
Workshop on Generative Technologies 2010

Comparative Study of DSL Tools

Naveneetha Vasudevan
1

Bournemouth University
Poole, Dorset, BH12 5BB, United Kingdom

Laurence Tratt
2

Bournemouth University
Poole, Dorset, BH12 5BB, United Kingdom

Abstract

An increasingly wide range of tools based on different approaches are being used to implement Domain
Specific Languages (DSLs), yet there is little agreement as to which approach is, or approaches are, the
most appropriate for any given problem. We believe this can in large part be explained by the lack of
understanding within the DSL community. In this paper we aim to increase the understanding of the
relative strengths and weaknesses of three approaches by implementing a common DSL case study. In
addition, we present a comparative study of the three approaches.

Keywords: DSL, Converge, Ruby, Stratego.

1 Introduction

Domain Specific Languages (DSLs) are mini-languages tailored for a specific do-

main, offering significant advantages over General Purpose Languages (GPLs) [3].

DSLs allow programs to be implemented at the level of abstraction of the appli-

cation domain which enables programmers to develop programs quickly and effec-

tively. Given a domain and the need for a DSL, there exist a number of tools and

approaches for implementing DSLs. The classical approach to DSL implementa-

tion uses compiler tools such as LEX and YACC, where DSLs are implemented as

‘stand-alone’ for a particular application domain [1]. However, their application

in contemporary software systems has been restricted for two reasons: the high

start-up costs involved in implementing DSLs from scratch; and the lack of re-use

of software artifacts from other DSL implementations [3]. Conversely, embedded

approaches have been used to implement DSLs. Lisp and Nemerle [8] support con-

struction of arbitrary program fragments at compile-time through the use of macros.

1 e-mail: naveneetha@yahoo.com
2 e-mail: laurie@tratt.net

mailto:naveneetha@yahoo.com
mailto:laurie@tratt.net

Vasudevan and Tratt

In a pure embedding approach, where no macro-expanders or generators are used,

DSLs are implemented as Domain Specific Embedded Languages (DSELs) using

host language features such as higher-order functions and polymorphism [6].

Embedding approaches can be either homogeneous or heterogeneous [10]; in

heterogeneous embedding, the system used to compile the host language, and the

system used to implement the embedding are different; whereas in a homogeneous

system, the systems are the same, and all its components are specifically designed to

work with each other. This distinction is important as it allows one to understand

the limitations of a given approach. Among homogeneous embedding approaches,

compile-time meta-programming has been used extensively to implement DSLs [2,5],

by allowing the user of a programming language to interact with the compiler to

construct arbitrary program fragments at compile-time. Among heterogeneous em-

bedding approaches: Stratego/XT [9] supports implementation of DSLs by program

transformation through term rewriting; and Silver [11] supports implementation of

DSLs through the use of language extensions, where new language constructs (for

domain specific features) are translated to semantically equivalent constructs in the

host language through transformation.

In similar style to Czarnecki et al. [2], which evaluates the compile-time meta-

programming abilities of three languages, we use the case study of a generic

state machine to study three different approaches that represent important, dif-

fering, points on the DSL implementation spectrum: Ruby typifies a weakened

form of Hudak’s vision of DSELs; Stratego/XT can embed any language inside

any other; and Converge uses compile-time meta-programming to implement cus-

tomisable syntax. The code for each of our examples can be downloaded from

http://navkrish.net/downloads/dsl tools src.tar.gz. To the best of our

knowledge, this is the first time that three ‘modern’ approaches to DSL imple-

mentation have been evaluated together and we hope this comparative study will

benefit future implementation of DSLs.

2 Case Study: Finite State Machine

The example used in this paper is a generic state machine for a Turnstile (Figure 1)

with states and transitions. The syntax for a ‘transition’ is represented using the

UML notation event[guard]/action, where event represents an event that trig-

gers the transition, guard represents the condition that must evaluate to true for

the transition to occur and action represents the subsequent action. For our case

study, we represent the state machine as a DSL, so that we can have a running state

machine we can fire events at and examine its behaviour.

