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Abstract
In this paper we discuss the Descriptive Numbers which are in definition almost identical to J.

Conway’s popular Look and Say numbers and analyze the significant difference in the behavior of the
two sequences. Whereas the terms in Conway’s sequence grow in length indefinitely, the Descriptive
Numbers do not exhibit the same property. Instead, the length of Descriptive Sequence terms is
bounded. The result of trying to relate the lengths of successive terms in a sequence of Descriptive
Numbers we show is proving that all Descriptive Sequences are cyclic regardless of numerical base
or initial condition.

1 Introduction
A sequence of numbers which has been explored before in recreational mathematics, called the “Descriptive
Numbers" by the Online-Encyclopedia of Integer Sequences [1], begins 1, 11, 21, 1112, 3112, and so on.
The descriptive numbers continue by the process wherein the next term is the number of occurrences of
the least digit in the previous term followed by that digit, followed by the number of occurrences of the
next least digit and then by that digit, and so on for each unique digit in the previous term. So, because
there is 1 “one" in “1", the next term in the sequence is 11. Then, because there are 2 “ones" in “11", the
next term in the sequence is 21. The digits are ordered increasingly; so, the next terms after that are 1112
(1 “one" and 1 “two") and 3112 (3 “ones" and 1 “two"). This sequence is particularly interesting because
regardless of what number is chosen as the starting point of the sequence, the sequence eventually forms
a complete loop and repeats a few values cyclically thereafter.

For example, the initially given sequence progresses further as 211213, 312213, 212223, 114213,
31121314, 41122314, 31221324, 21322314. The last of these numbers, 21322314, maps to itself. So, that
value is repeated for every future term of the sequence. Although not every initial condition reaches a
number which maps to itself, every initial condition does reach a cycle of some length. The case of a
number mapping to itself is a cycle of length 1. Not only does every initial condition in base 10 lead to
a cycle but every initial condition in any numerical base leads to a cycle. The proof that the descriptive
numbers are cyclic regardless of base and of initial condition is the principal result of this paper.

These numbers in base 10 specifically have been explored before by V. Bonstein and A. Fraenkel [2]
using different methods. A more popular and related sequence called the “Look and Say Numbers" was
explored by J. Conway in a famous paper of his, “The Weird and Wonderful Chemistry of Audioactive
Decay" [3]. The sole structural difference between the Descriptive Numbers in base 10 and the Look
and Say Numbers is that the former describes the total number of each digit present in the previous
number, ordered as those digits increase while the Look and Say Numbers iterate from the beginning of
the sequence and specify how many of each digit occur sequentially, followed by that digit. For example,
the Look and Say sequence with initial condition 1 is 1, 11 (1 “one"), 21 (2 “ones"), 1211 (1 “two" followed
by 1 “one"), 111221 (1 “one" followed by 1 “two" followed by 2 “ones"), 312211, 13112221, and so on. As
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this sequence continues it grows indefinitely. The relationship between the Descriptive Numbers and the
Look and Say Numbers is discussed further in Section 4.4.

2 Definitions
Definition 2.1: Base � String

1. Let a base � string � be a sequence �0, �1, ..., �� of finitely many natural numbers represented in
base � such that for all ��, where � ∈ N such that 0 ≤ � ≤ �, 0 ≤ �� ≤ �. Let a base � string �
be represented as “�0�1�2�����”. Examples: “1", “11", “21", “0099", “05", “", and “15432598765101" are
all base 10 strings. “10" and “1001" are base 2 strings.

2. Let the length of a base � string � be the least � ∈ N such that �� does not exist. Let the length of� be denoted by �(�). Examples: �(“1”) = 1, �(“0099”) = 4, �(“”) = 0, and �(“15432598765101”) = 14.

3. Let two base � strings � and � be considered equal if �(�) = �(�) and �� = �� for all � ∈ N such
that 0 ≤ � < �(�). For example, “11120099" = “11120099".

