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1 Coherent sheaves

1.1 Some preliminary comments

(We assume a basic familiarity with sheaves and affine/projective schemes,
but review some of the relevant concepts here. We assume the reader has
seen the Spec and Proj constructions, as well as the definition of a sheaf.)

Definition 1.1. Suppose X is a noetherian scheme, and F is a sheaf of
modules over OX . We call F quasicoherent if for every affine open set
U = Spec(A) of X, F|U ' M̂ , where M is a module over A. F is called
coherent if these modules are moreover required to be finitely presented.

For example, if X = SpecA is an affine scheme, then the functors

Γ(X,−) : QCoh(X)→ Mod(A)

Γ(X,−) : Coh(X)→ fpMod(A)

are equivalences. In both cases, the inverse equivalence is the functor
M 7→ M̂ , sending a module M to the sheaf defined to equal to M̂f on
the distinguished affine corresponding to the element f , for every nonzero f
(and thus, defined inductively, since X is noetherian).

In general, we should think of quasicoherent sheaves on a scheme as
being like a generalization of the notion of modules on a ring (after all, a
quasicoherent sheaf is just given by locally patching together modules). It
is then not hard to believe that

Proposition 1.2. The categories QCoh(X) and Coh(X) are abelian.
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Almost all of the required constructions carry over from the correspond-
ing constructions on modules by just doing the same thing on sections of
sheaves, and checking compatibility with restriction maps. The zero sheaf
functions as a zero object, and direct sums and kernels can be constructed
sectionwise. But things are a little different for coker: if we try to construct
the cokernel of a morphism sectionwise, we don’t get a sheaf! This is be-
cause the functor F 7→ F(U) is not an exact functor on the category of
quasicoherent sheaves (and so the sheaf condition, which consists of a limit
diagram, no longer holds). An attempt to preserve exactness is precisely
what gives rise to sheaf cohomology (which we’ll see later on). We actually
have to sheafify the presheaf we get from this construction, and this works
as the cokernel: I won’t go into details here.

There’s also a tensor product structure (that’s symmetric up to isomor-
phism). As with the cokernel, we need to sheafify if we aren’t working over
an affine scheme. If X is affine, then the equivalence Γ(X,−) preserves this
tensor product.

It is also worth mentioning that if X = Proj(S) where S is a graded ring
(for example, P1

k = Proj(k[x0, x1])), then coherent sheaves on X arise via

the M 7→ M̂ construction on graded modules M over S, like in the affine
case. Given a graded module M over S, we can construct a sheaf M̂ , defined
by the property that the stalk at a point p consists of the degree 0 elements
of Mp. Any graded module gives rise to a sheaf in this way, every coherent
sheaf arises this way, and two modules M and M ′ gives rise to the same
sheaf iff, for n sufficiently large, Mn = M ′n.

1.2 Locally free sheaves, and the Serre twisting sheaf

Definition 1.3. A sheaf F on X is called locally free (or a vector bun-
dles) if there is an open affine cover {Ui}i∈I of X such that F|U ' O⊕mX |U
for some m. Equivalently, F is locally free iff, for every p ∈ X, Fp ' Om

X,p

for some m. We call F a line bundle in the case m = 1.

It’s worth noting that these are, in some sense, the ‘generators’ for
Coh(X). Remember that if R is a ring of dimension n, then any module M
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over R has a free resolution

0→ Fn → Fn−1 → · · · → F1 →M → 0

(called a syzygy). Similarly, any coherent sheaves over Pn
k has a resolution

by sheaves which are sums of line bundles, where the length of the resolution
will be n+ 1.

So exactly what data goes into a line bundle over P1? Recall that P1

consists of two copies of A1 (call them Ux = k[x] and Uy = k[y]), glued
along the affine subscheme Ux ∩ Uy = k[x, y]/(xy − 1) ' k[s, s−1]. Here,
we should think of x = x0/x1 whenever x1 6= 0, and y = x1/x0 whenever
x0 6= 0, where x0, x1 are the homogeneous coordinates. A coherent sheaf F
consists of a module F(Ux) over k[x] and a module F(Uy) over k[y], along
with some sort of clutching function in the middle to glue them together. If
F = L is a line bundle, then these are required to be locally free of rank 1.

Theorem 1.4. (Serre-Swan) A finitely generated module over a commuta-
tive ring is locally free if and only if it is projective.

Theorem 1.5. Finitely generated projective modules over a PID are free.

In particular, since k[x] is a PID, this implies that locally free modules
over A1 are always free. So it follows that L(Ux) and L(Uy) are, in fact, free
over k[x] and k[y], respectively. Now consider the diagram

L(Ux)

&&

L(Uy)

xx
L(Ux ∩ Uy)

where these are rank one free modules over k[x], k[y], and k[s, s−1], respec-
tively. The first map is a k[x]-module homomorphism (where x acts by
s) and the second is a k[y]-module homomorphism (where y acts by s−1).
The two maps send the generators of L(Ux) and L(Uy) to two generators
of L(Ux ∩ Uy). The second can therefore be written as the first times an
element A(s, s−1) of k[s, s−1].
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The line bundle L is entirely determined by this Laurent polynomial,
called the clutching function. This is precisely the matrix A(s, s−1) we got
in the previous section. We know this Laurent polynomial is, after an ap-
propriate automorphism of the structure sheaf, an integer power of s. So we
have

Proposition 1.6. For any n, there is exactly one line bundle O(d) (up
to isomorphism) on Pn for every d ∈ Z. O(d) is defined by the clutching
function A(s, s−1) = s−d.

