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Abstract. This paper focuses on the general problem of coordinating 
multiple robots. More specifically, it addresses the self-election of hetero­
geneous specialized tasks by autonomous robots. In this paper we focus 
on a specifically distributed or decentralized approach as we are partic­
ularly interested on decentralized solution where the robots themselves 
autonomously and in an individual manner, are responsible of selecting 
a particular task so that all the existing tasks are optimally distributed 
and executed. In this regard, we have established an experimental sce­
nario to solve the corresponding multi-tasks distribution problem and 
we propose a solution using two different approaches by applying Ant 
Colony Optimization-based deterministic algorithms as well as Learning 
Automata-based probabilistic algorithms. We have evaluated the robust­
ness of the algorithm, perturbing the number of pending loads to simulate 
the robot's error in estimating the real number of pending tasks and also 
the dynamic generation of loads through time. The paper ends with a 
critical discussion of experimental results. 

Keywords : Multi-robot Systems, Stochastic Learning Automata, Ant 
Colony Optimization, Multi-tasks Distribution, Self-Coordination of Mul­
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1 Introduction 

In multi-robots systems, optimal task/ job allocation or assignment is an active 
research problem [1], in which several central or global allocation methods have 
been proposed [2,3]. Some authors have also introduced decentralized or au­
tonomous solutions, in particular inspired in the social labor division observed 
in some species of social insects [4,5]. 

In this work we take a specifically distributed or decentralized approach as we 
are particularly interested in experimenting with truly autonomous and decen­
tralized techniques in which the robots themselves are responsible of choosing a 
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particular task in an autonomous and individual manner. Under this approach 
we can speak of multitasks selection instead of multitasks allocation, as the 
agents or robots select the tasks instead of being assigned a task by a central 
controller. 

We have already experimented with two different techniques. First, we applied 
the well-known threshold models inspired in the labor division of social insects 
[6]. Second, we employed stochastic reinforcement learning algorithms based on 
Learning Automata theory [7]. In this paper we also employ stochastic reinforce­
ment learning algorithms as well as ants colony optimization-based deterministic 
algorithms as explained in the sequel. 

Summarizing, this work focuses on the general problem of coordinating mul­
tiple robots, we propose a solution using two different approaches by applying 
Ant Colony Optimization-based deterministic algorithms as well as Learning 
Automata-based probabilistic algorithms to solve the corresponding multi-tasks 
distribution problem. We have considered several experiments to evaluate the 
system performance index for both approaches, and the results obtained are 
shown in article. This paper is structured as follows: section 2 describes the for­
mal description of the problem and experimental scenario. Section 3 presents a 
brief introduction, basic definitions and stochastic reinforcement algoritms about 
learning automata methods. Section 4 briefly describes ant colony optimization 
methods. Section 5 describes experimental results of the evaluation of perfor­
mance index, the conclusions and further work are presented at Section 6. 

2 Formal Definitions 

2.1 Formal Description of the Problem 

The optimal multi-task allocation problem in multi-robot systems can be for­
mally defined as follows: "Given a robot team formed by N heterogeneous 
robots, and given K different types of heterogeneous specialized tasks or equiva-
lently, given K different robots roles or robots jobs and given a particular time-
dependent load or number of tasks to be executed L = {h(t), h(t), •••, li((t)} 
obtain an optimal distribution of the K tasks among the N robots in such a way 
that the robots themselves, autonomously and in an individual manner, select a 
particular task such that all the existing tasks are optimally executed". 

Let L = {/i(t),/2(t),...,//<-(£)} be the different specialized tasks. Each lj G L 
has a number of j sub-tasks or pending loads. Let R = {ri, ri, •••, rw} be the set 
of N heterogeneous mobile robots. To solve the problem, we have supposed that 
all members R = {ri,r2, ...rj^} are able to participate in any sub-task lj. 

2.2 Experimental Scenario 

We have established the following experimental scenario (Fig. 1) in order to 
analyze a particular strategy or solution for the coordination of multi-robot 
systems as regards the optimal distribution of the existing tasks. Given a set of 



N heterogeneous mobile robots in a region, achieving an optimal distribution for 
different types of tasks. The set of N robots will form sub-teams for each type 
of task lj. The sub-teams are dynamic over time, i.e. the same robots will not 
be always part of the same sub-team, but the components of each sub-team can 
vary depending on the situation. 