4. Let the concatenation of two base � strings � and � equal � and be denoted � ⊕ � = � if (i)�(�) = �(�) + �(�), (ii) �� = �� for all � ∈ N such that 0 ≤ � < �(�), and (iii) �� = ��−�(�) for all� ∈ N such that �(�) ≤ � < �(�). Also let the iterative concatenation of many base � strings be
denoted by

�
(similarly to sigma summation). Examples:

“1112” ⊕ “0099” = “11120099”
If � (�) = “�”, then

�9�=0 � (�) = “0123456789” in base 10

5. Let the content of a base � string � be the set of all values assumed in the sequence of � and
be denoted C��(�). Examples: C��(“1”) = C��(“11”) = {1}, C��(“114213”) = {1� 2� 3� 4}, andC��(“15432598765101”) = {0� 1� 2� 3� 4� 5� 6� 7� 8� 9}.

6. Let the multiplicity of an element � of the content of a base � string � be the number of times that� occurs in the sequence �0, �1, ..., �� and be denoted M���(�� �). Examples: M���(“1”� 1) = 1,M���(“11”� 1) = 2, M���(“11”� 2) = 0, and M���(“15432598765101”� 5) = 3.

7. Let T�(�) be called the description of the base � string � and defined by

T�(�) :=
�

�∈C��(�)
(M���(�� � ) ⊕ � )�

Examples:

T10(“1”) = “11” T10(“11”) = “21” T10(“21”) = “1112”T10(“1112”) = “3112” T10(“1111111111”) = “101” T2(“1001”) = “100101”

Definition 2.2: Descriptive Base � Sequence

1. Let a descriptive base � sequence �0, �1, ... be a sequence of base � strings such that ��+1 = T�(��)
for all � ∈ N. Examples: “1", “11", “21", “1112", “3112", ... and “05", “1015", “102115", “10311215", ...
are both descriptive base 10 sequences.
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2. Let the term �0 of a descriptive base � sequence � be called the initial condition of �. Examples:
The initial condition of the first sequence given in the previous definition is “1". The initial condition
of the second sequence given in the previous definition is “05".

3. Let a descriptive base � sequence � be called cyclic if there exists �, � ∈ N such that �� = ��
and � �= �. Example: Let � be the descriptive base 10 sequence with initial condition “1". Then,� is cyclic because �13 = �14.

3 Proof of Principal Result
Theorem 3.1: All descriptive sequences are cyclic.

First, an inequality relating the lengths of successive terms in a descriptive sequence will be found.
Then, this inequality will be used to show that the length of any term in the descriptive sequence is
bounded. Then, the boundedness of the length will be used to deduce that any descriptive sequence is
cyclic. Each of these statements taken as a lemma makes the theorem a simply their combination.

Lemma 3.1.1: Let �� be a descriptive base � sequence and let L� be a sequence such that L� = �(��)
for all �. Then, L�+1 ≤ � log�(L�) + 2�.

Proof: The number of digits which the multiplicity of � in �� contributes to the length of ��+1 is the
number of digits of M���(��� � ) plus the number of digits of � . The number of digits of � is always 1.
The number of digits of M���(��� � ) is �log�(M���(��� � ))� + 1. (Thoughout this paper, ��� will be used
to denote the greatest integer less than or equal to � .) So,

L�+1 = �(��+1) =
�

�∈C��(��)
(�log�(M���(��� � ))� + 2)�

M���(��� � ) ≤ �(��) for all � and log�(�) is increasing for all � . So,

L�+1 =
�

�∈C��(��)
(�log�(M���(��� � ))� + 2) ≤ �

�∈C��(��)
(�log�(�(��))� + 2)�

��� ≤ � for all � . So,

L�+1 ≤ �

�∈C��(��)
(�log�(�(��))� + 2) ≤ �

�∈C��(��)
(log�(�(��)) + 2)�

The new expression inside the sum is independent of � so it simplifies to

L�+1 ≤ |C��(��)|(log�(L�) + 2)�
|C��(��)| ≤ �. So, L�+1 ≤ � log�(L�) + 2��
Call this inequality the string length inequality.

