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Analytical formulas are derived for the energy of simple relative equilibria of identical point
vortices such as the regular polygons, both open and centered, and the various known configurations
consisting of nested regular polygons with or without a vortex at the center. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2795276�

I. INTRODUCTION

The problem of determining relative equilibria of identi-
cal point vortices is longstanding.1 The simplest such equi-
libria, vortices arranged at the vertices of a regular polygon
with or without one at the center, go back to the work by
Kelvin and Thomson2 late in the 19th century, and are wound
up with the now defunct theory of vortex atoms. Many years
later, Havelock3 found relative equilibria consisting of two
nested, regular polygons. One may place a vortex at the cen-
ter of such configurations �modulo adjustment of the radii�
and produce further relative equilibria. More recently Aref
and van Buren4 found relative equilibria consisting of three
nested regular polygons.

An important quantity to be determined for all such con-
figurations is the kinetic energy of the induced flow, which is
given by the point vortex Hamiltonian.1,5 For identical point
vortices, this is, in essence, a purely geometric quantity, viz.
�the logarithm of� the product of all intravortex distances in
the configuration. For N vortices, then, we wish to calculate
the product of the N�N−1� /2 vortex distances. The main
result of this paper is a formula, given as Eq. �14� below, that
allows the analytical determination of this product for the
analytically known relative equilibria.

Let us establish a bit of notation. Let the vortices be
given as N points in the complex plane �z� ��=1, . . . ,N�. In
order to form a relative equilibrium configuration for N iden-
tical point vortices, the z� must solve the system of equa-
tions,

z�
* = �

�=1

N

�
1

z� − z�

; � = 1, . . . ,N . �1�

Here the asterisk on the left-hand side denotes complex con-
jugation. The prime on the summation on the right-hand side
reminds us to skip the singular term �=�. Units of length
and time have been chosen so that the dimensional factor
that would otherwise appear in Eq. �1� is 1. Stated more
explicitly, if in dimensional units the circulations of all the
vortices are �, and the angular frequency of rotation of the
configuration is �, then units of length and time are chosen
such that 2�� /�=1. All lengths, such as the radii of the
various nested regular polygons considered below, are thus
scaled by 	� /2��.

It follows from Eq. �1� that

�
�=1

N

z� = 0. �2�

It also follows that

�
�=1

N

�z��2 =
N�N − 1�

2
. �3�

These imply that the “average” of the coordinates of the
vortices vanishes,


z�� =
1

N
�
�=1

N

z� = 0, �4�

whereas the average size of the configuration, estimated as

	
�z��2� =	 1

N
�
�=1

N

�z��2 =	N − 1

2
, �5�

will grow with N.
A convenient summary of the positions in a relative

equilibrium z1 , . . . ,zN is the generating polynomial6

P�z� = �z − z1��z − z2� ¯ �z − zN� . �6�

This polynomial contains much information about the rela-
tive equilibrium. For example, if P�z� has real coefficients,
the relative equilibrium has an axis of symmetry along the
real axis of coordinates. The main point of this paper is to
show how the generating polynomial can be used to calculate
the energy of a relative equilibrium in simple cases.

For identical vortices the point vortex Hamiltonian is
−�2 /4� times the logarithm of the product of vortex
separations,5

� = �
�,�=1

N

� l��. �7�

�The prime on the product means ���.� Note that large
values of this product correspond to low energies �vortices
are far apart�; high energy states correspond to small values
of the product. The order of magnitude of Eq. �7� may be
estimated by noting that
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1
2 �

�,�=1

N

� l��
2 = 1

2 �
�,�=1

N

l��
2 = N�

�=1

N

�z��2, �8�

where Eq. �2� has been used. Hence, from Eq. �3� the aver-
age squared separation is


l��
2 � =

1

N�N − 1� �
�,�=1

N

� l��
2 =

2

N − 1 �
�=1

N

�z��2 = N . �9�

Thus, we may expect

� = �
�,�=1

N

� l��  NN�N−1�/2. �10�

Because of this estimate, we will often work with

� =
2

N�N − 1�
log �

=
2

N�N − 1�
log �

�,�=1

N

� l��

=
2

N�N − 1� �
�,�=1

N

� log l�� = 
log l��
2 � . �11�

II. FORMULA FOR THE VORTEX PATTERN
ENERGY

There is a general formula for �, Eq. �7�, in terms of the
generating polynomial Eq. �6�. This formula, Eq. �14� below,
is our main result. To obtain the formula note that for
z�z�,

