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FOLIATIONS IN ALGEBRAIC SURFACES
HAVING A RATIONAL FIRST INTEGRAL

Alexis Garćıa Zamora

Abstract
Given a foliation F in an algebraic surface having a rational first
integral a genus formula for the general solution is obtained. In the
case S = P2 some new counter-examples to the classic formulation
of the Poincaré problem are presented. If S is a rational surface
and F has singularities of type (1, 1) or (1,−1) we prove that the
general solution is a non-singular curve.

Introduction

A foliation F in a complex algebraic surface S is a non-identically zero
morphism of vector bundles α : L −→ TS, where L is a line bundle and
TS is the tangent bundle of S. In the case S is the projective plane, there
are alternative definitions in global terms and, in particular, there is a
notion of degree of a foliation (see Definition 1). Explicitly, the degree
of F is the degree of the polynomials Yi, where the direction field

Y =
2∑

i=0

Yi(x0 : x1 : x2)
∂

∂xi

defines the foliation.
In [10] Poincaré studied the following problem: if F is a foliation with

a rational first integral (that is, all the solutions of F are algebraic curves)
is it possible to bound the degree of the generic solution in terms of the
degree of F? An answer to this problem gives a “practical” method
to determine when a foliation has a rational first integral. If such a
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bound exist then the existence of a first integral is “simply” a problem
of algebraic calculus.

The answer to this problem is well know to be no. In section 2 some
counter-examples are presented. Our first task is then to reformulate
the Poincaré problem. A reasonable formulation is: try to bound the
degree of the general solution using information depending only of F ,
for example the eigenvalues of the singularities of F (we assume that all
the singularities of F are of multiplicity one).

In section 1 we present preliminary results and definitions. All this
material can be found in [6], [9] or [10].

In section 2 we study the version of the problem presented above. The
section starts with the following:

Proposition 2.1. Let F be a foliation on S with a first integral and
singular points of multiplicity one. Denote the pair of relatively prime
integers associated to the eigenvalues of the nodes of F by (ui, vi), then
we have:

(1)
n∑

i=1

ri(ui + vi) = −C.(KS + L),

(2) g = −C.L
2

−
∑
ri

2
+ 1.

Where C is a general solution of F ,
g = geometric genus of C,
α : L −→ TS defines F ,
KS = canonical divisor of S,
ri = number of branches of C through a node of F ,
n = number of nodes of F .

Then the counter-examples to the old formulation of the Poincaré
problem are presented; Example 2.1 is well know, Examples 2.2 and 2.3
seem new. In particular Example 2.2, the pencil yd = λxd−2(x−1)(y−1),
proves that the genus of the pencils of curves giving the counter-examples
can be arbitrary. Some more specific versions of the Poincaré problem
are then presented.

We finish the section by showing that if m = degF > 4 and for some
cases if m ≤ 4 a bound for the genus of the generic solution is sufficient in
order to solve the reformulated Poincaré’s Problem. Then we introduce
the study of certain linear series on the general solution and the concept
of linearly equisingularity and prove the following:
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Proposition 2.3. If the conditions of being linearly equisingular to
C imposes independent conditions on curves of degree d then

g(C) ≤ δ.

Where δ = deg(OC̃(C̃)), and C̃ π−→ C is the minimal embedded reso-
lution of the general solution C.

In section 3 we study the foliations in P2 having as first integral a
generic pencil. The main aim is to prove:

Theorem 3.4. Let F be a irreducible foliation in a rational surface S
with singularities of eigenvalues (1, 1) or (1,−1). If F has a rational first
integral f : S −→ P1, then all the fibers of f are reduced curves and the
general one is a non-singular curve meeting transversally any other fiber
of f .

An important corollary is:

Corollary 3.5. Let F be a foliation in P2 of degree m with a first
integral of degree d, if all the singular points of F have eigenvalues (1, 1)
or (1,−1) then

m = 2d− 2.