Let’s explicitly compute the sections of this line bundle. Any open set
other than the entirety of P1 is contained within an affine, and so we know
what sections look like. A global section of the line bundle O(d) consists
of an element of L(Ux) and an element of L(Uy) which restrict to the same
element of L(Ux ∩ Uy. Let gx denote the generator of L(Ux), and let gy
denote the generator of L(Uy). Then we can check that if the clutching
function is s−d, then we have d + 1 linearly independent pairs of sections
that glue: (gx, gyy

d), (gxx, gyy
d−1), . . . , (gxx

d, gy). Hence, we have, by an
obvious bijection,

Proposition 1.7. The global sections of O(d) correspond to homogeneous
degree d elements of k[x0, x1].

For Pn
k , the story of these line bundles is much the same. Pn consists of

n+1 copies of An, called U0, . . . , Un, where Ui = Spec(k[x0/i, x1/i, . . . , xn/i]),
glued in the natural way. We can construct a line bundle on Pn by picking
transition functions along Ui ∩Uj which are compatible on the intersections
Ui ∩ Uj ∩ Uk. For the line bundle O(d), the transition function from Ui to
Uj should involve multiplication by (xi/xj)

d.

It turns out that O(d) is an important line bundle to consider on a
general projective scheme Proj(S) (for example, a projective variety), and
is defined as follows.

Definition 1.8. (Serre twisting sheaf)
Given a graded ring S, define O(1) (called the twisting sheaf of Serre)

as M̂ where for each n, Mn = Sn+1. Similarly define O(d) as M̂ where for
each n, Mn = Sn+d.
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Corollary 1.9. The global sections of the sheaf O(d) on Pn
k correspond to

the homogeneous elements of k[x0, . . . , xn] of degree d, which form a space of
dimension

(
d+n
n

)
. In particular, when d > 0, this is a polynomial of degree

n in d, and when d < 0, there are no global sections.

Exercise: Check that this definition of O(d) agrees in the case of P1,
i.e., the line bundle with clutching function sd is, in fact, constructed from
the graded ring whose degree n part is the degree n+ d part of k[x0, x1].

It is also worth noting that if X is any projective variety over k (and
thus is equipped with a map f : X → Pn

k for some n), then we can pull back
the line bundles O(d) by f to get line bundles OX(d) := f∗O(d) on X. The
sections of this line bundle correspond to degree d terms in the coordinate
ring, as we’d expect.

1.3 Tensor products, dual, and inner hom

Next, we’d like to understand what morphisms are possible between two
line bundles O(d1) and O(d2). We need to carry over some more of the
tools and language from the category of modules over a commutative ring
in order to do so. The following general statements about sheaves will work
over Proj(S) for any graded ring S.

Proposition 1.10. Let M̂ be any sheaf over X = Proj(S), where M is a

graded module over S. Then O(1)⊗ M̂ = M̂(1), where M(1)n = Mn+1.

Proof. M(1) = M ⊗S S(1), and O(1) = Ŝ(1). So the result holds because

the construction M 7→ M̂ commutes with tensor product.

Corollary 1.11. O(m)⊗O(n) ' O(m+ n).

(Again, in the world of K-theory, this tells us that the tensor product on
line bundles adds the Chern classes.)

Next, recall that the category of sheaves is equipped with an inner hom.
Just as homR(M,N) has the structure of an R-module, where R is a com-
mutative ring and M and N are R-modules, we can construct a presheaf
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of modules over OX , homOX
(F ,G), defined by the property that

homOX
(F ,G)(U) = Hom(F|U ,G|U )

This is a sheaf (not hard to check) whose global sections are Hom. There is
also an adjunction

homOX
(F ⊗ G,H) ' homOX

(F , homOX
(G,H))

This object leads to some results we might expect from the analogy with
R-modules.

Definition 1.12. For a locally free sheaf F , define its dual F∨ = homOX
(F ,OX).

Proposition 1.13. O(d)∨ ' O(−d).

Proof. Simply check that the morphism O(d)⊗homOX
(O(d),O)→ O is an

isomorphism on the level of stalks.

Corollary 1.14.
hom(O(m),O(n)) ' O(n−m)

Proof. Use the previous proposition, along with the adjunction.

Thus, because Hom(F ,G) = Γ(X,hom(F ,G)), we see that Hom(O(m),O(n)) =
Γ(X,O(n−m)) which is nonzero if and only if n ≥ m. This illustrates an im-
portant principle for line bundles: there are nontrivial morphisms upwards
in degree, but not downwards in degree.

1.4 Skyscraper sheaves, and a decomposition theorem

We’ve pretty thoroughly explored the story of line bundles, but obviously,
not every coherent sheaf is locally free! Here, we’ll briefly explore the struc-
ture of skyscraper sheaves (more generally, torsion sheaves, whose stalks are
zero-dimensional at all but finitely many points), and then give a general
decomposition theorem for coherent sheaves on P1.

