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Abstract: Discrete stationary classical processes as well as quantum lattice states are
asymptotically confined to their respective typical support, the exponential growth rate
of which is given by the (maximal ergodic) entropy. In the iid case the distinguishability
of typical supports can be asymptotically specified by means of the relative entropy,
according to Sanov’s theorem. We give an extension to the correlated case, referring to
the newly introduced class of HP-states.

1. Introduction

A relevant notion on the interface of classical discrete probability theory and information
theory is that of typical subsets. For the quantum extensions of these fields there is a
corresponding notion: typical subspaces.

The general picture is that a stationary process (state in the case of quantum lattice
systems) is asymptotically -i.e. observing a large finite interval-more and more confined
to its typical support. The size of this support has an exponential growth rate (possibly
zero) given by the essential supremum of the entropies of the ergodic components. In
the classical situation this is the content of the Shannon-McMillan theorem. It clari-
fies the importance of Shannon entropy for several fields, from data transmission and
compression to statistical mechanics or complexity theory.

Under the much stronger condition of complete independence Sanov’s theorem (see
[23 or 7]) specifies the exponential rate of this confinement of a classical iid process to
its own typical set, or equivalently, the rate of avoidance of the supports of all other iid
processes’ typical sets. This large deviations result is usually seen as a result on empiri-
cal distributions, as in its formulation a particular instance of typical set appears: typical
for an iid process are realizations with an empirical distribution close to the probability
distribution underlying this very process, see Ch. 3.2 in Deuschel and Stroock [9].

In the iid case Sanov’s theorem significantly extends the assertion of the Shannon-
McMillan theorem. In fact, taking the equidistribution as reference measure, it follows
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from Sanov’s theorem that there is a universal typical set sequence of approximate size
enh for all iid processes with (base e) entropy less than h. It is well-known in the classical
situation that this extends to the general ergodic case (since there exist universal com-
pression schemes like the Lempel-Ziv algorithm: the universal set of blocks of (fixed)
length n can be defined as the set of those blocks, the Lempel-Ziv code of which has
length less than hn/ log 2 ). This universality result was generalized to the quantum
case by Kaltchenko and Yang [15], using a nice ’rotation technique’ and the quantum
Shannon-McMillan theorem [1]. In the quantum iid case the universal coding result has
been shown earlier by R. Jozsa, M. Horodecki, P. Horodecki and R. Horodecki [14]
(1998).

From the point of view of statistical hypothesis testing Sanov’s theorem asserts that
there is a universally typical set sequence for any set of iid probability distributions
(null hypothesis), separating it optimally from any other set of iid processes (alternative
hypothesis) at a rate arbitrarily close to the infimum of the relative entropies between
probability measures from the two hypotheses. So in the classical case Sanov’s theorem
expresses a twofold universality in the choice of the typical sets.

The special case of Sanov’s theorem with both hypotheses consisting of only one
probability distribution each, is usually called Stein’s lemma.

As already emphasized in [2], when passing from the classical to the quantum case,
the universality mentioned above gets partially lost: there exists no longer a sequence of
typical subspaces (of the underlying finite dimensional Hilbert spaces for the n-blocks
of the system), which would work universally, whatever the reference states are. Con-
sequently, speaking in the hypothesis testing terminology, for the alternative hypothesis
only one process/state is admitted here. Universality with respect to the null hypothesis
states is maintained, however. Also, in the quantum situation it is no longer possible
to originate Sanov’s theorem on the concept of empirical distributions (states), see [2],
Chap. 4.

We mention here that the main techniques needed to generalize Sanov’s theorem to
the iid quantum case were already presented in Hayashi [10] (1997), and in Hayashi
[11] (2002) an equivalent result is shown. The authors of the present paper regrettably
were not aware of this part of Hayashi’s work during the preparation of [2].

It is the aim of this paper as a continuation of [2] to extend the assertion of Sanov’s
theorem in several directions. This concerns the classical case, too, but the main focus
is on the quantum situation.

First, the restriction to the uncorrelated case is substantially alleviated: No condition
besides stationarity is imposed to the processes/states P of the null hypothesis. As for
the alternative hypothesis (reference measure/state) Q, even stationarity is not assumed.
The only requirements are the existence of relative entropy rates h(W, Q) ≤ +∞ for
the ergodic components W occurring in the null hypothesis set, and the validity of the
upper bound (achievability part) in Stein’s lemma concerning W and Q (see Theorems
11, resp. 13, in the classical situation). These are, in a sense, minimal requirements,
since Stein’s lemma is a trivial consequence of Sanov’s theorem obtained by forgetting
about universality.

As an application of this general result we consider the case that a certain (admittedly
very strong) mixing condition holds for the reference process Q . Observe that the very
existence of the relative entropy rate for correlated processes can only be guaranteed in
terms of mixing conditions, if the reference process is particulary strong mixing. Shields
[25] gives an example where the reference process is even maximally mixing in the
sense of Dynamical Systems theory (B-process, i.e. isomorphic to an iid process), but
nonetheless there exists no asymptotic rate of the relative entropy. Though the mixing
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condition upon the reference processes is very strong (∗-mixing, cf. [4, or 5], where
it is called ψ-mixing), the class of aperiodic irreducible Markov processes on a finite
state space is covered. In this Markov case aperiodicity is necessary and sufficient for
mixing, but not needed for Sanov’s theorem, showing that ∗-mixing is far from being
a necessary condition for a Sanov type theorem. In fact, in the classical case a kind of
average-mixing would yield the result, cf. condition (̂U) on p. 86 of [9].

We also mention that in the classical case a usual mixing condition to derive large
deviation results is hypermixing, cf. Chap. 5.4 in [9].

Secondly, we generalize the classical Sanov’s theorem to the (correlated) quantum
situation (in Hayashi [11] and later in [2] the quantum iid case was considered). In fact,
since the classical assertion is a special case of the quantum theorem, we only prove
the latter. Again, the reference state only needs to fulfill the two minimal conditions
mentioned above. We refer to those as the HP-condition. The states forming the null
hypothesis have to be stationary only.

It would be interesting to specify the set of all states which fulfill the HP-condition
with respect to any ergodic (null hypothesis) state. We call these states HP-states. As
already said, this set comprises all ∗-mixing states, but can be expected to be much
larger.

In the classical situation we remind the reader of an interesting example by Xu [26]:
There exists a B-process (i.e. again maximally mixing in the sense of Dynamical Sys-
tems) Q which has the property that the relative entropy rate h(P, Q) exists and is zero
for any stationary process P . So this process cannot be separated at exponential speed
from an arbitrary other stationary process.

It would be interesting to find conditions weaker than ∗-mixing ensuring exponential
separability in the case that the relative entropy rate is positive.

In the presented form, the quantum Sanov theorem comprises and extends several
earlier results on typical subspaces and their connection with the von Neumann entropy
and relative entropy.

In particular, the result [2] of the present authors (which was preceded by Hayashi
[11]) is extended to the correlated case. The quantum Shannon-McMillan theorem [1] is
covered and extended from the ergodic to the general stationary situation. The univer-
sality result of Kaltchenko and Yang [15] is covered, too, by using the tracial state as the
reference state in Theorem 11. In fact this Kaltchenko-Yang universality is a main ingre-
dient in our proof. The quantum Stein lemma (see [20,21], Chap. 1.1 for the iid case,
[3] for the case of ergodic null hypothesis states) is covered and extended to the case of
correlated reference states. Results of Hiai and Petz [12,13] are completed in the sense
that their bound is shown to be sharp, which means that it is asymptotically optimal,
and the condition of complete ergodicity concerning the null hypothesis is dropped. In
particular, the case of irreducible aperiodic algebraic (reference) states on a quasi-local
algebra over a finite-dimensional C∗-algebra A (also called finitely correlated states)
considered in [13] is covered by ∗-mixing. We mention that Hiai and Petz emphasize in
[13] that they derive almost all assertions using ∗ -mixing, only.

As already emphasized, the quantum Sanov theorem is a special type of quantum
large deviations result. We refer the reader to some other work in this direction, see
Lebowitz, Lenci and Spohn [16], Lenci and Rey-Bellet [17], Netočný and Redig [19],
De Roeck, Maes and Netočný [8].

We give a short account of the principal steps to prove the main result.
In Chapter 3 we show that ’one half’ of Stein’s lemma, namely the assumed achiev-

ability of the relative entropy rate as separation rate, already implies Sanov’s theorem.