P�z� − P�z��
z − z�

= �
�=1

N

� �z − z�� ,

where the prime on the product means ���. Taking the
limit z→z� yields the derivative of P at z�

P��z�� = �
�=1

N

� �z� − z�� . �12�

Thus,

�
�=1

N

P��z�� = �
�,�=1

N

� �z� − z�� , �13�

so that

�
�,�=1

N

� l��
= ��

�=1

N

P��z��� . �14�

Given the vortex positions, this formula has at least two mer-
its as a way of computing the value of the Hamiltonian. First,
it involves evaluating and multiplying just N numbers, viz.
the moduli of the derivative of P� at the vortex locations,
instead of N�N−1� /2 vortex separations. Second, in cases
where the vortex locations are known analytically, and the
generating polynomial has a simple form, explicit formulas
for the Hamiltonian may be obtained. Several of these for-

mulas appear to be new. The study of special cases of Eq.
�14� is the subject of the next section.

To bring out the essence of the formula �14� consider the
following problem: Calculate the product ��=1

n−1�1−	��, where
	 is the nth root of unity ei2�/n. Using the idea of the main
formula �14� we calculate as follows:

zn − 1 = �z − 1��
�=1

n−1

�z − 	�� .

Thus,

zn − 1

z − 1
= �

�=1

n−1

�z − 	�� ,

and upon taking the limit z→1 �which is equivalent to find-
ing the derivative of zn at z=1�

�
�=1

n−1

�1 − 	�� = n . �15�

If N identical vortices are at the vertices of a regular
polygon, i.e., situated at z�=Rei2��/N, �=1, . . . ,N, we have

�
�,�=1

N

� �z� − z�� = �
�=1

N �z�
N−1�

�=1

N

� �1 − ei2���−��/N�� = RN�N−1�


��
�=1

N−1

�1 − ei2��/N��N

exp�− i
2�

N �
�=1

N

�� ,

or, using Eq. �15� and evaluating the sum in the exponential,

�
�,�=1

N

� �z� − z�� = �− 1�N−1NNRN�N−1�. �16�

This is the basis of Eq. �19� below, and the “theme” of this
calculation recurs in all that follows.

We mention that Eq. �13� is well known in the theory of
polynomial equations7 as the formula for the discriminant
expressed as a symmetric function of the roots.

III. APPLICATION TO ANALYTICALLY
KNOWN RELATIVE EQUILIBRIA

There are a number of relative equilibria that exist for all
values of N, for which the vortex positions may be given
analytically by a formula with N as the sole parameter.

A. Regular polygons

The regular polygon configurations have already been
mentioned. In view of the normalization �3� they are given
by

z� = R exp�i
2��

N
�, R =	N − 1

2
, � = 1, . . . ,N . �17�

The generating polynomial is
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P�z� = zN − �N − 1

2
�N/2

. �18�

We have after a brief calculation, either as in the derivation
of Eq. �16� or directly from Eq. �14�,

�reg = NN�N − 1

2
�N�N−1�/2

;

�19�

�reg =
2

N − 1
log N + log�N − 1� − log 2.

B. Centered regular polygons

The centered regular polygons,

z� = R exp�i
2��

N − 1
�, R =	N

2
,

�20�
� = 1, . . . ,N − 1; zN = 0,

are a simple generalization of the open, regular polygons.
Their generating polynomial is

P�z� = z�zN−1 − �N

2
��N−1�/2� . �21�

Thus,

P��z� = NzN−1 − RN−1, P��Rei2��/N−1� = �N − 1�RN−1,

P��0� = − RN−1,

where R=	N /2. From Eq. �14� we now have

�cent = �N − 1�N−1�N

2
�N�N−1�/2

;

�22�

�cent =
2

N
log�N − 1� + log N − log 2.

From Eqs. �19� and �22� it follows that for N�5, �cent

��reg, but for N6 we have �cent��reg. This follows by
comparing Eqs. �19� and �22�, which yields

�reg − �cent = � 2

N − 1
− 1�log N + �1 −

2

N
�log�N − 1�

=
�N − 2��N − 1�log�N − 1� − �N − 3�N log N

N�N − 1�
.