Consider the morphism of line bundles OX → OX(d) given by multipli-
cation by some nonzero homogeneous polynomial f of degree d. The kernel
is the zero sheaf, because f is nonzero, and An is an integral domain. To
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compute the cokernel, we’ll have to look at the level of stalks. It turns out
that at a point p, the cokernel of the map OX,p → OX,p(1) is a vector space
over k whose dimension is the order of p as a zero of f . So at points where
f is nonzero, the stalk will be zero, and at points where f has a zero of
some nonzero multiplicity m, the stalk will be a vector space of dimension
m. Summarizing,

Definition 1.15. Let O → O(d) be the map given by multiplication by a
homogeneous degree d polynomial f . Then the cokernel sheaf is called Of ,
and the stalk at any point p is a vector space over k whose dimension is the
order of f at p. In the case where f has degree 1 (for example, f = x), we
call Of a skyscraper sheaf. We define Of to have degree equal to deg(f).

(Intuitively, we should think of torsion sheaves as being very small. For

example, one can easily show that Of = M̂ , where M = k[x0, x1]/(f). Note
that this does not always decompose into skyscraper sheaves: for example,
if f = (x0 − x1)

2, we get the sheaf associated to k[x0, x1]/((x0 − x1)
2).

This is not the same thing as the sheaf associated to k[x0, x1]/(x0 − x1) ⊕
k[x0, x1]/(x0 − x1)!)

Now we have enough language to understand how arbitrary coherent
sheaves on P1 look.

Theorem 1.16. Any coherent sheaf on P1
k is a finite direct sum of line

bundles and degree one skyscraper sheaves.

The proof is roughly the same idea as the structure theorem for finitely
generated modules over a PID: applying linear algebra to get a Jordan-type
form.
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2 Serre Duality

Serre duality relates the cohomology groups of a locally free sheaf F on a
smooth projective scheme X of dimension n (over base field k). It states that
there is a unique (up to isomorphism) line bundle ωX (called the dualizing
sheaf ), such that for all coherent F , i, there is a natural isomorphism

Exti(F , ω) ' Hn−i(X,F)∗

If F is locally free, the left side becomes H i(X,F∨⊗ωX), so this relates the
cohomology groups of F and F∨⊗ωX (ωX provides a sort of ‘twisting’). For
example, in the case of an oriented compact manifold, this is an analogue of
Poincare duality (the dualizing sheaf is trivial).

We’ll build up some of the machinery necessary to understand and prove
this theorem, and also see explicitly that the dualizing sheaf is precisely the
canonical bundle: the top exterior power of the sheaf of differential 1-forms.
Then we’ll see various statements of the theorem.

2.1 An algebraic tool with short exact sequences

With functors like H∗ and Ext∗, a short exact sequence (or fiber sequence)
of objects leads us to a long exact sequence of groups. This makes short
exact sequences invaluable in computing things: if we can understand two
objects in a short exact sequence, usually we can understand the third. But
what about when we have a resolution that’s longer than 3 objects? We
might as well show how to utilize such sequences here.

Proposition 2.1. Let

0 // An
ϕn // An−1

ϕn−1 // · · · ϕ2 // A1
ϕ1 // A0

// 0

be a long exact sequence of objects in an abelian category. Then we have a
collection of short exact sequences with the induced maps

0 // An
// An−1 // coker(ϕn) // 0

0 // coker(ϕn) // An−2 // coker(ϕn−1) // 0

0 // coker(ϕn−1) // An−3 // coker(ϕn−2) // 0
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...

0 // coker(ϕ3) // A1
// A0

// 0

The proof is easy. This statement is, however, important. It means
that if we have a resolution of a sheaf F by objects we understand well (for
example, locally free sheaves), then we can understand F as well by under-
standing all of the successive cokernels. In particular, in Pn

k , any coherent
sheaf F has a resolution by locally free sheaves

0→ Fn → Fn−1 → · · · → F0 → F

so if we can compute the cohomology of the locally free sheaves, we can
compute the cohomology of any coherent sheaf. In the derived category,
we can literally just replace any object with one composed of locally free
sheaves in this way.

2.2 Cech cohomology, and computation of the cohomology
of line bundles on projective space

The cohomology of a sheaf can be defined using injective resolutions. But
in practice, this is a poor way of doing computations: injective sheaves are
generally huge, and it’s not clear how you’d generate a resolution of them!
However, a scheme is usually presented to us in terms of affines (i.e., perhaps
there’s a nice affine cover we can pick). This seems useful, because of the
following theorem.

Theorem 2.2. Let X = Spec(A) be the spectrum of a noetherian ring A.
Then for all quasicoherent sheaves F on X, and all i > 0, H i(X,F) = 0.

Proof. This is clear, because Γ(X,−) : QCoh(X) → Mod(A) is an equiva-
lence of categories (so Γ(X,−) is exact if X is affine).

Exercise: Use this to deduce that skyscraper sheaves have trivial coho-
mology groups.

