
High Level Rule Modeling Language for
Airline Crew Pairing

Erdal Mutlu∗, Ş. İlker Birbil†, Kerem Bülbül† and Hüsnü Yenigün∗

∗Sabancı University, Computer Science & Engineering Program, Orhanlı-Tuzla, 34956 Istanbul, Turkey
†Sabancı University, Manufacturing Systems & Industrial Eng. Program, Orhanlı-Tuzla, 34956 Istanbul, Turkey

Abstract. The crew pairing problem is an airline optimization problem where a set of least costly pairings (consecutive flights
to be flown by a single crew) that covers every flight in a given flight network is sought. A pairing is defined by using a very
complex set of feasibility rules imposed by international and national regulatory agencies, and also by the airline itself. The
cost of a pairing is also defined by using complicated rules. When an optimization engine generates a sequence of flights
from a given flight network, it has to check all these feasibility rules to ensure whether the sequence forms a valid pairing.
Likewise, the engine needs to calculate the cost of the pairing by using certain rules. However, the rules used for checking the
feasibility and calculating the costs are usually not static. Furthermore, the airline companies carry out what-if-type analyses
through testing several alternate scenarios in each planning period. Therefore, embedding the implementation of feasibility
checking and cost calculation rules into the source code of the optimization engine is not a practical approach. In this work, a
high level language called ARUS is introduced for describing the feasibility and cost calculation rules. A compiler for ARUS
is also implemented in this work to generate a dynamic link library to be used by crew pairing optimization engines.

Keywords: Domain specific languages; Crew pairing; Rule Modeling
PACS:

INTRODUCTION

Crew costs are the second major cost item for airline companies after the fuel costs. This fact makes the optimization of
crew costs very attractive for airline companies. Factors like layovers at non–base cities, transporting crew on flights
as passengers (known as deadheading), and so on, have major impacts on crew costs. The airline crew scheduling
problem is usually solved in two consecutive steps: crew pairing and rostering. In the crew pairing step anonymous
crews are assigned to the flights, and in the rostering step the actual crew members are named for these anonymous
teams. The major cost factors given above are mostly related to the crew pairing problem, since for many airlines, the
crews are paid a fixed amount aside from the actual hours they fly.

The optimization problem solved in the crew pairing step is as follows. A pairing is a sequence of consecutive flight
legs that starts from and ends at the base airport of the airline company, and it is flown by a single crew. Finding the
least costly set of pairings that covers every flight in the given network is called the crew pairing problem. Figure 1
illustrates a simple flight network. Assuming that SAW is the base airport, we can have pairings like p1 = 〈1,3,4,6〉,
p2 = 〈2,5,7〉, and p3 = 〈1,8,9〉. Note that these pairings cover all the flights in the given network. Since flight 1 exists
both in pairing p1 and pairing p3, it will be flown by the crew of one of these pairings and the crew of the other pairing
will then be deadheading.

1: A small flight network

Besides originating from and ter-
minating at the base airport, there
are numerous other constraints that
a sequence of flights has to satisfy
before it is considered as a pair-
ing (see for example [1, 2] for a
survey on such constraints). These
feasibility rules are imposed by in-
ternational and national regulatory
agencies like IATA and JAR. In ad-
dition, airline companies have their
own set of rules that they like to



use. A pairing is typically viewed as a sequence of duty periods (the sequence of flights flown by a crew in a working
day). The rules are given, in general, to describe the feasibility of a duty (as to which sequence of flights forms a valid
duty), the feasibility of a pairing (as to which sequence of duties forms a valid pairing) and the feasibility of a solution
(as to which set of pairings forms a valid solution). In addition to the feasibility rules, there are also rules that explain
how the cost of a pairing solution should be calculated. An optimization engine for crew pairing problem typically
generates sequences of flights and then for each sequence generated, it checks the feasibility with respect to these
rules. Likewise, the cost of a solution is also found by using the cost calculation rules.

Although the rules introduced by regulatory agencies are somewhat static, the ones that are applied by the airline
companies are not. An airline may try several feasibility or cost scenarios by adding some other rules to find the least
costly solution. There are different approaches on integrating these rules into a crew pairing optimization engine. One
obvious way is to hard-code the rules into the engine. However, the modification of the rules then becomes quite
difficult, since each scenario tried will also require some modification on the source code of the engine.

