
A VR Component Architecture for Visual Multi-User Applications

Martin Leissler, Andreas Müller, Matthias Hemmje, Erich Neuhold

GMD – German National Research Center for Information Technology
IPSI – Integrated Publication and Information Systems Institute

Dolivostr. 15, 64293 Darmstadt, Germany
[leissler, anmuelle, hemmje, neuhold]@darmstadt.gmd.de

Abstract
The vision of cyberspace coined in books such as William
Gibson’s “Neuromancer” involves the basic principles of
extensibility, openness, and shared 3D-environments. This paper
describes a design for an architectural model allowing the
construction of multi-user VR applications from flexible modules
with the goal to fulfill these demands. First, so-called VR
components are designed. Second, a framework is defined in
which the VR components can be embedded and into which a
multi-user infrastructure is incorporated. Furthermore, an
implementation framework for the VR-components and the multi-
user infrastructure based on VRML and Java is presented, which
we call Vrmlets. An analysis of existing VRML-centric approaches
shows that this API based approach is superior with regards to
flexibility and scalability. Since the Vrmlets can be implemented on
top of any existing software component model (such as
COM/D COM) they are ideal for the use in integrated visual
development environments. Therefore, Vrmlets enable a
consistent paradigm for the development of visualization
applications with complex behavior.

Keywords: Information Visualization, Software Components,
Multi-User, Shared Environments

1. Introduction and Motivation

The vision of cyberspace was born at a time, when
hardly anybody could imagine that someday computers,
which are fast enough for interactive 3D graphics would
be sold in supermarkets. Cyberspace - that is more than an
interactive 3D user interface such as provided by some
computer games. The principle of extensibility is of
decisive importance. This characteristic has two aspects:
First, new elements should be easy to integrate into an
existing world, e.g., via drag and drop, or they should be
replaceable with other elements. On the other hand, the
construction of new elements should be as easy as
possible, because this is the only way to enable
developers all over the world to create a rich and diverse
virtual world.

A further principle is openness. In this case,
"openness" means that such a system has clearly
specified interfaces so that every developer can create

own elements for the cyberspace. In this way, multi-user
worlds of different manufacturers can be compatible with
each other because the different implementations have the
same interfaces.

With VRML (Virtual Reality Modeling Language, [11]),
we have got a rich description means for interactive 3D
graphics that was designed specifically for the use in the
Internet. However, VRML provides no description means
for multi-user applications. Existing multi-user 3D
applications, such as computer games, are neither open
nor extensible in the above sense.

2. Goal

The aim of this paper is it to design an architecture
allowing the construction of VR multi-user applications
from flexible modules. It continues and extends the work
presented in [6] and [5]. The task can be divided into two
parts: First, to design the modules to be referred to as VR
components in the following. Second, a framework has to
be defined in which the VR components can be embedded
and into which the multi-user infrastructure is
incorporated.

VRML, however, is not designed for a distributed
application: The scene description in VRML is a local data
structure, i.e. if the same scene is loaded to several clients,
the modifications to this scene made by one client are not
vis ible for the other users. Even the VRML messaging, i.e.
the routing of events, is a purely local mechanism.
Therefore, extensions are needed to realize a multi-user
functionality. Possible approaches are presented in
section 4.2.

The reader is assumed to have a basic understanding
of the concepts of software component architectures,
VRML, and Java.
2.1 VR components

The term "VR components" is to illustrate that these
components do not only have a visual representation but
that they are also interactive, i.e. the user can change their
state. In addition, these components should be able to
contain a complex behavior. The term "virtual reality" (VR)
combines these characteristics in our opinion: First VR has

a visible (3D) shape. Second, the user may act in the VR -
therefore it is interactive. And, finally, there is also
complex behavior "in the reality". These VR components
are specified to the outside by a uniform interface and
encapsulate both the state of the component and its visual
representation within the VRML scene. The visual
representation of the components (their appearance and
behavior in the VRML browser) should be simply
configurable and should be exchangeable at runtime if
possible.

The aim is to enable a simple construction of visual
multi-user applications from prefabricated components. It
should be equally simple to create new components.