So, perhaps there’s a better, more obvious choice of ”fibrant replace-
ment” we can use to compute cohomology. It turns out that there is.
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Definition 2.3. Let X be a scheme, and U = {Ui} a cover by open affines,
where the index set is ordered. For a coherent sheaf F on X, define its Cech
resolution

Cp(U,F) =
∏
|I|=p

(fI)∗(F|UI
)

where the differential map Cp → Cp+1 is defined on a section s by

(ds)i0···ip+1 =

p+1∑
k=0

(−1)ksi0···îk···ip+1
|Ui0···ip+1

Define the Cech complex C∗(U,F) = Γ(X, C∗(U,F))

Proposition 2.4. If X is additionally a noetherian separated scheme, then
H i(Cp(U,F)) = H i(X,F). (X must be separated so that the intersections
UI are all affine.)

Roughly, the idea is that this Cech resolution is taking the place of the
injective resolution as the fibrant replacement for F . This is immensely
useful, because in many cases, the Cech complex is quite easy to compute!
The reason this works is, roughly, because we’re choosing a different model
structure on Ch+(Coh(X)): one where the fibrant objects are now complexes
of sheaves which are direct sums of sheaves supported on an affine open.

Let A be a noetherian ring, and let S = A[x0, . . . , xn] be a graded ring.
Let X = Proj(S) = Pn

A. Denote by OX(1) the usual twisting sheaf of Serre.

Theorem 2.5.

1. H i(X,OX(d)) = 0 for 0 < i < n and all d ∈ Z.

2. Hn(X,OX(−n− 1)) ' A.

3. The natural map

H0(X,OX(d))×Hn(X,OX(−d− n− 1))→ Hn(X,OX(−n− 1)) ' A

is a perfect pairing of finitely generated free A-modules, for each d ∈ Z.
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Proof. As usual, for i = 0, 1, . . . , n, let Ui = Spec(A[x0/xi, x1/xi, . . . , xn/xi])
be the i-th distinguished open affine. Not surprisingly, we will use the open
cover U = {U0, . . . , Un} to compute Cech cohomology. However, we will
be computing the cohomology of F =

⊕
d∈Z
O(d) and will keep track of the

grading by d.

Note that F(Ui0i1···ip) = Sxi0
···xip

. So the Cech complex is

0→
∏
i0

Sxi0
→

∏
i0<i1

Sxi0
xi1
→ · · · → Sx0x1···xn → 0

where the maps are induced by the localization maps. We claim that this
sequence is exact at every stage except for possibly at the beginning and at
the end. As an example, we will show it is exact at

∏
i0<i1

Sxi0
xi1

. Pick an

element s of this group, and let’s call the component in Sxixj sij . Suppose
it is in the kernel of the differential. Then it must map to zero in every
Sxi0

xi1
xi2

. Therefore, the elements in si0i1 , si0i2 , and si1i2 must sum to zero.
It follows that si0i1 cannot have any terms with the xi0 and xi1 exponents
negative. In general, in s, there are thus no terms with more than one
exponent negative. Next, consider the xi0-exponent-negative terms in si0
and si1 . Because si0i1i2 = 0, these terms must be equal (recall the powers
of -1 in the differential of the Cech complex). It follows that we can pick an
element of Sxi0

which maps to each of these terms. We can do this for every
index and we then get that s comes from an element of

∏
i0

Sxi0
, as desired.

This prove (1).

Now we must compute the cohomology at either end, namely, the kernel
of the first map and the cokernel of the last. We already know H0: this
is just global sections. So it remains to compute Hn. Sx0...xn is a free A-
module spanned by monomials with exponents arbitrary, while the image
of
∏
i
Sx0···x̂i···xn is spanned by the monomials with at least one exponent

nonnegative. Thus, the cokernel is spanned by the monomials xl00 · · ·xlnn with
l0, l1, . . . , ln < 0. This has dimension 0 in degree −n and greater, and for
any degree d ≤ −n−1, it has the dimension

(−d−1
n

)
, which is the same as the

dimension of H0(X,O(−d− n− 1)). In particular, Hn(X,O(−n− 1)) ' A.
This proves (2).

Now, to prove (3), we just have to find a nondegenerate pairing for
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d ≥ 0 (and since the two modules are isomorphic and finite dimensional,
this will complete the proof). H0(X,O(d)) has a basis consisting of the
monomials of degree d with all exponents nonnegative, and as we just saw,
Hn(X,O(−d−n−1)) has a basis consisting of monomials of degree −d−n−1
with all exponents negative. The natural pairing arises from taking the
product on these monomials, and we will declare the product to be zero in
Hn(X,O(−n− 1)) if any of the exponents is nonnegative. It is not hard to
check that this is a perfect pairing.

(Note: The dimension of H0(X,O(d)) is
(
d+n
n

)
. For d ≥ −n, this is

equal to the polynomial function (d+n)(d+n−1)···(d+1)
n! , but for d ≤ −n − 1,

the dimension is zero, whereas this function is not. The Hn terms we see
showing up serve to make it so that the Euler characteristic χ satisfies this
polynomial, i.e.,

χ(X,F) :=
∑
i≥0

(−1)idimkH
i(X,F) =

(d+ n)(d+ n− 1) · · · (d+ 1)

n!

You might recognize this as the Hilbert polynomial of the graded ring S!)

2.3 The canonical bundle is OX(−n− 1) on Pn
k

We want to show that, for X = Pn
k , the sheaf ωX = ∧n(ΩX/k) of differential

n-forms is O(−n− 1). We’ll show this in two different ways.