This section contains a generalization of some results of Poincaré [10].
Propositions 3.1, 3.2 and 3.3 were proved by Poincaré for the case S = P2.
Even when Poincaré knew that under the hypothesis of Corollary 3.5 the
degree of m is bounded, an explicit bound is not given in [10].

I want to thank CIMAT support and to X. Gómez-Mont for many use-
ful comments. In particular, the proof of Proposition 3.1 was suggested
to me by X. Gómez-Mont and C. Danthony.

1. Preliminaries

Definition 1. A foliation F of degree m in P2(C) is determined by
either of the following objects:

a) An algebraic Pfaff equation given by a projective 1-form

ω =
2∑

i=0

ωi(x0 : x1 : x2) dxi = 0
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with ωi homogeneous polynomials of degree m+ 1 and

2∑
i=0

xiωi ≡ 0.

b) A direction field

Y =
2∑

i=0

Yi(x0 : x1 : x2)
∂

∂xi

with Yi homogeneous polynomials of degree m, modulo a sum of
G(x0 : x1 : x2)R, where

R =
2∑

i=0

xi
∂

∂xi

is the radial vector field, and G is a homogeneous polynomial.

c) A map of vector bundles α : L−(m−1) −→ TP2 where L−(m−1) =
H⊗−(m−1), and H is the hyperplane bundle on P2.

If the greatest common divisor of (ωi) is equal to one, F is called an
irreducible foliation.

Definition 2. The singular set S of F is determined by:

a) The common zeros of the ωi.

b) The points (x0 : x1 : x2) such that

Y0(x0 : x1 : x2)
x0

=
Y1(x0 : x1 : x2)

x1
=
Y2(x0 : x1 : x2)

x2
.

c) The points p where α : L−(m−1) −→ TP2 is not injective.
The condition g. c.d.(ωi) = 1 is equivalent to the singular set of F is

finite.
The algebraic multiplicity of the singularities is defined alternatively

as:

a) In affine coordinates, write a local expression for ω in terms of
homogeneous monomials

ω =
∞∑

k=r

w1,k(x, y) dx+
∞∑

k=r

w2,k(x, y) dy
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and the first number r such that w1,r or w2,r is not zero is called the
algebraic multiplicity of the singularity.

b) Analogous way for the local expression of the direction field.
Moreover, if F has algebraic multiplicity 1 in a singular point p and

the eigenvalues corresponding to the linear part of F in p are non zero
the singularity is called of multiplicity one.

We assume in the following that S is a discrete set and that the linear
part of the associated local vector field is invertible (i.e., all the singu-
larities have multiplicity one).

Definition 3. According with each formulation in Definition 1, a
curve C in P2 is called a leaf of F if:

a) It is a solution of the differential equation associated to ω = 0.

b) The tangent line in each point p of C − S coincides with the line
determined by Y (p).

c) For each point p, α send the fibers of L−(m−1) on p into the tangent
line of the curve at p.

Lemma 1.1. Let F be an irreducible foliation in P2 of degree m, then
the number of singular points, counted with multiplicity, is m2 +m+ 1.

For a proof see [9].
An algebraic solution of F is an irreducible algebraic curve C that is

the closure of a leaf of F . Let C be defined by F (x0 : x1 : x2) = 0. Then
this can be expressed equivalently as:

a) An algebraic irreducible curve C such that F | dF ∧ ω.

b) An algebraic irreducible curve C such that

F |
2∑

i=0

Yi
∂F

∂xi
.

c) An algebraic irreducible curve C such that α(L−(m−1) |C) ⊂ TC.
We say that F has a rational first integral if there exist a homogeneous

rational fraction R(x0 : x1 : x2) such that dR ∧ ω = 0.
It can be proved that the following are equivalent:

i) F has an infinite number of algebraic solutions.

ii) All the solutions of F are algebraic.