2.2 Multi-user infrastructure

The VR components are embedded in a framework, the
so-called "multi-user technology" (MUTech), which
provides the services necessary for the multi-user
applications. These are in particular services for
communication via me ssages (messaging), for object
management and the replication of the state of the
distributed application. The multi-user infrastructure
should be well scalable in order to show good
performance even with a great number of users and VRML
components in the scene.

3. Requirement Analysis

The following chapter is to show which typical
elements may appear in a visual multi-user application:
• An environment module: This is a relation

{objectàvisualization}. Users can select this
assignment themselves to adapt the visualization to
their taste. An environment module can contain any
number of object types and therefore is a
generalization of the visualization mechanism from
existing virtual multi-user worlds, which allow the
users to select only a model for their avatar.

• Component architecture: Objects in this scenario are
software components with a standardized interface.
This makes it easy to develop new components and
to fit them into an existing world without problems.

• A virtual guide : Objects in a virtual world cannot only
symbolize users but also messages or services, as a
search service which is controlled by a software
agent.

• Persistent objects: Users can create objects of any
type dynamically, which are not deleted upon their
logoff. The lifetime and existence of these objects is
independent from the user, who created them.

• Active objects : Instead of a stat ic hyperlinks, one can
also imagine a software agents, which e.g. determines
the participants whereabouts, which asks them

whether they would like to receive "virtual visits",
and which takes the user to them (if they agree).

• Communication on semantic level: A query,
formulated by a user can be broadcasted to the other
participants. Other users would see a completely
different visualization (with another environment
module). Here, not the concrete visualization is
relevant, of course, but it is the query which must be
transmitted via the network.

3.1 Identification of Deficits

Many of the above approaches cannot be realized or
are hard to realize by means of the existing approaches,
which is shown by the following list. Existing approaches
are presented and discussed in section 4.2.
• Rigid definition of visualization: The facility of

visualization adaptation is often very restricted.
Mostly, the users may select a model for their avatar,
other facilities are not provided.

• Poor extensibility: The objects in the world are often
preset. Therefore, no new object types can be
inserted at runtime. The extension of a world at design
time is also difficult, since no tools can be used, such
as broadly available GUI builders

• Restricted behavior of objects : Objects in existing
multi-user worlds are often relatively static, their
behavior only consists of defined gestures and
movements in the 3D space, controlled through a
human user. Much mo re flexibility would be desirable
here: Market rates or stocks may change every
minute, hence follows that their visualization must be
generated and updated dynamically from a database.
Therefore, the corresponding object in the virtual
world contains no fixed data but e.g. a database query
and it is not controlled by a human being but by a
software agent.

• Interaction only on visualization level: Many
approaches of multi-user worlds aim exclusively at the
visualization level and provide efficient messaging
services for the distribution and replication of
visualization information. Information on semantic
level (such as the above query) first would have to be
converted to the defined data types before it could be
distributed and replicated.

3.2 Derived Requirements

Next, we derive requirements on an architecture from
the above deficits.
1. Easy extensibility: It should be as easy as possible to
add new object types to an existing multi-user application.
Ideally, this should also be possible at runtime. The multi-

user infrastructure should be extensible as well, e.g. by
new messaging services, authentication schemes, etc.
2. Modifiable visualization mapping : The visualization of
an object should not be firmly defined, but should be
modifiable at runtime. A search service, for example, can
be visualized through a servant or a filing box.
3. Configurable visualization: The appearance of a
vis ualization should be parametrical to enable a versatile
application. For example, the user should be able to define
the color of the clothing and the hair of an avatar via
parameters.
4. Complex object behavior: Objects should be capable of
complex behavior such as required for an agent
establishing a contact with the user.
5. Uniform view of state information: The multi-user
infrastructure should be able to distribute and replicate
information both on visualization level and on the level of
application semantics.

4. Concepts of Visual MU Applications

4.1 Concepts

4.1.1 The State of Distributed Applications

By multi-user applications we understand applications
in which several users can participate simultaneously.
These applications fall into the category of distributed
systems which are discussed in [9] and [3]. A multi-user
application involves the need to present a consistent state
to every user. State management can be centralized in a
global database or pursue a distributed approach (see also
[9]).
1. Global state in a database: The simplest solution of the
above problem is to keep the state of the multi-user
application globally in a central database. The state data
exists precisely once and the database management
system (DBMS) provides mechanisms for concurrency
control. However, for visual applications, this approach
has the serious disadvantage that the latency for visual
operations executed by a user on a client is too long.
Shifting objects or navigating in the 3D space requires a
smooth movement.
2. Replicated state: To tackle the above problem, state
information has to be replicated, i.e. it is redundantly
available at various places. This enables short latencies
because only local data structures have to be accessed,
though it requires mechanisms to keep the replicated state
information consistent. This is referred to as
synchronization.