First, let’s figure out what the local clutching functions should look like.
Pick coordinates x10, x20, . . . , xn0 on U0 and x01, x21, . . . , xn1 on U1. Con-
sider the basis element dx10 ∧ dx20 ∧ · · · ∧ dxn0 on U0. What does this equal
in terms of the coordinates on U1? Rewriting,

= d

(
1

x01

)
∧ d
(
x21
x01

)
∧ d
(
x31
x01

)
∧ · · · ∧ d

(
xn1
x01

)

= −dx01
x201
∧

n∧
i=2

(
dxi1
x01
− xi1
x201

dx01

)

= − 1

xn+1
01

dx01 ∧ dx21 ∧ · · · ∧ dxn1
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That is, the transition function involves multiplying by an element of degree
−n − 1. These are precisely the clutching functions defining O(−n − 1).
Let’s now show this another way.

Proposition 2.6. There is a short exact sequence of sheaves over X = Pn

0→ ΩX/k → O(−1)⊕(n+1) → OX → 0

Proof. Let E = S(−1)n+1 be generated by elements e0, e1, . . . , en in degree
1. Then we have a homomorphism E → S defined by ei 7→ xi. Let M be
the kernel of this map, so that we have the sequence

0 //M // E // S

We then have a short exact sequence of sheaves

0 // M̃ // O(−1)⊕(n+1) // OX
// 0

Why is the last morphism surjective? The map E → S is not a surjection
of modules, but the image is all of S in degree sufficiently large (where
sufficiently large here means at least 1). Another way to see it is that,
for each xi, the map of localized modules Exi → Sxi is surjective, so the
morphism of sheaves is surjective on each distinguished open: hence it is
surjective.

Hence, it just suffices to show that M̃ = ΩX/k. We’ll show that the
modules are equal on the distinguished opens Ui. On Ui, the module of
differentials is generated in grading 0 by dx0i, dx1i, . . . , ˆdxii, . . . , dxni as a
module over k[x0i, . . . , x̂ii, . . . , xni] (obviously the higher gradings are given
by multiplying by appropriate integer powers of xi). On the other hand, the
graded module M consists of (n + 1)-tuples of homogeneous polynomials
(f0, . . . , fn) such that x0f0 + . . .+ xnfn = 0. Passing to Mxi , we see that

−fi = x0if0 + . . .+ xnifn

(where obviously xiifi is not on the right). So Mxi consists, in degree 0
of n-tuples (f0, . . . , f̂i, . . . , fn) with no conditions (fi is determined by the
above equation). Again, the higher degrees are given by multiplying by

appropriate powers of xi. Hence, M̂xi = (ΩX/k)|Ui . It is not hard to check

that the transition maps are equal as well. So M̂ ' ΩX/k, as desired.
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From here, we can just use the following easy fact.

Proposition 2.7. Let S be a graded ring, and suppose 0→ A→ B → C →
0 is a short exact sequence of graded S-modules. ∧nB has a filtration

E0 ↪→ E1 ↪→ · · · ↪→ En = ∧nB

where Ei is generated by elements b1 ∧ b2 ∧ · · · ∧ bn where n − i of the bj’s
are in A. Then each quotient Ei+1/Ei is isomorphic to ∧n−iA⊗ ∧iC.

Corollary 2.8. ∧nΩX/k ' O(−n− 1).

Proof. Recall we have the short exact sequence

0→ ΩX/k → O(−1)⊕(n+1) → OX → 0

Now look at ∧n+1(O(−1)⊕(n+1)). This is the sheaf associated to the module
∧n+1(S(−1)n+1) (where ∧ is taken over S-modules). This is generated by
the (n+1)-fold wedge tensors where each element is concentrated in a single

coordinate. In other words, this is isomorphic to
n⊗

i=0
S(−1) ' S(−n − 1).

Hence, ∧n+1(O(−1)⊕(n+1)) ' O(−n− 1).

On the other hand, because ∧n+1(ΩX/k) = 0 and ∧2OX = 0, we see that
in the filtration from the previous proposition, there is only one nonzero
quotient. That is,

∧n+1(O(−1)⊕(n+1)) ' ∧nΩX/k ⊗OX ' ∧nΩX/k

as desired.

2.4 Serre Duality

Theorem 2.9. (Serre duality for Pn
k) Let X = Pn

k , and let ωX = ∧nΩX/k '
O(−n− 1). Then

1. Hn(X,ωX) ' k. Fix one isomorphism.

2. For any coherent sheaf F over X, the natural pairing

Homi
OX

(F , ωX)×Hn(X,F)→ Hn(X,ωX) ' k

is a perfect pairing of finite-dimensional vector spaces over k
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3. For every i, there’s an isomorphism

Exti(F , ωX)→ Hn−i(X,F)∗

which, for i = 0, is induced by the map form 2.

