . Suppose that Λ′ is obtained by

unfolding Ωi,j
n . Then Λ′ has a (i, j)-tag. Since j is a leaf in Λ′, Lemma 3.17

implies that d+n (Λ
′,Ξj

n) > 2. Hence d+n (Ω
i,j
n ,Ξj

n) > 3 as claimed.
The result follows. �

Lemma 3.21 (Claim (F)). For all Θ,∆ ∈ HT 1
n, Θ = ∆ if and only if

d+n (Θ,Υ) = d+n (∆,Υ) for all Υ ∈ M1
n.

Proof. Let Θ ∈ HT 1
n \ M1

n. Then EΘ = {A ∪ {j}, B ∪ {j}} for some
j ∈ [n] and some disjoint nonempty subsets A,B ⊂ [n] \ {j} such that
A ∪B = [n] \ {j}, and #A,#B ≥ 3.

Let Υ ∈ M1
n. Then Υ = Ωk,ℓ

n for some k, ℓ ∈ [n]. Since Θ and Ωk,ℓ are
distinct elements of the same height, d+n (Θ,Ωk,ℓ) ≥ 2.

If k and ℓ are adjacent in Θ, and ℓ is a leaf, then Θ can be unfolded to a

hypertree with a (k, ℓ)-tag, so d+n (Θ,Ωk,ℓ
n ) = 2. If k and ℓ are not adjacent

in Θ, or ℓ is not a leaf, then Θ cannot be unfolded to a hypertree with a

(k, ℓ)-tag, so d+n (Θ,Ωk,ℓ
n ) ≥ 3.

It follows that the function Ξ 7→ d+n (Θ,Ξ), for Ξ ∈ Sn, can be used to
identify which pairs of vertices in Θ are adjacent (and which vertex is a
non-leaf). Since the hyperedges in Θ are precisely the maximal subsets of
[n] with the property that elements are pairwise adjacent in Θ, the result
follows. �
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Lemma 3.22 (Claim (G)). For all Θ,∆ ∈ HT +
n , Θ = ∆ if and only if

d+n (Θ,Υ) = d+n (∆,Υ) for all Υ ∈ HT 1
n.

Proof. Let Λ ∈ HT 1
n. Then EΛ = {A∪ {j}, B ∪ {j}} for some vertex j, and

some disjoint non-empty subsets A,B ⊂ [n]\{j} such that A∪B = [n]\{j}.
For all Θ ∈ HT +

n , Θ ∈ A+
n (Λ) if and only if, for all a ∈ A and b ∈ B, a and

b are not adjacent in Θ. Since there is an element of HT 1
n for each choice

j ∈ [n], and subsequent choices of A and B, the function Υ 7→ d+n (Θ,Υ), for
Υ ∈ HT 1

n, contains sufficient information to establish exactly which vertices
are not adjacent in Θ, and hence exactly which vertices are adjacent in Θ.
It follows from the definition of a hypertree that the hyperedges in Θ are
precisely the maximal subsets of [n] with the property that elements are
pairwise adjacent in Θ. Thus we can use the knowledge of which vertices
are adjacent in Θ to reconstruct EΘ. The result follows. �

4. The symmetries of McCullough-Miller space

4.1. Automorphisms of Wn. Fix a positive integer n. There are ex-
actly n conjugacy classes of involutions in Wn, each represented by a gen-
erator. Each permutation of the generators induces an automorphism of
Wn which permutes these conjugacy classes; we write Σn for the group
of these automorphisms. It follows that Aut(Wn) acts transitively on the
set of conjugacy classes of involutions; we write Aut0(Wn) for the kernel
of this action. It is easily verified that Aut(Wn) = Aut0(Wn) o Σn. It
follows that, writing Out0(Wn) for quotient Aut0(Wn)/ Inn(Wn), we have
Out(Wn) ∼= Out0(Wn)oΣn. Thus for each α ∈ Out(Wn), there exist unique
automorphisms ϕ ∈ Out0(Wn) and σ ∈ Σn such that α = ϕσ. For n ≥ 3,
Out0(Wn) is an infinite group.