Lemma 3.1.2: Given the string length inequality, the sequence L� is bounded.

Proof: Let ��(�) = � log� � +2�� F�+1 = ��(F�), and F0 = L0. Because ��(�) is increasing, if L� ≤ F�
then ��(L� ) ≤ ��(F� ). Then, because ��(F� ) = F�+1 (by the definition of F�) and L�+1 ≤ ��(L� ) (by the
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string length inequality), we have that if L� ≤ F� then L�+1 ≤ F�+1. And thus, by induction, becauseL0 = F0, L� ≤ F� for all �. Now, if F� is bounded above, then L� is bounded above. L� is bounded below
by 0. Hence, if F� is bounded above, L� is bounded.

Notice that F is a simple recurrence relation. By the definition of F , a fixed point for F must sat-
isfy F� = ��(F�). Consider �(�� �) = ��(�) − � = � log� � + 2� − � . Then, the ordered pairs (�� �)
which satisfy �(�� �) = 0 are the fixed points for F in base �. By the Implicit Function Theorem, � is
parametrized by � (equivalently, for that base � there is only one fixed point and it is located at �(�))
whenever ∂�/∂� �= 0.

∂�∂� (�� �) = �� ln � − 1

Hence, ∂�/∂� = 0 if and only if � = �/ ln �. Consider now the order pairs (�� �/ ln �) which satisfy�(�� �) = 0, recalling that � > 1 because � is a numerical base.

� ��� �
ln �

�
= �

ln � ln
� �

ln �
�

+ 2� − �
ln � = 0�

ln � (3 ln � − ln ln � − 1) = 0

ln �3

ln � = 1�3 − � ln � = 0

The left side of this equation is 1 when � is 1 and its derivative with respect to � is 3�2 − �/� which
for � > 1 is always positive. Hence, the left side of this equation never equals 0 and there are no � for
which � is not parametrized by �. Let the � solution to �(�� �) = 0 for a particular � be denoted λ�.
The graph of λ� as it is implicitly defined by � is shown below in Figure 1. The graph looks deceptively
linear.

Figure 1

Notice from the definition of �(�� �) or below in Figure 2 that for arbitrarly large � , �(�� �) becomes
an arbitrarly large negative number. Notice also that, as demonstrated earlier by the Implicit Function
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Theorem, the stationary point with respect to � of �(�� �) is never also the unique � which satisfies�(�� �) = 0 (λ�). Hence, �(�� �) > 0 for � < λ�, �(�� �) = 0 for � = λ�, and �(�� �) < 0 for � > λ�.
Consequently, because �(�� �) = ��(�) − � , ��(�) > � for � < λ�, ��(�) = � for � = λ�, and ��(�) < � for� > λ�.

Figure 2

Consider the case of F0 ≤ λ�. Because ��(�) is increasing and λ� is a fixed point for ��(�), if F� ≤ λ�
for some � then, F�+1 = ��(F� ) ≤ ��(λ�) = λ�. Hence, if F� ≤ λ� then F�+1 ≤ λ�. Thus, by induction, ifF0 ≤ λ�, F� is bounded above by λ�.

Now consider the case of F0 > λ�. Because ��(�) is increasing and λ� is a fixed point for ��(�), ifF� > λ� for some � then, F�+1 = ��(F� ) > ��(λ�) = λ�. Hence, if F� > λ� then F�+1 > λ�. Thus,
by induction, if F0 > λ�, F� is bounded below by λ�. Now, because ��(�) < � whenever � > λ�,�(F� ) = F�+1 < F� . Hence, if F0 > λ�, F� is strictly decreasing and thus bounded above by F0.

Hence, regardless of the value of F0, F� is bounded above. Thus, L� is bounded.

Lemma 3.1.3: The boundedness of L� is sufficient to conclude that �� is cyclic.

