
 Deakin Research Online

This is the published version:

Shearer, Kim, Kieronska, Dorota and Venkatesh, Svetha 1995, Two-dimensional string
notation for representing video sequences, in SPIE 1995 : Proceedings of SPIE - the
International Society for Optical Engineering, SPIE, Bellingham, Wash., pp. 389-400.

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30044555

Reproduced with the kind permissions of the copyright owner.

Copyright : 1995, SPIE

http://hdl.handle.net/10536/DRO/DU:30044555

Two—dimensional string notation for representing video sequences

Kim Shearer, Dorota Kieronska, Svetha Venkatesh

Department of Computer Science
Curtin University of Technology

ABSTRACT

Most current work on video indexing concentrates on queries which operate over high level semantic infor-
mation which must be entirely composed and entered manually. We propose an indexing system which is based
on spatial information about key objects in a scene. These key objects may be detected automatically, with
manual supervision, and tracked through a sequence using one of a number of recently developed techniques.
This representation is highly compact and allows rapid resolution of queries specified by iconic example.

A number of systems have been produced which use 2D string notations to index digital image libraries. Just
as 2D strings provide a compact and tractable indexing notation for digital pictures, a sequence of 2D strings
might provide an index for a video or image sequence. To improve further upon this we reduce the representation
to the 2D string pair representing the initial frame, and a sequence of edits to these strings. This takes advantage
of the continuity between frames to further reduce the size of the notation.

By representing video sequences using string edits, a notation has been developed which is compact, and
allows querying on the spatial relationships of objects to be performed without rebuilding the majority of the
scene. Calculating ranks of objects directly from the edit sequence allows matching with minimal calculation,
thus greatly reducing search time. This paper presents the edit sequence notation and algorithms for evaluating
queries over image sequences. A number of optimisations which represent a considerable saving in search time is
demonstrated in the paper.

Keywords: video indexing, 2D strings, spatial reasoning,

1 INTRODUCTION

The accepted method of locating items of interest in large data collections is indexing. Whether the data
is stored on paper or in a computer, a well constructed index is invaluable in increasing the efficiency of data
retrieval. Techniques from computer vision and spatial reasoning have been successfully applied to indexing
libraries of photographic digital pictures,7"3 however the increased capacity of computers to store and process
information has opened new areas of study. The ability to play video sequences on a computer has led to growth
in the use of computers for video processing and the birth of multimedia. In this paper we discuss indexing
techniques for image sequences. We make no distinction in this paper between video data and image sequences,
such as GIS data or medical imaging, and refer to both either as video or sequences.

Digital storage of video requires large amounts of space, and can be very slow to process. Rather than process
the video data directly, we would prefer to produce an index which allows filtering before accessing the full data.

O-8194-1970-2/95/$6.OO SPIE Vol. 2606 /389

Downloaded from SPIE Digital Library on 25 Apr 2012 to 128.184.184.38. Terms of Use: http://spiedl.org/terms

Current indexing techniques for video are generally either low level, providing locations of camera actions and
edit positions, or high level semantic descriptions. As video is such an information rich medium there may be
many valuable indexing schemes. An ideal video database system should provide a number of complementary
indexing systems which are intergated to present a coherent query system. We propose extending spatial reasoning
techniques used in photographic databases for use with video, as a complement to existing methods.

The two common forms of low level video information are camera motion and edit or cut detection. The
location of cuts within video sequences may be accomplished by a number of methods,'2" all of which are highly
reliable and automated. A cut is the place in a video where one shot ends and another begins. A shot is a
sequence of frames taken by one camera in a continuous shoot. The detection of cuts allows a long video or image
sequence to be broken into smaller units, which are more likely to be homogeneous in characteristics.

Camera motion detection may also be done automatically with high reliability. By camera motion we mean
the basic motions available to the camera, such as: booming, dollying or tilting. These camera motions may be
of direct interest to the query system, as camera motion can be used to identify scenes which are otherwise very
similar.