Definition 4.1 (Partial conjugation). For an integer i ∈ [n], and a proper
subset D ⊂ [n] \ {i}, we write xiD for the outer automorphism of Wn deter-
mined by the map:

aj 7→
{

aiajai if j ∈ D,
aj if j ∈ [n] \D;

we say that xiD is the partial conjugation with acting letter i and domain
D.

If xiD is a partial conjugation, then xiD is an involution (if D were not
a proper subset of [n] \ {i}, then xiD would be the identity outer automor-
phism). If i ∈ [n] and D,D′ are disjoint proper subsets of [n] \ {i} such that
D∪D′ = [n]\{i}, then xiD = xiD′ . We adopt the convention that whenever
we write xiD, it is assumed that either i = 1 and 2 ̸∈ D, or i ̸= 1 and 1 ̸∈ D.

The partial conjugations generate Out0(Wn) (see, for example [4]). The
following definition and lemma, due to McCullough and Miller, together
establish a relationship between the hypertree poset and the automorphisms
of Wn.
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Definition 4.2 (Carried by). Given a partial conjugation xiD, and a hyper-
tree Θ ∈ HT n, we say that xiD is carried by Θ if: for all d ∈ D and for all
j ∈ [n]\D, the simple walk in Θ from j to d visits i. Given an automorphism
α ∈ Out0(Wn) and a hypertree Θ ∈ HT n, we say that α is carried by Θ
if α = xipDp . . . xi1D1 for some partial conjugations xipDp , . . . , xi1D1 , each of
which is carried by Θ.

Remark 4.3. It follows that xiD is carried by Θ if and only if D is a union
of connected components of Θ \ {i}.

Lemma 4.4. Let xi1D1 , . . . , xipDp be partial conjugations and let Θ ∈ HT n.
If Θ carries the product xipDp . . . xi1D1, then the partial conjugations xi1D1,
. . . , xipDp pairwise commute.

Proof. Suppose that Θ carries xijDj for each j ∈ {1, . . . , k}. Let p, q ∈
{1, . . . , k}. It follows from [8, p.14, second paragraph] that xipDp commutes
with xiqDq if ip ̸= iq. Because the factors in the free product decomposi-
tion of Wn are abelian, xipDq commutes with xiqDq if ip = iq (this is not
necessarily true in the more general setting considered by McCullough and
Miller). �

Given a hypertree Θ ∈ HT n, and an integer j ∈ [n], it is easy to count
the partial conjugations xjD carried by Θ: there is one for each collection
of connected components of Θ \ {j}, provided the collection excludes the
connected component containing the least vertex of [n] \ {j}. The next
lemma follows.

Lemma 4.5. For each h ∈ {0, . . . , n−2}, and each hypertree Θ ∈ HT h
n, Θ

carries exactly 2h automorphisms, including the identity automorphism.

4.2. McCullough-Miller space Kn. We define a relation∼ on Out0(Wn)×
HT n as follows: (α,Θ) ∼ (β,Λ) if and only if Θ = Λ, and α−1β is carried
by Θ. It is easily verified that ∼ is an equivalence relation. We write
[α,Θ] for the ∼-equivalence class of (α,Θ), and we write Kn for the set of
∼-equivalence classes.

We define a partial order ≤ on Kn as follows: [α,Θ] ≤ [β,Λ] if and only if
α−1β is carried by Λ, and Λ folds to Θ. Equivalently, [α,Θ] ≤ [β,Λ] if and
only if Λ folds to Θ and [β,Λ] = [α,Λ].

McCullough-Miller space Kn is the simplicial realization of (Kn,≤). We
write Vn(α,Θ) for the vertex in Kn corresponding to [α,Θ].