Fig. 1. Experimental scenario 

Most of the proposed solutions in the technical literature are of a centralized 
nature, in the sense that an external controller is in charge of distributing the 
tasks among the robots by means of conventional optimization methods and 
based on global information about the system state [8]. However, we are mainly 
interested on truly decentralized solutions in which the robots themselves, au­
tonomously and in an individual and local manner, select a particular task so 
that all the tasks are optimally distributed and executed. In this regard, we have 
experimented with stochastic reinforcement learning algorithms based on Learn­
ing Automata theory to tackle this hard self-coordination problem as described 
in the sequel. 

3 Learning Automata Methods 

3.1 A Brief Introduction 

Learning automata have made a significant impact and have attracted a consid­
erable interest in last years [9]. The first researches on learning automata models 



were developed in Mathematical Psychology, that describe the use of stochas­
tic automata with updating of action probabilities which results in reduction in 
the number of states in comparison with deterministic automata. They can be 
applied to a broad range of modeling and control problems, control of manufac­
turing plants, pattern recognition, path planning for manipulator, among other. 
An important point to note is that the decisions must be made with very little 
knowledge concerning of the environment, to guarantee robust behavior without 
the complete knowledge of the system. In a purely mathematical context, the 
goal of a learning system is the optimization of a function not known explicitly 
[10]. 

Learning is defined as any permanent change in behavior as a result of past 
experience, and an automata is a machine or control mechanism designed to au­
tomatically follow a predetermined sequence of operations or respond to encoded 
instructions [11]. The objective of stochastic learning automata is to determine 
how the choice of the action at any stage should be guided by past actions and 
responses, so when a specific action is performed the environment provides a 
random response which is either favorable or unfavorable [12]. 

3.2 Basic Definitions 

A learning automaton is a sextuple < x, Q, u, P(t), G, 1Z >, where x is the finite 
set of inputs, Q = {</i, </2, • • •, qm} is a finite set of internal states, u is the set of 
outputs, P(t) = {pi(t),p2(t), • • • ,pm(t)} is the state probability vector at time 
instant t, G : Q —> u is the output function (normally considered as deterministic 
and one-one), and 1Z is an algorithm called the reinforcement scheme, which 
generates P(t + 1) from P(t) and the particular input at a discrete instant t. 

The automaton operates in a random environment and chooses its current 
state according to the input received from the environment. The new state prob­
abilities distribution P(t + 1) reflects the information obtained from the envi­
ronment. The random environment has a set of inputs u and its set of outputs is 
frequently binary {0,1}, with '0' corresponding to the reward response and ' 1 ' 
to the penalty response. If the input to the environment is ui the environment 
produces a penalty response with probability c$. 

Fig. 2 shows the feedback configuration of a learning automaton operating in 
a random environment. At each instant t the environment evaluates the action 
of the automaton by either a penalty ' 1 ' or reward '0'. The performance of the 
automaton's behaviors is the average penalty 
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J(t) = - ] [ > ( t ) C j (1) 
i=l 

which must be minimized. In order to minimize the expectation of penalty (1), 
the reinforcement scheme modifies the state probability vector P. The basic 
idea is to increase pi if state </j generates a reward and to decrease pi when the 
same state has produced a penalty. A great number of reinforcement schemes for 
minimizing the expected value of penalty have been studied and compared. One 



of the most serious difficulties that arise in learning automata is the dichotomy 
between learning speed and accuracy. If the speed of convergence is increased in 
any particular reinforcement scheme, this action is almost invariably accompa­
nied by an increase of convergence to the undesired state [13,14]. 
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Fig. 2. Interaction of learning automaton with random environment 

3.3 Stochastic Reinforcement Algorithms in Learning Automata 
Theory 

In the technical literature a widely used stochastic reinforcement algorithms is 
LR-I, which stands for Linear Reward-Inaction algorithm. 

Let us suppose that the action chosen by the automaton at instant t is </>$, for 
the LR-I the updating of the action probabilities is as follows: 

Pi(t+l)=Pi(t) + \p(t)[l-Pi(t)] (2) 

Pj(t+l)=Pj(t)-\p(t)P3(t) VJ±iA<3<N (3) 

where 0 < A < 1 is the learning rate and (3(t) is the environment's response: 
(3 = 1 (favorable response or reward) or (3 = 0 (unfavorable response or penalty 
in which case the algorithm do not change the probability, i.e. inaction). 