Violation

coin [credi t + 1 < 3] / credi t = credi t + 1

doorOpen/alarm = true

reset/alarm = false,credit = 0

coin [credi t + 1 == 3] / credi t = 0 doorClose

Unlocked

Locked

Fig. 1. State machine for a Turnstile

2

Vasudevan and Tratt

3 Implementation of a DSL in Ruby

Ruby is a dynamically-typed, general purpose object-oriented language [4]. In Ruby,

DSLs are implemented using a combination of features such as lambda abstractions

(code blocks), evaluations, dynamic typing, reflection and flexible syntax. In Ruby,

a code block is a closure that can be used to encode domain specific information. A

code block is expressed either on a single line using delimiting curly braces ({|x|

print x }) or over multiple lines using do and end keywords. A code block encoding

the domain specific information for a transition (from our case study) is as follows:

transition "charging" do |t|
t.from_state ’locked’
t.to_state = ’locked’
t.guard do |credit|
if (credit + 1) < 3

true
end

end
...

end

In the above code, the transition construct that initially looks like a DSL keyword

describing a transition, represents an invocation of the method – transition – fol-

lowed by two arguments: a string, and a code block that accepts a block parameter

(|t|). The constructs – t.from state ’locked’ and t.to state = ’locked’ –

that look like DSL keywords describing the attributes of a transition, represent

method invocations – from state and to state= – on object t, followed by an ar-

gument. The two variant method name styles highlight the syntactic flexibility that

DSL authors in Ruby can use to tweak the language to their needs. Furthermore,

the above code shows how a code block is passed as an argument to a method invo-

cation (e.g. transition "charging" <code block>). In Ruby, methods accept a

code block as a final argument, however, to pass the code block around, the method

definition needs to include a block argument (a final argument of the form &aBlock)

that would allow the code block to be implicitly converted to a Proc object. The

following code fragment shows how adding a block argument to the definition of the

transition method enables the code block to be passed around as a Proc object

(&aBlock):
class Fsm

def transition(name, &aBlock)
transition = Transition_class.new(name)
transition.load_block(&aBlock)

...

A Proc object can be executed either by using yield or by invoking its method

call (e.g. aBlock.call), with any arguments passed to them assigned to the

block parameters. The following code fragment shows how the &aBlock object

is eventually executed by calling yield self (self refers to transition object

from the above code fragment) and the corresponding method definitions for the

from state and to state= constructs from the above code block:
class Transition_class

def from_state(from_state)
@from_state = from_state

end

def to_state=(to_state)
@to_state = to_state

end

3

Vasudevan and Tratt

Input
Program

 (DSL)

Output
Program

(Java)

Parse table
(DSL)

Parse table
(Stratego + DSL + Java)

TextText ATerm ATerm Pretty-print
 (pp-java)

Transform
(fsm-transform)

Parse
(sglri)

Fig. 2. The transformation pipeline in Stratego showing the various stages to implement DSLs

def load_block
yield self

end
...

In addition to code blocks, Ruby supports dynamic typing, which allows the runtime

system to implement features such as dynamic dispatch and duck typing. For

instance, the Object class enables dynamic dispatch in every object by defining

two methods: responds to? checks if an object will respond to a message; and

method missing catches messages an object has no explicit handler for. In a similar

vein to Smalltalk, Ruby supports the creation (or replacement) of methods at run-

time that can then be used to dynamically manipulate the behaviour of an object.

4 Implementation of a DSL in Stratego/XT

Stratego/XT [9] is a software transformation framework that consists of the Strat-

ego language (for implementing program transformations through term rewriting)

and the XT toolset (for providing the infrastructure to implement these transforma-

tions). In Stratego/XT, programs are transformed by representing them in the form

of abstract syntax trees called Annotated Terms (ATerms), and then exhaustively

applying a set of term rewrite rules and strategies to them.

In Stratego/XT, DSLs are implemented using a transformation pipeline (Fig-

ure 2) consisting of three stages: a parsing stage that implements the parser for the

DSL; a transformation stage that implements the transformation program using the

Stratego language; and a pretty printing stage that unparses the final ATerm to the

target program. The XT toolset [9] provides the necessary tools for the parsing

and the pretty-printing stages. We focus our attention on the crucial stage of the

transformation pipeline—the transformation program. A transformation program

is implemented using a set of term-rewrite rules and strategies. A term-rewrite rule

defines a transformation on a ATerm and is of the form L : p1 -> p2, where L is the

rule name, and p1 and p2 are term patterns. A strategy is a program that supports

the exhaustive application of rules to an ATerm by defining the order in which the

terms are re-written. A term-rewrite rule can be written using the concrete syntax

of the object languages rather than using nested ATerm patterns [12]. For instance,

the assignment of an expression to a variable is expressed in concrete syntax as |[

x := e]| rather than using nested ATerms—Assign(Var(x),Expr(e)). A con-

densed version of the DSL program and its corresponding transformation rules for

our case study are as follows:
state locked
transition unlocking from locked to unlocked : coin [credit + 1 == 3] / credit := 0

var-init : |[state x_s]| -> |[this.states.add("~x_s");]|
guard-init :|[transition x_t from x_a to x_b : x_e ttail1]| ->

4

Vasudevan and Tratt

|[if (...) { bstm_1 }]| where <trans-tail> ttail1 => bstm_1
trans-tail : trans-tail |[guard1]| -> |[...]| where <guard> guard1 => e_1
trans-tail : trans-tail |[action1]| -> |[...]| where <action> action1 => bstm_1*
...