Proof. (1) holds from Theorem 5.5. For (2), recall that if 0 → H → G →
F → 0 is a short exact sequence of sheaves, then we have long exact se-
quences

0→ Hom(F , ωX)→ Hom(G, ωX)→ Hom(H, ωX)→ Ext1(F , ωX)→

and

· · · → H1(X,H)∗ → H0(X,F)∗ → H0(X,G)∗ → H0(X,H)∗ → 0

We have maps connecting these two sequences in parallel (like a ladder).
Recall that any coherent sheaf F can be resolved by sheaves that are sums
of line bundles. Such a resolution can be decomposed into n short exact
sequences. Hence, if we can prove the desired statement for line bundles,
then by applying the 5-lemma n times in ladders like those above, it will
follow for any coherent sheaf. This is just Theorem 5.5, though.

To show (3), we simply need to construct such a map, and then can again
apply the 5-lemma trick (because the statement holds for line bundles). This
follows from some stuff about universal δ-functors.

Note that when F is locally free, Exti(F , ωX) ' Exti(X,F∨ ⊗ ωX) '
H i(X,F∨ ⊗ ωX), giving the statement described at the beginning of the
section.

We can, in fact, generalize the conditions of the theorem. The same
statement holds whenever X is a projective scheme that is Cohen-Macaulay
and all irreducible components have the same dimension. In particular, it
holds for X a smooth projective variety.

2.5 In the Derived Category

The notion of a Serre duality functor can be defined in a more general trian-
gulated category (see notes from lecture 3). We’ll reproduce the definition
here.
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Definition 2.10. Let D be a k-linear triangulated category with finite di-
mensional Hom’s (so that taking the dual twice gives back the Hom space),
where k is an algebraically closed field. A Serre functor S : D → D is an
additive equivalence of categories, with bi-functorial isomorphisms

HomD(A,B)→ HomD(B,S(A))∨

for any A,B ∈ D. Such a functor also commutes with the translation func-
tor, and the composite

Hom(A,B)→ Hom(B,S(A))∨ → Hom(S(A), S(B))

is the isomorphism given by S.

Proposition 2.11. Let X be a smooth projective scheme of dimension n.
Then −⊗ ωX [n] is a Serre duality functor on DbCoh(X).

Proof. (Sketch) Serre duality implies that if A,B are locally free sheaves
on X, then Exti(A,B) ' Extn−i(B,A ⊗ ωX)∨, simply because we can
freely move locally free sheaves back and forth over Ext’s, as long as we re-
place them by their duals. Next, remember that in DbCoh(X), Hom comes
equipped with all of the Ext’s as homotopy groups. Now we just carefully
count gradings: the i-th homotopy group of Hom(B,A⊗ωX [n])∨ equals the
(i−n)-th homotopy group of Hom(B,A⊗ωX)∨, which is Extn−i(B,A⊗ωX),
so the map between the Hom spaces is an equivalence.
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3 Understanding DbCoh(X)

3.1 An exercise from early in the semester

You might remember an exercise from the second lecture revolving around
the relation between the algebra Ext•(O⊕O(1),O⊕O(1)) and the Kronecker
quiver. Well now, we can go ahead and complete this exercise.

Proposition 3.1. Let X = P1
k, and let M = O ⊕ O(1). Then the graded

algebra Ext•(M,M) is concentrated in degree 0, and is the path algebra of
the Kronecker quiver.

Proof. First, note that Exti(O(l),O(k)) = Exti(O,Ok − l) = H i(X,O(k −
l)). We’ve seen that for i > 0, this is zero unless i = 1 and k − l = −2. So
if k, l ∈ {0, 1}, this is zero. Hence, the higher Ext groups vanish.

To compute Ext0 = Hom, we recall that Hom(O(l),O(k)) is a vector
space of dimension k − l + 1 given by the homogeneous degree k − l poly-
nomials in two variables. It is easy to see that we get the path algebra
for the Kronecker quiver: the trivial paths both correspond to multiplica-
tion by 1, and the two nontrivial paths are the morphisms from O to O(1)
corresponding to multiplication by x0 and x1, respectively.

Additionally, it turns out that the functor

DbCoh(P1)→ DbRep(·⇒ ·)

E 7→ Ext•(O ⊕O(1), E)

is an equivalence of categories. The utility of this statement is that now,
instead of thinking about the derived category of sheaves on P1, we can
instead just think of the derived category of modules over this algebra, and
modules over an algebra are usually simpler to think about than the more
general sheaves over a scheme.

O⊕O(1) is an example of what is called a tilting sheaf on P1. The derived
endomorphism algebra of this sheaf essentially contains all of the complexity
of the derived category of coherent sheaves on P1. We can generalize this
theory substantially, and will now do so.
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3.2 Tilting Sheaves

Let X be a smooth projective scheme over an algebraically closed field k,
and let D = DbCoh(X), as usual.

Definition 3.2. A coherent sheaf T on X is called a tilting sheaf if

1. (T1) A := EndOX
(T ) has finite global dimension. That is, any module

over A has a finite projective resolution.

2. (T2) ExtiOX
(T , T ) = 0 for i > 0.

3. (T3) T classically generates D. That is, D has no nontrivial trian-
gulated subcategory containing T that is closed under isomorphisms,
shifts, taking cones of morphisms, and taking direct summands.

Here, (T3) is the relevant property that T is ‘complicated enough’ that
its endomorphism algebra contains all of the necessary information to un-
derstand coherent sheaves on X (in the derived world, at least).