The last quantity is positive for N=2,3 ,4 ,5 but negative for
larger values of N.

Results equivalent to Eqs. �19� and �22�, and the inequal-
ity between them, were reported in Ref. 8 as part of a related
investigation, albeit with a somewhat different motivation.
Note that a different normalization than Eq. �3� is used in
Ref. 8.

C. Collinear configurations

The configurations with all vortices on a line, conve-
niently taken to be the x-axis, are also “known analytically,”
albeit with an implicit statement of the positions as the zeros
of the Nth Hermite polynomial,

HN�x�� = 0, � = 1, . . . ,N . �23�

It is known that the roots of the Nth Hermite polynomial
satisfy the “sum rule” �3�. The generating polynomial in this
case is simply the Nth Hermite polynomial. From Eqs. �11�
and �14� we now have

� = ��
�=1

N

HN� �x��� .

Now, the Hermite polynomials satisfy the relations HN� �z�
=2NHN−1�z� and HN+1�z�=2zHN�z�−2NHN−1�z�. Thus, when
the x� are zeros of HN, we have HN� �x��=2NHN−1�x��
=−HN+1�x��, and the formula

� = ��
�=1

N

HN+1�x��� . �24�

D. Double rings

There are further families of solutions where the vortex
positions may be given, if not always by a formula, at least
by a simple algorithm that depends on N and shows a sys-
tematic change with N. Thus, for N even, N=2n, we have
relative equilibria with two nested, regular n-gons either ar-
ranged symmetrically or with the vortices on one staggered
with respect to the other.3 If the radii of the nested, regular
polygons are R1 and R2, respectively, their ratio �=R1 /R2

must solve

�n − 1��n+2 − �3n − 1��n − �3n − 1��2 + n − 1 = 0, �25�

for the symmetric case and

�n − 1��n+2 − �3n − 1��n + �3n − 1��2 − �n − 1� = 0, �26�

for the staggered case. The roots �=−1 in Eq. �25� for odd n,
and �=1 in Eq. �26� correspond to the regular N-gon and so
are really “one-ring” solutions. Note that if � solves Eq. �25�
for odd n, then −� solves Eq. �26�. It may be shown by
elementary methods that, apart from the trivial solution �
=1 of Eq. �26�, these polynomial equations have just two
real, positive solutions that are reciprocals of one another. In
some cases the roots of Eqs. �25� and �26� may be expressed
algebraically, but in general they are transcendental.

For some of the lower values of n that lead to algebraic
values of � we find

n = 2: 	5 ± 2	6;

n = 3: 1
4 �1 + 	21 ± 	2�3 + 	21��;

n = 4: 	1
3 �7 ± 2	10�; 	1

3 �4 ± 	7�;
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n = 6: 1
2
	1

5 �17 + 	489 ± 	378 + 34	489�;

	 1
10�17 ± 3	21�;

n = 8: 	 1
14�15 + 	113 ± 	142 + 30	113�;

	 1
14�8 + 	274 ± 	142 + 16	274� .

The values listed first are for symmetric configurations. The
values listed second are for staggered configurations. For
n=2 the symmetric configuration consists of four collinear
vortices and is the same configuration encountered in �c�
above for N=4. For n=2,3 the staggered configurations re-
duce to the square and the regular hexagon which we already
considered in �a� above.

The two possibilities, symmetric and staggered, for rela-
tive equilibria are now neatly summarized by the generating
polynomials

Psymm�z� = �zn − R1
n��zn − R2

n� , �27�

respectively,

Pstag�z� = �zn − R1
n��zn + R2

n� , �28�

where R1 and R2 denote the radii of the two rings. In addition
to �=R1 /R2 being a solution of Eqs. �25� and �26�, respec-
tively, the radii R1 and R2 must satisfy Eq. �3� or

R1
2 + R2

2 = 2n − 1. �29�

For the symmetric case we have

Psymm� �z� = 2nz2n−1 − n�R1
n + R2

n�zn−1

= nzn−1�2zn − R1
n − R2

n� .