The high level techniques used in video indexing are based on semantic description.4'8 These techniques
require a manually created description of each shot in the database. Shots may then be accessed using any data
which is included in the semantic descriptions. This may be the ideal index for some applications, however there
are major difficulties. It takes a great deal of manual labour to produce the semantic descriptions for a database
of shots, and once the indices are created there may be serious consistency problems. Each individual will draw
on their own experiences and view point to produce an index, and may do so with differing goals. Creating
a consistent standard could in itself be difficult. This is likely to become increasingly problematic as libraries
become more widely available over networks.

Spatial indexing of videos provides an index which is based on the image contents, unlike low level indices,
but cannot be generated completely automatically. The information on image content is restricted to the spatial
relationships between objects, so there is no semantic interpretation, however creation of the index is not as
labour intensive as the creation of semantic descriptions. It is also considerably simpler to ensure consistency for
spatial indices, by providing attribute lists, from which object attributes are chosen.

There are a variety of systems for representing and reasoning about spatial relationships. All are aimed at
compactness of representation and efficient querying. The system used as the basis for the work in this paper is
2D B—strings.

2 2D strings

The early work on 2D strings was presented in 1987 by Chang, Shi and Yan,6 as part of a project to produce
an iconic indexing system for pictorial databases. Pictures are converted to a pair of strings, called 2D strings,
which are stored in a database. Queries are expressed in the same 2D string notation, allowing the database to
be searched using a simple matching scheme. Matching strings which are detected in the database are decoded
into simple iconic representations of the original picture, which may be displayed as a response to the query.

The alphabet of 2D strings is a set V of object labels and a set A containing the operators {=, <, :}.

DEFINITION 1. A 1D siring, defined over a se1 S, is any sfring x1, x2, . . . x where n 0 and Vj : E S.

DEFINITION 2. A 2D sfring over V is defined o be

(xl,yl,x2,y,... Yn_1,Xn, Xp(l),Zl,Xp(2), .. .Z_1,Xp())

390 / SP!E Vol. 2606

Downloaded from SPIE Digital Library on 25 Apr 2012 to 128.184.184.38. Terms of Use: http://spiedl.org/terms

where

x1 . . . x is a 1D srzng over V

p : {1..n} —+ {1..n} is a permuaion function over {1 . . . n}

Yi • . . Yn—i is a 1D siring over A

z1 . . . zn_i is a 1D siring over A

The function p is a permutation which maps a symbol from the first string of a 2D string pair to its corresponding
symbol in the second string.

The first string in a 2D string pair expresses object relations along the u axis, by convention this is the
horizontal axis, increasing left to right. The second string expresses relations along the v axis, the vertical axis
increasing bottom to top. The operators '=' and '<' have the usual meanings of equal and less than, with less
than being to the left of for the u axis, and below for the v axis. The operator ':' means that two objects are in
the same object set.

The matching algorithm for 2D strings uses a simple ranking scheme for the object symbols in strings. A
symbol in a string has a rank defined to be one plus the number of '<' operators preceding the symbol. Using
this ranking scheme Chang et al define three different types of matching, providing three levels of strictness of
match, with type-2 being an exact match and type-i and type-U being progressively less strict. The three types
of match have the following definition:
A string S is a type-i subsequence of a string T if

i . S is contained in T

2. If a1w1b1 is a substring of S, a2w2b2 is a substring of T, where a1 matches a2 and b1 matches b2 then

Type—O rank(b2) — rank(a2) � ranlc(bi) — rank(ai) or rank(bi) — rank(ai) = 0

Type—i rank(b2) — rank(a2) � ran/c(bi) — rank(ai) 0 or rank(b2) — rank(a2) = rank(bi) — ranlc(ai)

Type—2 rank(b2) — rank(a2) = ran/c(bi) — rank(ai)

This representation suffers from a major inadequacy, displayed in figure 1. In this figure there are three
pictures which, using 2D strings, all result in the same representation: (A = B < C, A < B = C). This is due
to 2D strings being a point based representation, with object position being determined by the object's centroid.
2D strings discard extent information, so that the obvious differences between the pictures in figure i are not
retained in the 2D strings.