Remark 4.6. Since Θ0
n carries only the identity in Out0(Wn), equivalence

classes of the form [α,Θ0
n] are singletons, and [α,Θ0

n] ≤ [β,Λ] if and only
of β = α. Thus Kn consists of copies of HTn, one copy for each element
of Out0(Wn), glued appropriately. Vertices of the form Vn(α,Θ

0
n) are called

nuclear vertices.

4.3. A map Out(Wn) → Aut(Kn). The set Out0(Wn) ×HT n is naturally
equipped with a left Out(Wn)-action: for all ϕ ∈ Out0(Wn), σ ∈ Σn, and
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(α,Θ) ∈ Out0(Wn) × HT n, we define ϕσ.(α,Θ) = (ϕσασ−1, σΘ). It is
easily verified that this action preserves the equivalence relation ∼, and
that the induced action on Kn preserves the partial order ≤. Thus we have
a homomorphism Out(Wn) → Aut(Kn,≤), which induces a homomorphism
χn :Out(Wn) → Aut(Kn).

Lemma 4.7. For each integer n ≥ 3, the homomorphism χn : Out(Wn) →
Aut(Kn) is injective.

Proof. Recall that each element of Out(Wn) has the form ϕσ for some ϕ ∈
Out0(Wn) and some σ ∈ Σn. If ϕ is non-trivial and ι denotes the identity
in Out(Wn), then

χn(ϕσ)Vn(ι,Θ
0
n) = Vn(ϕσισ

−1, σΘ0
n) = Vn(ϕ,Θ

0
n) ̸= Vn(ι,Θ

0
n).

If ϕ is trivial, but σ is not, then σΘ ̸= Θ for some Θ ∈ HT n, hence

χn(ϕσ)Vn(ι,Θ) = χn(σ)Vn(ι,Θ) = Vn(σισ
−1, σΘ) = Vn(ι, σΘ) ̸= Vn(ι,Θ).

�
To prove Theorem 1.1 it suffices to show that χn is surjective, which is

achieved in the next proposition. To ensure the structure of the argument
is most clear, we describe it assuming the following technical claims, to be
proved immediately after. We claim the following:

(H) For each integer n ≥ 3, the nuclear vertices are exactly the vertices
of maximal valence in Kn.

(I) Let n ≥ 3, let xiD ∈ Out0(Wn) be a partial conjugation, and let
β ∈ Out0(Wn) be an automorphism such that, for each Θ ∈ HT n,
Θ carries β if and only if Θ carries xiD. Then β = xiD.

(J) Let n ≥ 4, let g ∈ Aut(Kn), let α ∈ Out0(Wn), and let xiD be a
non-trivial partial conjugation. If g fixes Vn(αxiD,Θ0), and fixes
pointwise the star of Vn(α,Θ0), then g fixes pointwise the star of
Vn(αxiD,Θ0).

Remark 4.8. Claim (J) fails in the case that n = 3 because, in that case,
Kn is the barycentric subdivision of the regular trivalent tree, and an auto-
morphism of the tree may fix pointwise the star of a valence-three vertex v
without fixing pointwise the star of those valence-three vertex distance two
from v.

Proof that χn is surjective, for n ≥ 4, assuming Claims (H), (I) and (J). Consider
an arbitrary simplicial automorphism f ∈ Aut(Kn). It follows from Claim
(H) that f maps nuclear vertices to nuclear vertices; that is, f maps Vn(ι,Θ

0
n)

to Vn(α,Θ
0
n) for some α ∈ Out0(Wn). It follows that χn(α

−1)f fixes Vn(ι,Θ
0
n),

and fixes setwise the star of Vn(ι,Θ
0
n). By Theorem 1.3, there exists σ ∈ Σn

such that χn(α
−1)fVn(ι,Θ) = Vn(ι, σΘ) for all Θ ∈ HT n; hence χn(σ

−1α−1)f
fixes pointwise the star of Vn(ι,Θ

0
n).