Further, the above code highlights two aspects. First, the embedding of meta-

variables (such as x s and ttail1) within transformation rules leads to conciseness

and better readability of the transformation program as compared to the use of

nested terms. Meta-variables are patterns for the syntactic elements (such as identi-

fiers, expressions and lists) of the object language. Second, the use of a where clause

for programmable application of rules. For instance, the <trans-tail> ttail1

construct within the where clause of the guard-init rule, can invoke either of the

trans-tail rule, depending upon the value of ttail1 at run-time.

5 Implementation of a DSL in Converge

Converge [10] is a dynamically typed imperative programming language, with

compile-time meta-programming (CTMP) and syntax extension facilities. Con-

verge, a syntax-rich modern language, unifies concepts from languages such as

Python (indentation and datatypes) and Template Haskell (CTMP).

DSLs are implemented in Converge using its CTMP facility. CTMP can be

thought of as being equivalent to macros, as it provides the user with a mechanism to

interact with the compiler, allowing the construction of arbitrary program fragments

by user code. Converge achieves this construction of arbitrary program fragments

using its compile-time meta-programming features—splicing, quasi-quotation, and

insertion [10]. Splice annotations $<...> evaluate the expression between the an-

gled brackets, and replace the splice annotation itself with the result (AST) of its

evaluation. Quasi-quotes [|...|] allows the user to build ASTs that represent the

program contained in them using Converge’s concrete syntax. Insertions ${...}

are placed within quasi-quotes to evaluate the expression, and copy the resulting

AST as is into the AST being generated by the quasi-quote.

Converge allows any arbitrary DSL to be embedded within normal source files

via a DSL block. A DSL block is introduced within a converge source file using

a variant of the splice syntax $<<expr>> where expr must evaluate to a DSL

implementation function. This function is then called at compile-time to translate

the DSL block into a Converge AST, using the same mechanism as a normal splice.

DSL blocks make use of Converge’s indentation based syntax; when the level of

indentation falls, the DSL block is finished. A DSL block and its corresponding

DSL implementation function for our case study are as follows:
TurnstileFSM := $<<FSM_Translator::mk_itree>>:

...
state locked
transition unlocking from locked to unlocked : coin [credit + 1 == 3] / credit := 0

func mk_itree(dsl_block, src_infos):
parse_tree := parse(dsl_block, src_infos)
return _Translator.new().generate(parse_tree)

The DSL implementation function FSM Translator::mk itree is called at compile-

time with a string representing the DSL block along with the src infos obtained

from the Converge tokenizer. The Converge Parser Kit can then be used to parse

this string against the user-specified grammar to produce a parse tree. This parse

5

Vasudevan and Tratt

tree, which contains tokens and their associated src infos, can then be traversed

and translated to an AST using quasi-quotes and insertion. Converge provides a

simple framework for this translation; where a translation class (Translator in

the above DSL implementation function) contains a function t production name

for each production in the grammar. The self. preorder method can then be used

to call the appropriate t function, given a node in a parse tree. The following code

fragment shows how t event function gets invoked from t transition function:
func _t_transition(self, node):

// transition ::= "TRANSITION" "ID" "FROM" "ID" "TO" "ID" transition_tail
tail_node := node[6]
if tail_node.len() != 0:

// transition_tail ::= ":" event guard action
event := self._preorder(tail_node[1])
...

func _t_event(self, node):
// event ::= "ID"
if node.len() != 0:

return CEI::istring(node[0].value)
...

For our case study, we wish to translate the DSL program into an anonymous

class. This class can then be instantiated to produce a running state ma-

chine turnstile := TurnstileFSM.new(), which can receive and act upon events

(turnstile.event("coin")). The second argument to the DSL implementation

function is a list of src infos. Src infos are covered later in Section 6.

6 Analysis and Comparison

In this section, we use and extend the dimensions identified by Czarnecki et al. [2]

to present a comparative analysis of the three DSL tools.