Proof: Let β� = �λ�� + 1 > λ� if L0 < λ� and let β� = L0 if L0 ≥ λ�. Then, β� is an upper bound forL�. Note that in a base � string with length equal to β� each digit has � possible independent values
hence there are �β� possible such base � strings. Consequently there are

1 + � + �2 + ��� + �β� = �β�+1 − 1� − 1 < �β�+1

different base � strings with length less than or equal β�. So, consider ��β�+1 . If any pair of values of�� preceeding that value in the sequence are equal, then �� is cyclic. If not, then all of the preceeding
values are unique which, because there are fewer possible unique values for �� than �β�+1, means that
the value of ��β�+1 must have occurred previously in the sequence. Hence, �� is cyclic. Q.E.D.
4 Observations and Room for Further Investigation
4.1 Cycle Length
After some initial exploration of descriptive numbers one might conclude that all sequences reach a string
which maps to itself. However, this is not the case. When the first 1000000 initial conditions are checked

29



Principia: The Princeton Undergraduate Mathematics Journal

in base 10 by a computer (which iterated through sequences with initial conditions as “0", “1", ... “9", “00",
... “09", “11", ... “19", ..., “88", “89", “99", “000", ... as there is no use having any non-increasing digit sequence
as an initial condition due to the order independence of the description process), it is revealed that the
least initial condition with a cycle of length greater than 1 is “04". The cycle length of “04" is 2. The least
initial condition with a cycle of length 3 is “05". The descriptive sequences for both are shown below.

“04” �→ “1014” �→ “102114” �→“10311214” �→ “1041121314” �→ “1051121324” �→ “104122131415” �→
“105122132415” �→ “104132131425” �→ (“104122232415” �→ “103142132415”) (Last 2 elements form a cycle)

“05” �→ “1015” �→ “102115” �→ “10311215” �→ “1041121315” �→ “105112131415” �→
“106112131425” �→ “10512213141516” �→ “10612213142516” �→ “10513213141526” �→

(“10512223142516” �→ “10414213142516” �→ “10512213341516”) (Last 3 elements form a cycle)

The first cycle of length 3 is only the 16th decimal string checked. Strangely though, no cycles of length
greater than 3 occur in the first 1000000 decimal strings. Also, 3-cycles are not rare at all. Of the first
million decimal strings, 140806 of them result in a 3-cycle.

The maximum cycle length in any base is bounded as a consequence of the fact that the length of a
sequence is bounded. However, the distribution of each cycle length as a function of the base is currently
unexplored. My analysis has so far failed to even produce a 4-cycle or greater in base 10 or a 2-cycle
or greater in base 2.

4.2 Pre-Cycle Length
Another characteristic of intrigue is how long it takes for a descriptive sequence to complete its first cycle
(or equivalently, how many unique numbers are in the sequence). Similarly to cycle length, the extreme
initial condition (in this case, the initial condition which takes the longest to repeat) in the first million
base 10 strings occurs early on. That initial condition is “0099" and its descriptive sequence contains 20
unique strings. Its descriptive sequence is given below.

“0099” �→ “2029” �→ “102219” �→ “10212219” �→ “10313219” �→ “1031122319” �→ “1041222319” �→
“103132131419” �→ “105112331419” �→ “10511223141519” �→ “10612213142519” �→

“1051321314151619” �→ “1071122314251619” �→ “106132131415161719” �→ “108112231415261719” �→
“10713213141516171819” �→ “10911223141516271819” �→ “10813213141516171829” �→
(“10812223141516172819” �→ “10713213141516172819”) (Last 2 elements form a cycle)

In the first million base 10 strings, 7 have pre-cycle length of 20. Similarly to maximum cycle length, the
maximum pre-cycle length in a given base is bounded. The distribution of pre-cycle lengths and whether
it varies across the initial condition in a simple predictable manner is currently unknown.

4.3 Funneling and Isolation
Consider the descriptive sequences with initial conditions “0" and “1" in binary, given below.