Now suppose that χn(σ
−1α−1)f fixes pointwise the star of Vn(α,Θ

0
n), for

some α ∈ Out0(Wn). Let xiD be a partial conjugation. By Claims (H)
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and (I), amongst the vertices in Kn of maximal valence, Vn(αxiD,Θ
0
n) is

distinguished by the set of vertices in the star of Vn(α,Θ
0
n) to which it is

adjacent. It follows that χn(σ
−1α−1)f fixes Vn(αxiD,Θ

0
n). Claim (J) then

gives that χn(σ
−1α−1)f fixes pointwise the star of Vn(xiDα,Θ

0
n).

By induction we have that χn(σ
−1α−1)f fixes pointwise the star of Vn(α,Θ

0
n)

whenever α can be written as a product of partial conjugations. Since the
partial conjugations generate Out0(Wn), χn(σ

−1α−1)f fixes pointwise the
star of every nuclear vertex, and hence the entire space Kn. The result
follows. �

It remains only to prove Claims (H), (I) and (J). Before addressing Claim
(H), it is convenient to define some notation. For each hypertree Θ ∈ HT n,
we write A(Θ) for the set of hypertrees in HT n, distinct from Θ, which fold
to Θ; and B(Θ) for the set of hypertrees in HT n, distinct from Θ, which
can be obtained from Θ by folding.

Proposition 4.9 (Claim (H)). For each integer n ≥ 3, the nuclear vertices
are exactly the vertices of maximal valence in Kn.

Proof of Proposition 4.9. Consider first the case that n = 3. Nuclear ver-
tices have valence three, and since each hypertree θ ∈ HT n carries exactly
one partial conjugation, and folds only to the nuclear hypertree, each non-
nuclear vertex in K3 is adjacent to two nuclear vertices, and no non-nuclear
vertices. Thus the result holds.

We therefore assume that n ≥ 4. It is clear that each nuclear vertex has
valence #A(Θ0

n).
Consider an arbitrary element [α,Θ] ∈ Kn, with Θ ∈ HT h

n for some
h ∈ {1, . . . , n − 2}. The definitions immediately give that, for any other
element [β,Λ] ∈ Kn:

(1) [α,Θ] < [β,Λ] if and only if β−1α is carried by Θ, and Θ < Λ (from
which it follows that [α,Λ] = [β,Λ]);

(2) [β,Λ] < [α,Θ] if and only if β−1α is carried by Θ, and Λ < Θ (which
does not necessarily imply that [β,Λ] = [α,Λ]).

It follows that the valence in Kn of Vn(α,Θ) is at most

#A(Θ) + #(automorphisms carried by Θ) .#B(Θ).

By Proposition 3.15, #A(Θ) ≤ #A(Ω1,2
n ). By Lemma 4.5, there are 2h

automorphisms carried by Θ. It follows from Lemma 3.11 that #B(Θ) ≤
#B(Ξ1

n) = −1 + Bn−1, where Bn−1 is the number of partitions of [n − 1]
(Bn−1 is the (n−1)-th Bell number). Thus we have that the valence in Kn

of Vn(α,Θ) is at most

#A(Ω1,2
n ) + 2n−2(−1 +Bn−1),

and the proposition is proved if we show that

#A(Ω1,2
n ) + 2n−2(−1 +Bn−1) < #A(Θ0

n).

We make the following choices, in order:
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L 1

L 2

L 3

1 6 3 2

5 41

789102

1 6 3 254 78910

L 4 112

11

Θ

Figure 10. The construction of Θ, as in the proof of Propo-
sition 4.9.

• we choose a partition P = {P1, . . .Pp} of {2, . . . , n} subject only to
the restriction that p > 1 (there are (−1 +Bn−1) such partitions);

• we then choose a function m :{1, . . . , p} → {1, 2} subject only to the
restriction that m(j) = 1 if 2 ∈ Pj (there are 2p−1 such functions);

• for each j ∈ {1, . . . , p}, we choose a composition Cj := (c1j , . . . , c
q
j)

of #Pj (so c1j , . . . , c
q
j are positive integers which sum to #Pj ; there

are 2−1+#Pj such compositions).