Dimension Ruby Stratego/XT Converge

Approach Lambda abstractions Term rewriting Compile-time meta-
programming

Guarantee Syntax valid (runtime) No Well-typed (compile-time)

Reuse Limited SDF grammar Limited

Lines of code (Gram-
mar, transformation,
and DSL program)

n/a, 89, 55 79, 95, 12 36, 173, 11

Type checking No Yes No

Error reporting Yes (runtime) Limited (end language) Compile-time

Table 1
A comparative analysis of Ruby, Stratego and Converge

Approach What is the primary approach supported by the DSL tool? In Ruby,

DSLs are implemented using a combination of its host language features such

as lambda abstractions, dynamic typing and reflection. In Converge, DSLs are

implemented using its compile-time meta-programming facility, where a DSL is

translated to host language constructs at compile-time. In Stratego/XT, DSLs

are implemented through term-rewriting, where a source program (DSL) is trans-

formed to a target program (e.g. Java) using a set of transformation rules

and strategies. The term-rewriting is performed by the transformation program

(fsm-transform in Figure 2) at the preprocessor stage—a stage prior to the

compilation of the target language program.

6

Vasudevan and Tratt

Guarantees What guarantees are provided by the DSL tool in terms of syntactic

and semantic well-formedness of the transformed-to constructs? In the context

of this paper, syntactic well-formedness guarantees that there are no syntax re-

lated errors when the transformed-to constructs are run through the host language

compiler. Although there are potentially many different semantic guarantees that

could be offered, we consider only the following: that the transformed-to program

does not have references to any undefined variables; and that the transformed-to

program does not have any type errors. In Ruby, DSLs are essentially host lan-

guage constructs, and therefore, any guarantees with regards to both syntactic

and semantic well-formedness are provided by the Ruby interpreter. In Stratego,

few guarantees are given with respect to producing a syntactically and semanti-

cally well-formed target AST. For instance, a meta-variable within a transforma-

tion rule can be associated with an incorrect type that can lead to the generation

of an invalid AST. Similarly, the target AST can contain semantically ill-formed

constructs, which are only reported at the time of compilation of the end lan-

guage. In contrast, the Converge compiler guarantees the well-formedness of the

translated-to host language constructs at the time of translation.

Reuse What aspects of the DSL implementation that are user-defined can be re-

used? We identify two aspects that are potentially re-usable: the grammar of the

DSL; and the transformation module. In Ruby, since the DSLs are essentially

host language constructs, the above aspects become irrelevant. Even so, the

interleaving of the DSL program and the host language constructs that evaluate

the DSL program limit the re-usability of the DSL implementation. In Converge,

since the grammar of the DSL and the DSL constructs are closely integrated

with the host language constructs that perform the translation, large sections of

the DSL implementation have limited re-use. In Stratego/XT, the modular SDF

definition of the object language, and sections of the transformation program that

implement the expression and the type transformations can potentially be re-used

for other DSL implementations.

Lines of code For a given problem, how many lines of code are required to repre-

sent the domain-specific information? When evaluating implementation of DSLs

based on lines of code, there are three aspects to be noted: the grammar for the

DSL; the transformation or evaluation (in Ruby) module; and the DSL program.

For our case study, the number of lines of code required to implement the gram-

mar was almost twice in Stratego as compared to Converge. In general, the size

of the grammar in Stratego is likely to be higher than in Converge, due to the

inclusion of the SDF definitions of meta-variables. In Ruby, since the DSLs are

essentially host language constructs, the aspect that deals with the grammar im-

plementation is irrelevant. Further the DSLs are evaluated as is, resulting in the

size of the evaluation program to be generally smaller as compared to Stratego

or Converge. In Converge, the nodes in the AST are traversed (and translated)

systematically, whereas in Stratego, multiple nodes in the AST are transformed

by using a strategy. For our case study, where ‘states’ and ‘transitions’ are es-

sentially a list of nodes in the AST, the use of strategies in Stratego results in a

smaller transformation program as compared to Converge. However, in Stratego,

the size of the transformation program will also be determined by the verbosity of

7

Vasudevan and Tratt

the target language. In contrast to the first two aspects, the third one is relatively

important as it has the potential to be implemented many times over during the

lifetime of a DSL. For our case study, the size of the DSL input program in Ruby

was well over four times the size in Converge or Stratego. This is primarily be-

cause the syntax of the DSLs in Converge (or Stratego) are specifically designed

for the problem in hand whereas in Ruby, the syntax of the DSLs is limited to

that which can be naturally expressed by the host language.