362 A. Garćıa Zamora

iii) All the solutions of F are the irreducible components of an ir-
reducible pencil of plane curves λF + µG = 0 (i.e., for general (λ, µ)
λF + µG = 0 is irreducible).

iv) F has a rational first integral. (For a proof see [9].)
The generic element of λF + µG = 0 is an irreducible curve of de-

gree d. However, it is possible that for some finite number of (λi : µi)
the corresponding curve is reducible or non-reduced

λiF + µiG =
∏
j

U
nij

ij .

The values of (λi : µi) which have some nij > 1 are called remarkable
values.

By Bertini’s Theorem the general member of this pencil is irreducible
and non-singular away from the base locus, we call such a curve a generic
solution of F . We remark that the curves of the pencil λF + µG = 0
can be thought as the fibers of a rational map P2 f−→ P1. The fact that
the pencil is irreducible is equivalent to say that there does not exist a
factorization of f :

P2 g−−−−→ P1

�h

P1

−−−−→

−−−
f

with h of degree > 1.

Remarks.

1. If F has a rational first integral, then integrating the associated
local field in each singular point we see that its linear part must
be diagonal and the quotients of its eigenvalues u, v must be
rational (u/v ∈ Q). In the following by (u, v) we denote relatively
primes integer numbers. Moreover we suppose that u ≤ v and
uv �= 0, that is, the singularity is of multiplicity one. Following
Poincaré [10] we adopt the following notation:

i) If u/v < 0 the singularity is called a saddle.

ii) If 0 < u/v < 1 the singularity is called a monocritical node.

iii) If u/v = 1 the singularity is called a dicritical node.
2. Note that if F has a first integral then the singularities of the

algebraic curves in the associated pencil are determinated by the
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pair (u, v). More explicitly, if C is a general solution of F and F
has a node of type (u, v) at p, then the singularity of C at p is
analytically equivalent to

∏r
j=1(y

u − ajx
v), aj ∈ C (see [10]). A

basic fact is:

dF.G− F.dG =
∏
i,j

U
nij−1
ij ω

and from this it follows at once that:

(1.1) 2d− 2 =
∑

dij(nij − 1) +m,

where degUij = dij .
We give here another, more geometric proof of (1.1).

Lemma 1.2. Let F be a foliation in P2 of degree m. Suppose that F
admits a first integral, and the generic solutions are curves of degree d,
then

2d− 2 =
∑

dij(nij − 1) +m.

Proof: Consider a line L in P2 such that it does not pass through any
singular point of F and is not tangent to any non-generic solution. To
each point of L correspond a unique value of (λ : µ), thus we have a
rational map

i : P1 −→ P1,

then the Riemann Hurwitz formula says −2 = −2d+
∑
dij(nij −1)+m,

where the ramifications are given by the remarkable values and the m
points of tangency of L with the solutions of F .

Notation.
1. In the following by a foliation F in P2 we understand an irreducible

foliation with all its singular points of multiplicity one and with
eingenvalues (ui, vi), where ui, vi denote relatively primes inte-
gers, ui ≤ vi.

2. A foliation as above with all its nodes dicritical is called a dicritical
foliation.

We recall that more generally we have:

Definition 4. Let S be a complex algebraic surface (irreducible, re-
duced and non-singular). A foliation F in S is given by a non-identically
zero morphism of vector bundles

α : L −→ TS,
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where L is a line bundle in S and TS is the tangent bundle of S. F has a
rational first integral if the closure of the leaves are algebraic curves or,
equivalently, if there exist a rational map S

β−→ X, with X a Riemann
surface, such that the fibers of β are the leaves of F .

Since all the arguments and definitions about singular points of folia-
tions in P2 are local, they can be extended at once to the case of algebraic
surfaces.

2. Reformulation of the Poincaré problem

One of the fundamental results relating the degree of F and the na-
ture of its algebraic solutions is the following proposition (this result was
proved by Poincaré [10] in the case S = P2, our argument is a general-
ization of one due to Cerveau and Lins-Neto [3]).