562 I. Bjelaković et al.

First it is shown that the optimality of the relative entropy rate (as separation rate)
is a consequence of its achievability. In fact, for two states �,� such that s(�,�) and
s(�) exist, the quantity −n(s(�,�)+s(�)) is the asymptotic average of the logarithmic
eigenvalues of D�(n) , which denotes the density operator of the local state �(n) on the
disrete interval of length n, with respect to the probability measure generated on the
corresponding eigenvectors by the operator D�(n) . On the other hand, the achievabil-
ity part of Stein’s lemma implies that −n(s(�,�) + s(�)) is also an essential upper
bound for these logarithmic eigenvalues. The key tool to show the latter is Lemma 8.
Now, roughly speaking, with the asymptotic average being the asymptotic upper bound,
it must be an asymptotic lower bound, too. This observation yields a relative AEP
(asymptotic equipartition property) for the logarithmic eigenvalues of D�(n) : the vast
majority of them (with respect to the considered probability distribution) is close to
−n(s(�,�) + s(�)). Because for ergodic � by the quantum Shannon-McMillan the-
orem the relevant dimension of the corresponding subspace of eigenvectors of D�(n) is
close to ens(�), it easily follows now (applying Lemma 8 once again) that the optimally
separating subspaces can essentially be described as those which are close to the span
of the mentioned eigenvectors of D�(n) fulfilling the relative AEP: the�(n)-expectation
is close to ens(�) · e−n(s(�,�)+s(�)) = e−ns(�,�).

Next we make use of the proven relative AEP, combined with Kaltchenko and Yang’s
universality result to show Sanov’s theorem: We subdivide the null hypothesis set into
small slices of almost constant value of the ’mixed’ term (aka cross-entropy) smix :=
s(�,�) + s(�) = − lim 1

n TrD�(n) log D�(n) , and within these slices the entropy rate
is bounded from above by smix − inf� s(�,�). Then, by Kaltchenko-Yang univer-
sality, there exists a common support of dimension ≈ en(smix−inf� s(�,�)) which by
the relative AEP can be chosen to consist of eigenvectors of D�(n) with eigenvalues
close to e−nsmix . So this common support has an asymptotic �(n)-expectation close to
en(smix−inf� s(�,�)) · e−nsmix = e−n inf� s(�,�).

This essentially proves Sanov’s theorem under the HP-condition.
In Chapter 4 we prove that ∗-mixing implies the HP-condition, hence the quantum

Sanov theorem. The idea is borrowed from [13]: under ∗-mixing, the reference state� is
sufficiently close to some block-iid state, so that we may apply the techniques developed
in [12 and 3] in order to prove the achievability part of Stein’s lemma.

In Chapter 5 we use the ergodic decomposition of stationary states to extend our
results to the case where the null hypothesis states are only assumed stationary.

2. Basic Settings and Notations

As announced in the introduction, we address both the classical and the quantum sit-
uation. Let us first consider the classical case. Let a finite set A of symbols be given.
We deal with processes P on [AZ,AZ], where AZ denotes the σ -field over AZ which is
generated by finite dimensional cylinders. We denote the set of all processes by P(AZ).
Let P(n) denote the marginal of a process P , restricted to the positive (time) indices
{0, 1, ..., n − 1} ⊂ Z .

The relative entropy rate between two processes P, Q is defined as

h(P, Q) := lim
n→∞

1

n
H(P(n), Q(n))

whenever this limit exists in R+ = R+ ∪{+∞}. Here H(·, ·) denotes the relative entropy
of two probability measures given on a finite set.
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If Q ∈ P(AZ), � ⊆ P(AZ) and h(P, Q) exists for each P ∈ � we write h(�, Q)
for inf P∈� h(P, Q).

The following very strong mixing property of Q was introduced by Blum, Hanson
and Koopmans [4] (referred to as ψ-mixing in the survey paper [5]), which implies the
existence of the relative entropy rate h(P, Q) for any stationary P (see [13], where the
more general quantum case is treated):

Definition 1. A stationary process Q on [AZ,AZ] will be called ∗-mixing if for each
0 < α < 1 there exists an l ∈ N such that

αQ(B)Q(C) ≤ Q(B ∩ C) ≤ α−1 Q(B)Q(C) (1)

whenever B ∈ A{...,−2,−1,0},C ∈ A{l,l+1,...}.

Here AT , T ⊂ Z, denotes the sub-σ -field of AZ concerning only times t ∈ T .
Observe that irreducible and aperiodic (i.e. weakly mixing) Markov chains are auto-

matically ∗-mixing, even with α = α(l) tending to 1 exponentially fast as l → ∞. In
the general situation, even strong mixing (α-mixing in the terminology of [5]) does not
imply ∗-mixing, because rare events may still deviate much from independence.

We note that in the following we use the seemingly weaker condition, that (1) is
fulfilled for some α > 0 and some l. (The same was emphasized for most of the results
in [13].) But, in fact, in the stationary classical situation this is already equivalent to full
∗-mixing, see [5], Theorem 4.1.

Let Pstat(AZ), Perg(AZ), resp. P∗(AZ), denote the set of stationary, of ergodic, resp.
stationary, ∗-mixing processes with state space A.

We briefly introduce now the corresponding quantum set-up.
Consider a finite-dimensional C∗-algebra A. The classical case is covered choosing

A to be abelian.
It is well-known that A can always be represented as a finite direct sum of matrix

algebras

A ∼=
m

⊕

i=1

Mki , (2)

where Mk is the algebra of complex k × k matrices. The abelian case is covered if all
ki are 1, meaning that A is simply the commutative algebra of complex functions over
a finite set A = {1, 2, ...,m}. A state ψ on A is a positive functional on A with the
property ψ(1) = 1, where 1 is unity. The set of all states on A is denoted by S(A). This
is the set of probability measures on A in the abelian case.

Any state ψ on the finite-dimensional algebra A is uniquely given by its density
operator Dψ ∈ A, which is a positive trace-one operator fulfilling

ψ(X) = TrA(Dψ X) for each X ∈ A.

Here TrA denotes the canonical trace in A which is nothing but the sum of the matrix
traces in the above representation (2).

The quantum generalization of a stochastic process is usually constructed as fol-
lows (and in correspondence to the definition of a process by its compatible finite-
dimensional distributions via Kolmogorov’s extension theorem): For each finite subset
T ⊂ Z consider the C∗-algebra AT := ⊗

t∈T A. Then for any T ⊂ T ′ ⊂ Z there is a
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canonical embedding of AT into AT ′
as a C∗-subalgebra. With respect to this identifi-

cation consider the algebra

˜A :=
⋃

T ⊂Z
T finite

AT =
⋃

n∈N

A{−n,...,n}.

˜A is not norm-complete. We denote the completion by AZ. It is a C∗-algebra and is
called the quasilocal algebra constructed from A. Again, a state � on AZ is a positive
functional on AZ with the property �(1) = 1. If A is abelian, there is a one-to-one
correspondence between states on AZ and stochastic processes with alphabet A: The
restrictions �(T ) := � �AT of � to the local algebras AT correspond to the marginals
P(T ) of the stochastic process P on the cylinder σ -algebras AT . This comes from the
fact that any compatible family of local states �(T ) has a unique extension to AZ just
as any compatible family of marginals can be extended to a stochastic process.

There is a canonically defined shift operator τ on AZ (mapping in particular A{0} ⊂
AZ onto A{1} ⊂ AZ). The set of stationary states Sstat(AZ) is the subset of states in
S(AZ) which are invariant with respect to τ . This is a Choquet simplex; the extremal
points are called ergodic states Serg(AZ). The notions coincide with the classical ones
in the abelian case.

We complete the picture by defining a mixing property (cf. [13] ) as above:

Definition 2. A stationary state � in S stat(AZ) will be called ∗-mixing if for each
0 < α < 1 there exists an l ∈ N such that for each k ∈ N,

α�({−k,−k+1...,0}) ⊗�({l,l+1,...,l+k})

≤ �({−k,−k+1...,0}∪{l,l+1,...,l+k})

≤ α−1�({−k,−k+1...,0}) ⊗�({l,l+1,...,l+k}).

We denote the set of stationary ∗-mixing states by S∗(AZ).
Next we introduce the quantum version of the relative entropy rate. Letψ, ϕ ∈ S(A).