Let's suppose that there are K different specialized tasks, then we designate by 
Pij(t), the probability at instant t that robot r-j selects task lj these probabilities 
hold: 

N 

0 <Pij(t) < 1; ^2pij(t) = 1; i = 1,2, ...,N robots; j = 1,2,... ,K tasks (4) 
i=i 



Initially, without previous robot's experience these probabilities are initialized 
at the "indifference" position as follow: 

-Pij'(O) = ~7? for * = 1, 2,..., ./V robots and j = 1, 2, .. ., K tasks (5) 
K 

Afterwards it starts the learning process in which each robot updates its election 
probabilities according to the following conventional updating rule: 

pij(t+l)=Pij(t)+\p(t) [1 -Pij(t)] (6) 

where 0 < A < 1 is the learning rate with a fixed value of 0.2; (3(t) is the usual 
reward signal generated by the environment of the learning automata with the 
following interpretation: (3(t) = 1; reward if and only if for the corresponding 
task lj at instant t it holds that #Rj(t) < #Lj(t), i.e. the number of robots 
performing task lj is lower than the number of tasks lj to be executed; (3(t) = 0; 
penalty if and only if #Rj(t) > #Lj(t); i.e. when the number of robots per­
forming task lj is greater than the number of tasks lj or whenever there are 
not pending tasks to be executed the automata receives a penalty signal. In 
few words: at each instant t the environment evaluates the action of the au­
tomata, when the response generated by environment is 1 means that the action 
is "favorable" and if the response value is 0 corresponds to an "unfavorable" as 
follow: 

R m = t^± = J lf ^ : then reward l3 = l n\ 
PL*{) #Lj \ If > 1 then penalty /3 = 0 [) 

4 Ant Colony Optimization Methods 

For over many years, communities or colonies of social insects have been deeply 
studied by some researchers, as they provide fascinating examples of functional 
collective behavior. Ant Colony Optimization (ACO) is a meta-heuristic ap­
proach that was introduced in the early 1990's by Dorigo et al. in [15,16]. The 
general idea of ACO approach is to solve combinatorial optimization problems 
based by the behavior of real ants, more specifically, the inspiring source is how 
ants can find shortest paths between food sources their nest. ACO algorithms 
are stochastic search procedures based on a parameterized probabilistic model 
[17], called by the authors "the pheromone model". 

In this case, a generic robot r-j selects the tasks in a deterministic way based 
on "forces" fij(t). These forces are updated, after being initialized at the "indif­
ference" position, as follows: 

fij(t + 1) = Pfij(t) + (1 " P)^)i ° < P < l (8) 

where p is the usual learning rate of ant colony optimization-like algorithms and 
(3(t) is the reward/penalty signal at instant t with the same exact interpretation 
than for the learning automata-based probabilistic algorithms. 



5 Experimental Results 

We have carried out a series of experiments to evaluate the system performance 
index by applying Ant Colony Optimization-based deterministic algorithms as 
well as Learning Automata-based probabilistic algorithms to solve the optimal 
distribution of the tasks among the N robots; so that all of them are executed 
by means of the minimum number of robots. The ideal objective is that the 
performance index or learning curve corresponding to the load lj(t) of each task 
tend asymptotically to zero for all curves in the minimum time and using the 
minimal possible number of robots for task execution. 

In the simulations we have considered some variants such as: the multi-robot 
system size, different loads lj(t) for each type of task, two different ways to carry 
out the tasks selection, the additive noise generation to simulate the robot's er­
ror and the dynamic generation of tasks lj(t) over time. According to the results 
obtained with eq. 6 and eq. 8 we have used for the learning automata-based 
probabilistic algorithms and for ant colony optimization-based deterministic al­
gorithms two mechanisms for the selection of tasks: 

1. Maximum principle: at each instant t choose the task that has the highest 
probability for all Pij(t). 

2. The strictly random method: using the probabilities Pij(t) in the strict sense 
of the word, it generates a random number with uniform distribution (0 — 1) 
and it selects the appropriate task to the value obtained by the method of 
inversion of discrete probability distributions. 

Table 1. Shows a scheme of the experiments performed with their respective variants 
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5.1 Evaluation of the Performance Index 

To evaluate the evolution of the performance index we have introduced additive 
noise, perturbing the number of pending loads to simulate the robot's error in 
estimating the real number of pending tasks. The noise generated is modeled 
using a normal distribution ("White Noise") as follows: 

Noise = R + R*S = R(l + S) (9) 



where Noise is the noise generated to the number of pending loads h(t), which is 
proportional to the amplitude of the noise R without perturbing, S is a Gaussian 
distribution with a mean of '0' and a typical deviation '0.005' N(0, 0.005). 

Fig. 3 and Fig. 4 show the evolution of the system performance index ob­
tained for self-election of heterogeneous specialized tasks through ant colony 
optimization-based deterministic algorithm as well as learning automata-based 
probabilistic algorithms, using both mechanisms: maximum principle and the 
strictly random method, with a team of robots formed by 20 - 30 heterogeneous 
robots and 4 types of heterogeneous specialized tasks with different loads. Each 
experiment has been run 10 times and the results shown are the mean of all. 