Proposition 2.1. Let F be a foliation on S with a first integral and
singular points of multiplicity one. Denote the pair of relatively prime
integers associated to the eigenvalues of the nodes of F by (ui, vi), then
we have:

(1)
n∑

i=1

ri(ui + vi) = −C.(KS + L),

(2) g = −C.L
2

−
∑
ri

2
+ 1.

Where C is a general solution of F ,
g = geometric genus of C,
α : L −→ TS defines F ,
KS = canonical divisor of S,
ri = number of branches of C through a node of F ,
n = number of nodes of F .

Proof: Let C̃ π−→ C be the normalization of C, the pullback of the re-
striction α(L |C) define a morphism α̃ : L |C̃−→ TC̃ which is
not injective in the ri points on the nodes Pi. This gives a section
s ∈ H0(C̃, T C̃ ⊗ L−1 |C̃) with

∑n
i=1 ri zeros, thus

(2.1)
n∑

i=1

ri = 2 − 2g − C.L.



Foliations having a first integral 365

Now, an easy generalization of the argument used in [8, p. 279–280], to
compute the genus of a plane curve having simple singularities prove that
if an embedded curve C has singularities equivalent to

∏ri

j=1(y
ui −ajx

vi)
then the geometric genus g(C) is given by:

(2.2) 2g − 2 = C.C + C.KS −
∑

r2i uivi +
∑

ri(ui + vi − 1).

Combining (2.1) and (2.2) and C.C =
∑n

i=1 r
2
i uivi we get (1).

To prove (2), it is sufficient to evaluate in the genus formula the relation
obtained in (1).

Remark. If S = P2, the formulas in 2.1 are:

(1)
∑
ri(ui + vi) = (m+ 2)d.

(2) 2g − 2 = (m− 1)d−
∑
ri.

The Poincaré problem does not have a solution as formulated in the
introduction. Here we present two examples:

Example 2.1. Consider the foliation in P2 given by the solutions of

(2.3) pyz.dx+ qxz.dy − (p+ q)yx.dz = 0

with p, q, positive integers, it is easy to see that any curve of the pencil

λxpyq + µz(p+q) = 0

is a solution of (2.3). We can choose d = p+ q arbitrarily large and the
foliation (2.3) is of degree 1.

Example 2.2. Consider the pencil of algebraic curves defined in affine
coordinates by

(2.4) yd = λxd−2(x− 1)(y − 1).

We have:

Proposition 2.2.
(1) The generic element of (2.4) is irreducible.
(2) The foliation associated to (2.4) has degree 2 and all its singular

points are of multiplicity one.
(3)

g =




d− 1
2

, if d is odd

d− 2
2

, if d is even.
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Proof: In fact, if the general element of (2.4) is reducible, then
hλ(x, y) = yd − λxd−2(x − 1)(y − 1) = f(x, y)g(x, y), thus f(x, y) =
yp + f1(x, y), g(x, y) = yq + g1(x, y), with p+ q = d.

But hλ has only two addends in which y appear, yd and λyxd−2(x−1),
thus we must have p = d, q = 0 and then g(x, y) will be a constant. This
proves moreover that the unique reducible curves in (2.4) are yd and
xd−2(x− 1)(y − 1).

(2) follows by Lemma 1.2:

m = 2d− 2 − (d− 1) − (d− 3) = 2.

That all the points are simple is a count on the number of singularities
of F (see Lemma 1.1).

In order to apply Proposition 2.1 to calculate the genus note that the
point (1, 0) and the intersection at infinity of y = 0 and y = 1 are nodes
with eigenvalues (1, d) and the general curve is non-singular in these
points, thus r = 1. On the other hand (0, 0) is a node with eigenvalues
(d − 2, d), if d is odd and ((d − 2)/2, d/2) if d is even. In the last case
r = 2.