The relative entropy is defined as

S(ψ, ϕ) :=
{

TrADψ(log Dψ − log Dϕ), if supp(ψ) ≤ supp(ϕ)
∞, otherwise.

Here supp(D) is the smallest projection p ∈ A fulfilling pDp = D (with D ∈ A
self-adjoint).

Now, for �,� ∈ S(AZ), we define the relative entropy rate

s(�,�) := lim
n→∞

1

n
S(�(n), �(n)),

whenever this limit exists in R+ (we write for short �(n) instead of �({0,1,...,n−1}) and
A(n) instead of A{0,1,...,n−1}).

Again, if � ∈ S(AZ),� ⊆ S(AZ) and s(�,�) exists for each � ∈ � we write
s(�,�) for inf�∈� s(�,�).
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3. Equivalence of Sanov’s Theorem and Stein’s Lemma

The maximally separating exponents for two states �,� on AZ are defined by

βε,n(�,�) := min{log�(q) : q ∈ A(n) projection, �(q) ≥ 1 − ε},

for ε ∈ (0, 1). By β̄ε(�,�) we denote limsupn→∞ 1
nβε,n(�,�), and if the limit exists

in −R+ := −[0,∞], we denote it by βε(�,�).

Definition 3. We say that the pair (�,�) satisfies the HP-condition if the relative entropy
rate s(�,�) exists and βε(�,�) ≤ −s(�,�) for all ε ∈ (0, 1).

This condition was first proved to be fulfilled by Hiai and Petz in [12] for the special
case that � is completely ergodic and � is a stationary product state (i.e. an iid state)
and later in [13] for completely ergodic � and ∗-mixing states �.

Definition 4. We say that � ∈ S(AZ) is a HP-state if, for any ergodic state
� ∈ Serg(AZ), the pair (�,�) satisfies the HP-condition.

As it turns out, the statement in Sanov’s theorem is equivalent to the HP-condition:

Theorem 5. Let� be a state on AZ and� ⊆ Serg(AZ). Then following statements are
equivalent:

1. For each � ∈ � the pair (�,�) satisfies the HP-condition.
2. The quantity s(�,�) ≤ +∞ exists for each � ∈ �, and to each subset � ⊆ � and

any η > 0 there exists a sequence {pn}n∈N of projections pn ∈ A(n) with

lim
n→∞�

(n)(pn) = 1, for all � ∈ � (3)

such that if s(�,�) < ∞,

limsup
n→∞

1

n
log�(n)(pn) ≤ −s(�,�) + η, (4)

otherwise

limsup
n→∞

1

n
log�(n)(pn) ≤ −1

η
. (5)

Moreover, for each sequence of projections { p̃n} fulfilling (3) we have

liminf
n→∞

1

n
log�(n)( p̃n) ≥ −s(�,�).

Hence −s(�,�) is the lower limit of all achievable separation exponents.

Remark 6. 1. There are examples showing that in general one cannot choose η = 0,
meaning that the exact value −s(�,�) is not necessarily achievable.

2. If � is stationary and, moreover, ∗-mixing, statement 1 of the theorem is fulfilled
with � = Serg(AZ). This will be seen in Sect. 4.
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The implication 2 ⇒ 1 is trivial. The proof of the converse implication is carried out
in Subsect. 3.2.

As an immediate consequence, we have the following assertion for the classical case:
Let the maximally separating exponents for two processes P, Q ∈ P(AZ) be defined

by

βε,n(P, Q) := min{log Q(n)(M) : M ⊆ An , P(n)(M) ≥ 1 − ε},
for ε ∈ (0, 1). By β̄ε(P, Q) we denote limsupn→∞ 1

nβε,n(P, Q), and if the limit exists
in −R+, we denote it by βε(P, Q).

Theorem 7. Let Q ∈ P(AZ),� ⊆ Perg(AZ) and suppose that the relative entropy rate
h(P, Q) exists for all P ∈ �. Then the following statements are equivalent:

1. β̄ε(P, Q) ≤ −h(P, Q) for all P ∈ � and all ε ∈ (0, 1).
2. For each set� ⊆ � and each η > 0 there is a sequence of subsets {Mn}, Mn ⊆ An,

such that

lim
n→∞ P(Mn) = 1, for all P ∈ �, (6)

and

limsup
n→∞

1

n
log Q(n)(Mn) ≤ −h(�, Q) + η

if h(�, Q) < ∞, otherwise if h(�, Q) = ∞,

limsup
n→∞

1

n
log Q(n)(Mn) ≤ −1

η
.

Moreover, for each sequence of subsets { ˜Mn} fulfilling ( 6) we have

liminf
n→∞

1

n
log Q(n)(˜Mn) ≥ −h(�, Q).

Hence −h(�, Q) is the lower limit of all achievable separation exponents.

3.1. A quantum relative AEP and achievability in Stein’s lemma. We start with a use-
ful lemma which allows to translate some standard techniques and estimates used in
classical information theory into the quantum setting.

Lemma 8. Let p, q be arbitrary projections and τ be a state on A. Suppose that u is a
projection commuting with Dτ . Then we have

τ(qpq) ≥ τ(qpqu) ≥ τ(p)− 2 (τ (1 − q))1/2 − τ(1 − u). (7)

Let c > 0. If Dτu ≤ cu then

Tr(pq) ≥ 1

c

(

τ(p)− 2 (τ (1 − q))1/2 − τ(1 − u)
)

. (8)
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Proof. The first inequality in (7) is trivial. The second follows applying the Cauchy-
Schwarz inequality for the Hilbert-Schmidt inner product:

τ(p) = τ(pq) + τ(p(1 − q))

≤ |τ(pq)| + (Tr(Dτ (1 − q)))
1
2

≤ τ(qpq) + |τ((1 − q)pq)| + (τ (1 − q))1/2

≤ τ(qpq) + 2 (τ (1 − q))1/2

= τ(qpqu) + τ(qpq(1 − u)) + 2 (τ (1 − q))1/2

≤ τ(qpqu) + τ(1 − u) + 2 (τ (1 − q))1/2 .

In the last inequality the assumption [u, Dτ ] = 0 has been used. Finally observe that
u ≥ 1

c Dτu and

Tr(pq) = Tr(qpq) = Tr(qpqu) + Tr(qpq(1 − u)) ≥ 1

c
Tr(qpq Dτu). (9)

Inequality (8) follows immediately inserting (7) into Eq. (9). ��
For 0 ≤ s < ∞, write uε

�(n)
(s) for the finite direct sum

uε
�(n)

(s) :=
∑

s−ε<s′<s+ε

spece−ns′ (�(n)),

where specλ(·) denotes the eigen-projection of its argument’s density operator (here
D�(n)) corresponding to the eigenvalue λ. We extend this definition to the case s = ∞
by setting

uε
�(n)

(∞) := spec0(�
(n)) +

∑

ε−1<s′
spece−ns′ (�(n)). (10)

Now we have

Proposition 9. Let � be ergodic and let � be an arbitrary state on AZ. If the pair
(�,�) fulfills the HP-condition then:

• βε(�,�) = limn→∞ 1
nβε,n(�,�) exists and we have

βε(�,�) = −s(�,�)

for each ε ∈ (0, 1).
• Moreover, for all ε > 0 it holds that

lim
n→∞�

(n)(uε
�(n)

(s(�) + s(�,�))) = 1 (relative AEP)

and for each sequence {pn} of projections fulfilling

�(n)(pn) →
n→∞ 1 and

1

n
log Trpn →

n→∞ s(�) (11)

there is a sequence εn ↘ 0 such that with un := uεn

�(n)
(s(�)+ s(�,�)), the relations

�(n)(supp(un pnun)) →
n→∞ 1

and
1

n
log�(n)(supp(un pnun)) →

n→∞ −s(�,�) (max. separating projection)

are fulfilled.
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Remark. The quantum Shannon-McMillan theorem [1] guarantees the existence of a
sequence of projections {pn} with the properties assumed in (11). We refer to such
sequences as entropy-typical w.r.t. �. Roughly speaking, the above proposition shows
that one obtains a sequence of maximally separating projections as an ’intersection’ of
�-entropy-typical projections with appropriate eigen-projections of the reference state
�.

Proof. 1. First assume s(�,�) < +∞. By the monotonicity of the relative entropy we
may conclude that S(�(n), �(n)) < +∞ for each n. We have

1

n
S(�(n), �(n)) = −1

n
S(�(n))− 1

n
TrD�(n) log D�(n) .