4.1.2 Structure of a Visual Application

In a visual application, two layers can be identified as
outline structure: a semantic layer and a visualization
layer. The first layer describes what is to be visualized,
e.g., the relation within a database. The visualization layer
describes what is visible on the screen. One knows
nothing about the semantics of the application on this
level. Typical objects of this layer are buttons, lists and
labels in the 2D GUI area and scene graphs in the 3D area.
Both layers contain objects that can carry state
information.

The visualization mapping assigns corresponding
objects of the visualization layer to the objects of the
semantic layer. Visualization mapping: [semantic object
è visualization object]. It defines how to represent
abstract objects visually. Users, for example, can be
represented through their name in a text field.

4.1.3 Structure of a Visual Multi-user Application

A visual multi-user application combines both
characteristics: Every client has two layers, the semantic
layer and the visualization layer. Replicated state
information can be contained in each of these layers.

There is a component called MUTech (multi-user
technology) to manage and distribute state information on
both layers: If an operation on one of the two layers is
executed on a client, the local replicate of the state has to
be changed and this modification has to be propagated to
the remaining clients.

4.2 Existing Models

The following is to present and evaluate two models for
VRML-based multi-user worlds. Both models have in
common that they are "VRML-centric" which makes them
easily comparable.

4.2.1 The VSPLUS Model

The VSPLUS model is described in [1] as a "high-level
multi-user extension library for interactive VRML worlds".
The aim of this approach is to achie ve a simple design of
interactive VRML worlds (if possible without programming
effort). Existing interactive single-user content should be
easily converted to multi-user operation.

This model offers a simple and elegant extension of
VRML event handling and allows a simple enhancement of
existing VRML worlds with multi-user functionality.
However, only VRML data types can be handled as a state
to be routed. In addition, there are no filtering mechanisms
that suppress messages completely; This approach is not
suitable for complex applications; it is rather intended for
simple applications whose functionality is included

completely in the VRML scene and which are not
designed for a very large number of users.

4.2.2 The Living Worlds Model

The Living Worlds originates from the VRML working
group with the same name [7] and is an interface
specification between any multi-user infrastructure
(MUTech) and VRML.

The Living Worlds model is considerably more complex
than the VSPLUS model. Therefore, it is mu ch more
difficult to adapt existing contents to multi-user operation.
However, the Living Worlds model is also far more flexible
and more extensive: It contains a spatial partitioning
mechanism, provides locking of objects and even facilities
for authenticating messages and access control on the
basis of user authorizations. The Living Worlds model is
deliberately constructed to leave many possibilities of
performance optimization open.

An aim of Living Worlds, namely to define flexible,
versatile constructs for building multi-user worlds in
VRML, is achieved. However, Living Worlds is extremely
complex which complicates both the building of MUTechs
and the realization of applications. The complexity of
Living Worlds clearly shows that API-oriented
approaches provide more flexibility because they enable a
uniform view of state data (see section 2). For this reason,
the model developed in this paper pursues an API-
oriented approach. It is to be presented in the following
section.

5. The VR Component Model

This section describes the abstract model developed in
the present paper. It is divided into two parts: The first
describes the so-called VR components; the second part
describes their embedding into a multi-user infrastructure.

5.1 VR Components

Let a VR application consist of VR components, which
encapsulate functions both from the semantic layer and
the visualization layer. They are accessed via an API and
therefore, the VR components can be used exactly in the
same way on the application side as conventional classes.
To be usable for many purposes, these components must
be very flexibly configurable which applies in particular to
their visualization.

If these VR components are implemented as software
components (e.g. JavaBeans or COM objects), they can be
used in graphical development tools such as Microsoft’s
"Visual Studio" or Symantec’s "VisualCafé".

5.2 Multi-user Infrastructure

The VR components should be embeddable into a multi-
user infrastructure (MUTech). The resulting requirements
are as follows:
• The VR components must be able to make their state

persistent in order to export it to a MUTech
component.