Then, it is necessary to reformulate the Poincaré problem. There are
some options:

Pa) To bound d in terms of m and the eigenvalues of the nodes of F
(note that in the precedings examples d ≤

∑
vi).

Pb) From the formula
∑
ri(ui + vi) = (m+ 2)d , we see that in order

to solve problem Pa) it suffices to bound
∑
ri in terms of m.

To solve this version of the problem we must imposes some conditions
on the solutions of F .

In fact, the following example shows that Pb) has no solution in gen-
eral:

Example 2.3. Consider the pencil of algebraic curves given by

yd(y − 1) + λxd(x− 1) = 0.

The associated foliation has degree m = 2 and a dicritical node in (0, 0).
In this point the general curve has d branches, so that r = d.

Remark. Proposition 2.1 has a very nice consequence. First note
that

(m+ 2)d =
∑

ri(ui + vi) ≥
∑

ri(u+ v),
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where (u+ v) = min(ui + vi), thus

∑
ri ≤

(m+ 2)d
u+ v

.

On the other hand

g =
m− 1

2
d−

∑
ri

2
+ 1 ≥ m− 1

2
d− m+ 2

2(u+ v)
d+ 1,

g ≥ m(u+ v − 1) − (u+ v + 2)
2(u+ v)

d+ 1.

Hence, if m(u + v − 1) > (u + v + 2) a bound for the genus is a bound
for the degree d. The above condition is fulfilled unless

(1) m = 1,

(2) m = 2 and (u+ v) ≤ 4,

(3) m = 3 and u+ v = 2,

(4) m = 4 and (u+ v) = 2.

Thus, to solve the refomulated Poincaré problem in most of the cases,
it suffice to bound the genus of the generic solution by means of some
information depending of F . This allows us to work with any curve
birationally equivalent to C.

The following proposition give a partial solution to the reformulated
Poincaré problem. Let C be a generic solution of F and let π : S −→ P2

be a chain of blowing-ups such that the total transform of C is a curve
with normal crossing. So, if we call C̃ the proper transform of C under π,
C̃ is the embedded desingularization of C. We say that the plane curves
C and C ′ of the same degree d, are linearly equisingulars if under the
minimal chain of blowing-ups that desingularize C, C ′ has the following
behavior:

1. The proper transform of C ′ under each blowing-up of the chain
has singularities in the same points that the proper transform of
C and these singularities have the same multiplicities.

2. The proper transform of C ′ under π is the minimal embedded
resolution of C ′.

This is a somewhat stronger form of the usual concept of topological
equisingularity. It follows easily from the structure of the Picard vari-
ety of the blowing-up, that if C̃ and C̃ ′ denotes respectively the proper
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transforms of C and C ′ under π, then OS(C̃) ∼−→ OS(C̃ ′), this equiva-
lence justify the terminology. In others words, the closure of the set of
plane curves linearly equisingulars to C is a linear system.

If C ′ is another general solution of F , then C ′ is linearly equisingular
to C and we shall denote

δ = deg(OC̃(C̃)) =
∑

ui=ri=1

vi,

that is, the sum is taken on the nodes of F that are non-singular points
of C.

Proposition 2.3. If the conditions of being linearly equisingular to
C imposes independent conditions on curves of degree d then

g(C) ≤ δ.

Proof: First note that the linear system of curves linearly equisingulars
to C restricted to C̃ is equivalent to the linear system OC̃(C̃). Now, the
dimension of the linear system |C̃| can be calculated in two differents
ways (see [8, p. 713]):

1) It is the dimension of the linear system of plane curves of degree d
being linearly equisingulars to C. Thus, its dimension is:

dim |C̃| =
d(d+ 3)

2
−

∑
rp(rp + 1)

2
+ w,

where the sum is over all the singular points of C (including the infinitely
near singular points), and w is the number of these linear conditions
being non independent.