Let {λi }r(�(n))
i=1 be the set of non-zero eigenvalues of D�(n) . We get

1

n
S(�(n), �(n)) = −1

n
S(�(n))− 1

n

∑

i

log λi TrD�(n)specλi
(�(n)).

Let ε > 0 and
pn,ε :=

∑

λi>e−n(s(�)+s(�,�)−ε)
specλi

(�(n)).

We claim that
lim

n→∞�(pn,ε) = 0 for all ε > 0.

In fact, suppose on the contrary that for some ε > 0 we have

limsup
n→∞

�(pn,ε) > 0.

We conclude the existence of some γ > 0 and some subsequence {n j } with

�(n j )(pn j ,ε) > γ > 0.

Fix some α ∈ (0, 1), δ > 0. Let pn j := pn j ,ε, qn j := arg min βα,n j (�,�) and un j :=
uδ
�
(n j )
(s(�)). Then D

�
(n j )un j ≤ cun j for c = e−n j (s(�)−δ) and by Lemma 8 and the

quantum Shannon-McMillan theorem we arrive at

�(n j )(qn j pn j qn j un j ) ≥ γ − 2
√
α − δ > 0,

and
Tr(qn j pn j qn j ) ≥ en j (s(�)−δ)(γ − 2

√
α − δ), (12)

if j is large enough and if 2
√
α + δ < γ . Now, observe that D

�
(n j ) and pn j commute

and that consequently we have D
�
(n j ) ≥ e−n j (s(�)+s(�,�)−ε) pn j by definition of pn j .

Thus we obtain
qn j D

�
(n j )qn j ≥ e−n j (s(�)+s(�,�)−ε)qn j pn j qn j . (13)

After applying trace to both sides of this inequality, taking logarithms, dividing by n j ,
taking limit superior and using (12) we are led to

β̄α(�,�) ≥ −s(�,�) + ε − δ > −s(�,�),

which contradicts the assumed HP-condition provided that δ < ε.
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In the case s(�,�) = ∞ everything can be done in the same way, we just have to
substitute the definition of pn,ε by

pn,ε =
∑

λi>e−n/ε

specλi
(�(n))

and obtain β̄α ≥ − 1
ε

+ s(�) − δ, again in contradiction to β̄α(�,�) = −∞, hence
again the projectors pn,ε have asymptotically vanishing expectation with respect to �
for each positive ε.

2. Let first s(�,�) < ∞. We have 1
n S(�(n), �(n)) → s(�,�) as n → ∞ by

assumption, hence

−1

n
TrD�(n) log D�(n) −→

n→∞ s(�) + s(�,�)

and the mixed term − 1
n TrD�(n) log D�(n) is the expectation value of the random variable

− 1
n log λi with respect to the probability measure given by

{TrD�(n)specλi
(�(n))},

where again {λi } runs through the non-zero eigenvalues of �(n). On the other hand,
we have shown in 1 that the lower bounded random variable − 1

n log λi ≥ 0 is bounded
asymptotically in probability by the quantity s(�)+s(�,�), being its asymptotic expec-
tation value at the same time, i.e. limn→∞�(pn,ε) = 0 for all ε > 0. From this it easily
follows that

lim
n→∞�(tn,δ) = 0 for all δ > 0,

where
tn,δ :=

∑

λi<e−n(s(�)+s(�,�)+δ)

specλi
(�(n)).

This is the assertion

lim
n→∞�

(n)(uε
�(n)

(s(�) + s(�,�))) = 1 (14)

for all ε > 0. In the case s(�,�) = ∞ the relative AEP follows immediately from 1.
3. First assume s(�,�) < ∞. Fix some ε and some α ∈ (0, 1). Let {qn} be any

sequence of projections fulfilling �(n)(qn) ≥ 1 − α for n large enough. Let pn :=
uε
�(n)

(s(�)+ s(�,�)). We proved that�(n)(pn) →
n→∞ 1. Now as in 1 we may conclude

�(n)(qn) ≥ e−n(s(�)+s(�,�)+ε)Trpnqn .

Using the quantum Shannon-McMillan theorem and again Lemma 8, this time applied
to the density operator of �(n) and with u := ∑

λ<e−n(s(�)−δ)specλ(�(n)), for arbitrary
δ > 0 and n large enough we have Trpnqn ≥ en(s(�)−δ)a for some 0 < a < 1 indepen-
dent of n. Hence we get for any ε, δ > 0,

1

n
log�(n)(qn) > −s(�,�)− ε − δ
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for n large enough. Therefore, the quantity βα(�,�) exists for any α ∈ (0, 1) and
coincides with −s(�,�), where we used again the HP-condition. In the case s(�,�) =
∞ this assertion is a trivial consequence of β̄α(�,�) = −∞.

4. Let {pn} be a sequence of projections pn ∈ A(n) with limn→∞�(n)(pn) = 1 and
limn→∞ 1

n log Tr(pn) = s(�). Fix some ε > 0. Let us write un instead of uε
�(n)

(s(�) +

s(�,�)) for short. From (14) and Lemma 8 we infer that �(n)(un pnun) →
n→∞ 1.

Now un pnun is a positive operator being upper bounded by its support projection
supp(un pnun) which proves �(n)(supp(un pnun)) →

n→∞ 1. From this we easily con-

clude that we may even substitute the ε in the definition of un = uε
�(n)

(s(�) + s(�,�))

by a suitable sequence εn → 0 and still have �(n)(supp(un pnun)) →
n→∞ 1.

On the other hand, we have supp(un pnun) ≤ un as well as Tr(supp(un pnun)) ≤
Tr(pn). Hence we get in the case s(�,�) < ∞,

1

n
log�(n)(supp(un pnun))

≤ 1

n
(−n(s(�) + s(�,�)− εn) + log Tr (pn)) −→

n→∞ −s(�,�),

resp. for s(�,�) = ∞,

1

n
log�(n)(supp(un pnun))

≤ 1

n
(−n/εn + log Tr(pn)) −→

n→∞ −s(�,�) = −∞.

This together with the fact we proved that no sequence of � -typical projections has
a better lower limit of the separation rate than −s(�,�) shows now that

1

n
log�(n)(supp(un pnun)) −→

n→∞ −s(�,�).

We proved all assertions of the proposition. ��

3.2. Stein’s Lemma implies Sanov’s Theorem. With the preliminaries given in the last
subsection, it is now easy to complete the proof of Theorem 5:

Proof. Let
smin := inf

�∈� s(�) and smax := sup
�∈�

s(�),

where s(�) denotes the von Neumann entropy rate of the ergodic state � ∈ �. Choose
s1, . . . , sm satisfying (for η := m−1(smax − smin))

smin = s1 < s2 < . . . sm−1 < sm = smax and si − si−1 = η, i ∈ {2, . . . ,m}.
Define sm+1 = sm + η.

Let first s(�,�) < +∞. For i ∈ {1, . . . ,m} we consider the collection of disjoint
intervals

Ii :=
(

si + s(�,�)− η

2
, si + s(�,�) +

η

2

]
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and

Im+1 := (smax + s(�,�) +
η

2
,∞).

Moreover we define the following projections:

un,i :=
∑

− 1
n log λ∈Ii

specλ(�
(n)),

and
un,m+1 :=

∑

− 1
n log λ>smax+s(�,�)+η/2

specλ(�
(n)),

where the summations extend over the eigenvalues of D�(n) . Additionally we consider
universally typical projections pn,i , i ∈ {1, . . . ,m} (according to the Kaltchenko-Yang
universality result [15]) to the levels si + η (i.e.

lim
n→∞

1

n
log Tr(pn,i ) = si + η (15)

and
lim

n→∞�
(n)(pn,i ) = 1 (16)

for each ergodic state with s(�) < si + η). In addition, set pn,m+1 := pn,m . We may
choose the sequence of these projections to be ascending, i.e.

pn,i ≤ pn,i+1, (17)

since otherwise we may define

p̂n,i :=
i

∨

j=1

pn, j .

The p̂n,i fulfill (15) and (16) as well, so we may work with these instead of pn,i .
Set rn,i =supp(un,i pn,i un,i ) for i = 1, 2, ...,m + 1 and define pn by

pn :=
m+1
∑

i=1

rn,i .