Figure i: Ambiguous pictures using a 2D string representation

Jungert proposes E—strings,9 for extended 2D strings by adding operators which form the basis for much of
the further work. The extra operators are derived from work in temporal reasoning by Allen.2 Using the extra

SPIE Vol. 2606/391

Downloaded from SPIE Digital Library on 25 Apr 2012 to 128.184.184.38. Terms of Use: http://spiedl.org/terms

operators allows the accurate expression of a much greater range of relationships. Unfortunately, as the overlap
operator is not transitive, it is not possible to store the binary relationships in a unified structure using E—strings.

Later work uses an approach based on segmentation of objects into simple regions. A cutting mechanism is
introduced making it possible to avoid the break of transitivity caused by the overlap operators. This approach
was first suggested by Chang, Jungert and Li with G—strings.5 In this system each object is cut against the minima
and maxima of all other objects in the scene. Using the subobjects defined by the cuts, it becomes possible to
express spatial relationships without using an overlaps operator. This allows the expression of pictures as two
1D strings, each expressing the relationships along an axis. The main drawback of this approach is that pictures
with many objects can cause a very high level of segmentation. The number of segments increases rapidly a.s the
number of objects grows, this reduces the efficiency of storage and greatly increases the time required to match
pictures. The C—string system of Lee and Hsu'° addresses the cutting problem directly by reinstating the begin
and end operators (= I and I), which had been omitted from G—strings. This allows a sharp reduction in the
number of cuts required.

The characteristic of Chang's original system which was lost in later systems is that, being point based, all
symbols are simply comparable. That is, all symbols are either equal, less than or greater than each other symbol.
The cost of this simplicity is the loss of extent information, leading to greatly reduced discriminatory powers. A
system which provides many of the features of Chang's point based system and the later interval based systems,
is 2D B—strings." B—strings represent objects by two symbols, one representing the start point along an axis,
and another representing the end point along the axis.

The advantage of this representation is that all symbols in the strings are simply comparable, unlike the
segmented objects of interval based systems, yet extent information is represented. The cost of each object
requiring two symbols in each string is partially balanced by the reduced number of operators required, and the
fact that objects are not segmented. Matching for B—strings uses three types, similar to Chang et a]. These
types are calculated using symbol ranks, and are based on relationship categories (due to Allen2) and orthogonal
relationships. Symbols in B—strings are assigned a rank using the following equation

rank(s) =, f(s) where f(s) = { : :

Type—O matching is based on the five relationship categories. Taking each of the 13 spatial relationships along
each axis, there are a total of 169 possible 2D spatial relations. These are categorised into five partitions, disjoinl,
meet, contain, inside and parily overlap. The partitions are defined by:

DEFINITION 3. The relationship category of the spatial relationship between wo objects a and b is:

1. Disjoint : ifencLrank(a)<begin_rank(b) V end..rank(b) < begin.rank(a) along eiIher axis

2. Meet : if end_rank(a)=beginrank(b) V end.sank(b)=begin.sank(a) along one axis and the condition for
disjoint is no salisfied on the other axis

3. Conlain : begin.rank(a)<begin..rank(b) A end.rank(b)�end_rank(a) along both axes

4. Inside : begin.rank(b)<begin.sank(a) A encLrank(a)�end_rank(b) along both axes

5. Parily overlap : if no other relalionship categorj holds

Two objects which are a type—O match between two pictures must have the same overlap properties, but the
match is invariant under rotation and reflection. This is the least strict of the three matching types.

Type—i matching uses orthogonal relationships between objects. The orthogonal relationship between two
objects expresses the direction in which one object lies from the viewpoint of the other object. Orthogonal
relationships are defined as follows:

392 ISPIE Vol. 2606

Downloaded from SPIE Digital Library on 25 Apr 2012 to 128.184.184.38. Terms of Use: http://spiedl.org/terms

DEFINITION 4. Object a is said o be o the east(west) of anoilier object b if There is some part of a o the
east(west) ofthe whole of b.

DEFINITION 5. Object a is said to be to the north(south) ofanother object b iffthere is some part ofa to the
north(south) of the whole of b.