• If the application changes the state of the VR
component by method calls, the component must
generate and dispatch an update message. Equally it
must be able itself to receive, decode and process
such update me ssages .

• The components use the messaging services
provided by MUTech for these update messages.

In this case, the multi-user infrastructure (MUTech)
has the task to handle the state of the multi-user
application. This includes the following:
• MUTech contains a directory of all objects and

clients. All entities, objects and clients are
distinguished by unique IDs.

• In order to create and delete objects dynamically,
MUTech provides a defined interface. In addition,
MUTech is responsible for informing clients which
are added later (so-called latecomers) about the
current state. For this purpose, MUTech must have
stored re plicates of all objects.

• MUTech makes the messaging services available to
communicate state information to the connected
clients. These messaging services should be filtered
so that every client receives only the update
messages relevant to it.

• In addition, MUTech is responsible for the
authentication of users and the management of user
authorizations.

• MUTech should be well scalable and show good
performance even under high load.

5.3 The Internal Structure of VR Components

To avoid any inflexible specification of visualization the
internal structure of VR components is divided into the
two parts controller (C) and visualization (V) as shown in
Figure 1:

Visualization Layer

Semantic Layer

C

V

MUTech

Multiuser
Infrastructure

Figure 1: Structure of VR components

There is a defined interface between these parts so that
a controller can be coupled to different visualizations

upon runtime. The application accesses only the methods
of the controller, the latter controls visualization.

5.4 Evaluating against the Requirements

This section it is concluded by describing the extent to
which the model presented here meets the requirements on
the VR components (see section 3.4).
• Simple extendibility: This is achieved by the

component-oriented approach: The application sees
and uses the VR component as a usual software
component, which enables the dynamic addition of
new comp onents.

• Modifiable visualization mapping: This requirement is
implemented by the flexible assignment mechanism of
controller to visualization (see section 5.3). A
modification is also possible upon runtime.

• Configurable visualization: The visualization parts of
the VR components are executed as VRML protos,
these can be configured in the proto interface with
fields.

• Complex object behavior: Complex behavior can be
contained in the controller part of the VR component.

• Uniform view of state information: This is given since
state information is managed only in the contro ller
part of the VR component. Therefore, the multi-user
infrastructure uses exclusively this controller part.

6. The Vrmlet Architecture

This chapter is prefixed by a short introduction of the
concept of spatial partitioning within the proposed Vrmlet
architecture and then describes a possible implementation
of the architectural model presented in section 5. It is an
exemplary realization of the VR component model allowing
us to perform experiments on the overall behavior and
performance of such a system.

6.1 Spatial Partitioning Concept

In the Vrmlet architecture, a world can be divided into
several partitions. This is due to the scalability
requirement. Two aims are to be identified:
1. Filtering of update messages: To avoid a client being
swamped with too many messages, a filtering of these
messages should be possible by using the filter criterion
of spatial partitioning.
2. Server scalability: To enable the management of a great
number of clients and objects, state management can be
distributed over several servers. As a result, the individual
server has to manage a smaller number of objects and has
only to distribute the messages for these objects to its
clients. These spatial partitions are configured by the
developer of the world and should be as flexible as
possible.

In accordance with these two aims, two constructs are
introduced: The concept of zones is used for filtering
messages and the concept of districts for securing the
scalability of servers.

6.1.1 Zones

1. Zones are invisible spatial partitions, which may
overlap each other completely, or partially, i.e. other
objects, e.g. avatars, can be located within a zone.

2. An object can be located in several zones
simultaneously.

3. Zones can be active or inactive: Activation is
triggered by the users when they approach these
zones while navigating in the scene.

4. Zones are used for the filtering of updates: All
replicated objects belong to some zone and receive
updates of their state only if their zone is active.

Zones are spatial constructs and due to their static
character they should preferably be declared in the VRML
scene. "Static character" means that location, size and
activation parameter of the zones do not change upon
runtime. In addition, the world designer should be given
leeway for optimizing the scene, for example, through
specific zone activation scripts.

6.1.2 Districts

Like zones, districts are also invisible spatial partitions
though not overlapping each other like zones. They are
spatially disjoint, every zone is located within a district
and every object belongs to exactly one district. Districts
are used for the causal and total order of messages: All
messages from objects in a district are sorted causally and
totally by sending them via a shared sequencer.