(Observe that the rn,i are mutually orthogonal.)
For � ∈ � let i0 ∈ {1, . . . ,m + 1} be the index fulfilling s(�) + s(�,�) ∈ Ii0 .

This means that s(�) ≤ si0 + η/2 < si0 + η. Consequently, by (16) we obtain
limn→∞�(n)(pn,i0) = 1.

Further, by the relative AEP (Proposition 9) limn→∞�(n)(un,i0 + un,i0+1) = 1,
for i0 ∈ {1, . . . ,m}, and limn→∞�(n)(un,m+1) = 1 are satisfied. We add the projection
un,i0+1 for i0 ∈ {1, . . . ,m} in order to cover the case where the mixed term is equal to the
right end point of Ii0 . We conclude from (17) and Lemma 8 that�(n)(rn,i0 +rn,i0+1) → 1,
for i0 ∈ {1, . . . ,m}, and �(n)(rn,m+1) → 1. Therefore

lim
n→∞�

(n)(pn) = 1.
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On the other hand we have for n sufficiently large by (15) and by definition of η,

�(pn) =
m+1
∑

i=1

�(rn,i ) ≤
m+1
∑

i=1

Tr(pn,i )e
−n(si +s(�,�)−η/2)

≤
m+1
∑

i=1

en(si +2η)e−n(si +s(�,�)−η/2)

= e−n(s(�,�)− 5
2 η− log(m+1)

n )

= e−n(s(�,�)− 5
2 m−1(smax−smin)− log(m+1)

n ).

So, by choosing m sufficiently large, we get statement (4).
The case s(�,�) = +∞ easily follows by setting pn := uη

�(n)
(∞), see (10). By

Proposition 9 the projection pn is asymptotically typical for all � ∈ �, and we have
�(n)(pn) ≤Tr(1A(n) )e−nη−1 = e−n(η−1−log Tr(1A)), so again we get statement (5).

Finally, the fact that a better separation exponent than −s(�,�) is not achievable
immediately follows from Proposition 9. ��

4. ∗-Mixing Implies the HP-Condition

We start with a proposition extending the result in [13] to the case of only ergodic (instead
of completely ergodic) �.

Theorem 10. Let � ∈ S∗(AZ). Then � is an HP-state.

Recall that S∗(AZ) denotes the set of stationary ∗-mixing states, see Definition 2.

Proof. 1. Let � ∈ Serg(AZ). The relative entropy rate s(�,�) ≤ +∞ exists in view of
[13], Theorem 2.1, in connection with Remark 4.2, ibid. (even if only � ∈ Sstat(AZ) is
assumed).

2. Fix some l ∈ N, another integer m (which in the sequel has to be chosen large
enough) and represent the quasilocal C∗-algebra AZ as C∗-algebra (A⊗l ⊗A⊗m)Z, i.e.
partition the integers into blocks of length l + m, where each block consists of a starting
part of length l and the remaining part of length m. Clearly, the entropy rate s(l+m)(�,�)

with respect to this new partitioning exists, and we have s(l+m)(�,�) = (l +m)s(�,�).
With respect to the canonical shift operator τl,m := τ l+m acting in (A⊗l ⊗ A⊗m)Z, the
state � is still stationary, but may fail to be ergodic. Anyway, it has a finite ergodic
decomposition

� = 1

l + m

l+m−1
∑

r=0

�(r,l+m),

where some of the ergodic components may coincide, and all �(r,l+m) have the same
entropy rate s(l+m)(�(r,l+m)) ≡ s(l+m)(�) = (l + m)s(�), [1]. The ergodic compo-
nents also have the same relative entropy rate s(l+m)(�(r,l+m), �) := s(l+m)(�,�) =
(l + m)s(�,�). Observe that this was shown in [3] for the case of stationary product
states �. However as the proof only makes use of the existence of the relative entropy
rates s(l+m)(�(r,l+m), �), which is guaranteed in our situation (see 1), the monotonicity
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of the relative entropy and the affinity of the relative entropy rate with respect to its first
argument, the relation extends to ∗-mixing reference states.

Next, denote by I the trivial subalgebra of A generated by the unit element 1A and
consider the C∗-subalgebra I⊗l ⊗ A⊗m of A⊗l ⊗ A⊗m . Then (I⊗l ⊗ A⊗m)Z is a C∗-
subalgebra of the quasi-local algebra (A⊗l ⊗ A⊗m)Z, and by [6], Theorem 4.3.17, the
restrictions ̂�(r,l,m) of the ergodic components �(r,l+m) to (I⊗l ⊗ A⊗m)Z are ergodic,
too. They are the ergodic components of ̂�(l,m) := � �(I⊗l⊗A⊗m )Z .

We introduce the (τl,m-) stationary product state ˜�(l+m) on (A⊗l ⊗ A⊗m)Z which
is uniquely defined by its one-site marginals � �A⊗l⊗A⊗m , and consider its restriction
̂�(l,m) to the C∗-algebra (I⊗l ⊗ A⊗m)Z, which is a (τl,m-) stationary product state, too.

3. In the following we have to take into account whether s(�,�) is finite or infinite.
Let us first treat the case s(�,�) < +∞.

Define for two states ψ, ϕ on a C∗-algebra A ,

Sco(ψ, ϕ) := sup

{

∑

i

ψ(qi ) log
ψ(qi )

ϕ(qi )
: qi projections with

∑

qi = I

}

(cf. [12]).
Consider the relative entropies S(̂�(l+m)

(r,l,m),
̂�
(l+m)
(l,m) ), then we get by the superadditivity

of relative entropy and by the fact that the rates of the quantities S and Sco coincide (Hiai
and Petz [12])

S(̂�(l+m)
(r,l,m),

̂�
(l+m)
(l,m) ) (18)

≤ s(l+m)(̂�(r,l,m),̂�(l,m)) = lim
k→∞

1

k
Sco(̂�

(k(l+m))
(r,l,m) ,

̂�
(k(l+m))
(l,m) ).

From the definition of Sco and ∗-mixing we obtain now

S(̂�(l+m)
(r,l,m),

̂�
(l+m)
(l,m) )

≤ lim
k→∞

1

k

(

Sco(̂�
(k(l+m))
(r,l,m) , � �(I⊗l⊗A⊗m )⊗k )− k logα

)

.

This is the same technique as used by Hiai and Petz in [13]. Again from the definition
of Sco we get

S(̂�(l+m)
(r,l,m),

̂�
(l+m)
(l,m) )

≤ − logα + lim
k→∞

1

k
Sco(�

(k(l+m))
(r,l+m) , �

(k(l+m))),

and from the relation Sco ≤ S (see [12]), which is a consequence of the monotonicity of
the relative entropy, we arrive at

S(̂�(l+m)
(r,l,m),

̂�
(l+m)
(l,m) ) (19)

≤ − logα + lim
k→∞

1

k
S(�(k(l+m))

(r,l+m) , �
(k(l+m)))

≤ − logα + s(l+m)(�(r,l+m), �) = − logα + (l + m)s(�,�).
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This upper bound may be utilized to derive an essential lower bound. For an arbitrarily
chosen η > 0, define

Al,m,η := {r : 0 ≤ r < l + m,
1

l + m
S(̂�(l+m)

(r,l,m),
̂�
(m+l)
(m,l) ) < s(�,�)− η}.

The convexity of the relative entropy in its first argument together with ( 19) yields

1

l + m
S(�(m), �(m)) = 1

l + m
S(̂�(m+l)

(m,l) ,
̂�
(m+l)
(l,m) ) (20)

≤ 1

(l + m)2
∑

r

S(̂�(l+m)
(r,l,m),

̂�
(m+l)
(m,l) )

<
# Al,m,η

l + m
(s(�,�)− η) +

# Ac
l,m,η

l + m

(

− logα

l + m
+ s(�,�)

)

.