Type checking Can the DSL tool type check disjointed fragments of the DSL

program at the time of transformation? We explain type checking on disjointed

fragments using SQL statements as an example. If there exists two DSL frag-

ments, where the first fragment contains the definition of a table – CREATE TABLE

emp {id int(10)} – and the second fragment contains the ‘select’ statement

– SELECT * FROM emp WHERE id=x – can the DSL tool type check the SELECT

statement using the definition of the CREATE statement? In Ruby, type checking is

only possible by layering an external type checker that can then be invoked prior

to the invocation of the host language interpreter. Converge does not support

context-sensitive translation and therefore an external program will have to be

implemented to perform type checking that can be invoked at the time of trans-

lation. In Stratego, however, term rewriting can be extended with dynamic rules

to perform type checking. For our SQL scenario, a dynamic rule for each of the

columns of a table can be defined within the context of the ‘create’ statement.

The transformation rule for the SELECT statement can then invoke the dynamic

rule to perform type checking on the WHERE clause.

Error reporting Can the DSL tool report errors in terms of the DSL source (line

number and column offset)? We identify and present a broad classification of

errors that are applicable when implementing DSLs: ‘parsing errors’ are errors

that are related to the parsing of the DSL; ‘transformation errors’ are errors that

occur during the transformation of ASTs; and ‘run-time errors’ are errors that

occur at the time of execution of the transformed-to constructs. In Ruby, since

the DSLs are essentially host language constructs, ‘parsing’ and ‘transformation’

errors are not applicable; ‘run-time’ errors are reported by the Ruby interpreter

at run-time. In Stratego, ‘parsing’ errors are reported at parse stage of the

transformation pipeline (Figure 2). However, transformations in Stratego can

lead to cascading errors that are either reported at the transformation stage,

when the application of a rule fails; or at post-transformation stages – the stages

following the transformation stage but prior to the execution stage of the end

language – when an AST that is invalid is pretty-printed or when the target

program is compiled. Further, ‘run-time errors’ are detected only at the time of

execution of the target program. In particular, ’transformation’ and ’run-time’

errors are hard to debug as one needs to manually trace the errors back to the

rules in the transformation program.

Converge uses the concept of src info to report errors precisely, in terms of

the source DSL. A src info records three pieces of information: a source file; the

byte offset within the source file; and the number of bytes from the initial offset.

Since the DSL (and the implementation function) are embedded within the host

language constructs, ‘parsing’ and ‘transformation’ errors are reported at compile-

8

Vasudevan and Tratt

time. Further, the tokens, the AST elements and the bytecode instructions are

associated with multiple src infos that enable ‘run-time errors’ to be reported with

stack backtraces consisting of the error location within the translated-to Converge

program, translation functions, and the DSL source. For instance, introducing

an error in the guard expression of a transition by changing it from credit + 1

== 3 to credit + 1 == "3" results in the following stack backtrace:
Traceback (most recent call at bottom):
1: File "runfsm.cv", line 20, column 4, length 23

turnstile.event("coin")
...
4: File "FSM_Translator.cv", line 294, column 40, length 18

return [<op.src_infos>| $c{lhs} == $c{rhs} |]
File "runfsm.cv", line 12, column 69, length 2

transition unlocking from locked to unlocked : coin [credit + 1 == "3"] / credit := 0
...
5: (internal), in Int.<
Type_Exception: Expected arg 2 to be conformant to Number but got instance of String.

The fourth entry in the backtrace is related to multiple source locations: the

third and fourth line indicates the location within the source DSL (runfsm.cv);

and the others (only one is shown for brevity) are within the DSL translator

(FSM Translator.cv). Thus src infos provide useful debugging information to

both the user and the DSL developer to determine the cause of an error. Further,

quasi-quotes provide a syntactic extension in the form of [<src infos>| expr

|], which allows the addition of extra src infos to an AST element, to provide

customised errors to the user.

7 Discussion

Ruby and Converge both use an homogeneous embedded approach to implement

DSLs. In Ruby, DSLs are implemented using its host language features; therefore,

the implementation will be quick and the DSLs implemented will be lightweight in

nature. Converge supports implementation of DSLs using its compile-time meta-

programming facility. The close integration of the parser kit and the compile-time

meta-programming facility with its host language, enables it to provide a systematic

approach to implement DSLs. The concept of src infos is unique to Converge, which

enables it to report errors precisely in terms of the source DSL. However, integrated

DSLs in Converge are obviously distinct from normal language constructs, which

can be aesthetically jarring.