We use the notation aCabb to denote the relationship category for two objects a and b, aOabb to denote
orthogonal relationships and aRabB to denote the exact spatial relationships between the objects. B—stringmatching may then be defined as follows:

DEFINITION 6. Picture f' is a type—i subpicture off if

1. All objects in f" are also in f

2. For any two objects, a, b

aCabb, aOabb and aRabb are in f and aCab'b, aOab'b, and aRa/b and in f'
Cab' Cab Type—U match

Cab' Cab A Oab' °ab Type—i match

Cab' Cab A Oab' Oab A Rab' Rab Type-2 match

As noted above, type—O matching is rotation and reflection invariant, type—i matching uses orthogonal re-
lationships to restrict matches to objects which are of similar orientation. Type—2 matching is the most strict,
requiring that two objects be a type—i match, and have the same spatial relationship along each axis.

3 B-STRING NOTATION FOR VIDEO SEQUENCES

The use of 2D strings to index video was first suggested by Arndt and Chang.3 Theirrepresentation consists
of an encoding of the initial frame as a number of sets of objects, and a sequence of edits to these sets which
produce a representation for subsequent frames. The edits are interspersed with frame numbers, indicating the
frame which the next sequence of edits will represent. The sets are derived from the Chang 2D string notation,
with all objects having the same rank along an axis being placed in the same set. Further, the sets formed
from the v axis are concatenated onto the end of the sets produced from theu axis. Consider the 2D u string
dog < cat mouse where the set {dog} contains all objects of rank one, and {cat mouse} contains all objects of
rank two. The corresponding v string: cat dog < mouse has sets; {cat dog} which containsobjects of rank one,
and set {mouse} of rank two. Thus the 2D string:

dog < cat mouse, cat dog <mouse

is encoded as the following list of sets:

{dog}{cat mouse}{cat dog}{mouse}

Each set is identified within the edit notation by an integer, where the setsare numbered from one. In the
example given set two would be {cat mouse}, and set four {mouse}.

Let 01 . . . o be the objects in a sequence, and 11 . . 1m the sets in the 2D set notation. The following operators
are defined by Arndt and Chang:

Oilj add the object o to the object set lj

SPIE Vol. 2606 /393

Downloaded from SPIE Digital Library on 25 Apr 2012 to 128.184.184.38. Terms of Use: http://spiedl.org/terms

tTTT _
Frame I Frame 2 Frame 3

Figure 2: Three frame video sequence

eol delete object o from the object set lj

4 ii merge the sets l and lj into one set, which becomes l

::j1:;'lo1 .. splitset lj, theobjects o1 . ..o remaininsetl, andtheobjects 0j : 0j lAo {o1, . ..Ojm}
form a new set 1i+1

The merge operator has the additional effect that merging l and 1j+1 causes all sets lj where j > i to become
ii— 1 . Similarly for the split operation, when l is split to become l and lj+ , all previous sets lj where j > i
become lji. The operators and ê also have the additional function of adding and deleting whole sets, the
syntax for these functions is as follows:

li create new set number i

eli delete the set number i

Thus there are two stages in the conversion, the conversion from 2D strings to sets, and from sets to the edit
notation. To illustrate this conversion process we provide the following example, based upon the three frame
sequence in figure 2.

tablebox, tablebox
man < tablebox, mantable < box

table < manbox, mantablebox

which corresponds to the following sequence of sets:

Frame 1 {table box} {table}{box}
Frame 2 {man}{table box} {man table}{box}
Frame 3 {table}{man box} {man table box}

these sets would be converted to the compressed notation as:

1 {table box}{table}{box} Initial string
2 1 man 1 man 3 Create set 1 and add man, add man to set 3
3 ei Delete set 1

1 table Split set 1
man 2 Add man to set 2I3 Mergesets3and4

There are two algorithms provided by Arndt and Chang for use with their representation. The first algorithm
converts a sequence of 2D strings, each representing a video frame, to the set notation, the second algorithm

394 ISPIE Vol. 2606

Downloaded from SPIE Digital Library on 25 Apr 2012 to 128.184.184.38. Terms of Use: http://spiedl.org/terms

reverses this conversion. When encoding video, frames are first translated into their 2D string representation,
then the sequence of strings is converted to sei edit notation. Queries require first the conversion of the set
notation back into a sequence of 2D strings, followed by standard 2D string matching. Arndt—Chang notation
gives us a method for temporarily storing a video index in a temporary compressed format, to be expanded before
use.