Fixing l and letting m → ∞, the expression 1
l+m S(�(m), �(m)) tends to s(�,�). This

immediately leads to the conclusion that

# Al,m,η

l + m
−→

m→∞ 0 for each l, η. (21)

For each r ∈ Ac
l,m,η, the relative entropy rate fulfills

1

l + m
s(l+m)(̂�(r,l,m),̂�(l,m)) ≥ s(�,�)− η, (22)

too, since ̂�(l,m) is a τl+m-stationary product state.
4. Hence we are in the situation treated in [3]. The main assertion of [3] is the

quantum Stein Lemma saying that for any given ε > 0 it is possible to construct
projections pr,n,ε ∈ (I⊗l ⊗ A⊗m)⊗n which are ε-typical with respect to ̂�(r,l,m) (i.e.
̂�
(n(l+m))
(r,l,m) (pr,n,ε) ≥ 1 − ε for large n) and maximally separating: ̂�

((l+m)n)
(l,m) (pr,n,ε) ≤

e−n(s(l+m)(̂�(r,l,m),̂�(l,m))−ε) for large n. Moreover, the quantum relative AEP (Theorem 2
in [3]) ensures, in particular, that if n is sufficiently large we have

Trpr,n,ε ≤ en(s(l+m)(̂�(r,l,m))+ε) and

̂�
((l+m)n)
(l,m) (p) ≤ e−n(s(l+m)(̂�(r,l,m))+s(l+m)(̂�(r,l,m),̂�(l,m))−ε)

for each minimal projection p ≤ pr,n,ε.
For our purpose we need a bit more information about the construction of these

maximally separating projections. In the course of the proof of Theorem 2 in [3] the
projections pr,n,ε are constructed in the following way:

a) A super-block length L is chosen, where the only requirement about L is that it is
large enough to ensure some appropriate entropy approximation (any larger L will do,
too).

b) The projections pr,nL ,ε are constructed as certain sub-projections of the projection

p(nL) :=
∑

− 1
nL log λ≥s(l+m)(̂�(r,l,m))

+s(l+m)(̂�(r,l,m),̂�(l,m))−ε

specλ((̂�
(l+m)
(l,m) )

⊗nL). (23)
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c) The remaining projections pr,nL+k,ε for 1 ≤ k < L are constructed as pr,nL ,ε ⊗
(IA⊗(l+m) )⊗k .

For given l and m we may choose one and the same super-block length L for the
different r ∈ {0, 1, ..., l + m − 1} and define our separating projections first for the
multiples of L(l + m) by

qnL(l+m),ε :=
∨

r∈Ac
l,m,ε

pr,nL ,ε.

In view of (23) we get, using (22)

qnL(l+m),ε ≤
∑

− 1
nL log λ≥ min

r∈Ac
l,m,ε

s(l+m)(̂�(r,l,m))

+ min
r∈Ac

l,m,ε

s(l+m)(̂�(r,l,m),̂�(l,m))−ε

specλ((̂�
(l+m)
(l,m) )

⊗nL) (24)

≤
∑

− 1
nL log λ≥ min

r∈Ac
l,m,ε

s(l+m)(̂�(r,l,m))

+(l+m)s(�,�)−(l+m+1)ε

specλ((̂�
(l+m)
(l,m) )

⊗nL).

Next, observe that by the subadditivity of the entropy we have for each r ,

s(l+m)(̂�(r,l,m)) = lim
k→∞

1

k
S(̂�(k(l+m))

(r,l,m) ) = lim
k→∞

1

k
S(�(r,l+m) �(I⊗l⊗A⊗m )⊗k )

≥ lim
k→∞

1

k
(S(�(k(l+m))

(r,l+m) )− klTr1A)

= s(l+m)(�(r,l+m))− lTr1A = (l + m)s(�)− lTr1A,

and hence for sufficiently large m we may continue the chain of inequalities (24):

qnL(l+m),ε ≤
∑

− log λ≥nL(l+m)(s(�)+s(�,�)−3ε)

specλ((̂�
(l+m)
(l,m) )

⊗nL).

From this we derive the following upper bound, being valid for m large enough (using
the Araki-Lieb inequality in the fifth line)

̂�
nL(l+m)
(l,m) (qnL(l+m),ε)

≤ e−nL(l+m)(s(�)+s(�,�)−3ε)TrqnL(l+m),ε

≤ e−nL(l+m)(s(�)+s(�,�)−3ε)
∑

r∈Ac
l,m,ε

Trpr,nL ,ε

≤ e−nL(l+m)(s(�)+s(�,�)−3ε)
∑

r∈Ac
l,m,ε

enL(s(l+m)(̂�(r,l,m))+ε)

≤ e−nL(l+m)(s(�)+s(�,�)−3ε)(l + m)enL(l+m)(s(�)+2ε)

≤ e−nL(l+m)(s(�,�)−6ε).
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From ∗-mixing we get now the desired separation order

�(nL(l+m))(qnL(l+m),ε) ≤ e−nL(l+m)(s(�,�)−6ε)α−nL

= e−nL(l+m)(s(�,�)+ logα
l+m −6ε)

≤ e−nL(l+m)(s(�,�)−7ε)

(for m large enough).
On the other hand, �-typicality is guaranteed by

�(nL(l+m))(qnL(l+m),ε) = �(nL(l+m))

⎛

⎝

∨

r∈Ac
l,m,ε

pr,nL ,ε

⎞

⎠

= 1

l + m

l+m−1
∑

r ′=0

�
(nL(l+m))
(r ′,l+m)

⎛

⎝

∨

r∈Ac
l,m,ε

pr,nL ,ε

⎞

⎠

≥ 1

l + m

∑

r ′∈Ac
l,m,ε

�
(nL(l+m))
(r ′,l+m)

(

pr ′,nL ,ε
)

≥ 1

l + m

∑

r ′∈Ac
l,m,ε

(1 − ε),

the last inequality being valid for large n. We may continue

�(nL(l+m))(qnL(l+m),ε) ≥ (1 − ε)− 1

l + m

∑

r ′∈Al,m,ε

(1 − ε)

≥ (1 − ε)− # Al,m,ε

l + m
≥ 1 − 2ε

for m large enough (by (21)).
Now (in the usual way) we may interpolate the qnL(l+m),ε in order to define the pro-

jections qn,ε also for n ∈ N which are not multiples of L(l +m). We derived the existence
of a sequence of projections being asymptotically ε-typical for � and fulfilling

�(n)(qn,ε) ≤ e−n(s(�,�)−ε)

for large n. This proves that, for any α ∈ (0, 1) the separation exponent fulfills
βα(�,�)− s(�,�) for finite s(�,�).

5. Now assume s(�,�) = +∞. Observe that in that case the estimates in (20) and
hence (21) are not valid. But ( 21) becomes true if we replace the definition of Al,m,η
most appropriately by

Al,m,η := {r : 0 ≤ r < l + m,
1

l + m
S(̂�(l+m)

(r,l,m),
̂�
(m+l)
(m,l) ) < η−1}.

In fact, choose M large enough to ensure S(�(M), �(M)) > η−1 M (we include the
case S(�(M), �(M)) = +∞). Now we have the ergodic decomposition

� = 1

M

M−1
∑

r=0

�(r,M) = 1

M

M−1
∑

r=0

�(0,M) ◦ τ−r (25)
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due to [1]. The states �(r,M) = �(0,M) ◦ τ−r are τM -ergodic. In view of the (joint)
convexity of the relative entropy we conclude that at least one of the r fulfills S(�(M)

(r,M)
,

�(M)) > η−1 M . We may assume without any loss of generality that this is true for
r = 0, i.e. S(�(M)

(0,M)
, �(M)) > η−1 M . The τM -ergodic state�(0,M) again has an ergodic

decomposition with respect to τ 2M ,

�(0,M) = 1

2
(� ′ +� ′ ◦ τ−M ),

and, applying once again the convexity argument we find that we may assume S(� ′(M),
�(M)) > η−1 M .� ′ is τ 2M -ergodic, and we obtain from (25) an ergodic decomposition
of � into τ 2M -ergodic states

1

2M

2M−1
∑

r=0

� ′ ◦ τ−r ,

hence we may assume without loss of generality that �(0,2M) = � ′. So we have

S(�(M)(0,2M), �
(M)) > η−1 M

for M large enough. This yields

S((�(0,2M) ◦ τ−r )({r,r+1,...,r+M−1}), �(M)) > η−1 M for each r

in view of the definition of τ , i.e. (using the stationarity of � )

S((�(r,2M))
({r,r+1,...,r+M−1}), �({r,r+1,...,r+M−1})

) > η−1 M.

In view of the monotonicity of the relative entropy we get now for r ≥ l,

S((̂�(r,l,2M−l))
(2M), � �I⊗l⊗A⊗m ) > η−1 M.