2) It is the dimension of the space of global sections of OS(C̃). From
the exact sequence

0 −→ OS −→ OS(C̃) −→ OC̃(C̃) −→ 0

and the fact that S is rational we have

h0(C̃,OC̃(C̃)) = h0(S,OS(C̃)) − 1,

and
h1(C̃,OC̃(C̃)) = h1(S,OS(C̃)).

Thus, using the Riemann-Roch Theorem we obtain:

dim |C̃| = h0(S,OS(C̃)) − 1 = h0(C̃,OC̃(C̃))

= δ − g + 1 + h1(C̃,OC̃(C̃)).

Comparing the two formulas above and using δ = d2−
∑
r2p, we obtain

w = h1(C̃,OC̃(C̃)). So, under our hypothesis we have h1(C̃,OC̃(C̃)) = 0.
We obtain then, g ≤ δ, since dim |C̃| ≥ 1.
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3. Dicritical foliations

It is well know that the general pencil of plane curves of degree d
is a pencil in which two general members are non-singular curves with
transversal intersection. There is a natural question, how to identify
when an algebraic foliation in P2 has such a generic pencil as a first
integral?

Some immediate necessary conditions are: all the nodes of F must
be dicritical and all the saddles with eigenvalues (1,−1). In this section
we investigate if these conditions are sufficient, that is, if F has a first
integral, all its nodes are dicritical and all its saddles have eigenvalues
(1,−1), then is the first integral determined by a generic pencil? This
problem can be stated on a arbitrary algebraic surface S, we study it
when S is a rational surface.

In this section by “the fiber of a rational map” we understand the
scheme theoretical fiber of the morphism f . Thus, for example, if we
express a pencil of plane curves λF +µG = 0 as a rational map P2 r−→ P1

the fiber of (λ0, µ0) will be the, possibly non-reduced, curve λ0F+µ0G =
0 with this convention we have:

Proposition 3.1. Let f : S −→ P1 be a rational map between the
rational surface S and P1. If there exist t1, t2, t3 such that f−1(ti) = niEi

is a multiple divisor (ni > 1), then all the fibers of f are reducible curves.

Proof: Let f−1(ti) = niEi, (Ei possibly reducible) S̄ = S − ∪(Ei),
P̄1 = P1 − {ti}.

Let P be either of the following: P1, C, or H, the upper half plane.
Depending on 1

n1
+ 1

n2
+ 1

n3
being >, = or < than 1 we can construct

a triangle ∆ on the suitable P, such that the amplitude of the interior
angles of ∆ are π

ni
. Let G be the triangular group on P associated to ∆,

by a theorem of Fox ([4]) there exist a normal subgroup Ḡ ⊂ G of finite
index, and thus an algebraic curve X (= P/Ḡ) and a regular map

X
g−→ P1

ramified on three values (we can suppose that these are the ti), such that
near each branch point g is given by zni . Let X̃ = X−g−1(ti). We have

g

�
P1

−−−−→

−−−
f

S X
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Our goal is to construct a rational map S h−→ X such that g ◦ h = f .
To start with fix a point p0 ∈ S̄, let f(p0) = t0 and choose s0 such that

s0 ∈ g−1(t0). The construction of h will be the following: take p ∈ S
and consider a path joining p0 and p, project it by means of f and lift
it to X̃ by means of g. The ending point of this lifting, starting from s0
will be s = h(p).

In order to prove that h is well defined we must show that this con-
struction sends closed paths into closed paths.

Let γ ∈ π1(S̄, p0). It follows by a theorem of Deligne ([5, Theo-
rem 1.1(B)]) that given a birational map S α−→ P2 there exist a generic
line l in P2 such that if L = α−1(l) then there exist γL ∈ π1(L−L∩{Ei})
such that γ ∼ γL. If γL is the union of closed paths that go once around
points of L∩{Ei} then the image of γL is a closed path that go ni times
around some ti, because near a point of L ∩ {Ei} f is of the form zni .
As g is locally zni the image of γL lift to a closed path that go once
around the corresponding point in g−1(ti). A similar argument work
out if γL is expressed as a linear combination of the standard basis of
π1(L − L ∩ {Ei}). This prove the existence of h. That h is rational
follows at once because f = g ◦ h and h has finite fibers.