The system proposed in this paper offers not only an improved representation, but also a query system that
does not require expansion and parsing of a sequence of 2D strings. Our system uses B—strings which, unlike
Chang's 2D strings, incorporate extent information. This increases the descriptive power of the representation.
The major improvement is the query process, which does not require the expansion and evaluation of a sequence
of 2D strings. Spatial relationship changes are read directly from the edit sequence. This makes it simple to
discard edits which do not affect the objects in the query, which reduces the processing required during querying.

Let Q = qi . . . q denote the query string and R. = r1 . . . r the reference string. Then let qj denote the first
symbol of Q to occurring 7?., and let qi denote the last symbol of Q to occurring R.. Then 7?. can be expressed
as [ri . . . rf_1][qf . . . qi][rli . . . rn]. The first or last sets may be empty, and qj . . . qi will usually contain elements
not in Q. There are no query symbols in either the first or third sets, therefore changes to these sets do not affect
the spatial relationships of the query objects. Using Arndt and Chang notation, edits to these portions of the
string are evaluated to recreate the string, and r qj-.i must be parsed to obtain the ranks of query elements.
The algorithm proposed here does not require parsing of the 2D string as changes to spatial relationships of the
query objects are read directly from the edit sequence notation. This allows edits which do not affect the query
objects to be discarded.

Our notation is similar to the Arndt and Chang notation in that the sequence is described by a string
representing the first frame in the video, and a sequence of edits to this initial string. The edit operations,
however, differ and are outlined below:

U the next sequence of edits should be performed on the u axis of the string

V the next sequence of edits should be performed on the v axis of the string

m i, j move a symbol from position i to position j

d i delete the symbol in position i of the u string, also deletes the corresponding end point in the u string
and both symbols in the v string

i ch, i insert the character ch into the string at position i

* the previous edit completed the transformation to the representation of the next frame in the video

The sequence in figure 2 can be expressed as the following sequence of B—strings:

table box BOX TABLE, table TABLE box BOX
man MAN table box BOX TABLE, man table TABLE box BOX MAN
iable TABLE man box MAN BOX, man table box BOX TABLE MAN

which is represented in our notation as:

table box BOX TABLE,table TABLE box BOX
u i rnan,O i MAN,1 v i rnan,O i MAN,5*
urn 2,0 rn 5,1 rn 3,4v in 2,4*

Comparison of this edit sequences and the sequence in figure 2 show that the B—string based representation
requires more space than the Arndt—Chang representation. This is to be expected as B—strings encode extent

SPIE Vol. 2606 / 395

Downloaded from SPIE Digital Library on 25 Apr 2012 to 128.184.184.38. Terms of Use: http://spiedl.org/terms

information. In their paper Arndt and Chang give a space complexity analysis for a typical 2D string sequence.
In their analysis the formula log2(J V + A +ni + n2 + 1) I is used to calculate the number of bits required to
represent each token. A token is either an object label, operator, frame number or set number. In this formula
V represents the set of object labels, A the set of operators, n1 the number of frames in thesequence and n2 the
number of distinct sets. Arndt and Chang derive the following size for their representation of thesequence:

Tokens needed for compressed set representation = 27
Bits required = 27*

I log2(J V +n1 + n2 + 1) I
= 243

The analysis for the same sequence using the B—string based representation, where T in the number of tokens
and n3 is the maximum length of the string is:

Compressed B—string bits required = T* I 1og2(V I + I A I +n3 + 1) I
= 53*Jlog2(8+7+6+1)
= 265

This result is favourable given the additional properties of the B—string representation. Table 1 gives the results
from encoding the database of videos used for this project. The table gives the number of frames and objects in
each sequence , along with space required to store the video sequence, the space taken by both a simplesequence
of B—strings and the compressed B—string notation. The final column gives the size reduction achieved byusing
the compressed notation. The video sequences were stored and indexed on a Silicon Graphics workstation,using
SGI—MVC 1 compression.

Sequence Frames Objects Size (Kb) B—strings Edit sequence Reduction
Fishi 34 15 772330 2063 1464 29%

Forrplex 20 21 1060880 1247 1006 19%
Pinex 31 22 2012602 2900 1704 41%
Swing 50 20 3294516 4348 2562 41%

Table 1 : Compression results

In general we can estimate the size of the edit sequence required to encode a video sequence, using observed
frequency of operators to predict the composition of the edit sequence. The average values for the occurrence of
each operator observed in the sequences in the example database are shown in table 2. The seven operatorsmay
be represented using three bits. The number of bits required to encode a position in the string can be estimated
as 1 = log2(2.4 I 0 I) + 1, where 0 is again the set of objects in the reference string. We use the figure 2.4 to
estimate the number of symbols in the string. The number of symbols will be at least twice the number of objects,
one symbol for each start and end point for an object, plus a number of equality symbols. The example sequences
all display a length of less than 2.4 times the number of symbols per string. The number of bits required to
represent each edit is given in table 3. Using the observed operator composition this yields a weighted average of

Edit type Frequency
Move 42%
Axis 16%

Frame mark 8%
Insert 20%
Delete 14%

Edit type Bits
Move 3+1+1
Axis 3

Frame mark 3

Insert 3 + log2 I 0
I +1

Delete 3 + 1

396 ISPIE Vol. 2606

Table 2: Operator frequency Table 3: Operator storage

Downloaded from SPIE Digital Library on 25 Apr 2012 to 128.184.184.38. Terms of Use: http://spiedl.org/terms

Number of bits = (0.42 * (3 + 21)) + (0.16 * 3) + (0.08 * 3) + (0.2 * (3 + log2 I 0 I +1)) + (0.14 * (3 + 1))
= 1.381og2 I 0 I +3.66

Therefore the expected size of the edit sequence representation for a video of f frames, with n edits per frame
would be

S = n • f • (1.381og2 I 0 I +3.66)
A sequence of 400 frames, with 20 objects and an expected 2 edits per frame would require approximately
S = 400 * 2(1.38 log2 20 +3.66) or 8448 bits. To store a video of this size using SGI MVC 1 encoding would
require approximately 21 Mb. The example sequences in this paper contain an unusually high number of edits
per frame, as the sample frequency is low in order to conserve storage on departmental machines.

4 QUERY RESOLUTION ALGORITHM

To make optimal use of storage space we would prefer to store data in a compressed format. In order to
minimise response time we would prefer not to uncompress data as a preprocessing step. Ideally we would like
to read the information required directly from its compressed form, and this facility is provided by the notation
we propose.

The query resolution algorithm takes as inputs the edit notation for a sequence and a query string. The edit
notation may be expressed as

initial u string
initial V string

where e1e2 . • • n are the edits to the initial string. The query is a 2D B—string derived from the user's query. The
query string is invariant throughout the matching process, so we can eliminate recalculation of the relationships
between query objects by producing relationship tables. There are three types of relationship tables, one for each
type of match.

For type—2 matching a relationship table is created containing the relationship category for each pair of objects.
As there are five distinct relationship categories (see section 2) ,this table requires three bits for each element of
the matrix, which is upper triangular as shown in table 4.

_______ 01 02 03 . . .

oi r1,2 r1,3 . . . ri,
r2,3

°71—i r_i,

Table 4: Relationship table

Type—i matching requires relationship categories and also orthogonal relationship information, so a second
relationship table is created to contain orthogonal relationships. As there are four orthogonal directions: north,
south, east and west, we require four bits per entry. We also require orthogonal relationships for the reverse order
of objects, as both a orth_rel b and b orth_rel a must be compared. We therefore keep two tables.

When a query requires type—O matching a relationship table is created to store the exact relationship, along
each axis, between each pair of objects. The 13 basic relationships require four bits for each axis, therefore

SPIE Vol. 2606 / 397

Downloaded from SPIE Digital Library on 25 Apr 2012 to 128.184.184.38. Terms of Use: http://spiedl.org/terms

requiring one byte for each object pair. For n objects the space consumed by relationship tables, for each type of
matching is:

Type-2 3 . bits (1)

Type—i (3+8) . --. bits (2)

Type-O (3+8+8) . bits (3)

For 40 objects this represents a space requirement of less than 2kb.

The initial string from the edit notation is used to instantiate the object rank table. This table contains an
entry for each query object and records the position within the reference string of the begin and end symbols
along each axis, and the rank of each symbol. Once the object rank table has been instantiated we may proceed
to match the first frame from the reference sequence.

Matching uses a ma1ch iable (figure 3), which has a one bit entry for each object pair in the query. This
entry is set if the object pair are a type—n match in the query and reference string. The match is determined by
comparing relationships in the appropriate relationship table, or tables, with the relationship determined from
the object rank table for the object pair. Thus for type—2 matching for query object o and o , we would compare
the type—2 relationship table entry with the relationship category determined using the ranks from entries o
and o in the object rank table. For all objects o and 0j that are found to match, we set entry in the match
table, otherwise entry is cleared. A matching frame will result in all bits in the match table being set.

Once initial matching is completed we proceed to the next frame. To match the next frame we take the
sequence of edits e1e2 . . . em, where em is the first frame completion marker, and from these edits modify the
entries in the object rank table. Using the stored positions within the reference string of query object symbols
we can clearly discard some edits immediately. If we use to denote the first occurrence of a query svmbol
along an axis, and max the last, then the following edits do not affect query object relationships:

m i, j if (i < qin V j > qmax) A (j < q,njn V j > q)
di
i ch, i if i < q2i1 V i >

In some of these cases the true ranks of query objects will be altered, but their relative ranks will remain the
same. It is the relative positions that are required for this algorithm. In each of the above cases, we simply modify
the current reference string to reflect the edit, then continue to the next edit. It is necessary to keep the reference
string for cases such as moving a symbol from outside the range of the query, to inside the query range. Here
we need to know whether the symbol is an object symbol, or an equality symbol. The reference string however
is at no stage processed to determine either object ranks or symbol positions. Modifications to object ranks and
symbol positions are read directly from the edit sequence.

When a frame completion marker is reached the matching table is updated. A frame match is detected if all
bits in the match table are set. The process of updating the object rank table and match table is then repeated
for the remaining portions of the edit string, with each matching frame being added to a match list.

5 OPTIMISATIONS TO QUERY RESOLUTION

There are two optimisations we can make to the matching process that can greatly improve performance. We
first note that generally, not all objects are in motion. This implies that it is unlikely that all object relationships
will change between frames. If not all relationships change then we need not update the entire match table after

398 ISPIE Vol. 2606

Downloaded from SPIE Digital Library on 25 Apr 2012 to 128.184.184.38. Terms of Use: http://spiedl.org/terms

each group of edits. Let Q = q . . . qj . . . qj . . . q be the query, where qj . . . qj are the objects affected by a sequence
of edits. Any match table element that does not involve an object in qj . . . qj will not have changed, and therefore
need not be updated. The match table is displayed in figure 3, with elements that require updating shaded.

02

0 i-i

0.

0

°n-1 r1,

Figure 3: Match table

The second optimisation allows us to avoid updating the match table entirely in some cases. To implement
this we must keep an extra bit for each row of the match table. This bit is used to indicate whether the row
contains a mismatch. For the matrix in figure 3, if a row containing a mismatch occurs after row j it will not
have been altered by the previous edits. This of course means the row will still contain a mismatch, and therefore
there is no need to update the match table as the frame cannot match. We therefore continue and process the
subsequent edits. This optimisation may not be used when performing similarity retrieval as similarity retrieval
requires the match table for production of an association graph for maximal common subpicture detection.

If query objects are specified by attribute values, rather than unique object labels, there may be a number
of query strings to attempt to match for a single query. In this case we can reduce computation by creating
the relationship tables for each query string before beginning the matching process. We also create relationship
tables for the reference string of each frame as come to match it. Matching may then be performed by comparing
the reference frame relationship tables against each of the query tables. This allows matching with a single
parse of the edit sequence, and without recalculation of relationships in the reference string. It is unnecessary to
produce relationship tables for reference frames when only comparing against a single query table, as the cost of
comparison is equivalent to the cost of creating the relationship tables for the reference string.

6 CONCLUSION

2D strings have been successful for indexing pictorial databases. In later work Arndt and Chang proposed an
application of 2D strings to compression of indices for video sequences. This work provides a means of compression
for a sequence of 2D strings, where each 2D string describes a single frame of a sequence. There are algorithms
provided for conversion from a sequence of strings to compressed notationand the reverse transformation. Since
this work was completed, 2D strings for spatial reasoning have increased considerably in sophistication.

The work presented here uses 2D B—strings, which provide a much improved representation of spatial infor-
mation. Further, we considerably extend the earlier work by providing a method for reading relationship changes
directly from the compressed notation. This alleviates the need for decompression of the notation as a preprocess-

SPIE Vol. 2606 / 399

02 . . 0.i Oi . O

r111

r2

r.

Downloaded from SPIE Digital Library on 25 Apr 2012 to 128.184.184.38. Terms of Use: http://spiedl.org/terms

ing step. There is also a matching algorithm which takes advantage of the properties of the new representation
to reduce computation. Thus this system provides a compact and efficient indexing scheme for video data.

Further work in this area has produced a three level scheme for video sequence to videosequence matching.
This uses the work presented here to define frame matches and provides definitions of matching between asequence
of iconic frames and a video sequence. This work is now being applied to various problems in multimedia.

7 ACKNOWLEDGEMENTS

This work -is supported in part by an ARC grant number 4392.

8 REFERENCES
[1] A. Akutsu, Y. Tonomura, H. Hashimoto, and Y. Ohba. Video indexing using motion vectors. In SPIE

Proceedings of Visual Communicazons and Image Processing '92, volume 1818, pages 1522—1530. SPIE,
1992.

[2] J. F. Allen. Maintaining knowledge about temporal intervals. Communicaiions of Uie ACM, 26(11):832—843,
November 1983.

[3] T. Arndt and S.-K. Chang. Image sequence compression by iconic indexing. In 1989 IEEE Workshop on
Visual Languages, pages 177—182. IEEE, IEEE Computer Society, October 1989.

[4] A. S. Chakravarthy. Towards semantic retrieval of pictures and video. In Indexing and Reuse in Muliimedia
S,sems, pages 12—18, Seattle, WA, August 1994. AAAI, AAAI. Workshop Notes.

[5] S. Chang, E. Jungert, and T. Li. Representation and retrieval of symbolic pictures using generalized 2D
strings. In SPIE Proceedings of Visual Communicaiions and Image Processing IV, volume 1199, pages
1360—13'72. SPIE, 1989.

[6] S. Chang, Q. Shi, and C. Yan. Iconic indexing by 2D strings. IEEE Transaciions on PaUern Analysis and
Machine Intelligence, 9(3):413—428, May 1987.

[7] S. K. Chang, C. W. Yan, D. C. Dimitroff, and T. Arndt. An intelligent image database system. IEEE
Transac1ions on Software Engineering, 14(5):681—688, May 1988.

[8] M. Davis. Knowledge representation for video. In Indexing and Reuse in Muliimedia Systems, pages 19—28,
Seattle, WA, August 1994. AAAI, AAAI. Workshop Notes.

[911 E. Jungert. Extended symbolic projections as a knowledge structure for spatial reasoning. In 4h BPRA
Conference on PaUern Recognition, pages 343—351. Springer Verlag, March 1988.

[10] S. Lee and F. ilsu. Spatial reasoning and similarity retrieval of images using 2D C-string knowledge repre-
sentation. Paflern Recognition, 25(3) :305—318, 1992.

[11] S. Lee, M. Yang, and J. Chen. Signature file as a spatial filter for icon.ic image database. Journal of Visual
Languages and Computing, 3:373—397, 1992.

[12] K. Otsuji, Y. Tonomura, and Y. Ohba. Video browsing using brightness data. In K. Tzou and T. Koga,
editors, SPIE Proceedings of Visual Communications and Image Processing '91: Image Processing, pages
980—989, Boston, MA, November 1991. SPIE.

[13] H. Tamura and N. Yokoya. Image database systems: A survey. Pattern Recogniüon, 17(1):29—43, 1984.

400 / SPIE Vol. 2606

Downloaded from SPIE Digital Library on 25 Apr 2012 to 128.184.184.38. Terms of Use: http://spiedl.org/terms