For vortices on the ring of radius R1, z�=R1ei2��/n and
Psymm� �z��=nR1

n−1�R1
n−R2

n�e−i2��/n; for vortices on the ring of
radius R2 simply interchange subscripts. From Eq. �14�,

�symm = n2n�R1R2�n�n−1��R1
n − R2

n�2n

= �N

2
�N

�R1R2�N�N−2�/4�R1
N/2 − R2

N/2�N;

�symm =
2

N − 1
log

N

2
+

N − 2

N − 1
log 	R1R2

+
2

N − 1
log�R1

N/2 − R2
N/2� . �30�

Here R1 and R2 must satisfy Eqs. �29� and �25� or

�n − 1�R1
n+2 − �3n − 1�R1

nR2
2 − �3n − 1�R1

2R2
n + �n − 1�R2

n+2 = 0.

�31�

As a check on these calculations note that if we formally set
R2=−R1=R for odd n, where from Eq. �29� R2= �N−1� /2,
Eq. �30� reproduces our previous result, Eq. �19�.

For example, for n=6 we have from the results given
previously

R1 = 2	 55

37 + 	489 − 	378 + 34	489
,

R2 = 1
2
	22 − 	22�− 15 + 	489� .

When these are substituted into Eq. �30� we obtain an alge-
braic expression for the energy. In practice, of course, evalu-
ating the solutions R1 and R2 to high precision is undoubt-
edly preferable. However, calculating the energy from Eq.
�30� is superior to calculating all pairwise separations and
multiplying.

For the staggered case we have

Pstag� �z� = 2nz2n−1 + n�R2
n − R2

n�zn−1 = nzn−1�2zn + R2
n − R1

n� .

For vortices on the ring of radius R1, z�=R1ei2��/n, and
Pstag� �z��=nR1

n−1�R1
n+R2

n�e−i2��/n. For vortices on the
ring of radius R2, z�=R2ei��2�+1�/n, Pstag� �z��=nR2

n−1�R1
n

+R2
n�e−i��2�+1�/n. From Eq. �14� we get

�stag = n2n�R1R2�n�n−1��R1
n + R2

n�2n

= �N

2
�N

�R1R2�N�N−2�/4�R1
N/2 + R2

N/2�N;

�32�

�stag =
2

N − 1
log

N

2
+

N − 2

N − 1
log 	R1R2

+
2

N − 1
log�R1

N/2 + R2
N/2� .

Here R1 and R2 must satisfy Eqs. �29� and �26� or

�n − 1�R1
n+2 − �3n − 1�R1

nR2
2 + �3n − 1�R1

2R2
n − �n − 1�R2

n+2 = 0.

�33�

Note that if we set R2=R1=R �which is a solution to this
equation�, where from Eq. �29� R2= �N−1� /2, Eq. �32� re-
produces our previous result, Eq. �19�.

For N odd, N=2n+1, we have relative equilibria with
two nested, regular n-gons and a vortex at the center. Again,
there is a symmetrical and a staggered arrangement. For two
n-gons with a vortex at the center the ratio of the radii must
solve

�n + 1��n+2 − �3n + 1��n − �3n + 1��2 + n + 1 = 0 �34�

in the symmetric case, and

�n + 1��n+2 − �3n + 1��n + �3n + 1��2 − �n + 1� = 0 �35�

in the staggered case.
The generating polynomials now take the form

Psymc�z� = z�zn − R1
n��zn − R2

n� �36�

for the symmetric case, and

Pstagc�z� = z�zn − R1
n��zn + R2

n� , �37�

for the staggered case, where R1 and R2 again denote the
radii of the two rings. In addition to �=R1 /R2 being a solu-
tion of Eq. �34� or Eq. �35�, respectively, the radii R1 and R2

must satisfy Eq. �3� or
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R1
2 + R2

2 = 2n + 1. �38�

Calculations that parallel those performed for the “open”
double rings now yield

�symc = n2n�R1R2�n�n+1��R1
n − R2

n�2n

= �N − 1

2
�N−1

�R1R2��N−1��N+1�/4�R1
�N−1�/2 − R2

�N−1�/2�N−1;

�39�

�symc =
2

N
log

N − 1

2
+

N + 1

N
log 	R1R2

+
2

N
log�R1

�N−1�/2 − R2
�N−1�/2� .