In making these choices, we have chosen one combination of data from a
possible

(−1 +Bn−1)2
p−1

p∏
j=1

2−1+#Pj = (−1 +Bn−1)2
n−2

combinations.
Now for each j ∈ {1, . . . , p}, we construct a set Λj of hyperedges as follows:

if Pj = {s1, . . . , sq} with s1 > · · · > sq, then we define

Λj :=

{
{m(j), s1, . . . , sc1j

}, {sc1j , . . . , sc1j+c2j
}, . . . , {s−cqj+#Pj

, . . . , sq}
}
.

Finally, we define Θ to be the hypertree on [n] such that EΘ =
p
∪
j=1

Λj .

An example construction is shown in Figure 10, using the data: n = 11;
p = 4; P1 = {2, 3, 6}, m(1) = 1, C1 = (1, 2); P2 = {4, 5}, m(2) = 1, C1 = (2);
P3 = {7, 8, 9, 10}, m(3) = 2, C3 = (3, 1); P4 = {11}, m(4) = 2, C4 = (1).

Let H denote the set of hypertrees constructed in the manner described
above. Given Θ ∈ H: the corresponding partition P, and the function m,
can be recovered from Θ by considering the connected components of Θ\{1}
and Θ\{2}; the compositions Cj can be recovered from considering the sub-
hypertrees of Θ corresponding to each partition set. It follows that distinct
choices of input data determine distinct hypertrees. The requirement that
p > 1 ensures that Θ ̸= Θ0

n. Thus we have exhibited (−1 + Bn−1)2
n−2

distinct hypertrees in H ⊂ HT n.
We wish to identify at least 1+#A(Ω1,2

n ) more hypertrees in HT n. First

we consider the elements in A(Ω1,2
n ). Recall that these are precisely the

hypertrees with a (1, 2)-tag and at least three hyperdges. Because some
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elements ofH have (1, 2)-tags, this falls short of the extra hypertrees required

by 1 + #A(Ω1,2
n ) ∩H.

Suppose Θ ∈ A(Ω1,2
n ) ∩H. Since Θ ∈ H: the valence of j in Θ is at most

two for each j ∈ {3, . . . , n}. Since Θ ∈ A(Ω1,2
n ), it has a (1, 2) tag. The

only way this can happen is if {2} is a partition set, and m(j) = 1 for each
j ∈ {2, . . . , p}. It follows that 1 has valence in Θ at least three, and no
other vertex in Θ has valence exceeding two. We write Θ′ for the hypertree
obtained from Θ by swapping the vertices 1 and 3. Then Θ′ is not contained
in H (because 3 has valence in Θ′ at least three), and it does not have a
(1, 2)-tag (because 1 and 2 are not adjacent in Θ′).

Evidently, distinct choices of Θ ∈ H∩A(Ω1,2
n ) give distinct hypertrees Θ′.

Hence the set
H ∪A(Ω1,2

n ) ∪ {Θ′ | Θ ∈ H ∩A(Ω1,2
n )}

contains exactly
(−1 +Bn−1)2

n−2 +#A(Ω1,2
n )

hypertrees.
It remains only to find one more hypertree in HT n. The star tree Ξ4

n

suffices because: it does not have a (1, 2)-tag, and hence is not contained

in A(Ω1,2
n ); the valence in Ξ4

n of 4 exceeds two, and hence Ξ4
n cannot be an

element of H ∪ {Θ′ | Θ ∈ H ∩A(Ω1,2
n )}. �

Lemma 4.10 (Claim (I)). Let n ≥ 3, let xiD ∈ Out0(Wn) be a partial
conjugation, and let β ∈ Out0(Wn) be an automorphism such that, for each
Θ ∈ HT n, Θ carries β if and only if Θ carries xiD. Then β = xiD.