Another and a more flexible approach is to separate the description of the rules from the crew pairing engine.
Jeppesen’s CARMEN Crew Pairing System uses a special purpose language for expressing the rules that is known as
Carmen Rave Language [3, 4]. With the use of a specific language, the end-users are entitled not only to change the
rule data but also modify the structure of the rules without changing the crew pairing engine itself. Another system that
uses a similar modeling language is DAYSY (Day-to-Day Resource Management Systems) rule handling system [5, 6].
This system defines a high-level object-oriented generic language DRL (DAYSY Rule Language) [7, 8] that can be
used by different application domains for resource management systems.

In this work, we introduce a high level language ARUS (Algopt RUle Specification language) [9] for modeling
the feasibility/cost calculation rules for airline crew pairing problem. We use the general structure of the generic rule
modeling language introduced in [8] and augment this language with new expressions and modifications according to
the airline crew pairing problem. By using ARUS, users can define the hierarchical activity structure used in airline
domain and can associate feasibility rules and cost calculation methods for each activity type.

2: Specification file structure

In the following sections, the general structure and the
main features of ARUS are described.

LANGUAGE DESIGN

In the crew pairing problem, we have a hierarchy of activ-
ities. At the lowest level as the basic activity, we have the
flights. A derived activity is an activity composed of ac-
tivities at a lower level. As the derived activities, we have
duty (being composed of flights), pairing (being composed
of duties), and solution (being composed of pairings). The
feasibility rules specify the constraints that a set/sequence
of activities at one level has to satisfy to form an activity
of a higher level. As ARUS is designed for the airline crew
pairing domain, activities from this domain such as flights,
duties, pairings, and solutions are directly supported. In
other words, these activities are built-in in ARUS and the
properties, constraints and cost calculation rules regarding
these activities can be given directly.

The general structure of a rule specification file, an
ARUS program, is shown in Figure 2. In programming lan-
guages, it is a common practice to let the programmer de-
clare all the entities, such as; variables, functions, and so
on. Some properties of the declared entity are given at the
declaration section. Take variable declaration, where the
type of a variable is provided. Such a declaration provides
a very simple control mechanism for possible programming errors. For instance, a variable declared to be of type inte-
ger can later be used only as an integer in the program; otherwise, it is an indication of a possible programming error.
A type checker catches all such type mismatches. Following this declaration-use approach of general programming
languages, ARUS also requires all entities to be declared and later used in the allowable contexts.



An ARUS specification is composed of two parts: declarations and definitions. In the declarations part, the entities
are introduced. The definitions part is where the descriptions of these entities are specified. In the next subsections, we
give a brief explanation of these parts of ARUS specifications.

Data Types

The data types supported by ARUS can be classified as general and domain specific. The general data types are
typical data types that are supported by general purpose programming languages. We have four general data types:
integer, real, string, and boolean. The domain specific data types, on the other hand, are types that are
specific to the airline crew pairing domain. There are four domain specific types which are duration, time,
datetime, and airport. duration, time and datetime correspond to date-time types used for representing
the time duration or a specific time and date. The airport type corresponds to 3 character IATA codes of the airports.

Declarations

The declaration part of an ARUS specification consists of two different types; constant and activity declarations.
Each ARUS specification has one global constant declaration section, where some global constants are declared.
Activity declarations part is used to give the declarations of basic and derived activities. As seen in Figure 2, an
activity declaration has certain components that have to be declared: property, attribute and constraint declarations.

Property Declarations A property of an activity is a value to be computed for that activity. For example, the number
of flights in a duty activity is a property of that duty activity. For each property defined, the type of the property
must be given. A special property named cost must exist for each activity. This property is used to define the
cost of the activity.

Attribute Declarations Some properties of basic activities are not computed but simply taken from the input. For
example, departure time of a flight is such a property. These properties are called attributes and they have to be
declared as well. A derived activity on the other hand cannot have an attribute, meaning all properties of derived
activities have to be computed. An attribute is declared exactly in the same way as a property. A basic activity
can have multiple attributes.

Constraint Declarations There are certain constraints that a derived activity has to satisfy. An example constraint
could be “at most one flight departs from the base airport in a duty.” Each such constraint has to be declared. A
derived activity can have multiple constraints and all of those constraints have to be satisfied. A constraint is in
fact a boolean property but semantically treated in a special way. The basic activities cannot have constraints.