It’s also worth noting here that, in DbCoh(X), sheaves supported on
an affine scheme (hence, rank zero sheaves) are trivial. So it’s enough to
consider only tilting bundles, i.e., locally free tilting sheaves.

Theorem 3.3. Let T be a tilting sheaf on a smooth projective scheme X,
with associated tilting algebra A = EndOX

(T ). Then the functors

F (−) := HomOX
(T ,−) : Coh(X)→ mod(Aop)

and
G(−) := −⊗A T : mod(Aop)→ Coh(X)

induce equivalences of triangulated categories

RF : DbCoh(X)→ Dbmod(Aop)

LG : Dbmod(Aop)→ DbCoh(X)

that are quasi-inverse to each other.
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Proof. (Sketch) It is clear that if F is a coherent sheaf onX, then HomOX
(T ,F)

is a finitely generated right A-module (and thus a left Aop-module). On the
other hand, if M is a finitely generated right A-module, we can construct
M ⊗A T as the sheaf whose stalk at p is M ⊗A Tp, and this is a coherent
sheaf on X.

In order to prove the statement, we do in fact need to check that the
induced functors land in the bounded derived categories (so that the derived
functors above are well-defined). For RF , this is where the smoothness of
X comes in, because we need all but finitely many of the Ext groups to
be zero. For LG, this is where condition (T1) comes in, because we need
A-modules to have finite projective resolutions.

Not surprisingly, the claim that these two functors are quasi-inverse is
where we have to use conditions (T2) and (T3). Roughly, (T2) tells us
that RF ◦ LG(A) = RF (T ) = A (because the higher Ext groups from T
to itself vanish), which tells us that RF ◦ LG is the identity on A. Hence,
it is on finitely generated projective A-modules as well, and then because
any coherent A-module has a finite projective resolution, it is the identity
on all of Dbmod(Aop). In order to get that the other composite is quasi-
isomorphic to the identity, we use (T3) to see that the image of LG, which
is the triangulated subcategory generated by T , is all of DbCoh(X).

Corollary 3.4. If T is a coherent sheaf on X satisfying (T1) and (T2),
then T satisfies (T3) iff LG ◦RF (F) ' F for all F ∈ DbCoh(X).

Example: If X is affine, OX is a tilting sheaf. (If you don’t see why
this is true, take a minute to think about it: you should be able to say why
in one line!)

Theorem 3.5.
O ⊕O(1)⊕ · · · ⊕ O(n)

is a tilting sheaf on X = Pn.

Proof. If we have O ⊕ · · · ⊕ O(n), then by taking direct summands, we get
O, . . . ,O(n). There is an exact sequence

0→ O(n+1
0 ) → O(1)(

n+1
1 ) → · · · → O(n+ 1)(

n+1
n+1) → 0
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Hence, by taking cones, we can get O(n + 1). Line bundles are flat, so
we can tensor the above exact sequence by any O(d), and inductively, by
taking cones, we can get any O(d) for d ≥ n+ 1. Similarly, we can get the
negative degree line bundles by taking cones and shifting. So we can get all
line bundles. Any coherent sheaf can be resolved by sheaves that are sums
of line bundles, so we can get all coherent sheaves, as desired.

Exercise: Which quiver (with relations) has path algebra equal to the
endomorphism algebra of this tilting sheaf?

3.3 Mukai Pairing

As we have seen, when a smooth projective scheme X has a tilting sheaf,
DbCoh(X) is equivalent to Dbmod(Aop), where A is the algebra of endo-
morphisms of the tilting sheaf. So now the question is, which X’s have
tilting sheaves? We’ll provide a statement towards this end, by imposing
additional structure on our categories and seeing that the equivalence we
provided further preserves this structure. Moreover, we’ll see that this al-
lows us to understand K(Coh(X)).

First, we define a sort of enriched version of the Euler characteristic.

Definition 3.6. Let A be an abelian category. Then define a map

[−] : Db(A)→ K(A)

by sending an object E to [E] =
∑
i∈Z

(−1)i[Ei].

Exercise: Check that this map is well-defined, and compatible with the
additive structure.

Now note that K(Coh(X)) (if X is smooth and projective) admits a
bilinear form

〈[E], [F ]〉 :=
∑
i

(−1)idimkExtiOX
(E,F )

called the Mukai pairing. Since Exti is just H i of the RHom object (or
πi of the mapping space, if you like), you can literally think of this as
the Euler characteristic of the derived Hom complex. Similarly, since A =
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HomOX
(T , T ) has finite global dimension (so that any pair of A-modules has

a finite number of Ext groups), we have an inner product on K(mod(Aop))

〈[M ], [N ]〉 :=
∑
i

(−1)idimkExtiA(M,N)

Both of these inner products make more sense when imagined in the derived
category, since they are the Euler characteristic of the respective RHom
complexes (of k-vector spaces). Recall RF : DbCoh(X) → Dbmod(A) is
an equivalence of categories, with inverse LG. So if A,B ∈ DbCoh(X), we
get maps between HomDbCoh(X)(A,B) and HomDbmod(Aop)(RF (A),RF (B))
which are inverse to one another (homotopy equivalences in the world of∞-
categories, quasi-isomorphisms in the world of derived categories). Hence,
they must preserve the inner product on these derived categories. So,
roughly, we should expect

Theorem 3.7. Let T be a tilting sheaf on a smooth projective X, and let
A = EndOX

(T ). The homomorphism

[RF (−)] : K(Coh(X))→ K(mod(Aop))

[RF (F)] =
∑
i

(−1)iExtiOX
(T ,F)

is an isomorphism of abelian groups that preserves the bilinear forms on
either side.