So again (21) is fulfilled for M sufficiently large. We conclude that asymptotically for the
overwhelming part of the r in {0, 1, ..., l+m−1} the expression 1

l+m s(l+m)(̂�(r,l,m),̂�(l,m))

is arbitrary large (i.e.> 1
2η

−1 or even infinite) for large m. Now we may proceed essen-
tially as in 4, employing the results of [3]. We find projections pr,nL ,η, separately for each
r in Ac

l,m,η, which distinguish between ̂�(r,l,m) and ̂�(l,m) exponentially well at a rate at

least 1
3η

−1, and we may join these projections to find �-typical projections qnL(l+m),η.
This is possible due to the properties a) and b) above, where now b) is modified to

b’) The projections pr,nL ,η are constructed as certain sub-projections of the projection

p(nL) :=
∑

log λ≤−nL 1
3 η

−1

specλ((̂�
(l+m)
(l,m) )

⊗nL). (26)

But we have to take into account that [3] only treats the case of finite relative entropy
rate; hence those r , for which S(̂�(l+m)

(r,l,m),
̂�
(l+m)
(l,m) ) = +∞, are still not covered. For those

r , simply choose

pr,nL ,η ≡ spec0((
̂�
(l+m)
(l,m) )

⊗nL).
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Obviously, this projection fulfills (̂�(l+m)
(l,m) )

⊗nL(spec0((̂�
(l+m)
(l,m) )

⊗nL)) = 0, and it is a

sub-projection of p(nL). We still have to show that spec0((̂�
(l+m)
(l,m) )

⊗nL) is asymptot-

ically typical for each ̂�(r,l,m) with S(̂�(l+m)
(r,l,m),

̂�
(m+l)
(m,l) ) = +∞. In fact, represent the

density operator of �(m)as

D�(m) =
K

∑

j=1

λ jw j ,

where the w j are mutually orthogonal minimal projectors in A⊗m fulfilling
∑

j w j =
1A⊗m (and the λ j are the eigen-values of D�(m) including 0). Let v j := 1A⊗l ⊗ w j .

Observe that due to S(̂�(l+m)
(r,l,m),

̂�
(l+m)
(l,m) ) = +∞ there is at least one j with λ j = 0 but

̂�
((l+m))
(r,l,m)

(

v j

)

> 0. Now we have

̂�
(n(l+m))
(r,l,m) (spec0((

̂�
(l+m)
(l,m) )

⊗n)) =
∑

( j1,..., jn)∈Nn

̂�
(n(l+m))
(r,l,m)

(

n
⊗

k=1

v jk

)

, (27)

where Nn := {( j1, ..., jn) : ∏n
k=1 λ jk = 0} = ((N c

1 )
n)c. Denote by B the abelian sub-

algebra of I⊗l ⊗ A⊗m generated by the set {v j }. Then the quasi-local algebra BZ is an
abelian sub-algebra of (I⊗l ⊗A⊗m)Z and the restriction P of ̂�(r,l,m) to this sub-algebra
is a classical ergodic process with K symbols (Gelfand isomorphism and Riesz repre-
sentation theorem). This process fulfills P(1)({ j}) > 0. We may continue the left-hand
side in (27) as follows:

̂�
(n(l+m))
(r,l,m) (spec0((

̂�
(l+m)
(l,m) )

⊗n)) = P(n) (Nn)

= 1 − P(n)((N c
1 )

n)

≥ 1 − P(n)(({ j}c)n).

Now P(n)(({ j}c)n) is the probability of all n -sequences of symbols where the symbol j
does not appear at all. This tends to zero, since by the individual ergodic theorem the a.s.

asymptotic frequency of the symbol j is P(1)({ j}) = ̂�
((l+m))
(r,l,m)

(

v j

)

> 0 by assumption.

Hence the conclusions of part 4 are valid in the case of infinite relative entropy, too. ��

5. The Stationary Case

So far we formulated Theorems 5 and 7 for sets of ergodic states �, resp. processes P
to be optimally separated from a reference state or process. These results can be easily
extended to the general stationary situation.

Any stationary state� ∈ Sstat(AZ) can be represented as a mixture (ergodic decom-
position)

� =
∫

Serg(AZ)

�γ�(d�)

of ergodic states (Sstat(AZ) is a Choquet simplex, Serg(AZ) is the corresponding
set of extremal points, γ� is a probability measure on the measurable space
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[Serg(AZ),B(ϒAZ)], with ϒAZ denoting the weak-∗-topology and B(ϒAZ) the
corresponding Borel σ -field, cf. [22]). The measure γ� is unique.

Now let � ∈ S(AZ) be a state and � ⊆ Sstat(AZ) with the property that for any
� ∈ � the relative entropy rate s(�,�) exists for γ� -almost all �. We define the
quantity

s(�,�) := essinfγ�(d�)s(�,�),

and for � ⊆ � the quantity

s(�,�) := inf
�∈� s(�,�).

Theorem 11. Let� be a state on AZ and� ⊆ Sstat(AZ) such that for each� ∈ � and
γ� -almost all � the pair (�,�) satisfies the HP-condition.

Then the quantity s(�,�) ≤ +∞ exists for each � ∈ �, and to each subset � ⊆ �

and any η > 0 there exists a sequence {pn}n∈N of projections pn ∈ A(n) with

lim
n→∞�

(n)(pn) = 1, for all � ∈ � (28)

and

limsup
n→∞

1

n
log�(n)(pn) ≤ −s(�,�) + η. (29)

If s(�,�) < ∞, otherwise if s(�,�) = ∞,

limsup
n→∞

1

n
log�(n)(pn) ≤ −1

η
. (30)

Moreover, for each sequence of projections { p̃n} fulfilling (28) we have

liminf
n→∞

1

n
log�(n)( p̃n) ≥ −s(�,�). (31)

Hence −s(�,�) is the lower limit of all achievable separation exponents.

Remark 12. If � is stationary and, moreover, ∗-mixing, the assumption of the Theorem
11 is fulfilled with � = S stat(AZ), according to Sect. 4.

Proof. Let �̃ := {� ∈ Serg(AZ) : (�,�) satisfies the HP-condition and s(�,�) ≥
s(�,�)}. The set �̃ is weak-∗ -measurable since it can be represented by a countable
application of unions and intersections to local sets, defined via the measurable functions
S(·,�(n)) and βε,n(·,�).

Let pn be chosen as in Theorem 5, with� there specified as ˜�. Then (29) or (30) are
trivially fulfilled. For any � ∈ � we obtain by assumption

�(n)(pn) =
∫

Serg(AZ)

�(n)(pn)γ�(d�) (32)

=
∫

�

�(n)(pn)γ�(d�).

Now for each � ∈ � the expression �(n)(pn) ∈ [0, 1] tends to 1 by the choice of the
projections pn . Hence Lebesgue’s theorem on dominated convergence guarantees (28).
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On the other hand, for each sequence of projections { p̃n} fulfilling (28) the identity
(32) (with p̃n instead of pn) proves that, for each � ∈ �, �(n)( p̃n) tends to 1 in
γ� -probability as n → ∞. By the definition of s(�,�) to any η > 0 we may choose
� in such a way that s(�,�) ≤ s(�,�) + η. We show that

liminf
n→∞

1

n
log�(n)( p̃n) ≥ −s(�,�),

which implies (31) since η can be chosen arbitrarily small. In fact, assume the existence
of a sub-sequence n′ such that

lim
n′

1

n′ log�(n
′)( p̃n′) ≤ −s(�,�)− δ, δ > 0. (33)

Along that sub-sequence there is still convergence in γ� -probability of �(n
′)( p̃n′)

to 1. Since convergence in probability implies almost sure convergence of some sub-
sequence, we find another sub-sequence n′′ of n′ with limn′′ �(n

′′)( p̃n′′) = 1 holding γ� -
almost surely. Hence, in view of the definition of s(�,�) there is some�0 ∈ Serg(AZ)

such that (�0,�) fulfills the HP-condition, s(�0,�) < s(�,�) + δ, but

limn′′ �(n
′′)

0 ( p̃n′′) = 1. Now Theorem 5, applied to the case � = {�0} implies

liminf
n′′

1

n′′ log�(n
′′)( p̃n′′) > −s(�,�)− δ,

which contradicts (33). ��
The classical case immediately follows (with γP denoting the probability measure

occurring in the ergodic decomposition of a stationary process P and h(P, Q) :=
essinfγP (dW ) h(W, Q), supposing that h(W, Q) exists γP -almost surely):

Theorem 13. Let Q ∈ P(AZ) be a process and � ⊆ Pstat(AZ). Assume that for each
P ∈ � and γP -almost all W ∈ Pstat(AZ) the relative entropy rate h(W, Q) exists and
β̄ε(W, Q) ≤ −h(W, Q) for all ε ∈ (0, 1).