As a verification one can set R1=−R2 for n odd and repro-
duce Eq. �22�.

Similarly, for the staggered case we obtain

�stagc = n2n�R1R2�n�n+1��R1
n + R2

n�2n

= �N − 1

2
�N−1

�R1R2��N−1��N+1�/4�R1
�N−1�/2 + R2

�N−1�/2�N−1.

�40�

Setting R1=R2 clearly reproduces �22� as it should.

E. Triple rings

There are, presumably, further relative equilibria consist-
ing of several nested, regular polygons. So far a complete
analysis has only been done for three nested, regular poly-
gons and a tabulation of the possibilities is available.4 As in
the case of two polygons, it is only possible to nest three
regular polygons if they all have the same number of verti-
ces. When N is divisible by 3, i.e., N=3n, we thus get con-
figurations of three nested, regular n-gons. These configura-
tions are again “analytically known” up to a determination of
the three radii as solutions to a set of polynomial equations.
There are three possibilities. First, all three polygons may be
situated symmetrically. We call this the symmetric case, and
for arbitrary n there is just one such solution. Second, two of
the polygons may be situated symmetrically and the third
rotated by � /n with respect to these two. We call this the
staggered case. One would expect at least three such configu-
rations in general depending on whether the radius of the
staggered polygon is smaller than, between or larger than the
other two. It turns out that the equations allow up to five
staggered configurations. Third, there are solutions, referred
to in Ref. 4 as the degenerate cases, where two of the regular
n-gons have the same radius but the 2n vortices that are all at
the same distance from the center of the configuration do not
form a regular 2n-gon.

The number of distinct vortex triple ring configurations
increases monotonically with N. For any N=3n there is al-
ways just one symmetric arrangement of the three nested,
regular n-gons. The number of staggered arrangements, how-
ever, is 1 for N=6, 9, 12, and 15, then 3 for N=18,21,24,
and increases to 5 when N equals 27 �i.e., for nine or more

vortices per polygon�. It remains at 5 for larger N. There are
no “degenerate” configurations for N=6 but there are two
such configurations for N=9 or larger.

When N is of the form 3n+1, there are corresponding
configurations of three nested, regular n-gons with a vortex
at the center. These have also been analyzed and tabulated.4

There is always just one symmetric pattern. There is also just
one staggered pattern for N=7,10,13,16,19, three staggered
configurations for N=22 and 25, and five for N=28 or larger.
There are no “degenerate” centered configurations of N=7 or
10, but there are two for N=13 or larger.

We simply quote the main results from Ref. 4: Let N
=3n and let R1, R2, R3 be the radii of the three nested n-gons.
In all cases these radii must obey

R1
2 + R2

2 + R3
2 =

9n − 3

2
. �41�

In the symmetric case they must further satisfy

�2R1
2 − 5n + 1�R1

n + �2R2
2 − 5n + 1�R2

n + �2R3
2 − 5n + 1�R3

n = 0,

�42�

and

2R1
2 − n + 1

R1
n +

2R2
2 − n + 1

R2
n +

2R3
2 − n + 1

R3
n = 0. �43�

The generating polynomial is then

P3,symm�z� = �zn − R1
n��zn − R2

n��zn − R3
n� . �44�

In the staggered case, assuming the numbering chosen so
that ring 3 is the one turned half a turn relative to rings 1 and
2, the radii must satisfy

�2R1
2 − 5n + 1�R1

n + �2R2
2 − 5n + 1�R2

n − �2R3
2 − 5n + 1�R3

n = 0,

�45�

and

2R1
2 − n + 1

R1
n +

2R2
2 − n + 1

R2
n −

2R3
2 − n + 1

R3
n = 0, �46�

and the generating polynomial is

P3,stag�z� = �zn − R1
n��zn − R2

n��zn + R3
n� . �47�

The formulas for the energy are straightforward gener-
alizations of Eqs. �30� and �32�, respectively,

�3,symm = n3n�R1R2R3�n�n−1���R1
n − R2

n��R2
n − R3

n��R3
n − R1

n��2n;

�48�

�3,stag = n3n�R1R2R3�n�n−1���R1
n − R2

n��R2
n + R3

n��R3
n + R1

n��2n.