“0” �→ “10” �→ “1011” �→ “10111” �→ “101001” �→ “110111” �→ “101011” �→ “1001001” �→ “1000111” �→
(“1101001”) (Last element forms of cycle)
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“1” �→ “11” �→ “101” �→ “10101” �→ “100111” �→ “1001001” �→ “1000111” �→ (“1101001”) (Last ele-
ment forms a cycle)

Interstingly, these two initial conditions lead to the same cyclic element. In binary, all of the first
1000000 initial conditions (all of the initial conditions which have been checked) eventually lead to this
exact final element, ‘1101001", except for a single one. This funneling phenomenon occurs in all of the
bases I have investigated numerically but is most significant in binary. Binary is also interesting because
of that sole exception which is one of the only two isolated nodes found thusfar. Consider “111". It maps
to itself. “1101001" also maps to itself. However, many different elements map to “1101001" but it is easily
checked that only “111" maps to “111". Hence, “111" is completely isolated. The other isolated node is
even more interesting as it is isolated in every base greater than 2. That node is “22". The existence of
other isolated nodes and the extent of funneling in other bases is currently an open question.

4.4 Relation to the Look and Say Numbers
Regardless of the base, once a certain digit is in a sequence it is in all future terms of the sequence.
Consider the descriptive sequence with the initial condition “09" in base 10, given below.

“09” �→ “1019” �→ “102119” �→ “10311219” �→ “1041121319” �→
“105112131419” �→ “10611213141519” �→ “1071121314151619” �→

“108112131415161719” �→ “10911213141516171819” �→ “101011213141516171829” �→
“201012213141516171819” �→ “20913213141516171819” �→ “10812223141516171829” �→

(“10714213141516172819” �→ “10812213241516271819”) (Last two elements form a cycle)

Notice that this initial condition slowly generates every digit in base 10 by overflowing with ones.
Incorporating 0 in an initial condition produces this effect. It causes an additional 1 to appear in every
term of the sequence producing an increasing number of ones rather than a nearly constant number of
ones across terms until the different digits available in the base are exhausted. This type of behavior
is somewhat similar to the behavior of the Look and Say Numbers in that the Look and Say Numbers
have “atoms" which are self-reproducing and generate structure in their vicinity in the sequence while this
sequence essentially has the initial condition as the atom and the structure it produces is the complete
list of digits available in the base. However, this also illustrates the fundamental difference between the
Descriptive Numbers and the Look and Say Numbers. The Look and Say Numbers have atoms which
generate structure in their vicinity because it is order dependent. The Descriptive Numbers are order
independent and hence a “mixing" occurs. If � and � are strings, then the Look and Say algorithm applied
to � concatenate � equals the Look and Say algorithm applied to � concatenated with the Look and
Say algorithm applied to � whenever the last digit of � is different from the first digit of � and the two
only differ at the point of concatenation between � and � when those two digits are the same. However,
the Descriptive algorithm applied to � concatenate � generally bears no resemblence to their individual
Descriptions due to the mixing which occurs in the algorithm.

5 Unanswered Questions
The Descriptive Numbers exhibit many patterns which are worthy of further investigation. I have formu-
lated some currently unanswered questions below to spark further investigation.

1. Are there decimal string descriptive sequences of cycle length greater than 3? Are there binary
string descriptive sequences of cyc length greater than 1? In general, what is the maximum possible
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cycle length which can occur in a given base and how are the cycle lengths distributed in that
base? Must all members of a cycle have a same length? If so, does this make it possible to design
an algorithm to produce longer cycles?

2. Is there are way to predict simply the pre-cycle length of an initial condition? How are the pre-cycle
lengths distributed among different initial conditions and bases? In general, what is the maximum
possible pre-cycle length which can iccur in a given base?

3. Are there other isolated nodes? Is there an easy method for finding isolated nodes? In binary, is
“1101001" the only funnel? In general, is the number of different funnels representable in terms of
the base?

4. Is there a binary operator, �, for which T�(� � �) = T�(�) � T�(�) for any strings �� �? Or, at least,
is there an operator for which a similar type of decomposition can occur?
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