Proposition 3.2. Let F be a dicritical foliation in a rational surface
S with an irreducible rational first integral and C a reducible fiber of the
associated irreducible pencil. Consider S̄ = S-{nodes of F} and C̄ the
restriction of C to S̄. Then C̄ is connected.

Proof: Denote by P1, . . . , Pn the nodes of F and consider the rational
surface S̃ obtained by blowing up S in the n nodes.

The proper transform F̃ of F is then a foliation that have as invariant
curves just the proper transform of the solutions of F . Suppose that for
C as in the hypothesis C̄ is disconnected. As the possible selfintersections
of C in the nodes disappears after the blow ups, the proper transform C̃
of C must be disconnected.

On the other hand the induced pencil

S̃
f̃−→ P1

has a generic irreducible fiber (because S
f−→ P1 is irreducible). By

the Zariski Lemma ([1]) all the fibers of f̃ are connected which gives a
contradiction.

A first consequence of the Proposition 3.2 is that if all the saddles of
a dicritical foliation are of the form (−1, 1) then all the fibers of f with
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some multiple component must be a power of a reduced curve (as −1 is
the quotient of the multiplicities of the components of the corresponding
fiber having intersection in this point). Combining 3.1 and 3.2 we have:

Proposition 3.3. Let F be a dicritical foliation in a rational surface
S with singularities of multiplicity one. If F has an irreducible rational
first integral S

f−→ P1 and all its saddle points have eigenvalues (1,−1)
then there are at most two fibers of f with some multiple component and
they are powers of reduced curves.

Now we can prove:

Theorem 3.4. Let F be a irreducible foliation in a rational surface
S with singularities of eigenvalues (1, 1) or (1,−1). If F has a rational
first integral f : S −→ P1, then all the fibers of f are reduced curves and
the general one is a non-singular curve meeting transversally any other
fiber of f .

Proof: The main idea is to look at the local structure of the pencil
near a dicritical node P . If the general curve of the pencil has r different
tangents at P , then we have defined a regular map P1 h−→ P1 of degree r,
which send each direction through P to the value of the corresponding
curve in P1 via f .

By Riemann-Hurwitz we have:

2r − 2 =
k∑

i=1

ri(ni − 1)

where the sum is on the multiple components of the pencil, ni the cor-
responding multiplicity and ri the number of branches of each multiple
curve at P .

Using Proposition 3.3

2r − 2 = 2r −
k∑

i=1

ri,

k∑
i=1

ri = 2.

Then we must have k = 2, r1 = r2 = 1. Thus there are only two
ramification points, which implies n1 = n2, but if n1 = n2 > 1 then
there exist a commutative diagram
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P1

�
P1

−−−−→

−−−
f

(f1:f2)−−−−→S

(zn
0 :zn

1 )

(fn
1 , f

n
2 the corresponding multiple fibers of f) , and thus the pencil given

by f is not irreducible.
We conclude that n1 = n2 = 1 that is, h is unramified and then r = 1

and the general curve has only one branch through P .

Note that using Lemma 1.2 we have obtained:

Corollary 3.5. Let F be a foliation in P2 of degree m with a first
integral of degree d, if all the singular points of F have eigenvalues (1, 1)
or (1,−1) then

m = 2d− 2.
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7. X. Gómez-Mont and R. Vila, On meromorphic integrals of holo-
morphic foliations in surfaces, unpublished.

8. P. Griffiths and J. Harris, “Principles of algebraic geometry,”
Wiley Interscience, 1978.

9. J. P. Jouanolou, “Equations de Pfaff algébriques,” Lecture Notes
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