�49�

For the “degenerate” cases discussed in Ref. 4 the 3n
vortices are situated on three rings, two of which have the
same radius. The two rings of the same radius are rotated
relative to the third ring by angles ±� given by
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cos n� = −
�2R1

2 − n + 1�R1
n

2�2R2 − n + 1�Rn . �50�

Here R is the common radius of the two rings and R1 is the
radius of the third ring. These radii are determined by solv-
ing the polynomial equations

2R1
2 + 4R2 = 9n − 3, �51�

�2R1
2 − 5n + 1��2R2 − n + 1�R1

2n

= �2R2 − 5n + 1��2R1
2 − n + 1�R2n. �52�

The generating polynomial for the configuration is

P3,deg�z� = �zn − R1
n��zn − �Rei��n��zn − �Re−i��n�

= �zn − R1
n��z2n − 2znRn cos n� + R2n� . �53�

The energy of the configuration follows from

�3,deg = 22nn3nR1
n�n−1�R2n�2n−1�


�R1
2n − 2R1

nRn cos n� + R2n�2n�sin n��2n, �54�

where R1 and R result from solving Eqs. �51� and �52�, and
cos n�, sin n� follow from Eq. �50�.

The reader may easily establish the necessary formulas
for the centered triple rings using the results in Ref. 4 and the
results obtained in this paper �cf. Eq. �61��.

F. General formula for nested, regular polygon
equilibria

The pattern seen above in the single, double, and triple
ring formulas may, of course, be extended to an arbitrary
number of nested, regular polygons, assuming such equilib-
ria exist. Thus, in the general case of s nested regular n-gons
we would posit a generating polynomial of the form

P�z� = �zn − �1
n� ¯ �zn − �s

n� , �55�

where �p=Rpei�p, p=1, . . . ,s, embodies both the radius, Rp,
of the circle containing the vortices on the pth polygon and
the angle, �p, through which this polygon is turned relative
to the real axis. The vortex positions are �p	�, where 	
=ei2�/n, �=0, . . . ,n−1 for p=1, . . . ,s.

The derivative of P�z� as given by Eq. �55� is

P��z� = nzn−1P�z��
q=1

s
1

zn − �q
n . �56�

Thus,

P���p	�� = n�p
n−1	−��

q=1

s

���p
n − �q

n� , �57�

where the prime on the product means q�p. Then

� = ��
p=1

s

�
�=1

n

P���p	���
= nsn�R1 ¯ Rs�n�n−1� �

p,q=1

s

��Rp
n − Rq

nei��q−�p�n�n

= nsn�R1 ¯ Rs�n�n−1�


 �
1�p�q�s

�Rp
2n − 2Rp

nRq
n cos�n��p − �q�� + Rq

2n�n. �58�

The preceding results, most transparently formulas such as
Eqs. �48� and �49�, are specializations of this result to the
case when all the phase differences �p−�q are 0 or � /n. For
nontrivial rotation angles of one or more polygons relative to
the real axis, further transformation of the formulas are pos-
sible as we see in Eq. �54�.

The centered case follows a similar recipe. The generat-
ing polynomial is now of the form P�z�=zQ�z�, where Q�z�
is of the form �55�. The vortex positions are �p	�, as before,
but now also z=0. The derivative of P�z� is

P��z� = Q�z� + nznQ�z��
q=1

s
1

zn − �q
n . �59�

Thus, P��0�=Q�0�, and the calculation of P� for any of the
other vortices proceeds as before �except for the power of z
in the prefactor now being n rather than n−1�. Since

Q�0� = �− 1�s��1 ¯ �s�n, �60�

we get

�c = nsn�R1 ¯ Rs�n�n+1�


 �
1�p�q�s

�Rp
2n − 2Rp

nRq
n cos�n��p − �q�� + Rq

2n�n. �61�

We have not developed a formula for the case of nested
regular polygons with different numbers of vertices since we
are not aware of the existence of relative equilibria of this
type �although there is at present no proof that they do not
exist�.

IV. CONCLUSION

A formula for the energy of a relative equilibrium of
identical point vortices has been derived. The formula allows
the energy of the equilibrium configuration to be calculated
in a simpler way than by multiplying all mutual vortex sepa-
rations.