Corollary 3.8. If X smooth and projective admits a tilting sheaf, then its
Grothendieck group is finitely generated and free.

In particular, this tells us that any Bridgeland stability condition on
K(Coh(X)) factors through the isomorphism K(Coh(X)) → Γ, where Γ is
a finite-dimensional lattice!

Interesting fact: K(Coh(Pn)) ' Zn+1. One way to see this is as
follows: there is a homomorphism

K(Coh(Pn))→ 1

n!
Z[x]/(xn+1)

defined by sending a sheaf to its Hilbert polynomial. Indeed, if two
(virtual) sheaves are equal in the Grothendieck group, they should have the
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same Hilbert polynomial (namely, the polynomial p(N) = dim(MN ) for N
sufficiently large). It’s also clear that this is surjective onto a lattice of full
rank: we can generated sheaves with n + 1 linearly independent Hilbert
polynomials, and in fact, O,O(1), . . . ,O(n) work. The same argument we
saw before shows that these n+ 1 line bundles generate K(Coh(Pn)), which
implies that this map is a monomorphism. Hence, it is an isomorphism onto
a lattice of full rank.

The upshot: any virtual sheaf in the Grothendieck group is uniquely
defined by the associated Hilbert polynomial. In particular, any element
of K(Coh(P1)) is defined by rank and degree, each of which can be any
integer.

3.4 Exceptional sequences

Exceptional sequences appear in algebraic geometry. We’ll see that if a
tilting sheaf has a decomposition as a sum of line bundles, then those line
bundles form an exceptional sequence, and in this case, the endomorphism
algebra is the path algebra of an easy to describe quiver with relations, where
the vertices of this quiver correspond to the line bundles of the exceptional
sequence. This then gives us a simple description of K(Coh(X)).

Definition 3.9. An object E in a triangulated k-linear category D is ex-
ceptional if

HomD(E,E[n]) '

{
k if n = 0

0 otherwise

A sequence (E0, . . . , Em) of exceptional objects is called exceptional if

RHomD(Ei, Ej) = 0 if i > j

and strongly exceptional if, additionally,

HomD(Ei, Ej [n]) = 0 if i < j and n 6= 0

Moreover, the sequence is called full (or complete if E0, . . . , Em generate
D classically.
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Proposition 3.10. Let T be a locally free sheaf on X, and T =
m⊕
i=0
Ei a

decomposition into distinct locally free sheaves with HomOX
(Ei, Ei) ' k (i.e.,

line bundles). Then

1. If T satisfies (T1) and (T2), then after reordering appropriately, (E0, . . . , Em)
forms a strongly exceptional sequence.

2. If T additionally satisfies (T3), then (E0, . . . , Em) is a fully strongly
exceptional sequence.

Conversely, if we have any full strongly exceptional sequence (E0, . . . , Em),

then T =
m⊕
i=0
Ei is a tilting sheaf.

Proof. (Sketch) In order to prove the forwards direction, first note that

0 = ExtiOX
(T , T ) '

⊕
i,j

ExtiOX
(Ei, Ej)

so all higher Ext spaces vanish. Each Ei is exceptional, because HomOX
(Ei, Ei) '

k. So we just need to show that we can rearrange the Ei so that there are
no nontrivial morphisms backwards in the sequence. For every two indices
i, j, one of the spaces HomOX

(Ei, Ej) and HomOX
(Ej , Ei) is trivial (because

otherwise, every morphism Ei → Ei factors through Ej , by dimensionality,
and similarly for Ej , which implies that the two are isomorphic). We can
then accordingly order the two in the way that we want. Careful checking
will show that this choice can be made consistently over all pairs.

In order to check the backwards direction (namely, that every full strongly
exceptional sequence defines a tilting sheaf), the only nontrivial thing to

check is that A = EndOX
(
m⊕
i=0
Ei) has finite global dimension. Because there

are no morphisms backwards in the exceptional sequence, this algebra is
isomorphism to an algebra of lower triangular matrices, which implies that
A has finite global dimension.

Proposition 3.11. Let (E0, . . . , Em) be a collection of line bundles, and let

T =
m⊕
i=0
Ei. Then EndOX

(T ) is the path algebra of a quiver (Q,R), where

1. The vertices of Q correspond to E0, . . . , Em.
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2. The edges from Ei to Ej correspond to a basis for the vector space
HomOX

(Ei, Ej).

3. Two paths are declared to be equal (i.e., their difference is in R) if the
corresponding morphisms are equal.

Exercise: Prove it! Note that this is not the only construction of the
quiver: we could have more edges and more relations, so as to get the same
path algebra.

Corollary 3.12. If (E0, . . . , Em) is a full strongly exceptional sequence for
X, then K(Coh(X)) is freely generated by E0, . . . , Em.

In particular, (O,O(1), . . . ,O(n)) form a full strongly exceptional se-
quence on Pn!
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