Every zone belongs to exactly one district by definition.
Therefore, the list of its zones can be stored for every
district. Since every district can be located on a separate
server, additional information such as the host name of
this server as well as its port numbers have to be recorded
either.

6.2 Implementation Architecture

Figure 2 shows the elements of the vrmlet architecture
and their interrelations. Every named entity is presented
separately.

6.2.1 Vrmlet

The vrmlets constitute the realization of the VR
components from section 5. They are persistent and have
a globally unique name (OID). This OID is used for
addressing messages to objects. They also have a class
name (their ClassID), which is used to identify the program
code of these components and to download it if

necessary. The ClassID can be a fully qualified Java class
name or a COM CLASSID.

Vrmlets have a "locus of control" (LOC). This is the
unique name of the client (i.e. a ClientID) on which the
original of the object is located. If this client exits from the
multi-user session, the vrmlet is removed everywhere.
Moreover they can send and receive messages and have a
visual representation, which is controlled by the
mechanism described in Section 5.3.

Client

ActiveStore

Vrmlet

Vrmlet

Vrmlet

VRML Viewer

Scene Control

MUWorldClient

Messenger

MU World Server

District Server Active
Store

MessagingServer

District
Dir

other clients

other clients

other
Distrikts

Figure 7: The Vrmlet architecture

6.2.2 Active store

The ActiveStore is a storage for distributed objects
(SharedObject - Vrmlet) and has methods for integrating,
deleting and accessing objects. The ActiveStore is
initialized with a messenger which is an interface for
sending messages. If an object is integrated into the
ActiveStore, it is provided with a reference to this
messenger which it uses for sending messages.

The task of the distributed MUWorld component is to
synchronize the existing ActiveStores and to keep them
consistent, i.e. that the same ActiveStores contain the
same objects everywhere and that all objects have the
same state. Further, if a new district becomes active, its
ActiveStore must be downloaded completely.

6.2.3 SceneControl

The scene graph of the VRML viewer is managed here
via External Authoring Interface (EAI) (see [4] [10]). The
visualization of the vrmlets is integrated into the scene
graph or is removed from it. The SceneCo ntrol observes
when which regions become active or inactive using
callback functions, triggered by position value

modification. In addition to the zones, the active district is
also ma naged here.

6.2.4 Messenger and MessagingServer

The messaging services, which are necessary for a
multi-user application, are implemented here. The
MessagingServer forwards all messages to its clients,
located in the same district. It uses the DistrictDir, to filter
the messages according to zones, which reduces the
amount of messages to be processed by a client.

For every district, there is a separate MessagingServer
in order to guarantee good scalability and performance,
because some messages need only to be forwarded to a
subset of the clients.

6.2.5 MUWorldClient

The MUWorldClient is the primary interface to the
multi-user infrastructure, which contains a SceneControl
and an ActiveStore. The MUWorldClient has methods for
managing vrmlets, i.e. adding and removing them from the
ActiveStore, which includes integrating the scene graph
of the vrmlet into the overall scene or removing it.

The MUWorldClient has a callback interface with the
methods "zoneChanged" and "districtChanged" which are
used by the SceneControl. In the case of a
"districtChanged" event, the ActiveStore of the new
district is downloaded completely. If the client changes
the zone, the DistrictDir, which manages the active zones
of all clients, is updated. The MUWorldClient has
methods to login and logoff at a MUWorldServer. Upon
login, the user is authenticated through password
prompting.

6.2.6 MUWorldServer

The MUWorldServer is the counterpart to the
MUWorldClient. It is responsible for authenticating a new
client upon login by using the UserDB. Upon login, the
server assigns a unique ClientID to the client. The server
keeps a list of the connected clients. A DistrictServer is
startet for every district.

The MUWorldServer manages the
ObjectMasterDirectory, which describes the assignment
of objects to districts. Also, adding or removing vrmlets is
a service provided by the MUWorldServer. It updates the
ObjectMasterDirectoy as well as the DistrictDir and the
ActiveStore of the DistrictServer which is responsible for
the vrmlet.