Definitions

The definitions of the declared properties and constraints are provided in the definitions part. In other words,
the computation of the property or the constraint of an activity is explained. Since a constraint of an activity is
actually a boolean property, both constraint and property definitions have similar building sections. Property/constraint
definitions can include a comment section, where users can include comments about the property/constraint. Likewise
each property/constraint can have a constant section for declaring local constants. A rule definition section gives
the actual computation method of the property/constraint. The only difference between a property and a constraint
definition is that a constraint definition has a status section which is used for enabling/disabling the corresponding
constraint check.

We now give an example rule specification in ARUS. One of the typical feasibility conditions is to have a minimum
sit time between any two consecutive flights in a duty. This can be specified in ARUS as given in Rule 1.

The constraint defines the calculation method for each consecutive flight pair f1 and f2 in the elements of a duty. It
simply subtracts the arrival_time of the latter flight from the departure_time of the former flight and checks
if the result is more than the minSitTime which is set to 30 minutes.

A compiler is also implemented for ARUS to translate an ARUS specification into a dynamic link library. For each
derived activity, this library exports two functions named isFeasible and cost. The first function simply checks



Rule 1 Minimum sit time between two consecutive flights in a duty cannot be less than 30 minutes

CONSTRAINT minimumSitTime OF Duty
STATUS: ON;
CONSTANTS:

minSitTime = 00:30;
RULE:

FOR EACH f1 -> f2 IN ELEMENTS
departure_time OF f2 - arrival_time of f1 >= minSitTime

ENDCONSTRAINT

if all the constraints (with the status set to ON) are satisfied or not. The cost function returns the value computed by
the cost property defined for that activity.

CONCLUSION

In this work, we have designed a high level domain specific language, ARUS, to be used for specifying the feasibility
and cost calculations in airline crew pairing. The language has its syntactic features inherited from DRL [8]. ARUS
specializes DRL in a domain specific manner. Using such a high level language simplifies the task of incorporating
these rules into the pairing system, without a need for a modification on crew pairing optimization engine.

ARUS is a work-in-progress. However we believe that even with the current form of ARUS, one can model quite
a wide range of feasibility and cost calculation rules. In order to test this assertion, we are currently implementing
the entire rule set for crew pairing of a local airline company in ARUS. We also believe that the syntax of ARUS is
more intuitive and the declarative nature of the language makes it easier to be understood and to be used (especially
by those who don’t have a programming background, like planning departments’ staff of airline companies) than the
other available languages for the same task. In order to test this assertion, we need to perform a usability test.

ACKNOWLEDGMENTS

This research has been supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under
Grant 106M472.

REFERENCES

1. C. Barnhart, A. Cohn, E. Johnson, D. Klabjan, G. Nemhauser, and P. Vance, “Airline Crew Scheduling,” in Handbook of
Transportation Science, edited by F. S. Hillier, and R. W. Hall, Springer US, 2003, pp. 517–560.

2. B. Gopalakrishnan, and E. Johnson, Annals of Operations Research 140, 305–337 (2005).
3. C. A. Hjorring, S. E. Karisch, and N. Kohl, “Carmen Systems’ Recent Advances in Crew Scheduling,” in Proceedings of the

39th Annual AGIFORS Symposium, 1999, pp. 404–420.
4. C. A. Hjorring, and J. Hansen, “Column Generation with a Rule Modelling Language for Airline Crew Pairing,” in Proceedings

of the 34th Annual Conference of the Operational Research Society of New Zealand, 1999.
5. C. Goumopoulos, P. Alefragis, K. Thrampoulidis, and E. Housos, “A Generic Legality Checker and Attribute Evaluator

for a Distributed Enterprise Environment,” in Proceedings of the third IEEE International Symposium on Computers and
Communications, 1998, pp. 286–292.

6. K. Thrampoulidis, C. Goumopoulos, and E. Housos, “Rule handling in the day-to-day resource management problem: an
object-oriented approach,” in Proceedings of the 5th Panhellenic Conference on Informatics, 1995, pp. 821–830.

7. C. Goumopoulos, and E. Housos, Journal of Systems and Software 69, 43 – 56 (2004).
8. K. X. Thrampoulidis, N. Diamantopoulos, and E. Housos, Softw., Pract. Exper. 27, 1135–1161 (1997).
9. E. Mutlu, A High Level Rule Modeling Language for Airline Crew Pairing: Design and Implementation, Master’s thesis,

Sabanci University (2011).