(a) (b) 

Fig. 3. Learning curves with the evolution of the system performance index for self-
election of tasks using Ant Colony Optimization-based deterministic algorithms 

Fig. 3(a) shows the performance index without noise for both mechanisms, 
it can be observed that the maximum principle provides better performance 
instead of strictly random method. However, Fig. 3(b) shows the performance 
index perturbing the number of pending loads and for both mechanisms the 
performance is better because they finish in fewer time than in Fig. 3(a). In this 
case, the best results are obtained with strictly random method instead of the 
maximum principle. 

Fig. 4(a) shows the performance index without noise for both mechanisms 
and Fig. 4(b) presents the performance index generating additive noise in the 
number of pending tasks. It can be noted that Fig. 4(b) obtains better results 
for both mechanisms than Fig 4(a) using Learning Automata-based probabilistic 
algorithms. It can be observed that learning curves corresponding to the load 
lj(t) of each task tend asymptotically to zero for both methods. Also the results 
shown that the generation of additive noise does not affect the performance of 
the approach, on the contrary, in some cases better results are obtained with the 
generation of noise. 
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Fig. 4. Learning curves with the evolution of the system performance index for self-
election of tasks using Learning Automata-based probabilistic algorithms 

5.2 D y n a m i c T a s k s G e n e r a t i o n 

In the previous experiments, the number of loads for each type of task is deter­
mined from the beginning of the simulation and there is not any change until 
the end of the execution. To evaluate the performance of the algorithm we have 
generated dynamic tasks. This idea was rescued from classical models of queues 
simulation, so we have used Poisson distribution to determine the probability of 
generating a number of tasks through time: 

f(k;X) 
\\k eAA 

~fcT 
(10) 

Specifically we will have a different distribution for k = 1 to 100. Each A is 
a positive real number tha t representing the number of tasks expected to be 
generated during a time interval. For tha t expected number of tasks generated 
is decreasing, and therefore the system is stable, we have parameterized this 
constant A as follows: 

\(t)=a-a*t (11) 

where a is the initial value (for example, 10 or 20) and a is a factor of "reduction 
tasks" tha t initially we have defined to 1. Finally, t corresponds the time of 
execution at each instant. 

Fig. 5 and Fig. 6 show the evolution of the system performance index with 
dynamic tasks generation through time using the Poisson distribution. Experi­
ments have been performed 10 times and the results shown are the mean of all, 
we have also additive noise generated in the loads with the maximum princi­
ple and the strictly random method. In the results it can be observed dynamic 
tasks generation, the tasks number generated is decreasing over time. All learn­
ing curves tend to zero in both methods and not affected the performance of 
the approach with the generation of additive noise, sometimes there are bet ter 
results with noise. 
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Fig. 5. Dynamic task generation: learning curves with the evolution of the system 
performance index using Ant Colony Optimization-based deterministic algorithms 
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Fig. 6. Dynamic task generation: learning curves with the evolution of the system 
performance index using Learning Automata-based probabilistic algorithms 

• I st 

II 

Cumulative Distribution Function 

f 
I 

/ 

) IO :•• 

A 
w 

~X=l 
~X=2 
~*-20 
-X=J0 

* 50 

Fig. 7. The index k represents the number of tasks expected to be generated during a 
time interval for different values of A and P(X = k) describes the probability that a 
value of variable X with a given probability distribution is equal to k 



Fig. 7 shows the probability mass function and the cumulative distribution 
function obtained in experiments with dynamic task generation using the Poisson 
distribution. 

6 Conclusions and Further Work 

In this paper we have applied two different approaches to the self-coordination 
problem of multi-robot systems in the heterogeneous multi-tasks distribution 
by applying Ant Colony Optimization-based deterministic algorithms as well as 
Learning Automata-based probabilistic algorithms. To carry out the selection 
of tasks in both approaches we used two mechanisms: maximum principle and 
the strictly random method and, in most experiments the best results are ob­
tained with strictly random method instead of the maximum principle. We have 
generated additive noise to evaluate the robustness to both approaches, perturb­
ing the number of pending load, to simulate the robot 's error in estimating the 
real number of pending tasks, according to the results obtained the noise gen­
erated does not affect the performance of the approaches since the best result 
are obtained by generating noise in the pending loads. We have also studied 
the performance index with dynamic generation of loads through time and the 
results confirm tha t the robots are capable to select in an autonomous and in­
dividual manner the existing tasks without the intervention of any global and 
central tasks scheduler. We have shown tha t both approaches can be efficiently 
applied to solve this self-coordination problem in multi-robot systems obtaining 
truly decentralized solutions. 
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