Proof. There exists at least one hypertree Θ ∈ HT n which carries xiD . It
follows, by Definition 4.2 and hypothesis, β = xipDp . . . xi1D1 for some partial
conjugations xi1D1 , . . . , xipDp , each of which is carried by Θ. Thus it suffices
to show that if xjF is a partial conjugation and xjF ̸= xiD, then there
exists a hypertree Λ ∈ HT n such that Λ carries xiD but Λ does not carry
xjF . Equivalently, it suffices to show that if xjF is a partial conjugation
and xjF ̸= xiD, then there exists a hypertree Λ ∈ HT n such that D is a
union of connected components of Λ\{i}, but F is not a union of connected
components of Λ \ {j}. We leave the reader to verify this statement. �
Lemma 4.11 (Claim (J)). Let n ≥ 4, let g ∈ Aut(Kn), let α ∈ Out0(Wn),
and let xiD be a non-trivial partial conjugation. If g fixes Vn(αxiD,Θ0),
and fixes pointwise the star of Vn(α,Θ0), then g fixes pointwise the star of
Vn(αxiD,Θ0).

Proof. Suppose g fixes Vn(αxiD,Θ0), and fixes pointwise the star of Vn(α,Θ0).
Recall that a line tree is a hypertree which has exactly two leaves. It is

immediate from the definitions that xiD is carried by exactly (#D)!(n −
#D − 1)! line trees; let X denote this set of line trees. It follows that the
star of Vn(α,Θ0) shares at least (#D)!(n−#D − 1)! vertices with the star
of Vn(xiDα,Θ0). Since n ≥ 4 and 1 ≤ #D ≤ n−2, (#D)!(n−#D−1)! ≥ 2.
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Since g fixes Vn(xiDα,Θ0), it fixes setwise the star of Vn(xiDα,Θ0). Hence
g fixes setwise the set of vertices common to the stars of Vn(xiDα,Θ0) and
Vn(xiDα,Θ0), and this set contains at least two vertices corresponding to
line trees.

Now each line tree which carries xiD is fixed by exactly one nontrivial
element of Σn, and no two line trees are fixed by the same nontrivial element
of Σn. It follows that the pointwise stabilizer in Aut(HTn) of X is the trivial
subgroup of Σn. By Theorem 1.3, g acts as an element of Σn on the star
of Vn(xiDα,Θ0). But since g is contained in the pointwise stabiliser of the
vertices shared with the star of Vn(α,Θ0), g acts as the identity on the star
of Vn(α,Θ0). That is, g fixes pointwise the star of Vn(αxiD,Θ0), as required.

�
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Appendix A. Table of notation

[n] the set {1, . . . , n}

Θ0
n the hypertree on [n] with exactly one hyperedge

Ξj
n the hypertree on [n] with exactly n−1 hyperedges, each of which contains j

Ωj,k
n the hypertree on [n] with exactly two hyperedges, {j, k} and [n] \ {j}

HT n the set of hypertrees on [n]

HT +
n the set of hypertrees on [n] that have at least two hyperedges

HT h
n the set of hypertrees on [n] that have exactly h+1 hyperedges

Sn the set {Ξj
n | j ∈ [n]}; elements of Sn are called star trees

Ln the set of hypertrees on [n] that have exactly two leaves; elements of Ln are
called line trees

Mh
n the set of hypertrees on [n] which have exactly h+1 hyperedges, a vertex of

valence h+1, and a hyperedge of degree n−h

(note: M1
n = {Ωj,k

n | j, k ∈ [n], j ̸= k} and Mn−2
n = Sn = {Ξj

n | j ∈ [n]})

A+
n (Θ) the set of hypertrees on [n], distinct from Θ, which fold to Θ

B+
n (Θ) the set of hypertrees on [n], distinct from Θ, which can be obtained by

folding Θ

HTn the simplicial realization of (HT n,≤), called the hypertree complex of rank n

HT+
n the simplicial realization of (HT +

n ,≤)

Figure 11. Notation relating to hypertrees.
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