Then the quantity h(P, Q) ≤ +∞ exists for all P ∈ �, and to each subset � ⊆ �

and any η > 0 there exists a sequence {Mn}n∈N of subsets Mn ⊆ An with

lim
n→∞ P(n)(Mn) = 1, for all P ∈ � (34)

and

limsup
n→∞

1

n
log Q(n)(Mn) ≤ −h(�, Q) + η

if h(�, Q) < ∞, otherwise if h(�, Q) = ∞,

limsup
n→∞

1

n
log Q(n)(Mn) ≤ −1

η
.

Moreover, for each sequence of subsets { ˜Mn} fulfilling ( 34) we have

liminf
n→∞

1

n
log Q(n)(˜Mn) ≥ −h(�, Q).

Hence −h(�, Q) is the lower limit of all achievable separation exponents.

Remark 14. If Q is stationary and, moreover, ∗-mixing, the assumption of the theorem
is fulfilled with � = Pstat(AZ) , according to Sect. 4.
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6. The Quantum Shannon-McMillan Theorem for Stationary
States and Other Corollaries

As announced in the introduction, several earlier results on typical subspaces, resp.
subsets, are contained in Theorem 11 in a version extended to the stationary case. We
emphasize that the initial versions of the quantum Shannon-McMillan Theorem, Kal-
tchenko-Yang universality and the quantum Stein Lemma were important ingredients in
our proof. Also, it should be mentioned that it is not difficult to prove the stationary case
of the quantum Shannon-McMillan Theorem directly from the Kaltchenko-Yang result,
without using the quantum Sanov Theorem.

Corollary 15. (Quantum Shannon-McMillan Theorem for stationary states). Let � ∈
Sstat(AZ) be a stationary state and � = ∫

Serg(AZ)
�γ�(d�) be its ergodic decomposi-

tion. Then there exists a sequence {pn} of projections in A(n), respectively such that

• limn→∞�(n)(pn) = 1 (typicality)
• limn→∞ 1

n Trpn =esssupγ�(d�)s(�) := s(�) (maximal ergodic entropy rate).

For any sequence p̃n with limn→∞�(n)( p̃n) = 1 we have

lim inf
n→∞

1

n
Tr p̃n ≥ s(�) (optimality).

Remark 16. We emphasize that the AEP does not hold in the stationary case. Also,
observe that the relevant notion in the stationary case is not the von Neumann entropy
rate s(�) of the state� being the average of the entropy rates of the ergodic components
of �, but their essential supremum s(�).

Proof. Let� be the tracial state in S(AZ). It is ∗-mixing (even iid). Apply Theorem 11
with � = {�}. This yields a sequence {pηn} of �-typical projections with

s(�) ≤ liminf
n→∞

1

n
Trpηn ≤ limsup

n→∞
1

n
Trpηn ≤ s(�) + η

for any η> 0. Now the assertion of the theorem easily follows, since � is a finite set.
��

The next corollary extends the universality result of [15] to stationary states:

Corollary 17. (Kaltchenko-Yang universality theorem for stationary states). Let �s :=
{� ∈ Sstat(AZ) : s(�) < s}. Then there exists a sequence {pn} of projections in A(n),
respectively such that

• limn→∞�(n)(pn) = 1 for each � ∈ �s (typicality)
• limn→∞ 1

n Trpn = s (maximal ergodic entropy rate).

For any sequence p̃n with limn→∞�(n)( p̃n) = 1, � ∈ �s , we have

liminf
n→∞

1

n
Tr p̃n ≥ s (optimality).

Proof. Let � again be the tracial state in S(AZ). Apply Theorem 11 in a similar way
as in the proof of Corollary 15 to the sets �s−η, η > 0. ��
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Remark 18. Observe that the condition s(�) < s defining �s cannot be replaced by
s(�) ≤ s.

Finally, the quantum Stein Lemma [3] is extended to the case where the null hypoth-
esis state � is only assumed stationary, the reference state � fulfills the HP-condition
with respect to almost all ergodic components of� (and the relative entropy rate s(�,�)
may be infinite):

Corollary 19. (Stein’s Lemma for stationary states). Let� ∈ S(AZ) and� ∈ Sstat(AZ)

such that for γ� -almost all� the HP-condition is fulfilled for (�,�). Then there exists
a sequence {pn} of projections with

• limn→∞�(n)(pn) = 1 (typicality)
• limn→∞ 1

n log�(n)(pn) = −s(�,�) (achievability of the separation exponent
−s(�,�)).

For any sequence p̃n with limn→∞�(n)( p̃n) = 1 we have

liminf
n→∞

1

n
log�(n)( p̃n) ≥ −s(�,�) (optimality) .

Remark 20. Note that the relative AEP does not hold in Stein’s Lemma in the stationary
case.

Again, the relevant quantity in the stationary situation is not the average relative
entropy rate s(�,�), but the essential infimum s(�,�).

Proof. With � consisting of a single state � only, we may proceed in the same way as
in the proof of Corollary 15. ��

7. Conclusions

The paper is devoted to a generalization of Sanov’s Theorem from the iid classical situ-
ation to the correlated case and, moreover, to the quantum setting. In the present form,
the main result comprises and extends several earlier assertions including the (quan-
tum and classical) Shannon-McMillan Theorem, Stein’s Lemma (with relative AEP),
Kaltchenko and Yang’s universality and, of course, a version of Sanov’s Theorem itself.
It is a continuation of [2], where the uncorrelated case is considered. It has to be pointed
out again (see [2]), that any attempt to formulate a quantisized version of Sanov’s result
has to face the problem that the very notion of a trajectory and its empirical distribution
is problematic in quantum mechanics. Sanov’s classical theorem claims that for an iid
process with marginal Q the probability to produce a trajectory with the empirical dis-
tribution belonging to some set � of probability measures is (in general) exponentially
small. The corresponding rate is specified as the minimal relative entropy between Q and
the distributions in �. In the interesting case the measure Q is of course not an element
of � or its topological closure. So it is a large deviation result: the typical behaviour
of Q-trajectories is to have an empirical distribution close to Q. Whatever one tries to
adopt as a quantum substitute for the empirical distribution, the natural choice in the
case of a tensor product of vector states v ⊗ v ⊗ ... ⊗ v should be v itself. This leads
into the problem that for a reference vector state w⊗n the probability of measuring an
’empirical state’ v is at least TrPw⊗n Pv⊗n = |〈w|v〉|2n , while the relative entropy of
v wrt w is infinite, which would imply a super-exponential decay; for a more detailed
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exposition see [2]. In this situation it proves useful to look at Sanov’s Theorem as an
assertion about the likelihood of observing the classical iid process given by Q far from
its original support in the vicinity of the supports of other iid processes. The most natu-
ral choice for ’typical support’ in the classical framework is the set of trajectories with
empirical distribution close to the given probability distribution, since according to the
individual ergodic theorem the empirical distribution tends to Q with probability one.
So Sanov’s Theorem in its original form says that the probability of observing the tra-
jectory in the typical support of other distributions, concretely specified by means of the
corresponding empirical distributions, vanishes at a rate given by the minimum relative
entropy. It is of course completely legitimate to insist on the point of view, that a quan-
tum Sanov Theorem should be about empirical distributions, too (see [18], Remark 4,
see also an attempt to formulate a quantum (iid) Sanov Theorem made in Segre’s Ph.D.
thesis [24] (2004), Conjecture 7.3.1.). But, as explained, then one loses the relation to the
established form of quantum relative entropy (Umegaki’s relative entropy). We chose
to ’sacrifice’ empirical distributions in our approach but nonetheless calling it a version
of Sanov’s Theorem: in the classical case the relative entropy is not only the rate of
separation when empirical distributions as specifying typical sets are considered. It has
a clear operational meaning as the optimal separation rate, whatever one considers as
typical support in the sense that the probability goes to one. This perception of Sanov’s
Theorem, closely connected with the statistical hypothesis testing aspect, appears to be
natural. It allows useful generalizations to the correlated and quantum cases.
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