In contrast to Ruby and Converge, Stratego/XT uses an heterogeneous em-

bedded approach and supports implementation of DSLs through program transfor-

mation. A Stratego-like approach to implement DSLs provides a consistent mecha-

nism to transforming programs between arbitrary languages. Stratego also supports

context-sensitive transformation through the use of dynamic rewrite rules that facil-

itates the type checking on disjointed fragments within a DSL implementation. To

use the concrete syntax of the object languages within transformation rules, their

grammar definitions will have to be merged, thus creating potential ambiguities

within the combined grammar that will have to be resolved manually. In a pipeline

approach (Figure 2) to implement DSLs, the DSL author needs to be aware of:

Hudak’s [6] argument of ‘cost versus benefits’; and the potential need to manually

inspect the results (or errors) at the end of each stage as the different stages of the

pipeline are unaware of each other.

9

Vasudevan and Tratt

In our experience, DSL programs are much more succinct in Converge or Strat-

ego compared to Ruby. This is because the syntax of the DSLs in Converge (or

Stratego) can be customised for the problem in hand; whereas Ruby’s syntax can

not be extended, inherently limiting the DSLs syntax. Therefore, DSLs in Con-

verge and Stratego are better suited to projects where DSL usage is relatively high,

and is not just a quick one-off use. Our experience in implementing the case study

also highlighted that accurate sources of documentation with sufficient examples are

essential to effective implementation of DSLs. Being a GPL, Ruby is extensively

documented on the web (e.g. [7]) which the DSL author can make use of. Converge

comes with examples on how to implement DSLs that can be used as a reference.

Although there are plenty of documentation available for Stratego/XT, we noted

that there is no single comprehensive guide (with examples) that focuses on DSL

implementation.

8 Conclusions

In this paper, we implemented DSLs using three different embedded approaches; a

weakened form of homogeneous embedded approach using Ruby; a heterogeneous

embedded approach using Stratego; and a homogeneous embedded approach using

Converge. Further, we presented a comparative study of the above approaches

using a case study. From our comparative study we observed that each approach

has its merits and demerits and there is no single approach that would apply to

all scenarios. Nonetheless, we have highlighted strengths and weaknesses of three

approaches that could serve as a guideline for future implementation of DSLs.

References

[1] Bentley, J., Programming pearls: little languages, Communications of the ACM 29 (1986), 711–721.

[2] Czarnecki, K., J. O’Donnel, J. Striegnitz, and W. Taha, DSL Implementation in MetaOCaml, Template
Haskell, and C++, Domain Specific Program Generation, LNCS 3016 (2004), 51–72.

[3] Deursen, Arie V., P. Klint, and J. Visser, Domain-Specific Languages: An Annotated Bibliography,
ACM SIGPLAN Notices 35 (2000), 26–36.

[4] Flanagan, D., and Y. Matsumoto, The Ruby Programming Language, O’Reilly Media, Inc., 2008.

[5] Fleutot, F., and L. Tratt, Contrasting compile-time meta-programming in Metalua and Converge, 3rd
Workshop on Dynamic Languages and Applications, 2007.

[6] Hudak, P., Modular Domain Specific Languages and Tools, ICSR ’98: Proceedings of the 5th
International Conference on Software Reuse 0 (1998), 134–142.

[7] Documentation on the Ruby programming language, URL: http://ruby-doc.org

[8] Skalaski, K., M. Moskal, and P. Olszta, Meta-programming in Nemerle, Technical report, 2004.

[9] Bravenboer, M., K. T. Kalleberg, and E. Visser, Stratego Manual, URL:
http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-chapter/index.html

[10] Tratt, L., Domain Specific Language Implementation via Compile-Time Meta-Programming, ACM
TOPLAS 30 (2008), 1–40.

[11] Van Wyk, E., D. Bodin, L. Krishnan, and J. Gao, Silver: an Extensible Attribute Grammar System,
ENTCS 203 (2008), 103–116.

[12] Visser, E., Meta-Programming with Concrete Object Syntax, GPCE02 LNCS 2487 (2002), 299–315.

10

http://ruby-doc.org
http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-chapter/index.html

	Introduction
	Case Study: Finite State Machine
	Implementation of a DSL in Ruby
	Implementation of a DSL in Stratego/XT
	Implementation of a DSL in Converge
	Analysis and Comparison
	Discussion
	Conclusions
	References