Several extensions and generalizations suggest them-
selves. An analogous formula would hold if the pattern-
forming particles have an energy of interaction that varies
with their separation by other than the first power. Exten-
sions of the formula hold for relative equilibria of vortices of
different strengths. As a particularly interesting example con-
sider the stationary equilibria with vortices of the same ab-
solute strength but opposite sense. These were shown by
Bartman9 to arise as zeros of successive Adler-Moser poly-
nomials, cf. Ref. 6. Thus, if P�z� is the polynomial with roots
at the positions of the positive vortices, z1 ,z2 , . . . ,zn say, and
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if Q�z� is the polynomial with roots at the positions of the
negative vortices, �1 ,�2 , . . . ,�m, then P and Q are related by
a differential equation due to Tkachenko,1,6

P�Q − 2P�Q� + PQ� = 0. �62�

The relation to the Adler-Moser polynomials then shows that
n and m must be successive triangular numbers, and this may
also be shown directly.1

The Hamiltonian of this system is, in essence, the loga-
rithm of

�
�,�=1

n

��z� − z�� �
�,�=1

m

���� − ����
�=1

n

�
�=1

m

�z� − ���−1

= ��
�=1

n

P��z���
�=1

m

Q��������
�=1

m

P�����
�=1

n

Q�z���−1/2

. �63�

The second form follows from an obvious extension of our
previous analysis �and we have chosen to “symmetrize” the
denominator�. In this expression Q and P are successive
Adler-Moser polynomials.

There are other formulas for the quantity � that may be
mentioned. The Vandermonde matrix,

V = �
1 1 . . . 1

z1 z2 . . . zN

. . . . . . . . . . . .

z1
N−1 z2

N−1 . . . zN
N−1
� , �64�

has determinant

det V = �
1�����N

�z� − z�� . �65�

Hence,

� = �det V�2 = ��
1 1 . . . 1

z1 z2 . . . zN

. . . . . . . . . . . .

z1
N−1 z2

N−1 . . . zN
N−1
��

2

. �66�

While this formula also allows computation of the vortex
pattern energy, it appears less convenient, and requires more
steps of calculation, than the formula in terms of derivatives
of the generating polynomial.

Finally we mention that it may be possible to establish
general inequalities between the energies of the various
nested polygon equilibria, just as we were able to establish
the results about the open and centered regular polygons,
although the analysis for the multiple-ring equilibria prom-
ises to be considerably more complicated. We are currently
exploring these issues.

ACKNOWLEDGMENTS

This paper is dedicated to the memory of my colleagues
Kevin Granata and Liviu Librescu, senselessly slain in Nor-
ris Hall during the assault of April 16, 2007.

1H. Aref, P. K. Newton, M. A. Stremler, T. Tokieda, and D. L. Vainchtein,
“Vortex crystals,” Adv. Appl. Mech. 39, 1 �2002�.

2J. J. Thomson, A Treatise on the Motion of Vortex Rings: An Essay to
Which the Adams Prize was Adjudged in 1882, in the University of Cam-
bridge �MacMillan, London, 1883�, reprinted by Dawsons of Pall Mall,
London, 1968.

3T. H. Havelock, “Stability of motion of rectilinear vortices in ring forma-
tion,” Philos. Mag. 11, 617 �1931�.

4H. Aref, and M. van Buren, “Vortex triple rings,” Phys. Fluids 17, 057104
�2005�.

5C. C. Lin, On the Motion of Vortices in Two Dimensions �University of
Toronto, Toronto, 1943�.

6H. Aref, “Vortices and polynomials,” Fluid Dyn. Res. 39, 5 �2007�.
7F. Cajori, An Introduction to the Theory of Equations �MacMillan, Lon-
don, 1904�, republished by Dover, New York, 1964.

8S. Gueron, and I. Shafrir, “On a discrete variational problem involving
interacting particles,” SIAM J. Appl. Math. 60, 1 �1999�.

9A. B. Bartman, “A new interpretation of the Adler-Moser KdV polynomi-
als: Interaction of vortices,” in Nonlinear and Turbulent Processes in
Physics, edited by R. Z. Sagdeev �Harwood Academic, Newark, 1983�,
Vol. 3, pp. 1175–1181.

103603-7 A note on the energy of relative equilibria Phys. Fluids 19, 103603 �2007�

Downloaded 10 Aug 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp


