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Abstract

Distributed constraint optimization problems (DCOPs) are important in many areas of computer

science and optimization. In a DCOP, each variable is controlled by one of many autonomous

agents, who together have the joint goal of maximizing a global objective function. A wide variety

of techniques have been explored to solve such problems, and here we focus on one of the main

families, namely iterative approximate best-response algorithms used as local search algorithms

for DCOPs. We define these algorithms as those in which, at each iteration, agents communicate

only the states of the variables under their control to their neighbours on the constraint graph, and

that reason about their next state based on the messages received from their neighbours. These

algorithms include the distributed stochastic algorithm and stochastic coordination algorithms,

the maximum-gain messaging algorithms, the families of fictitious play and adaptive play

algorithms, and algorithms that use regret-based heuristics. This family of algorithms is commonly

employed in real-world systems, as they can be used in domains where communication is difficult

or costly, where it is appropriate to trade timeliness off against optimality, or where hardware

limitations render complete or more computationally intensive algorithms unusable. However,

until now, no overarching framework has existed for analyzing this broad family of algorithms,

resulting in similar and overlapping work being published independently in several different

literatures. The main contribution of this paper, then, is the development of a unified analytical

framework for studying such algorithms. This framework is built on our insight that when

formulated as non-cooperative games, DCOPs form a subset of the class of potential games. This

result allows us to prove convergence properties of iterative approximate best-response algorithms

developed in the computer science literature using game-theoretic methods (which also shows that

such algorithms can also be applied to the more general problem of finding Nash equilibria in

potential games), and, conversely, also allows us to show that many game-theoretic algorithms can

be used to solve DCOPs. By so doing, our framework can assist system designers by making the

pros and cons of, and the synergies between, the various iterative approximate best-response

DCOP algorithm components clear.

1 This research was undertaken as part of the ALADDIN (Autonomous Learning Agents for Decentralised

Data and Information Systems) project and is jointly funded by BAE Systems and EPSRC (Engineering and

Physical Sciences Research Council) strategic partnership (EP/C548051/1).



1 Introduction

In real-world applications, large-scale systems are difficult to optimally configure, often because

communication restrictions, organizational structures and/or complicated topologies make it

difficult, costly, or impossible to collect all the necessary information at a location where a

solution can be computed. This, in turn, motivates the use of distributed methods of optimization

in order to find the optimal configuration. In particular, in this paper, we concentrate on multi-

agent systems—that is, systems in which control is distributed across a set of autonomous

agents—as an important approach to distributed optimization. Within this context, we focus

specifically on distributed constraint optimization problems (DCOPs), a broad family of problems

that can be brought to bear on many domains, including: disaster response scenarios (e.g. Kitano

et al., 1999; Chapman et al., 2009), wide-area surveillance and distributed sensor network man-

agement (e.g. Hayajneh & Abdallah, 2004; Heikkinen, 2006; Kho et al., 2009), industrial task

allocation and scheduling problems (e.g. Zhang & Xing, 2002; Stranjak et al., 2008), and the

management of congested air, road, rail, and information networks (e.g. van Leeuwen et al., 2002;

Roughgarden, 2005).

In more detail, in a constraint satisfaction problem, the aim is to find a configuration of

states of variables such that they satisfy a set of constraints. A constraint optimization problem is

then given by a utility function that aggregates the payoffs for satisfying each of a set of ‘soft’

constraints (or, conversely, a penalty for violating constraints) over the states of variables in the

problem (Schiex et al., 1995). A distributed constraint optimisation problem arises when a number

of independent agents each control the state of (a subset of) the variables in the system, with the

joint aim of maximizing the global reward for satisfying constraints. A natural way to model

DCOPs, then, is as a multi-agent system.

As a consequence of the breadth of applications of DCOPs, many algorithms for solving them

have been developed using a number of approaches, which often differ according to the literatures

they were first proposed in (e.g. the computer science, game theory, machine learning, or statistical

physics literatures). It is our intention, then, to provide a unifying framework for analyzing a

broad class of DCOP algorithms. However, here we exclude from our analysis centralized

approaches in which all of the information needed to solve the DCOP is directly accessible to,

and/or in which all of the variables in a system come under the control of, a single decision maker,

as assumed within algorithms such as the breakout algorithm (Morris, 1993) and arc consistency

(Cooper et al., 2007), among others (see Apt (2003), for more examples from the broader constraint

programming literature). While such approaches are certainly useful in a range of scenarios, we

make this exclusion because we are particularly interested in algorithms for multi-agent systems, in

which the actors are distributed and can only communicate with their peers. The remaining

algorithms are known as distributed algorithms, and, for our purposes, we define three further

sub-groupings:

> Distributed complete algorithms, by which we mean algorithms that always find a configuration

of variables that maximizes the global objective function (as in finite domains one always exists).

This class includes ADOPT (Asynchronous Distributed OPTimization; Modi et al., 2005),

DPOP (Dynamic Programming OPtimization; Petcu and Faltings, 2005), and APO (Asynchronous

Partial Overlay; Mailler and Lesser, 2006). Due to the inherent computational complexity of

DCOPs, complete algorithms always run exponential in some aspect of their operation (i.e. the

number or size of messages exchanged, or the computation performed by the agents).

Furthermore, distributed complete algorithms usually operate by passing complicated data

structures, or run on a highly structured ordering, such as a spanning tree, and often require

additional processing of the original constraint graph.
> Local iterative message-passing algorithms, such as max-sum (Aji & McEliece, 2000) or distributed

arc consistency (Cooper et al., 2007). In these algorithms, neighbouring agents exchange messages

comprising a data structure that contains the values of different local variable configurations, and

use these values to construct new messages to pass on to other agents.

412 A . C . CHAPMAN E T AL .



> Local iterative approximate best-response algorithms, such as the distributed stochastic algorithm

(Tel, 2000; Fitzpatrick & Meertens, 2003), the maximum-gain messaging algorithm (Yokoo &

Hirayama, 1996; Maheswaran et al., 2005), fictitious play (Brown, 1951; Robinson, 1951),

adaptive play (Young, 1993, 1998), and regret matching (Hart & Mas-Colell, 2000). In this class,

agents exchange messages containing only their state, or can observe the strategies of their

neighbours. In game-theoretic parlance, this is known as standard monitoring2, and, as the name

suggests, is a typical informational assumption implicit in the literature on learning in games.

In this paper, we refer to the last two groups together as local iterative algorithms (see the

taxonomy in Figure 1), to differentiate them from their complete counterparts3. We group them

under this term because both classes operate only at the local level, with messages exchanged

between neighbouring agents at each iteration of the algorithm, and without any overarching

structure controlling the timing or ordering of messages.

In many real distributed systems, we find that local iterative algorithms are often preferred over

distributed complete algorithms4. This is because, in such domains, it is necessary and appropriate

to trade solution quality off against timeliness or communication overhead. For example, in real-

time target tracking it may be more important to produce a good solution quickly, rather than

wait for the optimal solution. This is the reasoning Krainin et al. (2007) invoke to motivate their

use of the local iterative algorithm to coordinate scan schedules in a real meteorological radar

network. Similarly, in remote and mobile sensor management, an algorithm that has a low

communication overhead may be preferred because of the large drain on a sensor’s battery charge

caused by communication, as evidenced by the choice of algorithm used in many problems in

distributed sensor networks (e.g. Zhang et al., 2005; Farinelli et al., 2008) and multi-robot

cooperative data fusion problems (e.g. Matthews & Durrant-Whyte, 2006; Stranders et al., 2009).

Furthermore, in some real distributed systems, hardware limitations may outright prohibit the

use of distributed complete algorithms. For example, when using DPOP the capacity of the

communication buffer of a typical sensor node is quickly exceeded as a problem grows in size,

because the message size is exponential in the induced width of the communication tree (e.g. Petcu

& Faltings, 2005; Rogers et al., 2009). Similarly, the number of messages exchanged in ADOPT is

exponential in the height of the communication tree, and in APO, the mediator agents are required

to perform computations, which grow exponentially in the size of the portion of the problem they

are responsible for. Such exponential relationships are simply unacceptable in embedded devices

that exhibit constrained computation, bandwidth, and memory resources. On the other hand, in

these settings, it is clear that local algorithms are more effective, because the quality of the

solutions they produce are typically satisfactory (even if they are not optimal), and they perform

favourably in terms of the issues of scalability mentioned above.

2 Cf. partial monitoring, as in multi-armed Bandit problems. See Blum and Mansour (2007) for a discussion

of the issues surrounding these two monitoring models.
3 Note that, when applied to DCOPs, many approaches to distributed optimization usually can be placed

into one of the three categories defined above. For example, many negotiation models and local exchange

markets are, in effect, local approximate best-response algorithms. Consider a negotiation model in which at

each time step one agent in each neighbourhood announces a new configuration of the variables under its

control to its neighbours, with the constraint that each new configuration weakly improves the agent’s payoff

(as is commonly employed). This type of negotiation model is captured by our framework, as messages are

local (only neighbours receive the agent’s update to its state) and the process is iterative. We also point out

that other approaches to the general problem of distributed optimization that can be applied to DCOPs, such

as token-passing (e.g. Xu et al., 2005) or auction protocols (e.g. Gerkey & Mataric, 2002), do not fall into any

of these three categories. However, we consider an exhaustive classification and analysis of these distributed

optimization techniques outside the scope of this paper, because we are primarily concerned with local

approximate best-response algorithms in the specific case of DCOPs.
4 The complete algorithms are typically used in applications where their optimality is the key concern and

timeliness is not a limiting factor, such as industrial scheduling and timetabling problems (Petcu & Faltings,

2005) or routing protocols for fixed environmental sensor networks (Kho et al., 2009).
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Now, the characteristics of complete DCOP algorithms are well understood, and the properties of

the entire framework of local message-passing algorithms have been extensively analyzed, with

guarantees placed on their solutions under a range of assumptions, for example, for tree structured

(Aji & McEliece, 2000) or single-looped constraint graphs (Weiss, 2000). In contrast, no such

unifying and categorizing framework has existed for local iterative algorithms until now. One reason

for this is because, broadly speaking, these algorithms originate from two different literatures; either

they are learning or adaptive processes taken from game theory or they are distributed versions of

centralized procedures developed for traditional constraint optimization problems or heuristic

search methods taken from computer science. In more detail (centralized), constraint optimization

problems evolved, in part, as a method for analyzing over-constrained constraint satisfaction

problems. As such, traditional computer science approaches to such problems include the breakout

algorithm, arc consistency, dynamic programming, and stochastic optimization techniques. Con-

sequently, a traditional computer science approach to solving DCOPs, which includes many local

approximate best-response algorithms, starts by developing distributed versions of these centralized

algorithms. For example, distributed breakout (Hirayama & Yokoo, 2005) and maximum-gain

messaging (Maheswaran et al., 2005) are two local approximate best-response algorithms that

descend from the breakout algorithm, and distributed versions of simulated annealing have been

developed for DCOPs (Fitzpatrick & Meertens, 2003; Arshad & Silaghi, 2003), which also fall into

the category of local approximate best-response algorithms. On the other hand, from a game-

theoretic perspective, in a DCOP, each autonomous agent’s aim is to maximize its own private utility

function through its independent choice of state. From this point of view, each agent’s optimal

choice is strategically dependent on the actions of its neighbouring agents (a perspective on DCOPs

first adopted by Maheswaran et al., 2004), and distributed algorithms for solving such problems is

the focus of the literature of learning in games (e.g. Fudenberg & Levine, 1998). However, what is

common to both of these literatures is that the techniques used are all local, iterative, approximate

best-response algorithms, in which agents exchange messages containing only their state, and which

typically converge to local optima (or Nash equilibria); and it is game theory that has the tools and

terminology to analyze algorithms that operate in such settings. In particular, we stress that, in

giving up global optimality, we consider the set of local optima, or equivalently, Nash equilibria, to

be the appropriate solution concept for this class of algorithm. This is because this set represents the

stable configurations of variables that can be reached by exchanging messages that contain only an

agent’s state (i.e. the information in the messages circulated in all of the algorithms in this class

defines the appropriate solution concept).

Against this background, the main contribution of this paper is the first unifying analytical

framework for studying iterative approximate best-response algorithms that are used to solve both

DCOPs and potential games. Our framework is based on a problem formulation known as a

hypergraphical game (Papadimitriou & Roughgarden, 2008) and convergence results regarding the

class of potential games (Monderer & Shapley, 1996b). Specifically, we show that a hypergraphical

Distributed Constraint Optimisation Algorithms

Local iterative algorithms Distributed complete algorithms
(e.g. DPOP, ADOPT, APO)

Message passing algorithms
(e.g. max–sum, arc consistency)

Approximate best response algorithms

Local search algorithms
(Computer science)

Adaptive learning heuristics
(Game theory)

Figure 1 Taxonomy of the categories of algorithms considered in this paper, with the focus, local iterative

approximate best-response algorithms, in bold.
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game is a potential game if every local interaction can be represented as a local potential game, and

this is the case for all DCOPs. We then use this framework to develop a novel parameterization of

iterative approximate best-response DCOP algorithms. In order to populate this parameterization,

we decompose algorithms proposed in both the game theory and computer science literatures in

such a way so as to identify categories of substitutable components. We then analyze how these

components affect the convergence properties of an algorithm employing them, using convergence

analysis techniques developed specifically for potential games. As such, our framework can be

applied to potential games generally. However, due to the fact that we are considering these

algorithms as distributed optimization tools, we restrict the larger part of our discussion to the

specific case of DCOP games.

In more detail, in this paper, we advance the state of the art in the following ways:

1. We derive a general result regarding hypergraphical potential games, which states that a

hypergraphical game is a potential game if each of the local games is a potential game.

2. Building upon a game-theoretic formulation of DCOPs (introduced by Maheswaran et al.,

2004), we show that, as a consequence of the above result, DCOP games form a subset of

potential games. This allows us to apply established methods for analyzing algorithms from

game theory to existing algorithms produced by the computer science community, employing

the Nash equilibrium condition as the relevant solution concept.

3. We develop an overarching framework that encompasses many local approximate best-response

DCOP algorithms, in which we decompose the algorithms into three components: (i) a state

evaluation, in the form of a target function; (ii) a decision rule, mapping from target function to a

choice of state; and (iii) an adjustment schedule, controlling which agent updates its state when.

This framework allows us to elucidate, for the first time, the relationships between the various

algorithms in the form of a parameterization of the local iterative DCOP algorithm design space.

At present, various algorithms from the different disciplines use different terms for the same

concepts, and are largely developed without awareness of the many similarities between them5.

4. By constructing such a unified view, we are able to uncover synergies that arise as a result of

combining various approaches (e.g. using a particular target function and decision rule in order

to reduce the communication requirement of an algorithm), and identify trade-offs in the

behaviour produced by different components (e.g. choosing between adjustment schedules to

produce either a slower, but anytime, algorithm, or one that converges quicker on average).

The analysis described above gives a multi-agent system designer the information needed to tailor

a DCOP algorithm to their particular requirements, whether they be high quality solutions, rapid

convergence, asynchronous execution, or low communication costs. Moreover, such a unified

approach to analyzing local approximate best-response DCOP algorithms is valuable in itself,

because it makes the pros and cons of the various algorithm configurations clear. Now, while this is

our primary motivation, a secondary motivation is that, by stating different approaches in terms of a

common framework, we can reconcile the differences in terminology that exist across the various

disciplines investigating DCOPs. This, we believe, is a significant hindrance to progress in this field,

and one which a unified approach can start to remove. Furthermore, we believe that our framework

provides an important step towards greater use of a common specification of other problems that

are examined by both the computer science and game theory communities, such as multi-agent

resource and task allocation problems or the management of congested networks.

5 One notable exception to this trend is Marden et al. (2009a), who illustrate the connections between

potential games and consensus problems. In a consensus problem, a set of agents must reach consensus upon a

given value (such as a meeting point). These problems may be modelled as a DCOP containing binary and

unary constraints. Each binary constraint between two agents is satisfied when their variables are set to the

same value, and violations are penalized in proportion to their distance between their variables’ values.

However, an agent’s strategy set may be limited by its unary constraints such that it is not possible for it to

simultaneously satisfy all its binary constraints.
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The paper progresses as follows: we begin the next section by describing DCOPs. We then

introduce the notation of non-cooperative games, state the Nash equilibrium solution concept for

games, describe hypergraphical games, and characterize the class of potential games and their

associated properties. Then, as a first step in developing our framework of the local approximate

best-response DCOP algorithm design space, we show that DCOPs are potential games. Using this

result, in Section 3 we populate our parameterization of the algorithm design space with com-

ponents of algorithms taken from the literatures on local search for DCOPs and learning in games.

In Section 4 we discuss the connections between, and overlapping features of, game-theoretic

algorithms and local approximate best-response algorithms developed by computer scientists

specifically for solving DCOPs. In more detail, by characterizing DCOPs as potential games,

convergence to Nash equilibrium of the game-theoretic algorithms considered here is guaranteed.

Moreover, by drawing correspondences between the game-theoretic algorithms and those developed

specifically for DCOPs, these guarantees may be applied to the convergence of DCOP algorithms.

Finally, Section 5 summarizes our findings and discusses directions for future work.

2 Distributed constraint optimization problems as potential games

In this section we show that DCOPs, when viewed from a game theory perspective (as introduced

by Maheswaran et al., 2004), form a subset of the class of potential games, a useful class of games

with several properties desirable to the designer of a multi-agent system. Given this insight, we can

bring together the two sets of algorithms—taken from game theory and computer science—and

analyze them under a single framework, using results regarding the class of potential games. To

this end, we begin this section with an overview of DCOPs. We then introduce non-cooperative

games and the hypergraphical game representation, in which a large game is reduced to a bipartite

graph composed of agents connected to smaller local games. In the specific context of DCOPs,

these local games correspond to constraints. We then focus on potential games, and in particular,

we show that a necessary and sufficient condition for a hypergraphical game to be a potential game

is that each of its local games are potential games. Now, the natural way to express constraints in a

DCOP is as team games, which are a specific type of potential game. An important consequence of

this is that DCOP games form a subset of potential games. Thus, game-theoretic techniques used to

analyze algorithms in potential games can be used to analyze DCOP algorithms. This insight is used

in subsequent sections, where components of our algorithm parameterization are analyzed using

such techniques.

2.1 Constraint optimization problems

A constraint optimization problem is represented by a set of variables V5 {v1, v2,y}, each of which

may take one of a finite number of states or values, sjASj, a set of constraints C5 {c1, c2,y}, and a

global utility function, ug, that specifies preferences over configurations of states of variables in the

system. A constraint c5/Vc, RcS is defined over a set of variables Vc C V and a relation between

those variables, Rc, which is a subset of the Cartesian product of the domains of each variable

involved in the constraint, Pvj2Vc
Sj. A simple example is a binary constraint of the type typically

invoked in graph colouring problems, where the relation between the two variables involved, j and

k, is given by the rule that if vj 5 s then vk 6¼ s. A function that specifies the reward for satisfying, or

penalty for violating, a constraint is written uckðsckÞ, where sck is the configuration of states of the

variables Vck .

Using this, the global utility function aggregating the utilities from satisfying or violating

constraints takes the form:

ugðsÞ ¼ uc1ðsc1Þ � � � � � uckðsckÞ � � � � � ucl ðscl Þ;

where " is a commutative and associative binary operator. Now, as we are trying to generate a

preference ordering over outcomes, we would like to ensure that an increase in the number of

satisfied constraints results in an increase in the global utility. That is, the aggregation operator
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should be strictly monotonic: for any values a, b, c, if a, b then c"a, c"b. Consequently, the

choice of operator affects the range of values that the ui can take. For example, if " is multi-

plication, the values of ui must be elements of Rþ, or if " is addition, the values of ui may be

elements of R. Either approach will generate a suitable ordering, however, from here on we will

take the common approach of using additive aggregation functions:

ugðsÞ ¼
X
ck2C

uckðsÞ: ð1Þ

Constraints may be ascribed different levels of importance by simply weighting the rewards for

satisfying them, or by using a positive monotonic transform of constraint reward (Schiex et al.,

1995). The objective is then to find a global configuration of variable states, s*, such that

sl 2 argmax
s2S

ugðsÞ:

It is also possible to include hard constraints in this formalization of DCOPs. This is achieved by

augmenting the additive global utility function with a multiplicative element that captures the hard

constraints:

ugðsÞ ¼
Y

hck2HC

uhckðsÞ
X

sck2SC
usckðsÞ

 !
;

where HC and SC are the set of hard and soft constraints, respectively, and where the payoff for

satisfying each hard constraint is 1, and 0 if the hard constraint is violated. The consequence is that

if any of the hard constraints are violated the global utility is 0, while if all of the hard constraints

are satisfied the global utility increases with the number of soft constraints satisfied. One downside

to including hard constraints in this manner is that the strict monotonicity of ug(s) is lost, meaning

that a change in a variable’s state may satisfy additional constraints, but not increase the global

utility. If this is the case, it implies that the global utility possesses many local, sub-optimal stable

points that are only quasi-local maxima.

2.2 Distributed constraint optimization problems

A DCOP is produced when a set of autonomous agents each independently control the state of a

subset of the variables of a constraint optimization problem, but share the goal of maximizing the

rewards for satisfying constraints (i.e. they aim to jointly maximize ug(s)). For pedagogical value,

and without loss of generality, we consider the case where each agent controls only one variable.

We notate the set of agents involved in a constraint by Nc, and the set of constraints in which i is

involved is Ci. Each agent has a private utility function, ui(s), which is dependent on both its own

state and the state of all agents that are linked to any constraint cACi. We call these agents i’s

neighbours, notated v(i), and notate those neighbours involved in a specific constraint ck as nckðiÞ.
The simplest and, arguably, most natural, choice of utility function in DCOP is to set each agent

i’s utility to the sum of the payoffs for constraints that it is involved in:

uiðsÞ ¼
X
ck2Ci

uckðsi; snck ðiÞÞ: ð2Þ

Now, each agent’s choice of strategy is guided by its desire to maximize its private utility, but this

utility is strategically dependent on the strategies of its neighbours. In order to analyze such a

system, we use the tools and terminology of non-cooperative game theory.

2.3 Non-cooperative games

A non-cooperative game, G 5/N, {Si, ui}iANS, is comprised of a set of agents N5 1,y, n, and

for each agent iAN, a set of strategies Si, with �N
i¼1Si ¼ S, and a utility function ui : S ! R. Note

that, in the context of DCOPs, we can use si to represent the ‘state of a variable’ and ‘strategy of an

agent’ interchangeably. A joint-strategy profile sAS is referred to as an outcome of the game,
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where S is the set of all possible outcomes, and each agent’s utility function specifies the payoff

they receive for an outcome by the condition that, if and only if the agent prefers outcome s to

outcome s0, then ui(s). ui(s
0). That is, each agent’s utility function ranks their preferences over

outcomes. We will often use the notation s5 {si, s2i}, where s2i is the complimentary set of si.

In non-cooperative games, it is assumed that an agent’s goal is to maximize its own payoff,

conditional on the choices of its opponents. A best-response correspondence, bi(s2i), is the set of agent

i’s optimal strategies, given the strategy profile of its opponents, biðs�iÞ ¼ argmaxsi2Si
fuiðsi; s�iÞg.

Stable points in such a system are characterized by the set of Nash equilibria.

DEFINITION 1 A joint-strategy profile, s*, such that no individual agent has an incentive to change to

a different strategy, is a Nash equilibrium:

uiðsli ; sl�iÞ�uiðsi; sl�iÞ � 0 8 si; 8 i: ð3Þ

In a Nash equilibrium, each agent plays a best response: sli 2 biðsl�iÞ for all iAN. As such, in a

game where agents independently choose which strategy to adopt, a Nash equilibrium is a stable

point where no individual agent has an incentive to change their strategy.

We can also define a strictNash equilibrium, which is a necessary component of many proofs of

convergence in game theory, by replacing the inequality in Equation (3) with a strict inequality.

The implication of this substitution is that in a strict Nash equilibrium, no agent is indifferent

between their equilibrium strategy and another strategy, which is not the case in a Nash equili-

brium. This also leads us to a definition of non-degenerate games. In general, a non-degenerate

game is one for which in every mixed-strategy Nash equilibrium, all agents mix over the same

number of pure strategies. When considering pure-strategy Nash equilibria, non-degeneracy

means that for any pure-strategy equilibrium profile of its opponents, an agent’s best-response

correspondence contains only one strategy. Consequently, all pure-strategy Nash equilibria in

non-degenerate games are strict. Note that this condition does not exclude the possibility of a

game possessing multiple Nash equilibria. Rather, it ensures that at most one equilibrium exists

for each of an agent’s pure strategies.

2.4 Hypergraphical games

In DCOPs, an agent’s utility is a function of the constraints in which it is involved, and is only

dependent on its own and its neighbours’ states: that is, ui(si, sv(i)). Therefore, we can model a

DCOP game using a compact representation known as a hypergraphical game. In more detail,

hypergraphical games are a model used to represent non-cooperative games that have strict

independences between players’ utility functions (Papadimitriou & Roughgarden, 2008). In this

model, the independences in the agents’ utility functions are used to decompose an n-player global

game into local games, each involving fewer players. This decomposition can be thought of as a

bipartite graph, in which one set of nodes corresponds to the set of players and the other repre-

sents the games played between them. Then, any agent i whose strategy affects others players’

payoffs in a particular local game is connected to that local game node. This representation is

more compact than the standard normal form whenever the global game can be factored into

sufficiently many local games, and when the maximum number of neighbours an agent has, k,

can be bounded k5 n, it is exponentially smaller than the standard form (Papadimitriou &

Roughgarden, 2008).

Formally, a hypergraphical game comprises a set of local games: G 5 {g1, g2,y, gm}. Each

local game is a tuple g ¼ hNg; fSi; u
g
i gi2Ngi, where NgDN is the set of agents playing g and

ugi : [i2NgSi ! R is the payoff to i from its involvement in g. For each player, Si is identical

for each game, and player i chooses one strategy to play in all of the local games it is involved in

(i.e. i plays the same strategy in each local game). As in DCOPs, agent i’s neighbours, v(i), are the

agents with whom agent i shares a local game node, with those neighbours involved in a specific

local game g notated vg(i). Agents are usually involved in more than one local game, with the set of
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local games in which i is involved denoted Gi. Agent i’s total payoff for each strategy is given by the

sum of payoffs from each local game it is involved in:

uiðsi; s�iÞ ¼
X
g2Gi

ugi ðsi; sngðiÞÞ:

In the context of DCOPs, each constraint is modelled by a local game, and agents are linked to the

local games corresponding to their constraints. Each agent’s utility then is given by the sum of the

utilities from constraints that it is involved in (as in Equation 2).

More generally, the hypergraphical game model generalizes the model of factor graphs

(Kschischang et al., 2001). Factor graphs can be used to represent DCOPs, as well as graphical

probability models such as Bayesian networks and Markov random fields. In both the factor graph

and hypergraphical game models, each variable node comes under the control of an agent, and,

typically, the global utility to be optimized is the sum or product of each agent’s utility6. The

difference between the models lies in what the hyperedges represent. In factor graphs, a hyperedge

(factor node) represents a single valued function, which is its contribution to the utility of the agents

it contains. In contrast, each hyperedge in a hypergraphical game represents an arbitrary non-

cooperative game, in which agents’ payoffs may differ. In other words, a factor graph is a special

case of a hypergraphical game in which each local game gives an identical payoff to all the agents

involved7: that is, local games in a DCOP are team games, which are a subclass of potential games.

2.5 Potential games

The class of potential games is characterized as those games that admit a function specifying the

participant’s joint preference over outcomes (Monderer & Shapley, 1996b). This function is

known as a potential function and, generally, it is a real-valued function on the joint-strategy

space (the Cartesian product of all agents’ strategy spaces), defined such that the change in a

unilaterally deviating players utility is matched by the change in the potential function. A potential

function has a natural interpretation as representing opportunities for improvement to a player

defecting from any given strategy profile. As the potential function incorporates the strategic

possibilities of all players simultaneously, the local optima of the potential function are Nash

equilibria of the game; that is, the potential function is maximized by self-interested agents in a

system. Importantly, we will show that the global utility function acts as a potential for a DCOP

game. We now formalize some of the key concepts related to potential games.

DEFINITION 2 (Potential Games). A function P : S ! R is a potential for a game if

Pðsi; s�iÞ�Pðs0i; s�iÞ ¼ uiðsi; s�iÞ�uiðs0i; s�iÞ 8 si; s0i 2 Si 8 i 2 N:

A game is called a potential game if it admits a potential.

Intuitively, a potential is a function of action profiles such that the difference induced by a

unilateral deviation equals the change in the deviator’s payoff.

The usefulness of potential games lies in the fact that the existence of a potential function for a

game implies a strict joint preference ordering over game outcomes. This, in turn, ensures that the

game possesses a number of particularly desirable properties, which we will use to analyze the

behaviour of various algorithms in the coming sections.

THEOREM 3 (Monderer & Shapley, 1996b). Every finite potential game possesses at least one

pure-strategy equilibrium.

6 Generally, any optimization problem that forms a commutative semi-ring can be expressed as a bipartite

factor graph—see Aji and McEliece (2000) for details.
7 Indeed, this result holds for any problem that can be represented as a factor graph and in which the

variable domains are finite.
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Proof. Let P be a potential for a game G. Then the equilibrium set of G corresponds to the set of

local maxima of P. That is, s is an equilibrium point for G if and only if for every iAN,

PðsÞ � Pðs0i; s�iÞ 8 s0i 2 Si:

Consequently, if P admits a maximal value in S (which is true by definition for a finite S), then P

possesses a pure-strategy Nash equilibrium. &

Now, pure-strategy Nash equilibria are particularly desirable in decentralized agent-based

systems, as they imply a stable, unique outcome. Additionally, strict Nash equilibria must be pure

by definition. Mixed-strategy equilibria, on the other hand, imply a stationary, probabilistically

variable equilibrium strategy profile. Also note that it is likely that more than one Nash equilibrium

exists, and that some of those Nash equilibria will be sub-optimal.

Building on this, a step in a game G is a change in one player’s strategy. An improvement step in

G is a change in one player’s strategy such that its utility is improved. A path in G is a sequence of

steps, f 5 (s0, s1,y, st y), in which exactly one player changes their strategy at each step t. A path

has an initial point, s0, and if it is of finite length T, a terminal point sT. A path f is an improvement

path in G if for all t, ui(s
t21), ui(s

t) for the deviating player i at step t. A game G is said to have the

finite improvement property if every improvement path is finite.

THEOREM 4 (Monderer & Shapley, 1996b). Every improvement path in an ordinal potential game

is finite.

Proof. For every improvement path f 5 (s0, s1, s2, y) we have, by Equation (2):

Pðs0ÞoPðs1ÞoPðs2Þo � � �

Then, as S is a finite set, the sequence f must be finite. &

The finite improvement property ensures that the behaviour of agents who play ‘better responses’

in each period of the repeated game converges to a Nash equilibrium in finite time. Taken together,

these properties ensure that a number of simple adaptive processes converge to a pure-strategy Nash

equilibrium in the game (as discussed further for specific algorithms in Section 4).

Using the definitions above, we can construct a mapping between potential and hypergraphical

games. To begin with, we note that Young (1998) shows that if every pairwise utility dependency

corresponds to a bimatrix potential game between two agents, then the entire game is a potential

game. Building on this, we generalize Young’s result to hypergraphical potential games comprising

several n-player games, a result upon which the rest of the paper hinges.

THEOREM 5 A hypergraphical game G is a potential game if every local game g is a potential game.

Proof. Sufficiency is shown by constructing a potential function for the hypergraphical game G.

Each local game g has a potential Pg(s), so a potential for the entire game, P, can be constructed

by aggregating the potentials of the local games:

PðsÞ ¼
X
g2G

PgðsÞ:

Now, given a strategy profile s, a change in a deviating player i’s payoff is captured by changes in

the values of potential functions, Pg(s), of the local games i is involved in, Gi, so the following

statements hold:

uiðsi; snðiÞÞ�uiðs0i; snðiÞÞ ¼
X
g2Gi

ugi ðsi; sngðiÞÞ�
X
g2Gi

ugi ðs0i; sngðiÞÞ

¼
X
g2G

Pgðsi; s�iÞ�
X
g2G

Pgðs0i; s�iÞ

¼ Pðsi; s�iÞ�Pðs0i; s�iÞ;

ð4Þ

where the second line flows from the first because the potential function between independent

agents is a constant value, and the third line flows from the second by definition. &
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Therefore, if every local game has a potential, the global hypergraphical game also has a

potential. In Section 2.6 we will use a specific instance of Theorem 5 to show that DCOP games

are potential games. This result uses the fact that team games are a subclass of potential games.

Formally, a team game is a game in which all agents share a common payoff function, and this

common payoff function is a potential for the game: that is, ugi ðsgÞ ¼ PgðsgÞ 8 iAN.

2.6 Distributed constraint optimization problems as graphical potential games

In Equation (2), we defined agents’ utilities such that all agents involved in a constraint receive

the same reward from that constraint; in other words, each constraint game is a team game.

Consequently, we can make the following remark, which is a corollary of Theorem 5.

COROLLARY 6 Every DCOP game in which the agents’ private utilities are the sum of their constraint

utilities is a potential game.

As per Theorem 5, a potential for such a DCOP game can be constructed by aggregating the local

(team) games’ potential functions. Of course, this is exactly the global utility function ug, specified

in Equation (1). Now, for completeness, observe that, because a change in i’s strategy only affects

the neighbours of i, v(i), the following statements hold:

uiðsi; snðiÞÞ�uiðs0i; snðiÞÞ ¼
X
ck2Ci

uckðsi; snðiÞÞ�
X
ck2Ci

uckðs0i; snðiÞÞ

¼
X
ck2C

uckðsi; s�iÞ�
X
ck2C

uckðs0i; s�iÞ

¼ ugðsi; s�iÞ�ugðs0i; s�iÞ:

ð5Þ

Thus, any change in state that increases an agent’s private utility also increases the global utility of

the system8.

Now, when the scenario requires employing a local approximate best-response algorithm, the

solution to a DCOP game is produced by the independent actions of the agents in the system.

These solutions are located at stable points in the game; that is, for this class of algorithms, the

Nash equilibria of the DCOP game characterize the set of solutions to the constraint optimization

problem. We have shown that DCOP games are potential games, so we are assured that at least

one pure-strategy Nash equilibrium exists. Furthermore, the globally optimal strategy profile

corresponds to a pure-strategy Nash equilibrium, because it is a maximum of the potential. We

emphasize that in most DCOPs many Nash equilibria exist, and furthermore, many of those will

be sub-optimal. This is particularly the case when hard constraints are incorporated, because, as

noted earlier, the global utility function is likely to have many local quasi-maxima wherever a hard

constraint is violated.

Recently, however, quality guarantees on worst-case Nash equilibria and k-optima for DCOP

games have been derived for certain classes of DCOP games (Pearce & Tambe, 2007; Bowring

et al., 2008). In more detail, k-optima are a generalization of Nash equilibria, applicable only to

DCOPs, that are stable in the face of deviations of all teams of size k and less. The payoff to a

team, x is defined as

uxðsx; s�xÞ ¼
X
ck2Cx

uckðsx; s�xÞ;

8 Tumer and Wolpert (2004) provide another method for showing that DCOP games are potential games.

Generally, any global utility function whose variables are controlled by independent agents can be instan-

tiated as a potential game by setting each agent’s utility function equal to its marginal effect on the global

utility (as in the alignment criterion above). Then, by definition, any change in an agent’s utility is matched by

an equivalent change in the global utility. In a DCOP, one way to achieve this is to set each agent’s utility to

the sum of the payoffs for constraints that it is involved in, as in Equation (2).
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where Cx 5[iAxCi; that is, the team utility is the sum of all constraint utilities any member of x is

involved in, counting each constraint only once. Nash equilibria are k-optima with k5 1, and every

(k1 1)-optimum is also a k-optimum, so every k-optima is a Nash equilibrium9. The key result is

that the worst-case k-optimal solution improves as the value of k increases (i.e. as the maximum size

of the deviating coalitions considered increases). Given this, the worst-case k-optimum results can be

used to guarantee lower bounds on the solutions produced by some DCOP algorithms. However,

bounds only exist for k greater than or equal to the constraint arity of the problem, so bounds do

not exist for Nash equilibria in problems involving anything other than unary constraints.

We now present an example DCOP—a graph colouring game. We give this example because it

is often used as a canonical example in this domain, and it shows that complicated payoff

structures may be constructed by combining simple constraint games.

EXAMPLE 1 In graph colouring, neighbouring nodes share constraints, which are satisfied if the nodes

are in differing states. Consider the following graph colouring problem, where each node can be either

black or white, that is, Si 5 {B, W}, and the associated 23 2 constraint game:

A B

sC
sA B W

B (0, 0) (1, 1)
W (1, 1) (0, 0)

C
sC

sB B W

B (0, 0) (1, 1)
W (1, 1) (0, 0)

Now, in this example, agents A and B each effectively play the game above with agent C, while

agent C plays the composite game below, constructed by combining the constraint games it is playing

with each neighbour. In the tables below, A and B are column players and C is the row player. The top

table contains the payoffs (uA, uB, uC), and a potential for the game is given in the lower table:

sC
sA, sB B, B B, W W, B W, W

B (0, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 2)
W (1, 1, 2) (1, 0, 1) (0, 1, 1) (0, 0, 0)

sC
sA, sB B, B B, W W, B W, W

B 0 1 1 2
W 2 1 1 0

In the above we have described the utility functions that define a DCOP game, the associated

solution concepts, and some important properties of DCOP games that flow from their classifi-

cation as potential games. However, what is not specified in the above formulation are the

processes by which agents adjust their states in order to arrive at a solution. These are the

algorithms used to solve the game, and are the topic of the next section. Before continuing,

however, we make one general comment regarding both the interpretation of the repeated game

and the strategy adaptation process. We interpret the agents as being involved in several rounds of

negotiation about the joint state of their variables before playing the DCOP game once. Alter-

natively, we could justify this perspective by assuming that the agents suffer from extreme myopia,

so that they do not look beyond the immediate rewards for taking an action, as is standard in

much of the literature on learning in repeated games. Either way, the only Nash equilibria that are

supported are the Nash equilibria of the one-shot DCOP game; that is, the Folk Theorem for

repeated games does not come into consideration.

9 Although Nash equilibria correspond to 1-optima, note that strong equilibria (Aumann, 1959) do not

correspond to n-optima. A strong equilibrium is robust to deviations from all coalitions of n players and less,

where a coalition deviates if at least one member’s individual payoff improves and none decrease. In a DCOP

game, an n-optimum always exists, while a strong equilibrium may not. However, if a strong equilibrium does

exist, it is n-optimal.
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3 A framework for local approximate best-response distributed constraint

optimization problems algorithms

In this section we describe the basic components of the main DCOP algorithms present in the

literature, including those developed for solving potential games, those developed for DCOPs

generally, and those designed to solve specific problems that may be represented by a DCOP. By

doing this, we open a way to investigate synergies that arise by combining seemingly disparate

approaches to solving DCOPs using local approximate best-response techniques. This is pursued

further in the next section, where we analyze how differences in the algorithms affect their

behaviour and the solutions they produce, and propose novel algorithms incorporating the best

features of each. However, first of all, an explication of the basic framework we use to analyze all

the algorithms and the design space is provided.

As noted above, in all the DCOP algorithms we discuss, agents act myopically, in that they only

consider the immediate effects of their actions (or state changes, see the discussion above). Given

an appropriate trigger, the individual agents follow the same basic two-stage routine, comprising

state evaluation, which produces some measure of the desirability of each state, followed by a

decision on which action to take, based on the preceding state evaluations. The system-wide

process that triggers an agent’s processes is given by an adjustment schedule, that controls which

agent adjusts its state at each point in time. In more detail:

State evaluation: Each algorithm has a target function that it uses to evaluate its prospective

states. The target functions are typically functions of payoffs, and sometimes take parameters that

are set exogenously to the system or updated online. Additionally, some algorithms may make use

of information about the past actions of agents to compute the value of the target function.

Decision rule: The decision rule refers to the procedure by which an agent uses its evaluation of

states to decide upon an action to take. Typically an algorithm prescribes that an agent selects

either the state that maximizes or minimizes the target function (depending on the target function

in question), or selects a state probabilistically, in proportion to the value of the target function for

that state.

Adjustment schedule: In many algorithms (particularly those addressed in the game theory

literature), the scheduling mechanism is often left unspecified, or is implicitly random. However,

some algorithms are identified by their use of specific adjustment schedules that allow for pre-

ferential adjustment or parallel execution. Furthermore, in some cases the adjustment schedule is

embedded in the decision stage of the algorithm.

Note that communication does not figure explicitly in this framework. Information is com-

municated between agents for two purposes: (i) to calculate the value of their target function, or

(ii) to run the adjustment schedule. Given this, the communication requirements of each algorithm

depend on the needs of these two stages. For example, algorithms that use random adjustment

protocols only transfer information between agents to calculate the value of their target function

(usually just their neighbours’ states), whereas in algorithms that use preferential adjustment

schedules (such as the maximum-gain messaging algorithm), additional information may be

required to run the adjustment schedule.

Given this background, this section examines the forms that each of the three algorithm stages

can take. In doing so, we make clear, for the first time, the many connections between the various

algorithms. During this section we will be referring to many algorithms from the literature on

DCOP algorithms and learning in games, the most important being:

> Best response and smooth best response (Fudenberg & Levine, 1998);
> Better-reply dynamics (Mezzetti & Friedman, 2001);
> DSA (Tel, 2000; Fitzpatrick & Meertens, 2003);
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> Maximum-gain messaging algorithm (Yokoo & Hirayama, 1996; Maheswaran et al., 2005);
> Adaptive play (Young, 1993) and spatial adaptive play (Young, 1998);
> Distributed simulated annealing (Arshad & Silaghi, 2003);
> Fictitious play (Brown, 1951; Robinson, 1951) and smooth fictitious play (Fudenberg & Kreps,

1993; Fudenberg & Levine, 1998);
> Joint-strategy fictitious play (JSFP; Marden et al., 2009b);
> Regret matching (Hart & Mas-Colell, 2000) and variants of regret monitoring (Arslan et al.,

2007);
> Stochastic coordination-2 algorithm and maximum-gain messaging-2 algorithm (Maheswaran

et al., 2005).

We now discuss the various target functions that are used in DCOP algorithms, and then examine

different decision rules and adjustment schedules used in DCOP algorithms.

3.1 State evaluations

The way in which a local iterative approximate best-response algorithm searches the solution

space is, in the largest part, guided by the target function used by agents to evaluate their choice of

state. The most straightforward approach is to directly use the payoffs given by the utility func-

tions to evaluate states. Some shortcomings of this approach, such as slow convergence, poor

search and sub-optimal solutions, are addressed by more sophisticated specifications of the

algorithm’s target function. These include using measures of expected payoff, average regret, and

aggregated utilities. The next subsection addresses using immediate payoffs as a target function,

while subsequent ones examine the more sophisticated target functions.

3.1.1 Immediate payoff and change in payoff

As noted above, the simplest target function that a DCOP algorithm can use to evaluate its

strategy is to directly use its private utility function, ui(si, s2i), producing typical ‘hill-climbing’ or

‘greedy’ behaviour. This leads the system to a Nash equilibrium, which corresponds to a local

potential-maximizing point. The best-response dynamics is the most well-known example of such

an approach.

Furthermore, many algorithms, including the DSA, the distributed breakout algorithm and the

maximum-gain messaging algorithms, use the amount to be gained by changing strategy as a

target function. This is a simple perturbation of the utility function achieved by finding the

difference between the current state’s value and the value of all other possible states. For many

decision rules, using either the gain or the raw utility function as an input will produce the same

result. However, when it is useful to differentiate between those states that improve payoff and

those that do not, or when the decision rule used can only take non-negative values as inputs, gain

in payoff is the appropriate target function.

Agents using this target function to update their evaluation of states only need to observe the

current state of their neighbours to run the algorithm, and do not need to communicate any

further information. However, the use of such a target function can often result in slow convergence.

3.1.2 Expected payoff over historical frequencies

In order to speed up convergence, an algorithm can use the expected payoff for each state over

historical frequencies of state profiles as a target function. These can be constructed in at least two

different ways, either by maintaining an infinite memory of past actions, as in the fictitious play

algorithms, or a finite memory, as in variants of adaptive play.

First, we consider the infinite memory case, and the fictitious play target function in particular.

Let agent j’s historical frequency of playing s0j, be defined as

qts0j ¼
1

t

Xt�1
t¼0

Ifs0j ¼ stj g;
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where Ifs0j ¼ stj g is an indicator function equal to one if s0j is the strategy played by j at time t, and

zero otherwise. This may be stated recursively as

qts0j ¼
1

t
Ifs0j ¼ st�1j g þ ðt�1Þqt�1s0j

h i
:

Now, qts0 j may be interpreted as i’s belief that its opponent, j, will play strategy s0j at time t. Agent i’s

belief over each of its opponents’ actions as a vector of historical frequencies of play for each j 6¼ i is

qtj ¼

qt
s1j

..

.

qt
s
jSj j
j

2
66664

3
77775

and i’s belief over all of its opponents’ actions is the set of vectors qt�i ¼ fqtjgj2Nni. Following this, i’s

expected payoff for playing s0i, given qt�i, is then:

FPt
iðs0i; qt�iÞ ¼

X
s�i2S�i

uiðs0i; s�iÞ
Y
sj2s�i

qtsj

" #
; ð6Þ

where, in general, S2i 5[j 6¼ iANSj. However, note that in any hypergraphical game, such as a

DCOP game, q2i and S2i may be replaced with qv(i) and Sv(i), respectively.

The classical fictitious play and smooth fictitious play algorithms use this measure of expected

payoff as a target function. Variations of fictitious play that use other methods to update the

agent’s belief state have been suggested, many of which are contained in the broad family of

generalized weakened fictitious play processes (Leslie & Collins, 2006). For example, in situations

where an agent can only observe its payoff and has no knowledge of its neighbours’ actions, the

expected payoff may be calculated as the average received payoff to each action. This is known as

cautious or utility-based fictitious play (Fudenberg & Levine, 1995), and, as noted by Arslan et al.

(2007), is effectively a payoff-based reinforcement learning algorithm. Additionally, Crawford

(1995) suggests a weighted fictitious play process for highly variable environments, in which the

contribution of past observations to an agent’s belief are exponentially discounted.

A similar infinite memory process, called JSFP, was introduced by Marden et al. (2009b). In

this process, each agent keeps track of the frequency with which its opponents play each joint

strategy s2i, rather than their individual strategy frequencies. In this case, let i’s belief over its

opponents’ joint-strategy profiles, qtiðs�iÞ, be given by the fraction of times it observes each joint

profile. Each agent’s expected payoff given this belief is then:

JSFPt
iðs0i; qt�iÞ ¼

X
s�i2S�i

qtiðs�iÞuiðs0i; s�iÞ:

This can be expressed more simply as

JSFPt
iðs0i; qt�iÞ ¼

1

t

Xt
t¼1

uiðs0i; st�iÞ;

where st�i is the strategy profile of the agent’s opponents at time t. Furthermore, this target

function can be specified recursively, which only requires agents to maintain a measure of the

expected payoff for each state, rather than the full action history:

JSFPt
iðs0i; qt�iÞ ¼

1

t
uiðs0i; st�iÞ þ ðt�1ÞJSFPt�1

i ðs0i; qt�1�i Þ
� �

; ð7Þ

where uiðsi; st�iÞ is the fictitious payoff to i for each element of Si given its opponents’ profile at t.

Marden et al. (2009b) show that the classical fictitious play and the JSFP target functions

coincide in all two-player games. As an example of the usefulness of the hypergraphical game

representation, we now show that the classical fictitious play and the JSFP target functions are

identical in all binary hypergraphical games (i.e. every local game is a two-player game). To begin
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with, in any hypergraphical game, Equation (6) can be expressed in terms of the sum of utilities

from local games:

FPt
iðs0i; qt�iÞ ¼

X
g2Gi

X
s�i2S�i

ugi ðs0i; s�iÞ
Y
sj2s�i

qtsj

" #
:

Now, in a binary hypergraphical game, the product term is redundant because an agent has only

one opponent in each local game, so using qts0 j ¼
1
t

Pt�1
t¼0 Ifs0j ¼ stj g, we can rewrite the above as

FPt
iðs0i; qt�iÞ ¼

X
g2Gi

X
sjg2Sjg

ugi ðs0i; sjgÞ
1

t

Xt�1
t¼0

Ifsjg ¼ stjgg;

where jg is i’s opponent in g. The expression above can be simplified because the combination of

summing over all Sjg and the indicator function can be replaced by taking the average of the

payoffs actually received in each local game over time. This gives

FPt
iðs0i; qt�iÞ ¼

1

t

Xt�1
t¼0

X
g2Gi

ugi ðs0i; stjgÞ;

which, like the JSFP target function, admits a recursive specification:

FPt
iðs0i; qt�iÞ ¼

1

t

X
g2Gi

ugi ðs0i; stjgÞ þ ðt�1ÞFPt�1
i ðs0i; qt�1�i Þ

" #

¼ 1

t
uiðsi; st�iÞ þ ðt�1ÞFPt�1

i ðs0i; qt�1�i Þ
� �

:

This form of classical fictitious play for binary hypergraphical games is identical to the definition

of the JSFP target function stated in Equation (7).

We now consider a class of processes that evaluate the expected payoff for each state over

historical frequencies of state profiles computed from samples taken from a finite memory, called

adaptive play (Young, 1993). In adaptive play, agents maintain a finite history over their oppo-

nents’ actions, and construct an estimate of their mixed strategies by sampling from this history.

Each individual only has a finite memory, of length m, and recalls the previous m actions taken by

opponents. On each play of the game, each individual takes a sample of size krm from this

memory, and computes an estimate of its opponents’ actions from this sample. That is, i’s belief

over j’s actions, q(sj)
i,t, is given by the proportion of times that j has played strategy sj in the sample

of size k. Then, as in fictitious play, i’s expected payoff for playing s0i, given qi;t�i, is given by

APt
iðs0i; q

i;t
�iÞ ¼

X
s�i2S�i

uiðs0i; s�iÞ
Y
sj2s�i

qi;tsj

" #
: ð8Þ

All of the adaptive play variants use this type of state evaluation, with various constraints on the

relative values of m and k. In particular, spatial adaptive play was described in Young (1998) as a

variation of adaptive play in which both the memory m and the sample size k are 1, and in which

only a single agent updates its strategy each time step.

The fictitious play, JSFP and adaptive play target functions have the same communication

requirements as algorithms that use the immediate payoff for an action as a target function,

because at each point in time each agent only needs to know the values of s2i in order to update its

evaluation of each of its states.

3.1.3 Average regret for past actions

Another approach that can be used to speed up convergence is to measure the average ‘regret’ for

not taking an action, where the regret measure for a particular strategy at a particular time is the

difference between the payoff that would have been received for playing that strategy at time t and

the strategy that was actually chosen at t. The average of these differences over the history of

426 A . C . CHAPMAN E T AL .



repeated play is the average regret for not adopting that particular strategy consistently over the

entire history of play:

ARt
i ¼

1

t

Xt
t¼1

uiðs0i; st�iÞ�uiðsti ; st�iÞ
� �

:

This target function is also known as external regret. Like the measure of expected payoff based on

joint strategies discussed above, the average regret target function can be specified recursively,

only requiring the agents to maintain a measure of average regret for each state:

ARt
i ¼

1

t
uiðs0i; st�iÞ�uiðstÞ þ ðt�1ÞARt�1

i

� �
: ð9Þ

Hart and Mas-Colell (2000) use this target function to construct their regret matching algorithm,

and use it to characterize an entire class of adaptive strategies (Hart & Mas-Colell, 2001a). It is

also used as the target function for a distributed simulated annealing method for finding the Nash

equilibria of games (La Mura & Pearson, 2002). Like fictitious play, many variants of the method

of updating regrets have been suggested. For example, a variation of average regret for situations

where an agent can only observe its own payoff is known as internal regret (Blum & Mansour,

2007). This method calculates regret as the difference between the average payoff for choosing

each state in the past and the received payoff for the state selected at a particular time. In this way

it is analogous to cautious fictitious play.

Another example, proposed by Arslan et al. (2007), is a regret-based target function in which

past regrets are weighted by a constant value. In other words, past regrets are exponentially

discounted, or the agents have ‘fading memory’:

WRt
i ¼ r uiðsi; st�iÞ�uiðstÞ

� �
þ ð1�rÞWRt�1

i ; ð10Þ

where (12r) is the discount factor, 0, rr 1.

Again, this target function uses the same observations as algorithms that use the immediate

payoff, fictitious play, JSFP and adaptive play target functions payoff for an action as a target

function, because at each time step, an agent only needs to know the values of s2i in order to

update its regret for each of its states.

3.1.4 Aggregated immediate payoffs

One inconvenient aspect of the above target function specifications is that they are prone to

converging to sub-optimal equilibria (in the absence of some ergodic process such as a random

perturbation to payoffs, as will be discussed in Section 3.2). A number of algorithms avoid this

problem by using aggregated payoffs to evaluate states. However, these algorithms have sig-

nificantly increased communication requirements, as agents pass information regarding the value

of each state, rather than just indicating their current state.

The maximum-gain messaging-2 algorithm and stochastic coordination-2 algorithm both use a

pairwise aggregate of local utility functions to evaluate the joint state of any two agents, i and j:

uij ¼
X
ck2Ci

uckðsi; sj ; s�fi;jgÞ þ
X
ck2Cj

uckðsi; sj ; s�fi;jgÞ�
X

ck2Ci\Cj

uckðsi; sj ; s�fi;jgÞ; ð11Þ

where the final term adjusts for the double counting of any constraints shared by the agents.

This target function allows the agents to evaluate synchronized state changes, and can be used to

avoid the worst Nash equilibria in the system by converging only to 2-optima. As mentioned in

Section 2.2, Pearce and Tambe (2007) show that the worst-case 2-optimum solution to a DCOP

game is greater than that for a Nash equilibrium, or 1-optimum. Thus, this result implies that an

algorithm that uses a pairwise aggregated target function has a higher lower bound solution than

any algorithm that only converges to a Nash equilibrium.

Furthermore, Maheswaran et al. (2005) propose two families of k-coordinated algorithms—the

maximum-gain messaging-k and stochastic coordination-k algorithms—that use locally aggre-

gated utilities for coalitions of k agents, which each converge to an element of their respective set

of k-optima. However, although the number of messages communicated at each step to calculate

the aggregated utilities increase linearly with the number of neighbours each agent has, the size
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of each message increases exponentially with the size of the coalitions. These factors make

constructing algorithms that aggregate the utilities of large coalitions of agents infeasible.

3.2 Decision rules

A decision rule is the procedure that an agent uses to map the output of its target function to its

choice of strategy. The decision rule used by most DCOP algorithms is either the argmax or

argmin functions, or probabilistic choice functions. The choice between these two serves an

important purpose, as it determines whether the algorithm follows a hill-climbing trajectory or is

stochastic. In the former case, the algorithm produced may converge quickly—or may even be

anytime—but it may not be able to escape from the basin of attraction of a local maximum.

On the other hand, adding ergodicity allows the algorithm to escape from the basin of attraction

of a sub-optimal Nash equilibrium (or local maximum of the potential function), but at the cost of

sometimes degrading the solution quality. Proportionally probabilistic decision rules map payoffs

through a probabilistic choice function to a mixed strategy (Fudenberg & Levine, 1998). As such,

states with a higher-valued target function are chosen with greater probability, but states with lower

payoffs than the current state are sometimes chosen. This allows the agents in the system to escape

local optima. However, it also means that the algorithm is no longer an anytime optimization

algorithm. Two such probabilistic choice functions are the linear and multinomial logit choice

models. The simulated annealing decision rules add ergodicity by probabilistically moving to a lower

utility state in proportion to its distance from the current state’s utility, while always moving to

states with higher utility. Finally, the e-greedy decision rule, commonly used in machine learning,

selects a state with the highest valuation with probability (12e) and chooses uniformly from the

remaining states with probability e. We now consider these rules in more detail.

3.2.1 Argmax and argmin decision rules

The argmax function (or, equivalently, the argmin function) returns the state with the highest

(lowest) valued target function. Two variations of this decision rule are present in the literature,

which differ in how they handle multiple situations where multiple states correspond to the highest

value of the target function. These two variants of the argmax function are discussed in the context

of the DSA in Zhang et al. (2005), where the algorithms are named DSA-A and DSA-B,

respectively. In the first, which we call argmax-A, if the agent’s state at t21 is one of the states that

maximizes the target function, then it is the state selected at t. Otherwise, a new state is randomly

chosen with equal probability from the set of target function maximizing states. That is, the agent

only changes its state if it improves the value of its target function. In the second variant, argmax-B,

an agent randomly selects a new state from the set of target function maximizing states, without

regard for the state at t21. Note that in non-degenerate games, every best response is unique, so

the two variants of the argmax function behave identically.

A benefit is that using the argmax function in conjunction with an immediate reward target

function and a suitable adjustment schedule (such as in the maximum-gain messaging algorithm) is

that the resulting algorithm can be ‘anytime’, in that each new solution produced is an

improvement on the last. However, one potential drawback of this technique is its dependence on

initial conditions, even when the algorithm is not anytime. It is possible that the initial random

configuration of states places the system outside the basin of attraction of an optimal Nash

equilibrium, meaning that an algorithm using the argmax decision rule can never reach an optimal

point. To avoid this scenario, a probabilistic decision rule may be used instead.

3.2.2 Linear probabilistic decision rules

The linear probabilistic decision rule produces a mixed strategy with probabilities in direct proportion

to the target value of each state:

Prsi ¼
uiðsi; st�iÞP

si2Si

uiðsi; st�iÞ
:
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This model is only appropriate when the target function supplies a non-negative input. Although this

appears to be quite a substantial limitation, the linear probabilistic choice rule is useful in certain

circumstances. For example, the regret matching algorithm uses the linear probabilistic choice

function with negative regrets set equal to zero, so that they are chosen with zero probability (Hart &

Mas-Colell, 2000). Another example is the better-reply dynamic, in which an agent randomly chooses

a new state from those which (weakly) improve its payoff (Mezzetti & Friedman, 2001).

3.2.3 Multinomial logit decision rules

One probabilistic decision rule that can accept negative input is the multinomial logit decision rule

(Anderson et al., 1992), known in statistical mechanics as the Boltzmann distribution:

PrsiðZÞ ¼
eZ
�1uiðsi ;st�iÞP

si2Si

eZ
�1uiðsi ;st�iÞ

: ð12Þ

Here states are chosen in proportion to their reward, but their relative probability is controlled by

h, a temperature parameter. If h 5 0 then the argmax function results, while h 5N produces a

uniform distribution across strategies, which results in the state of the system following a random

walk. Depending on the specifics of the problem at hand, the temperature can be kept constant or

may be decreased over time. If an appropriate cooling schedule is followed, the later case is referred

to as a ‘greedy in the limit with infinite exploration’ decision rule in the online reinforcement learning

literature (Singh et al., 2000). The multinomial logit choice function is used in typical specifications

of smooth best response, spatial adaptive play (Young, 1998), and smooth fictitious play (Fudenberg

& Levine, 1998; Hofbauer & Sandholm, 2002).

3.2.4 Simulated annealing decision rules

The simulated annealing decision rule is a probabilistic decision rule that works by randomly

selecting a new candidate state, k, and accepting or rejecting it based on a comparison to the

current state (Metropolis et al., 1953; Kirkpatrick et al., 1983). All improvements in the target

function are accepted, while states that lower the value of the target function are only accepted in

proportion to their distance from the current state’s value. For example, the case where the target

function is given by the agent’s private utility function gives the following decision rule:

PrsiðZÞ ¼
1 if uiðk; s�iÞ � uiðsi; s�iÞ;
eZ
�1ðuiðk;s�iÞ�uiðsi ;s�iÞÞ otherwise;

(
ð13Þ

where ui(k, s2i) and ui(si, s2i) are the candidate and the current state’s payoffs, respectively.

As with the multinomial logit choice model (Equation 12), h is a temperature parameter. If h 5 0

then only states that improve the target function are accepted, while h 5N means that all

candidate states are accepted, and consequently, as with the multinomial logit function, the state

of the system follows a random walk. The temperature may be kept constant, resulting in an

analogue of the Metropolis algorithm (Metropolis et al., 1953), or may be decreased over time as

in a standard simulated annealing optimization algorithm (Kirkpatrick et al., 1983). Distributed

simulated annealing has been proposed as a global optimization technique for DCOPs (Arshad

& Silaghi, 2003), and a simulated annealing algorithm based on average regret has been suggested

as a computational technique for solving the Nash equilibria of general games (La Mura &

Pearson, 2002).

3.2.5 The e-greedy decision rule

One particularly common decision rule used in online reinforcement learning is known as e-greedy.
Under this rule, an agent selects a state with maximal expected reward with probability (12e), and
a random other action with probability e, that is,

Prsið�Þ ¼
1�� if si ¼ argmax½uiðk; s�iÞ�;

k2Si

� otherwise:
:

(
ð14Þ
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Like the multinomial logit decision rule, the exploration parameter, e, can be kept constant or may

be decreased over time. Under specific conditions on the rate of decrease, the later case is another

example of a ‘greedy in the limit with infinite exploration’ decision rule (Singh et al., 2000). This

decision rule is used in many variations of adaptive play (e.g. Young, 1993).

3.3 Adjustment schedules

An adjustment schedule is the mechanism that controls which agents adjust their state at each

point in time. The simplest schedule is the ‘flood’ schedule, where all agents adjust their strategies

at the same time. Beyond this, adjustment schedules can be divided into two groups: random or

deterministic. The former are typically run by each agent independently, and can produce

sequential or parallel actions by agents. The latter often require agents to communicate infor-

mation between themselves in order to coordinate which agent adjusts its strategy at a given point

in time, with priority usually given to agents that can achieve greater gains or are involved in more

conflicts. Other times the ordering is decided upon in a preprocessing stage of the algorithm.

3.3.1 Flood schedule

Under the flood schedule, all agents adjust their strategies at the same time. This schedule is in

essence the Jacobi iteration method (Press et al., 1992). It is frequently used in applications of local

greedy algorithms (e.g. Matthews & Durrant-Whyte, 2006), and in implementations of fictitious

play (e.g. Leslie & Collins, 2006) and some variants of adaptive play (e.g. Young, 1993).

A problem commonly observed with algorithms using the flood schedule, particularly greedy

algorithms, is the presence of ‘thrashing’ or cycling behaviour (Zhang et al., 2005). Thrashing

occurs when, as all agents adjust their states at the same time, they inadvertently move their joint

state to a globally inferior outcome. Furthermore, it is possible that a set of agents can become

stuck in a cycle of adjustments that prevents them from converging to a stable, Nash equilibrium

outcome. In theory, the potential for these types of behaviours to occur means that convergence

cannot be guaranteed, while in practice they are detrimental to the performance of any algorithm

using the flood schedule.

3.3.2 Parallel random schedules and inertia

Parallel random adjustment schedules are simply variations of the flood schedule, in which each

agent has some probability p of actually changing its state at any time step. In the computer

science literature on DCOPs, p is known as the ‘degree of parallel executions’ (Zhang et al., 2005),

whereas in the game theory literature it is commonly referred to as choice ‘inertia’ (e.g. Mezzetti &

Friedman, 2001; Marden et al., 2009b).

Now, this type of adjustment schedule does not ensure that thrashing is entirely eliminated.

However by selecting an appropriate value of p, thrashing and cycling behaviour can be minimized,

producing an efficient algorithm with parallel execution without increasing the communicational

requirements. Furthermore, inertia is essential to the convergence proofs of various processes, such

as the better-reply dynamics and JSPF. This is the adjustment schedule used by the DSA, regret

matching, and JSFP with inertia.

3.3.3 Sequential random schedules

The group of adjustment schedules that we call sequential random schedules involve randomly

giving one agent at a time the opportunity to adjust its strategy, with agents selected by some

probabilistic process. The motivation for using this adjustment schedule is grounded in the

convergence proofs for many of the adaptive procedures taken from the game theory literature. In

particular, the finite improvement property of potential games directly implies that agents that

play a sequence of ‘better responses’ converge to a Nash equilibrium in a finite number of steps.

This property is used to prove the convergence of spatial adaptive play and a version of Fictitious

Play with sequential updating (Berger, 2007).
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Now, sequential procedures do not allow for the parallel execution of algorithms in independent

subgraphs, where thrashing is not a concern, or for the execution of algorithms whose convergence

can be guaranteed without asynchronous moves. However, they do ensure that agents do not cycle

or thrash, which is a risk with using the flood or parallel random adjustment schedules.

In practice, there are a number of ways to implement this type of schedule. A particularly

straightforward approach, which ensures that all agents have an opportunity to adjust their state is

given by dividing time into segments, with each agent randomly selecting a point from a uniform

distribution over the segment at which to adjust its strategy. Agents then adjust their states

sequentially and in a random order, which satisfies the assumptions of the theoretical convergence

results. However, such a schedule may depend on an external or synchronized clock. This type of

schedule is essentially a form of Gauss–Seidel iteration, in which the order of updating is shuffled

each cycle (Press et al., 1992). We refer to this schedule as a shuffled sequential schedule. Another

simple approach would be to give each agent a mechanism that triggers action according to a

probabilistic function of time, such as an exponential distribution, which can be run on an internal

clock. In this process the probability of any two agents adjusting their state at the same time is

zero. This could be called a sequential random exponential schedule. A final suggestion is to use

token-passing to maintain sequential updates.

3.3.4 Maximum-gain priority adjustment schedule

The maximum-gain messaging algorithm takes its name from the type of adjustment schedule it

uses (Yokoo & Hirayama, 1996; Maheswaran et al., 2005). This preferential adjustment protocol

involves agents exchanging messages regarding the maximum gain they can achieve. If an agent

can achieve the greatest gain out of all its neighbours, then it implements that change, otherwise it

maintains its current state. The maximum-gain messaging adjustment schedule avoids thrashing or

cycling, as no two neighbouring agents will ever move at the same time.

3.3.5 Constraint priority adjustment schedule

A second preferential adjustment schedule, the constraint priority adjustment schedule, works by

allocating each agent a priority measure based on the number of violated constraints it is involved

with. This is the type of adjustment schedule used by the APO algorithm.

4 Local approximate best-response algorithm parametrization

In this section we discuss how the different components of a DCOP algorithm, as identified in

Section 3, affect the quality and timeliness of the solutions it produces. As an overview, Table 1

presents the parameterization of the main local approximate best-response DCOP algorithms

highlighted in Section 3: two versions of the DSA (DSA-A and DSA-B), the maximum-gain

messaging algorithm (MGM), the better-reply dynamic with inertia (BR-I), spatial adaptive play

(SAP), distributed simulated annealing (DSAN), fictitious play (FP) and smooth fictitious play

(smFP), JSFP with inertia (JSFP-I), adaptive play (AP), regret matching (RM), weighted regret

monitoring with inertia (WRM-I), the stochastic coordination-2 algorithm (SCA-2), and the

maximum-gain messaging-2 algorithm (MGM-2). In this table, the relationships between the

algorithms are clearly shown, in terms of the components used to construct each of them.

Before beginning the detailed discussion, we define some of the terms we use in the analysis. In

particular, we say an algorithm converges in finite time if there exists a value T after which the joint

state of the agents is guaranteed to be a Nash equilibrium. An algorithm almost surely converges if

the probability of the agents’ joint state being a Nash equilibrium converges to 1 as the number of

time steps tends to infinity. An algorithm converges in distribution if the distribution over joint

states converges to some specified distribution as time tends to infinity. Typically, the specified

distribution is the Boltzmann distribution over the joint state with temperature h that maximizes

the global utility. Note that almost-sure convergence and convergence in distribution do not

prevent the algorithm from moving arbitrarily far from a specified outcome, but only that these
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Table 1 Parameterization of the main local approximate best-response DCOP algorithms

Target function Memory Decision rule Adjustment schedule

DSA-A ui(si, s2i) — argmax-A Parallel random (p)

DSA-B ui(si, s2i) — argmax-B Parallel random (p)

MGM ui(si, s2i) — argmax-B Preferential: maximum gain

BR-I ui(si, s2i) — argmax-B Flood

SAP ui(si, s2i) — Logistic (h) Sequential random

DSAN ui(si, s2i) — Sim. annealing (h) Parallel random (p)

FP
P

s�i2S�i
uiðs0 i; s�i

Q
sj2s�i

qtsj

" #
Opponents’ freq. of play argmax-B Flood

smFP
P

s�i2S�i
uiðs0 i; s�i

Q
sj2s�i

qtsj

" #
Opponents’ freq. of play Logistic (h) Flood

JSFP-I
1
t

uiðsi; st�iÞ
þðt�1ÞJSFPt�1

i

� �
Average expected utility argmax-A Parallel random (p)

RM
1
t

uiðsi; st�iÞ�uiðstÞ
þðt�1ÞARt�1

i

� �
Average regrets Linear prob1 Parallel random (p)

WRM-I
r

uiðsi; st�iÞ�uiðstÞ
þð1� rÞWRt�1

i

� �
Discounted average regrets Linear prob1 or logistic1 (h) Parallel random (p)

SCA-2
�
Puiðsi ;s�iÞþujðsj ;s�jÞ

ck2Ci\Cj

uckðsi; sj ; s�fi;jgÞ
— argmax-A Parallel random (p)

MGM-2
�
Puiðsi ;s�iÞþujðsj ;s�jÞ

ck2Ci\Cj

uckðsi; sj ; s�fi;jgÞ
— argmax-B Preferential: maximum

DCOP5 distributed constraint optimization problem; DSA5 distributed stochastic algorithm; MGM5maximum-gain messaging; BR-I5 better-reply dynamic with

inertia; SAP5 spatial adaptive play; DSAN5 distributed simulated annealing; FP5 fictitious play; smFP5 smooth fictitious play; JSFP-I5 joint-strategy fictitious play

with inertia; RM5 regret matching; WRM-I5weighted regret monitoring with inertia; SCA-25 stochastic coordination-2 algorithm.
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moves occur with decreasing probability (Grimmett & Stirzaker, 2001). An algorithm is called

anytime if at each time step the solution it produces is at least as good as the one produced at the

previous time step. Finally, a joint strategy is called absorbing if it is always played after the first time

it is played, as is standard in the stochastic processes literature (e.g. Grimmett & Stirzaker, 2001).

We now move on to discuss in detail how the algorithms are related and where they differ, and

furthermore, how this affects their behaviour and the solutions they produce. In the process, we

will sketch several convergence proof techniques, and will extend some existing convergence

proofs to cover algorithms with similar structures. First, we analyze those algorithms that use

immediate reward or change in payoff as a target function. This allows us to demonstrate clearly

how different decision rules and adjustment schedules affect the convergence properties of the

algorithms. We then discuss algorithms that use recursive averaging measures, such as expected

reward or regret, as target functions.

4.1 Immediate reward and gain-based algorithms

In this section we discuss those algorithms that use immediate payoff, change in payoff, or

aggregated measures of either to evaluate states. In so doing, we will demonstrate three techniques

of proving the convergence of a DCOP algorithm, which exploit the existence of a potential

function in three different ways. Importantly, these techniques can be extended to similar algo-

rithms that comprise common components. As such, we discuss the algorithms in groups based on

their convergence proofs, beginning with MGM, which has the anytime property and converges to

Nash equilibrium. Second, we consider DSA and BR-I, which rely on almost-sure convergence

to Nash equilibrium. Third, we discuss SAP and DSAN, which, by virtue of the particular

probabilistic decision rules they employ, can be shown to converge in distribution to the global

maximum of the potential function. Finally, we discuss the convergence of the MGM-k and SCA-k

to k-optima, and relate their convergence to that of MGM and DSA, respectively.

4.1.1 Anytime convergence of MGM

We begin with MGM. In ordinal potential games, MGM converges to a Nash equilibrium and is

an anytime algorithm (Maheswaran et al., 2005). This is because agents act in isolation (i.e. none

of their neighbours change strategy at the same time), so their actions only ever improve their

utility, which implies an improvement in global utility (by Equation 5). Furthermore, by the same

reasoning, the finite improvement property ensures that this algorithm converges to a Nash

equilibrium in finite time10.

4.1.2 Almost-sure convergence of DSA and BR-I

Although similar in construction to MGM, neither DSA nor BR-I are anytime, as it is possible

that agents who change state at the same time find themselves in a worse global state than they

began in. However, using almost-sure convergence, we can show the following: DSA-A (DSA

using argmax-A) almost surely converges to a Nash equilibrium, and DSA-B and BR-I almost

surely converge to a strict Nash equilibrium. Although similar results have been published (e.g.

Young, 1998; Mezzetti & Friedman, 2001), for pedagogical value, we present a proof of the

convergence of DSA-B to a strict Nash equilibrium, which we use as a template for sketching other

convergence proofs. We will refer back to the steps presented in this proof when discussing the

convergence of other algorithms in future sections.

PROPOSITION 7 If a strict Nash equilibrium exists, then DSA-B almost surely converges to a strict

Nash equilibrium in repeated potential games.

10 Maheswaran et al. (2005) show that MGM is anytime and converges to an element in the set of Nash

equilibrium in DCOP games directly, without using a potential game characterization of the problem.
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Proof. A strict Nash equilibrium is an absorbing strategy profile under DSA-B’s dynamics; that is,

once in a strict Nash equilibrium, no agent will change their strategy. Now, for any non-Nash

equilibrium outcome, there exists a minimal improvement path, terminating at a Nash equilibrium.

Denote the length of the longest minimal improvement path from any outcome to a Nash equilibrium

LG. The rest of this proof involves showing that as t-N, the probability that the complete longest

minimal improvement path has been traversed goes to 1.

In a game consisting of N agents using DSA-B to adapt their state, for any probability of

updating pA (0, 1), the probability that only one agent changes state at a particular time step is

given by p(12p)N21. Consider the probability that at some time step, the agent selected to change

its state is able to improve its utility (i.e. is part of an improvement path). This probability is at

least p(12p)N21/N, which is its value when at that time step, the improvement step is unique. Thus,

at any time, t, the probability of traversing the longest minimal improvement path of length LG, is

at least:

q ¼
0 toLG;

pð1�pÞN�1
N

h iL
G

t � LG:

8<
:

Note that whenever tZLG, q is greater than zero, because pA (0, 1) and N and LG are finite.

Following this, in a sequence of t steps, the probability of traversing the longest minimal

improvement path and converging to a Nash equilibrium at time t, pconv(t), simply follows a

geometric distribution, with positive probabilities beginning at time step LG:

pconvðtÞ ¼ qð1�qÞt:

Consequently, we can express the cumulative probability of converging by t, Pconv(t)—the sum of

pconv(t)—as

PconvðtÞ ¼
Xt
t¼1

pconvðtÞ ¼
qð1�ð1�qÞtþ1Þ

1�ð1�qÞ

¼ 1�ð1�qÞtþ1:

Then, as t-N, (12q)t1 1-0, so the probability that a complete longest minimal improvement

path is traversed goes to 1 as the number of rounds tends towards infinity. &

The convergence proof for DSA-A follows the same argument, except that all Nash equilibria

are absorbing. For BR-I, the proof is identical. This is because the only difference between DSA-B

and BR-I is that the former selects the best response while the latter selects a better response, and

these cases are treated in the same way with respect to the finite improvement property: That is,

the finite improvement property ensures that all improvement paths are finite, whether they be

best-response or better-response paths.

We have now described two methods of proving the convergence of a DCOP algorithm. The

first shows that an algorithm is anytime, and that it improves until it reaches a Nash equilibrium.

The second technique begins by characterizing the absorbing states of an algorithm. Then, by the

finite improvement property, at any time in the future there is some non-negative probability of

the algorithm entering the absorbing state. Therefore, the algorithm almost surely converges.

The algorithms discussed so far have produced individual best or better responses. However,

one common drawback of these approaches is that if these algorithms converge to sub-optimal

equilibria, they cannot escape. One technique used to get around this problem is to use stochasticity

in the decision rule. A second is to aggregate agents’ utilities and allow coordinated, joint changes in

state. These two techniques are discussed in the following two sections.

4.1.3 Convergence of SAP and DSAN to the global optimum

Both SAP and DSAN use a stochastic decision rule to escape from local maxima. Specifically, by

using the logistic or simulated annealing decision rules, they can move between basins of attraction

of local maxima.
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In potential games, SAP is known to converge to a distribution that maximizes the function:X
s2S

ugðsÞPrðsÞ�Z
X
s2S

PrðsÞ logPrðsÞ;

which is given by the Boltzmann distribution with temperature parameter h (Young, 1998,

Chapter 6). By setting h low, this algorithm approximates the optimal joint state, and at any point

in time has a high probability of having the optimal configuration.

Furthermore, regarding both SAP and DSAN, when the temperature parameter of these decision

rules are decreased over time according to an appropriate annealing schedule (i.e. hp1/log t), they

are known to converge to the Nash equilibrium that maximizes the potential function (Kirkpatrick

et al., 1983; Young, 1998; Benaim et al., 2005, 2006). That is, they converge to the global optimum.

4.1.4 Convergence of MGM-k and SCA-k to k-optima

A second technique used to escape local maxima is to use a target function that aggregates local

utilities to evaluate joint-strategy changes by teams of agents. This is the approach used by MGM-2

and SCA-2, which both check for all joint changes in state by pairs of agents (as in Equation 11),

and the families of MGM-k and SCA-k algorithms generally.

Similar to MGM, under MGM-2, only isolated pairs of agents act at a given step, so any

change only improves the global utility, and the algorithm only terminates when it reaches a

2-optimum, rather than a Nash equilibrium (Maheswaran et al., 2005). The almost-sure convergence

of SCA-2 is proven using the same method as DSA, except that the absorbing states are the set of

2-optima. However, note that bounds on worst-case 2-optima only exist for DCOPs containing

unary and binary constraints, so the benefits of using MGM-2 in DCOPs with constraint arity

greater than 2 are unclear. Nonetheless, these proofs can easily be extended to convergence to

k-optima for the corresponding algorithms.

4.2 Algorithms using averaging target functions

In this section, we discuss averaging algorithms that use variations of the expected payoff over

historical frequencies of actions and average regret target functions. We begin with the fictitious

play family of algorithms, before considering regret-based algorithms.

4.2.1 Fictitious play algorithms

The term ‘fictitious play’ is often used to denote a family of adaptive processes that use the

expected payoff over historical frequencies of actions as a target function (Fudenberg & Levine,

1998). Now, all versions of fictitious play that use historical frequencies as a target function and

the argmax decision rule (regardless of the adjustment schedule used) have the property that if

play converges to a pure-strategy profile, it must be a Nash equilibrium, because if it were not,

some agent would eventually change their strategy.

The standard fictitious play algorithm, described in Table 1 as FP, uses the expected payoff over

historical frequencies as a target function (Equation 6) and the argmax-B decision rule, and agents

follow the flood schedule and adjust their state simultaneously. A proof of the convergence of FP to

Nash equilibrium in weighted and exact potential games is given by Monderer and Shapley (1996a).

Specifically, in repeated potential games, this algorithm converges in beliefs; that is, each agents’

estimate of its opponents’ strategies, which are used to calculate each of its own strategies’ expected

payoffs, converge as time progresses. This process induces some stability in an agent’s choice of

strategy because an agent’s current strategy is based on its opponents’ average past strategies, which

means that an agent’s belief moves through its belief space with decreasing step size. Consequently

thrashing and cycling behaviour is reduced, compared to, say, DSA or the best-response dynamics.

The same target function and adjustment schedule are used in smFP as in FP, but, typically, the

multinomial logit decision rule substitutes for the argmax rule. However, unlike SAP or DSAN,

this substitution does not imply that the algorithm converges to the global maximum of the potential
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function. Rather, smFP converges to a Nash equilibrium, in much the same way as FP (Hofbauer &

Sandholm, 2002). Nonetheless, in practice, using the logit decision rule does, on average, produce

better quality solutions than the argmax rule. Leslie and Collins (2006) show how to analyze smFP

when the temperature parameter reduces over time and smFP approximates FP in the limit.

The dynamics of all versions of JSFP are quite different to that of FP. Specifically, strict Nash

equilibria are absorbing for any algorithm that uses the JSFP target function (Equation 7) and

argmax-A as a decision rule. This is because if agents have beliefs that induce them to play a strict

Nash equilibrium, these beliefs are reinforced each time the strict Nash equilibrium is played.

To date, convergence to Nash equilibrium has not been shown for a version of JSFP that operates

on the flood schedule. However, regarding the version that operates on the parallel random

schedule, JSFP with inertia (JSFP-I), its proof of convergence to strict Nash equilibria is based on a

similar argument to that for the convergence of DSA (Marden et al., 2009b). Given that strict Nash

equilibria are absorbing, all that needs to be shown is that at any given time step, JSFP-I has some

positive probability of visiting a strict Nash equilibrium. Now, under JSFP-I any unilateral change in

strategy climbs the potential. Then, as with DSA, when inertia is added to the agents’ choice of

action (i.e. by using the parallel random adjustment schedule), the probability that a sequence of

unilateral moves numbering at least the length of the longest improvement path occurs is strictly

positive. Therefore, over time, the probability of entering the absorbing state approaches one. As

with FP, because agents’ current strategies are based on average past joint strategies, the JSFP-I

process produces relative stability in an agent’s choice of strategy, and as a consequence thrashing

and cycling behaviour is reduced. Additionally, because JSFP-I uses the parallel random schedule,

the number of messages required each time step to run the algorithm is less than FP.

4.2.2 Adaptive play algorithms

The AP variants we consider here are all of those in which an agent takes a sample of size k from a

finite memory of the previous m plays of the game to evaluate their expected rewards for state

(Equation 8) and chooses a state using the e-greedy choice rule, and all of the agents operate using

the flood schedule (note that this excludes SAP). A subset of these algorithms can be shown to

converge to a strict Nash equilibrium, using results from perturbed Markov processes (Young,

1993, 1998). The key elements of the proof are as follows.

First, call the particular joint memory maintained by the agents at t, the memory configuration.

Note that if e5 0, then the memory configurations containing only strict Nash equilibria are

absorbing for any krm. That is, with no random play, if all agents’ memories contain only a

single strict Nash equilibrium, that equilibrium will be played from there on. Second, using a

resistance tree argument (Young, 1993), it can be shown that from any memory configuration, for

any 1/|v(i)|e. 0 (where v(i) are i’s neighbours), the probability of moving along an improvement

path towards a strict Nash equilibrium is greater than that for a movement away. As such, over

time the probability of traversing an entire (finite) improvement path goes to 1. This result holds

provided that the sample size krm/(LG 1 2), where LG is the longest minimal improvement path

from any joint-action profile to a strict Nash equilibrium. Building on this, as e-0, the probability

of the memory configuration consisting entirely of one strict Nash equilibrium also goes to 1.

Then, in the limit, this strict Nash equilibrium is absorbing.

4.2.3 Regret matching and weighted regret monitoring algorithms

Like the variations of fictitious play, algorithms that use the average regret for past actions to

evaluate states also come in many different forms. Here we limit our attention to the regret

matching (RM) and weighted regret monitoring with inertia (WRM-I) algorithms, which show

contrasting behaviour as a result of a small difference in the target function they employ.

RM uses the average regret for past actions (Equation 9) in conjunction with a linear probabilistic

decision rule (which assigns zero probability to strategies with negative regret values) to decide on

a strategy, with agents adjusting by the parallel random schedule. RM converges to the set of

correlated equilibria (a generalization of Nash equilibria) in all finite games (Hart & Mas-Colell, 2000),
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however, it does not necessarily converge to Nash equilibria. Nonetheless, it is easy to see that by

using this target function, an agent’s worst performing strategies are ruled out earliest, and

although the use of a linear probabilistic decision rule does cause some thrashing, the presence of

negative regrets lessens these effects.

On the other hand, WRM-I does converge to a pure-strategy Nash equilibrium in potential

games (Arslan et al., 2007). This algorithm uses a target function that discounts past regrets by a

constant weight (Equation 10) and the parallel random schedule, and may be specified with any

probabilistic decision rule that only selects a strategy from those with non-negative average regret

(e.g. linear1 or logit1). In the case of the linear1 decision rule, WRM-I differs from RM only in

the target function used. The proof of its convergence is similar to DSA and JSFP, and proceeds as

follows. First, note that the target function used in WRM-I discounts past regrets (Equation 10).

As a consequence, if a given strict Nash equilibrium is played consecutively a sufficient number

of times, it will be the only strategy for which any agent has a positive regret. Additionally, the

converse also holds: if each agent has only one strategy with non-negative regret, the corre-

sponding joint strategy must be a Nash equilibrium. Second, the decision rules used in WRM-I

only select from those strategies with non-negative regret. Therefore, if the joint regret-state is ever

at a point where only one joint strategy has a positive regret for every agent, the algorithm will

continue to select that joint strategy. Let us call this region in the agents’ joint regret-space an

equilibrium’s joint regret sink. Third, the final step in the proof is to show that there is some strictly

positive probability that the agents’ joint regret enters an equilibrium’s joint regret sink. This is

achieved via the finite improvement property and the use of inertia, in an argument similar to that

used in the proof of convergence of DSA. Note that if past regrets are not discounted, then

convergence to a Nash equilibrium cannot be guaranteed, and the algorithm may not even converge

to a stationary point (as is the case in RM).

5 Conclusions

In this paper, we focused on local approximate best-response algorithms for DCOPs, for optimi-

zation in domains where communication is difficult, costly or impossible, and in which optimality

can be traded off against timeliness or computational and communicational burden. Specifically,

our key contribution is a framework for analyzing local approximate best-response algorithms for

DCOPs—that is, algorithms that operate by having agents exchange messages that contain only

their strategy. Our framework captures many algorithms developed in both the computer science

and game theory literatures. Moreover, we argue that the appropriate solution concept for the class

of local approximate best-response algorithms is the Nash equilibrium condition. Given this, our

framework is built on the insight that when formulated as non-cooperative games, DCOPs form a

subset of the class of potential games. In turn, this allowed us to apply game-theoretic methods to

analyze the convergence properties of local approximate best-response algorithms developed in the

computer science literature.

In general, our framework is based on a three-stage decomposition that is common to all local

approximate best-response DCOP algorithms. Given an appropriate trigger, an individual agent

enters a state evaluation stage, which produces some measure of the desirability of each state. This

is followed by a decision on which action to take, based on the preceding state evaluations. Then,

the system-wide process that controls which agent adjusts its state at each point is given by an

adjustment schedule. We populate our framework with algorithm components, corresponding to

the three stages above, that are used in existing algorithms, and which can be used to construct

novel algorithms.

Our framework can assist system designers by making the pros and cons of the various DCOP

algorithm configurations clear. To illustrate this, we constructed three novel hybrid algorithms from

the components identified in our parameterization. We evaluated these hybrids alongside eight

existing algorithms taken from both the computer science and game theory literatures. Our

experimental results show that an algorithm’s behaviour is accurately predicted by identifying its
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constituent components. For example, algorithms that use fictitious play-like target functions and

an argmax decision rule converge to a Nash equilibrium, but by varying the adjustment schedule, a

designer may trade off between convergence time and communication use. Thus, a system designer

may use our framework to tailor a DCOP algorithm to suit their mix of requirements, whether they

be high quality solutions (bute.g. in the presence of bandwidth restrictions), rapid convergence (such

as in real-time settings), or low communication costs (e.g. in the presence of resource constraints

such as battery life). Furthermore, we expect most of our experimental results to generalize to other

problems that fall within the class of hypergraphical potential games.

Generally in field of DCOPs, the main problems requiring attention involve extending the

basic, static model with known payoffs and lossless communication to encompass the real-world

aspects of typical DCOP application domains. In more detail, the most salient of these aspects can

be broken into the following groupings:

Online learning of unknown rewards: online learning of reward functions poses a difficult

problem in DCOPs, particularly if coordinated search of the joint-action space is not possible. It is

important to consider the differences in approaches to the problem that are needed if the goal is to

maximize the long-term reward (as is often addressed in Markov decision processes) or to find a

‘good enough’ solution quickly (as in optimal stopping problems). This problem can be further

extended by considering the case were rewards are not just unknown, but observations of them are

noisy, or even stochastic.

Dynamic problems: DCOPs have proven to be very useful for describing static problems, but

their usefulness for dynamic and stochastic problems is not clear. There is, however, scope for

exporting techniques for DCOPs to decentralized Markov decision processes and partially-

observable Markov decision processes in order to identify tractable classes of those problems and

to, subsequently, develop algorithms based on DCOP solution techniques. Furthermore, if

decentralized optimization mechanisms that produce timely solutions are desirable in many static

scenarios, then there is an even greater demand for principled decentralized approximation

heuristics for real-time sequential decision-making in dynamic scenarios, and we believe the

approaches developed here represent a first step in developing such techniques.

Communication: the model of communication adopted in this paper is a natural, although naive

one. Communication in real-world applications of DCOPs is lossy, noisy, delayed and otherwise

asynchronous, and has not been systematically addressed. Similarly, we assume communication

takes place over a network defined by the constraint graph. How relaxing this assumption, to

consider cases where agents do not have a direct communication link with all of the agents their

utility depends on, affects the efficacy of existing approaches is unknown.

APPENDIX A

The following pseudocode describes several of the algorithms discussed in this paper. The pseu-

docode states the computations carried out by an individual agent, and unless otherwise stated, the

algorithms (including their various adjustment schedules) are implemented by each agent running

the stated procedure at every time step. In all that follows, we drop the sub-script i because the

pseudocode refers to an agent’s internal processes. We denote an agent’s strategy sAS and its

target function’s value for strategy k as stateValue(k) or stateRegret(k), as appropriate. An

agent’s neighbours are indexed jA v, with their joint-strategy profile notated sv. Finally, an agent’s

immediate payoff for a strategy k, given its neighbours’ joint-strategy profile is written u(k, sv).

The algorithms listed here are the maximum-gain messaging algorithm (MGM), the DSA using

the argmax-B decision rule (DSA-B), better-response with inertia (BR-I), spatial adaptive play

(SAP), fictitious play (FP), smooth fictitious play (smFP), joint-strategy fictitious play with inertia

(JSFP-I), and weighted regret monitoring with inertia (WRM-I).
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Maximum-Gain Messaging (MGM)

currentReward5 u(s5 currentState, sv) 1

for k5 1:K 2

stateGain(k)5 u(s5 k, sv) – currentReward 3

end for 4

bestGainState5 argmax
k

½stateGain� 5

bestGainValue5 stateGain(bestStateGain) 6

sendBestGainMessage[allNeighbours, bestGainValue] 7

neighbourGainValues5 getNeighbourGainValues[allNeighbours] 8

if bestGainValue.max[neighbourGain] then 9

newState5 bestGainState 10

sendStateMessage[allNeighbours, newState] 11

end if 12

Distributed Stochastic Algorithm (DSA-B)

currentValue5 u(s5 currentState, sv) 1

for k5 1:K 2

stateRegret(k)5 u(s5 k, sv) – currentValue 3

end for 4

candidateState5 argmax
k

½stateRegret� 5

If rand[0,1]r p 6

newState5 candidateState 7

end if 8

if newState 6¼ currentState 9

sendStateMessage[allNeighbours, newState] 10

end if 11

Better-Response with Inertia (BR-I)

currentValue5 u(s5 currentState, sv) 1

for k5 1:K 2

stateRegret(k)5max[u(s5 k, sv) – currentValue,0] 3

end for 4

normFactor5
PK

k¼1 stateRegret 5

randomNumber5 rand(0, 1) 6

for k5 1:K 7

mixedStrategyCDF(k)5 1
normFactor

Pk
l¼1 stateRegret(l) 8

if randomNumberrmixedStrategyCDF(k) then 12

candidateState5 k 9

break for loop 10

end if 11

end for 12

if rand[0,1]r p 13

newState5 candidateState 14

end if 15

if newState 6¼ currentState 16

sendStateMessage[allNeighbours, newState] 17

end if 18

In SAP the agents adjust their state in a random sequence. In practice, there are a number of

ways to implement this type of schedule, however, the simplest is to randomly select an agent to

run the stated procedure. Note this usually means some agents may be given more than one

opportunity to adjust their state in a particular time step, while other agents may have none.
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Spatial Adaptive Play (SAP)

currentValue5 u(s5 currentState, sv) 1

for k5 1:K 2

stateRegret(k)5 u(s5 k, sv)2currentValue 3

end for 4

for k5 1:K 5

statePropensity(k)5 exp[h21stateRegret(k)] 6

end for 7

normFactor5
PK

k¼1 statePropensity(k) 8

randomNumber5 rand(0, 1) 9

for k5 1:K 10

mixedStrategyCDF(k)5 1
normFactor

Pk
l¼1 statePropensity(l) 11

if randomNumberrmixedStrategyCDF(k) then 12

newState5 k 13

break for loop 14

end if 15

end for 16

if newState 6¼ currentState 17

sendStateMessage[allNeighbours, newState] 18

end if 19

In FP and smFP, |v| is the number of neighbours an agent has, qj is a vector of the frequencies

with which neighbour j has played each strategy kj in the past, Ifkj ¼ stjg is an indicator vector

with an element equal to one for the state kj played by j at time t and zero everywhere else, and

H ¼
Qjnuj

j¼1 jSj j is the size of the agent’s neighours’ joint-strategy space.

Fictitious Play (FP)

for j5 1:|v| 1

qtj ¼ 1
t
½Ifkj ¼ stjg þ ðt�1Þqt�1j � 2

end for 3

t5 t1 1 4

for k5 1:K 5

for h5 1:H 6

E½uðs ¼ k; shnÞ� ¼ uðs; shnÞ
Q

shj 2shn
qtj 7

end for 8

stateValue(k)5
PH

h¼1 E½uðs ¼ k; shnÞ� 9

end for 10

newState5 argmax
k

½stateValue� 11

if newState 6¼ currentState 12

sendStateMessage[allNeighbours, newState] 13

end if 14

Smooth Fictitious Play (smFP)

for j5 1:|v| 1

qtj ¼ 1
t
½Ifkj ¼ stg þ ðt�1Þqt�1j � 2

end for 3

t5 t1 1 4

for k5 1:K 5

for h5 1:H 6

E½uðs ¼ k; shnÞ� ¼ uðs; shnÞ
Q

shj 2shn
qtj 7

end for 8

stateValue(k)5
PH

h¼1 E½uðs ¼ k; shnÞ� 9

end for 10
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(Continued)

for k5 1:K 11

statePropensity(k)5 exp[h21 stateValue(k)] 12

end for 13

normFactor5
PK

k¼1 statePropensity(k) 14

randomNumber5 rand(0, 1) 15

for k5 1:K 16

mixedStrategyCDF(k)5 1
normFactor

Pk
l¼1 statePropensity(l) 17

if randomNumberrmixedStrategyCDF(k) then 18

newState5 k 19

break for loop 20

end if 21

end for 22

if newState 6¼ currentState 23

sendStateMessage[allNeighbours, newState] 24

end if 25

Joint-Strategy Fictitious Play with Inertia (JSFP-I)

for k5 1:K 1

stateValue(k)5 1
t
½uðs ¼ k; snÞ þ ðt�1Þ stateValueðkÞ� 2

end for 3

t5 t1 1 4

candidateState5 argmax
k

½stateValue� 5

if rand[0,1]r p 6

newState5 candidateState 7

end if 8

if newState 6¼ currentState 9

sendStateMessage[allNeighbours, newState] 10

end if 11

Weighted Regret Matching with Inertia (WRM-I)

currentValue5 u(s5 currentState, sv) 1

for k5 1:K 2

avgDiff(k)5 ru(s5 k, Sv2currentValue1 (12r)avgDiff(k)) 3

stateRegret(k)5max[avgDiff(k), 0] 4

end for 5

normFactor5
PK

k¼1 stateRegret 5

randomNumber5 rand(0, 1) 6

for k5 1:K 7

mixedStrategyCDF(k)5 1
normFactor

Pk
l¼1 stateRegret(l) 8

if randomNumberrmixedStrategyCDF(k) then 12

candidateState5 k 9

break for loop 10

end if 11

end for 12

if rand[0,1]r p 13

newState5 candidateState 14

end if 15

if newState 6¼ currentState 16

sendStateMessage[allNeighbours, newState] 17

end if 18
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