6.2.7 DistrictServer

The DistrictServer is implemented either as a separate
server or as a data structure within the MUWorldServer.
This makes it possible to distribute the DistrictServers
over different computers to secure the required scalability.

If, however, all servers run on the same computer as the
MUWorldServer does, it is more useful to use no separate
processes for the DistrictServer since thread changes
require less overhead than process changes.

7. Conclusions and Outlook

In this paper we have presented an architecture for VR
components in conjunction with a multi-user
infrastructure. This model was derived from a number of
deficits within existing models for VRML based shared
multi-user environments. Furthermore, an exemplary proof-
of-concept implementation has been presented which uses
Java components and VRML as a framework for the
realization of the VR component model. The component
model as well as the implementation of the Vrmlet
architecture, however, is not limited to the usage of these
components within shared multi-user environments. In
fact the concept of VR comp onents (Vrmlets) is rather
generic in the sense that these comp onents enable a
consistent paradigm for the development of visual
software components, which encapsulate complex
behavior. Since these components can be exchanged at
runtime they are ideal for the use in integrated visual
software development environments. Since we used
generic interface definitions in our specifications it would
be easily possible to use existing software component
architectures such as Microsoft COM/DCOM, EJB or
CORBA.

The present implementation of Vrmlets lets plenty of
space for improvements. In the following we propose
some of these points as future work:
• Embedding into ActiveX: This means an extension of

the Vrmlet-classes to become COM-objects as well as
an appropriate extension of the MUWorldClient to
become an ActiveX-container [2]. This would
immediately enable developers to use existing visual
development tools for the design of multi-user
environments.

• Integration of additional messaging services: The
multi-user infrastructure could be extended by
additional, UDP based, messaging services. This
would allow performing the time critical position
updates of movable 3D-objects far more efficient than
in the exis ting implementation.

• Single user and multi user mode: It should be easily
possible to switch the multi user client between these
two modes. Upon errors in the network
communication the client should automatically
change to single user mode.

• Anchor nodes: The VRML97 specification [11]
defines so-called anchor nodes to load a new scene
when clicking on an object in 3D. Regarding the

Vrmlet architecture these nodes would have to be
extended to allow the MUWorldClient to connect to
nodes in the new scene and eventually to another
MUWorldServer.

8. References

[1] Yoshiaki Araki: VSPLUS: A high-level multi-user extension
library for interactive VRML worlds, Graduate School of Media
and Governance, Keio University, Sony Music Entertainmant
Inc.

[2] David Chappell: Understanding ActiveX and OLE, Microsoft
Press, 1996

[3] George Coulouris, Jean Dollimore and Tim Kindberg:
Distributed Systems: Concepts and Design Second Edition,
Addison-Wesley, 1994

[4] External Authoring Interface Working Group
http://www.vrml.org/WorkingGroups/vrml-eai/

[5] Leissler, M., Hemmje, M., Neuhold, E.: Automatic Updates
of Interactive Information Visualization UserInterfaces through
Database Trigger, Advances in Visual Information Management:
Visual Database Systems published by Kluwer Academic
Publishers, 2000

[6] Leissler, M., Hemmje, M., Neuhold, E.: Supporting Image-
Retrieval by Database Driven Interactive 3D Information-
Visualization, Proceedings of the VISUAL'99, Third
International Conference on Visual Information Systems - Berlin
(u.a.): Springer , 1999.

[7] Living Worlds Working Group: Living Worlds - Making
VRML 97 Applications Interpersonal and Interoperable,
http://www.vrml.org/WorkingGroups/living-worlds/

[8] Cris Marrin, Jim Kent, Dave Immel, Murat Aktihanoglu:
Using VRML Prototypes to Encapsulate Functionality for an
External Java Applet
http://www.marrin.com/vrml/papers/InternalExternal/Chris_Marrin
_1.html

[9] Erwin Mayer: Synchronisation in kooperativen Systemen,
Vieweg Verlag, 1994

[10] Bernie Roehl, Justin Couch, Cindy Reed-Ballreich, Tim
Rohaly and Geoff Brown: Late Night VRML 2.0 with Java, Ziff-
Davis Press, 1997

[11] Web3D Consortium: VRML97 Specification, ISO/IEC 14772
– 1:1997
http://www.vrml.org/technicalinfo/specifications/vrml97/index.htm

